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Yin-Yang 1 (YY1) is amember of the GLI-Kruppel family of zinc finger proteins and

plays a vital dual biological role in cancer as an oncogene or a tumor suppressor

during tumorigenesis and tumor progression. The tumor microenvironment

(TME) is identified as the “soil” of tumor that has a critical role in both tumor

growth and metastasis. Many studies have found that YY1 is closely related to the

remodeling and regulation of the TME. Herein, we reviewed the expression

pattern of YY1 in tumors and summarized the function and mechanism of YY1 in

regulating tumor angiogenesis, immune and metabolism. In addition, we

discussed the potential value of YY1 in tumor diagnosis and treatment and

provided a novel molecular strategy for the clinical diagnosis and treatment

of tumors.
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Abbreviations: YY1, Yin Yang 1; TME, tumor microenvironment; NPC, nasopharyngeal carcinoma; PDAC,

pancreatic ductal adenocarcinoma; VEGF, vascular endothelial growth factor; MVD, micro vessel density;

HCC, Hepatocellular carcinoma; GLUT, glucose transporter; MZF1, myeloid zinc finger 1; HK2, hexokinase

2; PGK1, phosphoglycerate kinase 1; SLC2A1, solute carrier family 2, member 1; PPP, pentose phosphate

pathway; NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; G6PD,

glucose-6-phosphate dehydrogenase; MnSOD, manganese-dependent superoxide dismutase; TIME,

immunosuppression microenvironment; PD-1, Programmed death receptor-1; CTLA-4, Cytotoxic T

lymphocyte-associated antigen -4; Treg, Regulatory T; PcG, Polycomb Group; LPS, lipopolysaccharide;

COX-2, cyclooxygenase-2; HIF-1a, hypoxia-inducible factor 1-a.
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1 Introduction

Within the tumor microenvironment (TME), cancer cells

coexist with noncancerous adjacent cells and components that

constitute the TME and impact tumor growth and progression

through diverse mechanisms. In addition to cancer cells, the TME

comprises immune cells, fibroblasts, bone marrow-derived

inflammatory cells, as well as noncellular components such as

abnormal tumor blood vessels, signaling molecules, and

extracellular matrix (1, 2). As the forces of the tumor cells grow,

the microenvironment that originally suppressed tumor growth and

protected the survival of normal cells has also been gradually

transformed into a place suitable for tumor cells to survive.

Furthermore, the microenvironment provides essential nutrients,

amino acids, and nucleotides to the tumor, facilitating tumor

growth. At the same time, it forms a protective barrier against the

pernicious effect of immune cells and drugs during tumor treatment

(3). Yin-Yang 1 (YY1) is a ubiquitous transcription factor with

multiple roles in tumorigenesis, functioning as both a

transcriptional activator and repressor (4, 5). Moreover, its

function depends on its interacting partners, promoter

environment, and chromatin structure (6, 7), thereby regulating

transcriptional activation and repression of approximately 10% of

the total human gene set associated with a variety of cellular

biological processes (8, 9). Several recent reports suggest that YY1

mostly acts as an oncogene in most types of cancers but also acts as

a tumor suppressor in some other types of cancer (10–13).

Therefore, this review focuses on the expression patterns of YY1

in different tumors, its influence on tumor angiogenesis, tumor

metabolism and the tumor immune microenvironment, and its

potential value in tumor diagnosis and treatment. This review

expands the understanding of the roles and mechanisms of YY1

in the TME and provides a novel molecular strategy for the clinical

diagnosis and treatment of tumors.
2 Expression of YY1 in
different tumors

YY1 is widely expressed in various tissues, and its upregulation

in different types of tumors shows different clinical implications. To

investigate the differential expression of YY1 in different types of

tumors, studies have analyzed GEO datasets and found that YY1

has high mRNA expression in most tumor tissues (14). Likewise,

several studies have shown that YY1 is highly expressed in breast

cancer (15), bladder cancer (16), colorectal cancer (17), cervix

cancer (18), esophageal carcinoma (19), gastric cancer (20),

glioma (21), hodgkin lymphoma (22), hepatocellular carcinoma

(23), kidney cancer (24), lung cancer (25), melanoma (26),

osteosarcoma (27), ovary cancer (28), and prostate cancer (29). In

addition, in the studies evaluated for all paired primary and

metastatic samples, YY1 expression appeared to be increased in

metastatic tissues compared with matched primary tumor tissues.

These results indicate that YY1 is closely related to tumor invasion

and metastasis and is most likely involved in regulating the TME.
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More intriguingly, In osteosarcoma. YY1 presents lower expression

levels in pediatric osteosarcomas compared to normal human

osteoblasts (30). In addition, YY1 is also not always highly

expressed in tumors, such as melanoma, YY1 expression is

significantly lower in metastatic melanoma than in normal

melanocytes (31). Furthermore, we have also recently revealed an

additional contribution of YY1 in nasopharyngeal carcinoma

(NPC). Compared with the expression of YY1 in normal NPE

tissues and NPC tissues, most patients exhibited a significant

decrease, and its expression negatively correlated with increasing

clinical TNM stage and positively correlated with the OS rate with

NPC (13). It is same with pancreatic ductal adenocarcinoma

(PDAC), several reports indicate that YY1 is downregulated in

PDAC tissues compared with adjacent normal pancreatic tissues,

and the high expression of YY1 represents a better prognosis in

patients with PDAC (32). These results suggest that YY1 has two

distinct expression patterns (high or low) in different tumor types,

and playing a dual role as an oncogene or tumor suppressor to

facilitate tumorigenesis or tumor progression (Table 1).
3 Role of YY1 in the tumor
microenvironment

