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model for classification of
echinoderms in global oceans
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Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
Introduction: In response to the need for automated classification in global

marine biological studies, deep learning is applied to image-based classification

of marine echinoderms.

Methods: Images of marine echinoderms are collected and classified according

to their systematic taxonomy. The images belong to 5 classes, 38 orders, 145

families, 459 genera, and 1021 species, respectively. The deep learning model,

EfficientNetV2, outperforms the competing model and is chosen for developing

the automated classification tool, EchoAI. Then, the EfficientNetV2-based tool,

EchoAI is applied to each taxonomic level.

Results: The accuracy for the test dataset was 0.980 (class), 0.876 (order), 0.738

(family), 0.612 (genus), and 0.469 (species), respectively. Online prediction

service is provided.

Discussion: The EchoAI model and results are facilitated for investigating the

diversity, abundance and distribution of species at the global scale, and the

methodological strategy can also be applied to image classification of other

categories of marine organisms, which is of great significance for global marine

studies. EchoAI is freely available at http://www.csbio.sjtu.edu.cn/bioinf/EchoAI/

for academic use.
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Introduction

Extensive survey on marine biodiversity is critical to the

sustainable development of oceans, which results in significant

workloads of taxonomic determination and classification. For

instance, manually determining and classifying images of marine

organisms is labor-consuming and time-costing, which requires

experienced taxonomic researchers with strong domain knowledge.

Moreover, different taxonomic researchers may make different

decisions on the same image. Therefore, technologies of automated

image classification are greatly demanded, such as machine-learning-

based strategies, which consist of feature extraction, classification

model training, and prediction. To date, there exist some machine

learning-based approaches for automatic marine image classification.

For example, these machine learning-based approaches were first

applied in fish classifications (White et al., 2006; Larsen et al., 2009;

Alsmadi, 2010). Compared with nektons, benthic fauna is relatively

motionless, making them suitable for underwater imaging. Currently,

deep learning approaches based on convolutional neural networks

(CNNs) are increasingly being applied in studies on benthic fauna,

such as automated identification of benthic epifauna with computer

vision (Piechaud et al., 2019), automated classification of fauna in

seabed photographs (Durden et al., 2021).

Among the benthic fauna, species of Echinodermata distribute

widely in the oceans, from shallow to abyssal zone, and their

biodiversity could be an indicator for health of their habitat.

Echinodermata comprises five classes, Asteroidea (starfish),

Crinoidea (sea lilies and feather stars), Echinoidea (sea urchins),

Holothuroidea (sea cucumbers), and Ophiuroidea (brittle stars)

(Mah and Blake, 2012; Stöhr et al., 2012), which differ from each

other greatly in appearance. The differences in appearance gradually

decrease with taxonomic levels going lower, while the difficulty in

classification increases. However, existing machine learning based

approaches generally train a unified model on collected images at

different taxonomic levels. Currently there is still no specific model for

classifying echinoderms at different taxonomic levels, which is in an

urgent need for further extensive marine surveys. Therefore, an image-

based artificial intelligence classification tool EchoAI for echinoderms

at different taxonomic levels is developed in this study, including

benchmark dataset construction, model training at different

taxonomic levels, model evaluation and online application.

Materials and methods

In this study, we first collected the echinoderms images from

World Register of Marine Species (WoRMS, https://marinespecies.org).

Then, we trained a deep learning model using these collected images

according to the biological systematic classification order. In the end,

model interpretation was applied to the images for detecting the key

regions. The workflow is shown in Figure 1.
Dataset preparation

The images used in this study were retrieved from the World

Register of Marine Species (WoRMS, https://marinespecies.org),
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which focuses on a worldwide collection of information on marine

species. Moreover, the WoRMS platform contains comprehensive

taxonomic information on marine species, such as scientific names,

corresponding synonyms, and habitat information. Regarding to

the dataset at each taxonomic level, the images with missing

taxonomic information were not included in the training and

test datasets.