3.1 YY1 in tumor angiogenesis

Tumor vasculature is a critical component of the TME, which

is the critical channel of oxygen and nutrient delivery for

maintaining tumor growth but is also a pathway of tumor cell

metastasis (37). Due to insufficiencies in the tumor vasculature,

tumor cells are often exposed to a hostile TME with low nutrient

and oxygen levels (38). Tumor cells secrete angiogenic factors to

induce neovascularization to satisfy tumor cell oxygen and

nutrient requirements (39). Vascular endothelial growth factor

A (VEGFA) is the most critical and primary component of the

VEGF family, which is a multipurpose cytokine active on blood

vessel cells (40). Through a paracrine mechanism induces tumor

vascularization to meet the increased requirement of oxygen and

nutrients and remove metabolic wastes (41, 42). VEGF is usually

regulated by HIF-1a or the CXCR4/SDF-1 axis in tumors (43).

The molecular mechanism between the YY1 and VEGF was

discovered in multiple studies. De et al. found that YY1 was a

critical component of the HIF-1a complex and binds its target

sequences on the regulatory regions of VEGFA, -B, and -C to

upregulates the transcriptional activity and expression of them

(44). In addition, studies have shown that the expression of YY1

was upregulated in the malignancy of osteosarcoma, and silencing

the expression of YY1 can significantly downregulate the

activation of the VEGF/CXCR4 axis, thereby inhibiting the

angiogenesis, invasion and metastasis (45). HCC is a well-

known typical angiogenesis-dependent solid tumor with rich

blood vessels, and YY1 is reported to be involved in regulating

tumor malignancy in HCC. Yang et al. found that microvessel

density (MVD) was positively correlated with YY1 and poor

prognosis in HCC, and overexpression of YY1 promoted
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VEGFA transcriptional activity by binding to the VEGFA

promoter (46). These results highlight a new mechanism by

which YY1 plays an essential role though inducing VEGFA

transcription in HCC angiogenesis. In addition to direct

regulation, the indirect regulation between YY1 and VEGF has

gradually been discovered. Li et al. found that YY1 contributes to

angiogenesis via SNHG5/miR-26b/CTGF/VEGFA axis in AML

(47). Moreover, a VEGF-independent mechanism to promote

angiogenesis was discovered. In the presence of KRAS

mutations, YY1 promoted neovascularization by targeting the

ZNF322A promoter to increase its expression. It is significant to

note that ZNF322A increases the sonic hedgehog (Shh)

expression, which encodes a secreted factor that turns on pro-

angiogenic responses in endothelial cells. According to these

r e su l t s , d i s rup t i on o f the Kra s /YY1/ZNF322A/Shh

transcriptional axis encourages lung cancer neoangiogenesis and

cancer development (48). Not only protein-encoding genes but

YY1 can target the transcription of lncRNA MCM3AP-AS1,

further targeting the miR-340-5p/KPNA4 axis stimulated lung

cancer angiogenesis and progression (49). Similarly, in

cholangiocarcinoma, it is also found that the Circ-CCAC1/miR-

514a-5p/YY1/CAMLG axis disrupts endothelial barrier integrity

and induces angiogenesis (50).

YY1 plays dual biological roles in the initiation and progression

of various cancers. Likewise, YY1 exhibits promote or inhibit

angiogenesis. Several previous studies have reported that YY1

plays a tumor suppressor role in PCDA. For example, YY1

inhibited angiogenesis by downregulating the TPPP-mediated
Frontiers in Oncology 03
p38/MAPK and PI3K/AKT pathways opening a new horizon in

PCDA research. ChIP sequencing results showed that YY1 directly

binds to the promoter region of TPPP and thus inhibits pancreatic

cancer cell migration, invasion and angiogenesis (51). Beyond that,

latterly the discovery of YY1 suppressed the invasion and metastasis

of PCDA cells by downregulating the expression of MMP10

through the MUC4/ErbB2/p38/MEF2C regulatory axis (12, 32).

Overall, this is strong evidence that YY1 plays an inhibitory role in

neo-angiogenesis.

In general, existing evidence indicates that YY1 acts as a double-

edged sword that alters the TME by promoting or inhibiting

angiogenesis in different tumor types (Figure 1), where some of

the position of YY1 regulating target genes related to angiogenesis

occur in cancer cells, which indirectly affected the formation of

blood vessels by regulating the expression of angiogenesis related

factors. Some regulation positions take place in vascular endothelial

cells and directly affects the formation of blood vessels. The effect

and mechanism of YY1 on angiogenesis in various tumors are

shown in Table 2.
3.2 YY1 in immunity

Human cells are constantly under surveillance by the immune

system. The TME is themain battleground between tumor cells and the

host immune system, and tumors can escape immune surveillance by

initiating various immunosuppressive cells or establishing an

immunosuppressive microenvironment (56, 57). Recent studies have
TABLE 1 Expression profile and function of YY1 in a variety of tumors.

Expression Cancer type Function Ref.

up regulation breast cancer inhibits (33, 34)

promotes (15)

bladder cancer promotes (16)

colorectal cancer promotes (17)

cervix cancer promotes (18)

esophageal carcinoma inhibits (19)

gastric cancer promotes (20)

glioma promotes (21)

hodgkin lymphoma promotes (22)

hepatocellular carcinoma promotes (23)

kidney cancer promotes (24)

lung cancer promotes (25)

melanoma promotes (26)

osteosarcoma promotes (35)

ovary cancer promotes (28)

prostate cancer promotes (29)

down regulation PDAC inhibits (32, 36)

NPC inhibits (13)
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shown that YY1 regulates broad general processes throughout all stages

of T-cell and B-cell differentiation (58, 59).

3.2.1 T cells
Immune checkpoint activation is a critical mechanism by which

tumor cells evade clearance by immune cells. In the TME, where
Frontiers in Oncology 04
tumor cells are located, the surface antigens of tumor cells cannot be

presented to T cells, resulting in tumor cells evading immune

killing. Programmed death receptor-1 (PD-1) and cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) are the most common

immune checkpoint receptors expressed on the surface of T

lymphocytes (60). YY1 has been shown to positively regulate
TABLE 2 The target gene and mechanism of YY1 on angiogenesis.

Cancer type Target gene/regutation Position of regulation Function Ref

AML SNHG5/up cancer cells promotes (47)

melanoma VEGF/up vascular endothelial cells promotes (52)

osteosarcoma VEGF/up cancer cells promotes (53)

HCC VEGFA/up vascular endothelial cells and cancer cells promotes (46)

lung cancer ZNF322A/up cancer cells promotes (48)

lung cancer MCM3AP-AS1/up cancer cells promotes (49)

PCDA TPPP/down cancer cells Inhibits (51)

PCDA MUC4/down cancer cells Inhibits (12)

cholangiocarcinoma (CCA) CAMLG/up vascular endothelial cells and cancer cells promotes (50)

CRC NA vascular endothelial cells and cancer cells promotes (54)

breast cancer VWF/up cancer cells promotes (55)
frontiers
FIGURE 1

The mechanism of YY1 regulating angiogenesis in the tumor microenvironment. YY1 regulates the expression of crucial proteins associated with
tumor neovascularization (such as SNHG5, VWF, MUC4, ZNF332a, TPPP, MCM3AP-AS1, VEGF family, et al.), by interacting with their promoters,
thus to regulate the proliferation, migration, invasion, and EMT transition of cancer cells in an oncogene or tumor suppressor role. YY1, Yin Yang 1;
HIF-1a, hypoxia-inducible factor 1-a; VEGF, vascular endothelial growth factor; VEGFA, vascular endothelial growth factor A; TPPP, tubulin
polymerization promoting protein; MMP 10, matrix metallopeptidase 10; EMT, epithelial-mesenchymal transition.
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immune checkpoint receptors such as PD1 and CTLA-4 (61), and

YY1 was upregulated in PD1-positive T cells infiltrating

lymphocytes in melanoma tumors and directly regulated the

expression of PD1 and LAG3 by binding to the promoter region

(62, 63). PD-1 is a critical receptor expressed on activated T cells

that inhibits T cell-mediated immune responses upon binding to its

ligand programmed cell death ligand 1 (PD-L1) (64). YY1 can

increase PD-L1 expression through various signaling pathways. As

a negative regulator of p53, YY1 inhibits the expression of miR-34a

downstream of p53, while downregulation of miR-34a expression

leads to an increase of PD-L1 expression by binding to the PD-L1

3’UTR (65). YY1 has also been shown to promote PD-L1 expression

by downregulating PTEN via p53 and activating the PI3K/Akt/

mTOR pathway (66). YY1 has been reported to be associated with T

cell apoptosis. FGL1 promotes the secretion of interleukin-2 by T

cells and induces their apoptosis. Indeed, YY1 is the upstream

molecule of FGL1, which was found to be transcriptionally

regulated by YY1 (67). These results suggest that YY1 may hinder

T-cell-mediated tumor immunotherapy by interfering PD-1/PD-

L1 checkpoint.

As the tumor progresses, the TIME is constantly changing, and

the speed of tumor development depends on the proportion and

characteristics of T cells within the TIME. As early as ten years ago,

evidence in the field of tumor immunity suggested that the TME

limits the accumulation of T cells among tumor cells. Regulatory T

(Treg) cells are essential for maintaining immune homeostasis (60,

68). Hwang et al. showed that the expression of YY1 in Treg cells

was lower than that in Tconv cells, and the overexpression of YY1

led to a significant decrease in the expression of Foxp3, making the

suppressive function of Treg cells ineffective (69). As one of the

most concerned phenotypes in the CD4 T cell family, Treg cells are

an immunosuppressive subtype in nature, but with a dual

personality as an angel side, Treg cells can regulate the immune

system, inhibit the pathological immune response caused by the

overactivation of autoreactive T cells, and control inflammation. It

plays a key role in maintaining autoimmune tolerance and immune

homeostasis. However, in the tumor microenvironment, it shows a

devil side. It inhibits the proliferation, metabolism and killing

function of CD8 T cells by secreting inhibitory factors such as IL-

10, TGF-b and affecting the maturation of dendritic cells (DC). It

induces the immune escape of tumor cells by inhibiting the anti-

tumor immune response, thus promoting the growth and

proliferation of tumors (70). Foxp3 is the critical transcription

factor for Treg cell function and differentiation (71). YY1

physically interacts with Foxp3 to directly switch on Foxp3 target

genes and interfere with Foxp3-dependent target gene expression.