Since the format of the raw data downloaded from WoRMS is

not exactly the same, it is first necessary to unify the format of the

files and convert all the images to the RGB format, so that the image

data is consistent with the model input. After the format unification,

the images that are corrupted for various reasons were then

removed, including images that were lost during format

conversion, images that were formatted corruptly when they were

downloaded, and images with some special formats. Since the image

data downloaded from WoRMS contained images, such as sketch,

maps, manual screening of all the images was conducted. Finally, we

obtained the dataset for benchmarking in this study

(Supplementary Table S1). The details of the datasets for the five

classification levels are shown in Table 1.
Model architecture

EfficientNetV2 model in EchoAI
The module scaling architecture EfficientNet (Tan and Le,

2019) consists of the baseline and a range of non-independent

parameters. The most common way is to scale up ConvNets by their

depth (He et al., 2016) or width (Zagoruyko and Komodakis, 2016).

Another less common, but increasingly popular, way is to scale up

the models by image resolution (Huang et al., 2019). In previous

work, it is common to scale only one of the three dimensions: depth,

width or image size. EfficientNet proposes a simple yet effective

module scaling method. The method uniformly scales the network
FIGURE 1

The workflow of EchoAI in this study. The entire pipeline starts with
dataset preparation, followed by model training using deep-learning
model, and interpretation of the prediction results.
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width, depth, and resolution with a set of fixed scaling coefficients

(Tan and Le, 2019). This strategy can reduce the number of

parameters and the amount of computational resource, while

achieving improved performance. However, the series of

EfficientNet models still have some defects.

EfficientNetV2 is an improved model based on EfficientNet, it is

a smaller and faster group of CNNs compared to the previous

models for image recognition. Many previous works, such as FixRes

(Touvron et al., 2019), and Mix&Match (Hoffer et al., 2019), usually

keep the same regularization for all image sizes, causing a drop in

the prediction accuracy. However, EfficientNetV2 proposes a

progressive learning, in the early training epochs, they train the

network with a small image size and weak regularization, then they

gradually increase the image size and add stronger regularization

(Tan and Le, 2021). In spite of training parameter efficiency, recent

works aim to improve training or inference speed instead of the

parameter efficiency. For example, RegNet (Radosavovic et al.,

2020), ResNet (Zhang et al., 2020), TResNet (Ridnik et al., 2021),

and EfficientNet-X (Li et al., 2021) focus on GPU inference speed.

NFNets (Brock et al., 2021) and BoTNets(Srinivas et al., 2021) focus

on improving training speed. Their training or inference speed

often comes with the cost of more parameters while EfficientNetV2

aims to significantly improve both training speed and parameter

efficiency than prior methods (Tan and Le, 2021) Another

improvement of EfficientNetV2 is the use of Fused-MBConv

(Gupta and Tan, 2019). The structure of the Fused-Convolution

block is shown in Supplementary Figure 1. The use of depthwise

convolutions (Sifre and Mallat, 2014) in the shallow layers of the

network slows down the training in the early stages. EfficientNetV2

leverages the network architecture search to automatically search

for the best combination of MBConv and Fused-MBConv.

Learning rate and batch size optimization for
EfficientNetV2

The learning rate is a hyperparameter that guides how to adjust

the network weights using the gradient of the loss function. The

lower the learning rate is, the slower the loss function of the network

model changes. The low learning rate allows the model to not miss

any of the minimal values, but the model tends to get trapped in the

local minima or saddle points. Moreover, the model may fail to

converge, while higher learning rates result in faster parameter

updates. A high learning rate can lead to gradient explosion,

oscillations, etc.

Batch size is the number of samples selected for each training

session. During model training, due to the large number of data

samples, a certain amount of images from the dataset is selected in

batches for training, and then the weights are updated based on the

average value of this batch of images. If the batch size is too small,

the training time of the model will be too long and the gradient will
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oscillate severely, making the model too slow to converge. If the

batch size is too large, the gradient direction between different

batches will vary too small, making the model easy to converge at

the local optimum point.

To select the best hyperparameters for model training, empirical

hyperparameters and multiple experiments are needed to find the

hyperparameters that achieve the best performance on the

validation set using grid search, where the optimized model was

called as EchoAI (Classification of Echinoderms in the Oceans

by EfficientNetV2).

Grad-CAM for model interpretation
The interpretability of network models is of great research

importance in evaluating the model robustness. Using the Grad-

CAM approach (Selvaraju et al., 2020), the interpretability of

EchoAI can be explored, providing a visual interpretation of the

decisions for the subsequent classification levels and the accuracy

analysis of each category.