Thus, YY1 inhibits the Treg cell’s differentiation and function by

blocking Foxp3 (69, 72). YY1 is a polycomb group (PcG) protein

and an original member of the local group of sequence-specific

DNA-binding PcG proteins in mammals (73). PcG proteins silence

target genes through histone modification, especially methylation

modification (74). By contrast, YY1 promotes early T cell survival

through its PcG function. In the thymus, T cell development begins

when double negative (DN) progenitor T cells lacking CD4 and

CD8 expression become CD4+CD8+ double positive pre-T cells

(DP) and then differentiate into mature single CD4+ or CD8+
Frontiers in Oncology 05
positive cells, DN cells have four stages (75–77). Ana et al.

demonstrated that YY1 promotes DN1 to DN2 T cell transition

and early T cell survival independent of PcG/REPO domain

function (78). Overall, YY1 is crucial for T-cell differentiation,

function, and development, but YY1 has opposite effects on T-cell

development and function (Figure 2).

3.2.2 B cells
B lymphocytes are derived from bone marrow hematopoietic

stem cells through a series of differentiation stages. Activated B cells

produce many cytokines involved in immune regulation, the

inflammatory response and hematopoiesis (79). YY1 plays an

important role in Ig rearrangement and B-cell development.

Studies have shown that conditional knockdown of YY1

prevented the transition of pro-B cells to cells in the pre-B-cells

and early developmental stages of B cells (58). Subsequent proof

found that YY1 regulates the germinal center B-cells (GC B cells)

transcriptional program (59). In specific deletion of YY1 in GC B

cells, B-cell numbers in both unimmunized and immunized

conditions are severely reduced. In addition, YY1 also affects the

immunoglobulin class switch recombination (CSR) process in

splenic B cells. These studies strongly suggest that YY1 is essential

for B cell differentiation in all stages and is required for the survival

and proliferation of B cells (Figure 2), B-NHL is a heterogeneous

lymphoma derived from a B-cell mutation (80). Most intravascular

lymphomas are large B-cell lymphomas, it is an aggressive

lymphoma with a poor prognosis. The molecular characteristics

are similar to germinal center or post-germinal center B cells. such

as diffuse large B-cell lymphoma (DLBCL), which is the most

common subtype. Ramkumar et al. found that the Smurf2-YY1-c-

Myc axis has become an important regulatory mechanism in

suppression of B-cel l prol i feration and consequently

lymphomagenesis (81). The anti-tumor effects of B cells depend

mainly on the secretion of anti-tumor-associated antigen (TAA)

antibodies and the provision of co-stimulatory signals to TAA-

specific CD4+T cells to activate T cells. Kruppel-like factor 4 (KLF4)

is a member of the zinc finger-containing KLF transcription factor

family involved in regulating apoptosis, proliferation, and

differentiation of B-cells and B-cell malignancies (82). Martinez

et al. identified two YY1-binding sites in the KLF4 promoter region,

and overexpressing YY1 resulted in significant promotion of KLF4

(83). However, whether the regulatory role of YY1 in lymphoma is

suitable for the regulation of tumor by B cells in the tumor

microenvironment needs to be further confirmed in future

studies. the direct regulation of YY1 on tumor immune

microenvironment in various tumors are shown in Table 3.

3.2.3 Other immune-related cells
The TME has appreciable numbers of immune cells, including

adaptive immune responses, such as T cells and B cells, and innate

immune cells, such as macrophages and neutrophils (90, 91).

Tumor-associated macrophages (TAMs) infiltrate tumor tissue

and play an essential role in the TME (92). Joo et al. reported

that YY1 and STAT1 were upregulated in macrophages stimulated

by oxidized LDL and subsequently were translocated into the

nuc l eus to upregu la t ed miR-29a , the reby reduc ing
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proinflammatory cytokine secretion and dampening inflammatory

responses in macrophages. Cyclooxygenase 2 (COX-2) has been

reported to be involved in inflammatory environments and lung

cancer pathogenesis, and lipopolysaccharide treatment induced

YY1 binding to the homologous site of endogenous COX-2

promoter YY1 and enhances its transcriptional activity in

macrophages. Mechanically, YY1 was reported to interact with

p300 and HDAC1/2 to affect the acetylation status of YY1.

However, lipopolysaccharide treatment disrupted this interaction

and binding to the COX-2 promoter. Indicated that it may be a

competitive relationship between YY1 and COX-2 promoter, p300

and HDAC1/2 after lipopolysaccharide treatment (88). In addition,

Xu et al. indicates that miR-301a/YY1/CXCR4 signaling pathway

plays an important role in macrophage migration and phagocytosis

(87). Hence, these results strongly suggest that YY1 is critically

important for the tumor immune microenvironment.
3.3 Role of YY1 in tumor metabolism

As we all know, one of the critical features of the TME is

metabolic abnormalities. Due to the rapid growth of tumors, cancer

cells have increased anabolic and energy demands (93, 94). Therefore,
Frontiers in Oncology 06
extracellular nutrients determine the proliferation and growth rate of

tumor cells. However, unlike normal cells, cancer cells have more

remarkable metabolic plasticity, which forces them to adapt to poor

environmental conditions (95, 96). Tumor metabolism abnormalities

occur mainly in tumor cells, and cellular metabolites are a vital part of

the TME and play an essential role in the formation of the TME. In

addition to tumor cells, the interactions between different cells in the

TME shape the unique metabolic characteristics of the

microenvironment and maintain tumor growth, such as CAF,

immune cells, and stromal cells, but the metabolism of YY1 in

these components has rarely been reported. As an essential

transcription factor, YY1 was reported to be involved in glucose,

glutamine and lipid metabolism by regulating the transcriptional

activation and expression of some key molecules related to these

metabolic processes.