Previous work (Zhou et al., 2015) has shown that the

convolutional units of various layers of CNNs actually behave as

object detectors, even no supervision on the location of the object

was provided. CAM (Zhou et al., 2016) is class activation mapping,

it can display what the model considers to be the most important in

the image during the decision making, which is similar to a heat

map. Grad-CAM (Selvaraju et al., 2020) overcomes the

disadvantage of CAM that requires replacing the classifier to

retrain the model. The basic principle of Grad-CAM is to

calculate the weights of each feature map in the convolution layer

relative to the image class, and then maps the weighted and

summed feature maps to the original input image. The general

structure of Grad-CAM is shown in Supplementary Figure 2.

For a category c, Grad-CAM’s class activation mapping is

calculated as follows:

LcGrad−CAM = ReLU(o
i
ac
i A

i)     (1)

   ac
k =

1
Zo

c1
i oc2

j
∂ Sc
∂Ak

ij

(2)

Where Sc denotes the predicted value of the model for this image;

Z=c1×c2 denotes the size of the feature map; k denotes the k-th

channel in the feature layer A; Ak
ij denotes the data of the feature

layer A at the i-th row and j-th column position in the channel k; Ak

denotes the data of the k-th channel in the feature layer A; alpha;ck
hannel in the feature laye denotes the targeted weight parameter

of Ak.

The mechanism of Grad-CAM (Supplementary Figure 2): The

model first makes decisions on the input image, then the output of

the last convolutional layer and the final model prediction score are
TABLE 1 The number of images for the five taxonomic levels.

Category Level Class Order Family Genus Species

Number of images 4026 3996 3999 4002 3925

Category Number 5 38 145 459 1021
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obtained in the forward propagation. After back-propagating

gradient information, the Grad-CAM heat map is obtained by

summing the mean value of each point of the feature map with

the ReLU activation function.
Experiments

Model evaluation criteria
In this study, we use the accuracy as an evaluation metric to

assess the classification performance of the model which rely on a

confusion matrix (Manel et al., 2001).

accuracy =
TP + TN

TP + FP + TN + FN
    (3)

where TP, TN, FP, FN are true positives, true negatives, false

positives and false negatives.

In order to explore the performance of the training results at

each taxonomy level in the echinoderm dataset, the accuracy

metric is also extended to multi-class classification tasks. For the

overall performance, the accuracy of each taxonomy was also

evaluated separately, which takes the impact of inter-class

imbalance of the dataset on the model performance into

account. The accuracy of each taxonomy is calculated the same

as the overall accuracy of the model. For the accuracy of each

taxonomy, TP, TN, FP, FN are counted in one specific taxonomy.

While for the overall accuracy of the model, TP, TN, FP, FN are

counted in the whole dataset.
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Results

Learning rate and batch size optimization

In order to optimize the model performance and investigate the

relationship between the hyperparameters and the performance of

the model, we train the classification model with different learning

rates (0.01, 0.001, 0.0001) and different batch sizes (4, 8, 16) at the

class level.

As shown in Figures 2A, B, the training loss and accuracy

change with the number of iterations for the model training and

evaluation. Overall, the higher the learning rate, the faster the model

converges. When the learning rate is too low, e.g., learning

rate=0.0001, the model falls into a local optimum and cannot find

the global optimal solution, and the final training loss is higher than

the other two cases. In addition, the accuracy, both in the train and

validation sets, is also lower than the other two cases. For the

learning rates of 0.01 and 0.001, the performance of the model with

a learning rate of 0.01 is better than that of the model with a

learning rate of 0.001, both in terms of training loss and accuracy on

the train set and the validation set. Thus, 0.01 is chosen as the

learning rate of the EchoAI model in our work.

In order to select the appropriate batch size, the batch sizes are

set to 4, 8, and 16, respectively. The results of different batch sizes

are shown in Figures 2C, D. In terms of the accuracy of the training

set, the accuracy of the model with a batch size=4 is lower than that

of the model with a batch size 8 or 16 on the training set, but the

difference between the models with a batch size 8 or 16 is small.
D

A B

C

FIGURE 2

Parameter optimization of the model EchoAI with different learning rates and batch sizes. (A) is the loss and accuracy of the model in the training set
for different learning rates; (B) is the accuracy of the model in the validation set for different learning rates; (C) is the loss and accuracy of the model
in the training set for different batch sizes; and (D) is the accuracy of the model in the validation set for different batch sizes.
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From the accuracy of the validation set, the accuracy of all three

batch sizes is not very different, of which, the batch size=4 is slightly

lower. Considering that the training speed is faster with the batch

size=16, and the accuracy rates on both the train and validation sets

are good, we choose 16 as the batch size for the EchoAI model.
In-depth exploration at different
taxonomic levels

When the taxonomic levels going lower, from class to species,

the number of categories increases, from 5 (class), 38 (order), 145

(family), 459 (genus), to 1021 (species), and the number of training

samples for each category decreases a lot. The performance of the

models trained at the five taxonomic levels are shown in Figure 3.

As shown in Figure 3A, EchoAI yields the highest accuracy in the

test set at the class level, because the dataset has the least number of

categories and each category has the largest number of training

samples. The optimal model yields an accuracy of 98.0% in the test

set. EchoAI in the order level yields an accuracy of 87.6% in the test set.

The accuracy of the EchoAI model in the family level reaches 73.8% in

the test set. Based on the higher number of categories in the family

level, it can be assumed that the model under the family level also has

good predictive power. The accuracy of the EchoAI model in genus

level in the test set reaches 61.2%, with the number of categories in the

dataset from 145 to 459. The accuracy of the model in the species level

reaches 46.9% in the test set, which has expanded the number of

categories in the dataset to 1021, and the model can be considered to

still have potential predictive power. Although themodels in the family,

genus and species levels do not perform as well as the models in the

class and order levels, the EchoAI model in these levels can still be used

as a reference for manual classification.

Since there exist small sample categories in the dataset, it is

necessary to focus on the accuracy of each category in addition to the

overall accuracy (Figure 3B). The accuracies of the EchoAI model show

that there is no small sample classification problem in the classification

level of Class. In Order level, its performance is slightly worse than that

of Class level classification, but better than the other three classification

levels. It is because the number of categories in the Order level is more

than that at the Class level, but less than the others, and the number of
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small sample categories in Order level is smaller. In the classification of

the Family level, the distribution of accuracy becomes scattered, the

accuracy of some categories reach100%, but the accuracy of a few

categories is lower than 75% or even 50%. Moreover, the accuracy of

some categories is 0, which shows that the imbalance problem has a big

impact on the model performance for those minority categories.

EchoAI model uses EfficientNetV2 as the backbone network, to

demonstrate its advantage, we further compare it with ResNet (He

et al., 2016) backbone on the same echinoderm dataset. The results

are shown in Figure 4. From the loss of the training set at different

taxonomic levels (Figure 4A), the convergence speed of the EchoAI

model is faster than that of ResNet at each taxonomic level, and the

final converged loss is smaller than that of ResNet. From the accuracy

of the optimal model in the test set (Figure 4B), the accuracy of the

EchoAI model is higher than that of ResNet at each taxonomic level.

The results demonstrate that EchoAI with EfficientNetV2 yields

better performance on the echinoderm dataset than ResNet.
Model results by top-n prediction

As the classification level of the dataset gradually refines, the

number of categories of the data increases and the number of training

samples for each category decreases. When the model encounters a

more complex multi-classification task, there will be a high

probability of predicting the image as other categories, especially

for those similar categories. In the previous model training, only the

classification of the maximum probability was considered as the

predicted category. For the sake of more complete and

comprehensive evaluation of the predictive power of the model, we

use another judgment criterion for evaluating the model. The model

prediction is judged to be correct if the model has the correct category

in its top n predictions (the n highest prediction probabilities by

EchoAI model). In order to investigate the effect of different values of

n on the model evaluation, we perform the evaluation on n = 1, 2, 3, 4,

5, respectively, the results for different values of n are shown in

Figure 5. We can see that the accuracy decreases with the number of

categories and a bigger n yields a higher performance. It is worth

noting that, after adjusting the model evaluation criterion, the

accuracy of the model EchoAI trained at the species level exceeds
A B

FIGURE 3

The overall effectiveness of the EchoAI models for the test set at different taxonomic levels. (A) the change of accuracy over Epoch; (B) the
distribution of accuracy for each taxon (represented by the point) predicted by the optimized EchoAI.
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0.600 in the test set, reaching 0.678, which is considered to be more

reliable with 1021 categories at the species level.
Interpretable analysis of Grad-CAM

In this study, we analyze the impact of the model when the

classification level is deepened in three perspectives: the number of

categories, the data features in each category, and the amount of

images in each category. The information of the dataset has been

given in Table 1, and it can be assumed that the size of the data

volume at the five classification levels does not affect the model

comparison within the error range. We apply Grad-CAM on the

trained models for each category. Heat maps (Figure 6) are first

drawn by applying Grad-CAM’s model at five classification level.