3.3.1 YY1 in glucose metabolism
Since glucose is the primary energy source of organisms used in

aerobic and anaerobic respiration (97, 98), which is maintains a

balance between catabolic glycolysis/oxidative phosphorylation

(OXPHOS) and anabolic gluconeogenesis/glycogen production

(99). Abnormal glucose metabolism is integral to tumor

metabolic reprogramming in the TME (100). YY1 is closely
FIGURE 2

The molecular mechanism of YY1 regulating B cell and T cell-mediated tumor immunity. Several signaling pathways crosstalk exist between the
regulations of YY1 and T cell function. For example, YY1 inhibits the function of T cells by blocking Foxp3 mediated transcription of its downstream
genes Cd25, Icos, Ctla4, Gitr and Il10 et al., or directly regulating the expression of PD1 and LAG3 by binding to their promoter regions. In addition,
YY1 promotes the DN1-to-DN2 T cell transition by activating Notch1 pathway. For B cells, YY1 is essential for all stages of B cell differentiation, thus
to be involved in B cells-mediated immune escape. DN1, double negative 1; DN2, double negative 2; PD-L1: programmed death ligand 1; Foxp3,
forkhead box p3.
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related to the glycolysis process. The glucose transporter mediated

by the glucose transporter family (GLUT) is a pacemaker of aerobic

glycolysis and, thus, is essential for tumor cell metabolism. YY1 may

indirectly participate in reprogramming glucose metabolism in

tumor cells by promoting the stability of HIF-1a under hypoxic

conditions to enhance GLUT1 and GLUT3 expression (101). Wang

et al. also reported that YY1 activates GLUT3 transcription by

directly binding to its promoter while enhancing aerobic glycolysis

in colon carcinoma cells (102). In NSCLC cells, circ_0000517/miR-

330-5p/YY1 axis promotes the proliferation, glycolysis, and

glutamine catabolism by regulating the expression of glycolysis

and glutamine catabolism-related genes HK2, LDHA, ASCT2 and

GLS1 (103). LDHA is a glycolytic enzyme that converts glucose-

derived pyruvate into lactic acid. YY1 directly bound to the

promoter LDHA, and overexpression of LDHA reverses the

inhibitory effect of sh-YY1 on aerobic glycolysis and proliferation

of neuroblastoma cells, indicating that YY1 induces aerobic

glycolysis and proliferation (104). Glycolysis-related genes are

critical to the glycolysis process. In neuroblastoma (NB),

researchers searched public neuroblastoma datasets to identify

transcriptional regulators and their glycolysis-related genes. They

found that the zinc finger domain of YY1 binds a 21 amino acid

peptide encoded by an open reading frame upstream of Myeloid

zinc transcription factor 1 (MZF1), called MZF1-upep. MZF1 has

been found to exert independent prognostic and promotes the

aerobic glycolysis and tumor progression. Notably, the

combination of these leads to decreased transcriptional activity of

YY1 and inhibited transcription of MZF1 and downstream

glycolytic genes HK2 and PGK1, therefore inhibiting aerobic

glycolysis and NB progression (105). Hepatitis B virus (HBV)

pre-S2 mutant induces HCC by inducing endoplasmic reticulum

stress and activating the mTOR signaling pathway. Research has

found that pre-S2 mutants initiate the glycolytic via activate mTOR

signal pathway and activate SLC2A1 in YY1-dependent

transcription, contributing to increased aerobic glycolysis, glucose

uptake, lactic acid production and release in advanced
Frontiers in Oncology 07
tumorigenesis of HCC (106). In general, the above studies

confirmed that YY1 alters the hypoxic microenvironment of

tumor cells by regulating the whole process of glycolysis through

different molecular mechanisms in various tumors, thus

promoting tumorigenesis.

Since Otto Warburg discovered the characteristic of high-level

glycolysis in tumor cell metabolism programming, which not only

upregulates the adaptive potential of tumor cells to fluctuating oxygen

tension but also produces glycolytic intermediates and increases the

pentose phosphate pathway (PPP) (107–109), the primary significance

of the PPP can generate nicotinamide adenine dinucleotide phosphate

(NADPH) and a variety of monosaccharides. NADPH is the only

enzyme specifically used to produce reactive oxygen species (ROS) and

is essential for cellular antioxidant defense (110, 111). A recent study by

Wu et al. identified that YY1 directly binds to the promoter of G6PD

and promotes its transcription activity and expression, therefore,

stimulating the PPP and protecting tumor cell from oxidative stress

and inducing tumor progression (112). In conclusion, research on the

molecular mechanisms of the G6PD-mediated PPP is closely related to

YY1-induced tumor cell proliferation and tumorigenesis.

One of the typical features of metabolic changes in cancer cells is

high levels of oxidative stress, and higher cellular oxidative stress

levels favor the activation of glycolysis and promote tumorigenesis by

affecting the signal transduction system, depriving them of normal

contact inhibition, and promoting invasion and metastasis (113). The

functions of these are complementary to each other. Tseng et al.

found that p53 accumulation was reduced byMCT-1 overexpression.

However, the levels of manganese-dependent superoxide dismutase

(MnSOD) were upregulated through the YY1-EGFR signaling

pathway, protecting cells from oxidative damage. On the other

hand, limiting ROS production and inhibiting YY1 in lung cancer

cells prevented MCT-1-induced cell invasiveness and the EGFR-

MnSOD signaling pathway (114). However, ROS and YY1 do not

have a definite positive association. According to research, low levels

of ROS promoted the production of YY1, while high levels of ROS

clearly inhibited it. YY1 was recruited to the antioxidant-responsive
TABLE 3 The mechanism of YY1 in the tumor immune microenvironment.

Cancer type Target gene Function Location Ref.

melanoma PD1/Lag3/Tim3-up,
IL-2/IFN-g-down

Promotes immune exhaustion T cell (62, 63)

glioblastoma CDK9/up Suppress interferon response Cancer cell (84)

NA Foxp3/down Inhibits differentiation and function of Treg cells Treg cell (69)

lung cancer FGL1/up Inducing T cell apoptosis T cell (67)

melanoma PLZF/up Promotes iNKT cell development iNKT cell (85)

NA IFN-g NA Jurkat-T cell (86)

lymphoma KLF4/up Promotes tumor progression B cell (82, 83)

NA CXCR4/down Promote the phagocytosis of macrophages Macrophage (87)

NA COX-2/up NA Macrophage (88)

breast cancer BRCA1/down Promotes tumor progression Cancer cell (89)

DLBCL c-Myc/up Promotes B cell proliferation B cell (81)
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element binding site when its expression was stimulated, working in

concert with other coregulators and then boosted NRF2-mediated

ARE transcription, thereby shielding cells from damage by

amplifying the antioxidant response (115). Overall, the available

data indicate that YY1 can significantly activate cell glycolysis and

ROS metabolism and play a critical role in remodeling the

TME (Figure 3).

3.3.2 YY1 in lipid metabolism
It has been widely observed that lipid metabolic reprogramming

during cancer development confers cancer cells the ability to survive

through enhanced lipid synthesis, storage, and catabolism, even

under nutrient-limiting conditions. Abnormal lipid metabolism has

always been observed in various tumors, and chronic liver disease

and nonalcoholic fatty liver disease (NAFLD) are closely related to

lipid homeostasis disorder. Accumulating evidence suggests that the

hallmark feature of NAFLD is an increase in intrahepatic TG

content (116). To investigate the crosstalk between lipid

metabolism and YY1 in liver cancer cells, the authors found that

several key transcription factors of lipid metabolism and their

coactivators were significantly reduced in YY1-knockout HCC

cells, such as PPARA/RXRA complex member CHREBP, SREBF2

and FXR and HNF family member HNF4A, FOXA1 and FOXA2
Frontiers in Oncology 08
(117–119). Moreover, silencing YY1 suppresses the expression of

crucial transcription factors markedly reduced their cooperation at

various regulatory levels and various regulatory regions, which are

involved in hepatic lipid metabolism regulated by these proteins.

Especially the expression of SCD and ELOVL6, which encode key

enzymes for adipogenesis, is regulated cooperatively by YY1 and

PPARA/RXRA complexes on their promotors (120). In normal

cells, cellular fatty acid concentration balance is controlled by the

normal synthesis and breakdown of fatty acids. But tumor cells

modify lipid metabolism by speeding up fatty acid synthesis while

blocking fatty acid breakdown, leading to intracellular lipid buildup,

in order to meet the demands of their rapid multiplication and

growth. Li et al. demonstrated that YY1 was crucial for alterations in

lipid metabolism in HCC cells because it suppresses the expression

of the PGC-1b, which is a transcriptional activator of MCAD and

LCAD that boosts both enzymes’ expression. The MCAD and

LCAD are key enzymes required for FAO and crucial for

fostering carcinogenesis (121). Therefore, YY1 upregulation

prevented fatty acid b-oxidation, which increased triglyceride

levels and lipid buildup in HCC cells and demonstrated the

promising potential to accelerate the growth of tumors. Wu et al.

also demonstrated that miR-122 could promote lipid droplet

formation and triacylglycerol (TG) accumulation in vitro by
FIGURE 3

Model of the mechanism through which YY1 regulates glucose metabolism. YY1 is involved in regulating glucose metabolism in tumor cells by
affecting the transcription activation of some key molecules. For example, activation of GLUT3 and LNC00842 transcription enhances aerobic
glycolysis in tumor cells, while downregulation of YY1 by MZF1 inhibits the transcription of its downstream glycolytic genes HK2 and PGK1, thereby
inhibiting aerobic glycolysis. In addition, YY1 activates G6PD transcription and stimulates the pentose phosphate pathway to enhance nucleotide
generation and DNA synthesis and reduce intracellular reactive oxygen species levels, thus promoting tumorigenesis. YY1, Yin Yang 1; G6PD,
glucose-6-phosphate dehydrogenase; GLUT, glucose transporter; ROS, reactive oxygen species; HK2, hexokinase 2; PGK1, phosphoglycerate kinase
1; R5P, Ribulose 5-phosphate.
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reducing the stability of YY1 mRNA and upregulating FXR-SHP

signaling. Suggesting that YY1 plays an essential role in regulating

the accumulation of hepatic lipids, especially hepatic triglycerides

(TGs) in the TME (122) (Figure 4).

3.3.3 YY1 in glutamine metabolism
Glutamine is an essential amino acid to maintain normal cell

biological function, including biosynthesis, cell signaling, and

preventing antioxidant damage (100). Of note, glutamine

metabolism can provide the energy and biomacromolecules

required by tumor cells for rapid growth and proliferation,

helping them maintain intracellular redox homeostasis and

intracellular signaling (123), and their anabolic/catabolic actions

are dysregulated in cancer. Following glucose and fatty acid

metabolism, oncogene-mediated abnormal glutamine metabolism

in tumor cells has emerged as a new energy source (124). The

researchers analyzed the effect of the YY1 on biological processes

using the DAVID method, and these results suggested that the

promotion of glutamine metabolism by YY1 may promote the

progression of ESCC by affecting cancer pathways. Furthermore,

the expression of key rate-limiting enzymes ASCT2, GLS and

GLUT1 showed an upward trend and led to glutamine uptake

and production were significantly increased. Briefly, these data

support a model that YY1 promotes glutamine metabolism and

regulates the development of ESCC (125). We also noted that YY1

promotes the expression of vital rate-limiting enzymes HK2,

LHDA, PCNA, ASCT2 and GLS in A549 cells. Accordingly, YY1

obviously promoted glucose-to-glutamate conversion (103). In

summary, these studies illustrated the role of YY1 in glutamine
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metabolism in the tumor, and the role of YY1 and its molecular

mechanism on tumor metabolism is shown in Table 4.
4 Clinical potentials of YY1 and
the microenvironment

4.1 The clinical value of YY1 in
cancer diagnosis

In recent years, molecular diagnosis has become an important

strategy for clinical tumor diagnosis and prognosis evaluation based

on the expression specificity and clinical relevance of YY1 in

different tumors. On the one hand, YY1 is highly expressed in

prostate cancer, gastric cancer, ovarian cancer, breast cancer,

multiple myeloma, liver cancer, and lung cancer etc. It especially

shows increased expression in metastases compared with primary

tumors, suggesting that high expression of YY1 may be a molecular

marker for early diagnosis and prognosis evaluation of these

tumors. On the other hand, the expression of YY1 was decreased

in PDAC, NPC, pediatric osteosarcoma, etc., and negatively

correlated with its clinical progression and a poor prognosis,

suggesting that the low YY1 expression predict poor prognosis of

these tumors. Tumor cells evade the immune response by

producing a TME that suppresses the immune response,

specifically a TME involving the T cell checkpoint receptor PD-1.

It is a mechanism that prevents overstimulation of the immune

system. Studies have shown that YY1 expression is positively

correlated with PD-L1 expression, so elevated YY1 expression is
FIGURE 4

The molecular mechanism of YY1 regulating lipid metabolism. YY1 promotes triglyceride accumulation by regulating lipid metabolism-related
molecule transcription. In this process, YY1 suppressed fatty acid b-oxidation, further inhibiting the expression of medium-chain acyl-CoA
dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) which is the key enzymes necessary for FAO. Additionally, miR-122 could
promote lipid droplet formation and triacylglycerol (TG) accumulation in vitro by reducing the stability of YY1 mRNA and upregulating FXR-SHP
signaling. Furthermore, YY1 also leads to lipid accumulation through the PPARA, RXRA/SCD, ELOVL6 signaling pathway and regulated the expression
of LINC00842. LCAD, long-chain acyl-CoA dehydrogenase; MCAD, medium-chain acyl-CoA dehydrogenase; PGC-1b: peroxisome proliferator-
activated receptor gamma coactivator-1b; SCD: PGC-1a: peroxisome proliferator-activated receptor gamma coactivator-1a.
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expected to be a molecular marker for diagnosing T cell-mediated

tumor immune escape (66). In addition, the expression level of YY1

in Burkitt lymphoma and DLBCL is higher than that in normal B

cells and low-grade lymphoma (128). As mentioned above, YY1

may be a valuable diagnostic and prognostic marker for

chemotherapy or immunotherapy regimens.
4.2 YY1 is an important molecular target
for tumor therapy

The TME is a facilitator of tumor drug resistance (129), and the

TME influences the progression and metastasis of solid tumors. Most

current therapies target the tumor cells themselves, ignoring the local

microenvironment around them. However, it is becoming clear that

the most effective approach for cancer treatment involves therapies

targeting both tumor cells and the TME (130, 131). Based on the

functions of YY1 in tumor angiogenesis, metabolism and tumor-

related microenvironment reconstruction, targeting YY1 are expected

to become an important molecular strategy for tumor therapy (132).

Previous studies have proven that many clinical drugs targeting YY1

have sound therapeutic effects on YY1-mediated tumor drug resistance

ormalignant progression. For example, the clinical drug oxaliplatin was

reported to suppress colon carcinoma cell proliferation and

angiogenesis by inhibiting the YY1/GLUT3 axis (102). Another study

proved that YY1 plays an important role in angiogenesis and

bevacizumab resistance by inducing VEGFA transcriptional activity

and expression, and YY1 may be a potential molecular therapeutic

target for anti-angiogenic therapy in HCC (46). In addition, cisplatin

has always been one of the drugs of choice for head and neck squamous

cell carcinoma (HNSCC), but most tumors that are initially responsive

to cisplatin later acquire resistance. Zhao et al. found that targeting YY1

or PP2A enhanced the efficiency of cisplatin chemotherapy in HNSCC

(133). Therefore, YY1 plays a crucial role in regulating TME-mediated
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chemoresistance in tumor cells, which has important implications for

diagnosing and treating patients.

Immunotherapy has become a mainstay of cancer treatment in

many malignancies, and clinical evaluation confirmed that the

expression of the oncogene YY1 was upregulated in PD-1+ T cells

infiltrating lymphocytes in tumors, suggesting that YY1 may hinder T-

cell-mediated tumor immunotherapy, especially since the effect on PD-

1/PD-L1 is not fully blocked. Therefore, exploring the underlying

mechanism of regulating PD-L1 expression on tumor cells is a way

to make tumor cells effective for PD-1/PD-L1 antibody therapy.

Multiple signaling crosstalk pathways have been reported to be

involved in the regulatory relationship between YY1 and PD-L1 (66).

In addition, remodeling the immunosuppressive microenvironment

and enhancing immunotherapy response are effective strategies for the

clinical treatment of cancer. Qiu et al. confirmed that YY1-dependent

glioblastoma stem cells were sensitive to the CDK9 inhibitors

(Alvocidib and Dinaciclib), and the combination of Alvocidib and

anti-PD-1 can more significantly reshape the tumor immune

microenvironment, enhance the immunotherapy response and

inhibit the occurrence of glioma (84). Based on these findings,

combining strategies targeting YY1 and the above pathways may

enhance cell-mediated antitumor cell responses and reverse the

resistance observed with checkpoint inhibitors alone. Therefore, YY1

is a critical target for immunotherapy and chemotherapy of cancers.

However, YY1 acts as a tumor suppressor gene in pancreatic cancer

and nasopharyngeal cancer, and specific clinical drugs targeting YY1

have not yet been discovered. We look forward to having made better

progress in improving tumor treatment efficacy in the future.
5 Conclusions and perspectives

YY1 is a critical transcription regulator and is closely related to

the remodeling and regulation of the TME, and it has two distinct
TABLE 4 The function and mechanism of YY1 on tumor metabolism.

Cancer type Target gene/regutation Signal pathway Metabolism type Ref.

CRC CLUT3/up YY1/CLUT3 aerobic glycolysis (102)

Neuroblastoma MZF1/down YY1/MZF1/HK2- PGK1 aerobic glycolysis (105)

HCC MYC/up MTOR/EIF4EBP1/YY1/MYC/SLC2A1 aerobic glycolysis (106)

NSCLC NA circ_0000517/miR-330-5p/YY1 glycolysis glutamine (103)

CRC NA miR-31HG/miR-361-3p/YY1 glycolysis (54)

neuroblastoma LDHA/up YY1/LDHA aerobic glycolysis (104)

multiple tumors G6PD/up YY1/G6PD pentose phosphate pathway (112)

lung cancer MCT-1/up YY1/MCT-1/EGFR/MnSOD oxidative metabolism (114)

HCC PPARA/up YY1/PPARA/SCD, ELOVL6 lipid metabolism (120)

HCC PGC-1b/down YY1/PGC-1b/MCAD, LCAD lipid metabolism (121)

pancreatic cancer LINC00842/up YY1/LINC00842/SIRT1/PGC-1a lipid metabolism (126)

esophageal carcinoma ASCT2, GLS, GLUD/up YY1/ASCT2, GLS, GLUD1 glutamine (125)

melanoma TGF-b1/down YY1/TGF-b1/Smad 2 glutamine (127)
frontier
sin.org

https://doi.org/10.3389/fonc.2023.1122110
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1122110
expression patterns (high or low) in different tumor types. It is

upregulated in most types of tumors, such as prostate cancer,

gastrointestinal cancer, ovarian cancer and breast cancer, and

downregulated in a few tumors, including nasopharyngeal

carcinoma, thus, it plays a dual role as an oncogene or tumor

suppressor in tumorigenesis and tumor progression. YY1 plays

critical roles in tumor angiogenesis, glucose metabolism, lipid

metabolism, and immune regulation, which provides an

important perspective for understanding the mechanism YY1 is

involved in tumorigenesis and development. Based on the specific

expression patterns of YY1 in tumors and its role in the formation

and regulation of the TME, targeting YY1 and its related TME

would be a potential molecular strategy for the clinical diagnosis

and treatment of tumors. Although YY1 as a target has

demonstrated a valuable application prospect in the diagnosis and

treatment of tumors, and certain drugs or inhibitors could indeed

alleviate the clinical malignant phenotype or drug resistance of

tumor patients by reversing YY1 expression, there is still no specific

and inhibitor or targeted drug to YY1 used for the clinical treatment

of tumors, further efforts are needed for researchers to develop

specific inhibitors or drugs targeting YY1.
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