The Grad-CAMheatmap shows that the “attention” of the EchoAI

model trained at the Class level is well focused on the biological object

to be recognized, and the model is not disturbed by the background

environment and color. While the attention to the background and the

object itself varies at the other classification levels. In contrast, the heat

maps of the EchoAI models at other taxonomic levels show that the
Frontiers in Marine Science 06
models do not focus exclusively on the object themselves, and there are

even cases where most of the attention is focused on the background. A

potential explanation is that Figures 6A–F, the amount of images in this

category is small, resulting in the model not learning the discriminate

features of the objects for this category.
Demonstration and web service of EchoAI

Using the optimized EchoAI model, we demonstrate some

prediction examples (shown in Figure 7). Predictions of the above

images are all accurate and the probability of prediction is close to

100%, which reflects the strong prediction ability of the model

EchoAI. To make EchoAI be accessible for taxonomic classifications

of echinoderm images, an online prediction service of EchoAI is

provided (http://www.csbio.sjtu.edu.cn/bioinf/EchoAI/). The users

could upload their own images and conduct the prediction, by

following the instructions on the webpage.
Discussion

Although EchoAI is superior to competing methods, but its

accuracy levels may still be not high enough from the perspective of

experienced taxonomists. Identification at the family, genus and species

levels are much more difficult than that at class and order levels due to

the following reasons: 1) the images at the family, genus and species

level are very morphologically heterogeneous, which are so similar that

microscopic examination is needed; 2) The number of images for each

category at the family, genus and species level is very small, which is not

sufficient for training a high-accuracy deep model. To improve the

performance of EchoAI, the training dataset could be enlarged, even

covering the microscopic images.

Verification by the expertise is important for the images fed into

the deep model. Some images retrieved from WoRMS may not be

verified by a taxonomic expert and may be misidentified. Therefore,

EchoAI would be constantly updated along with WoRMS in case

certain image is verified by a taxonomic expert. Since there may be

misidentifications in the prediction results provided by EchoAI,

where non-experts will not be able to recognize them, EchoAI could
FIGURE 5

The top-n accuracy of EchoAI at different taxonomy levels.
A B

FIGURE 4

The performance comparison of EchoAI and ResNet on the echinoderm dataset. (A) is the loss of the training set at different taxonomic levels for
EchoAI and ResNet; (B) is the optimal accuracy of EchoAI and the ResNet on the test set at each taxonomic level.
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FIGURE 7

Illustration of image prediction results by EchoAI. (A) belongs to the category Crinoidea (class classification level); (B) belongs to the category
Paxillosida (order classification level); (C) belongs to the category Gorgonocephalidae (family classification level); (D) belongs to the category
Heterocentrotus (genus classification level); (E) belongs to the category Holothuria (Thymiosycia) impatiens (species classification level).
D

A B

E F

C

FIGURE 6

Comparison of the original image and Grad-CAM heat map of the Echinoidea image at the five classification levels. (A) is the original image,
(B–F) are Grad-CAM heat maps at the Class, Order, Family, Genus and Species classification levels, respectively.
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be functioned as an assistant tool for experienced taxonomists and

the misidentifications could be corrected. We expect that EchoAI

would benefit the studies on the taxonomic determination.

In future research, the dataset size can be increased and the

image quality can be further improved. Considering the difficulty of

data acquisition, the development of generative models to augment

the categories with fewer samples, especially deep diffusion models

(Yang et al., 2022), will be mainly considered. The forward diffusion

process is used to model the multi-level hidden variables for this

category of image samples, and then the inverse process is used to

extract the multi-leveled feature information of the intermediate

hidden variables using neural networks, and then the new image is

generated as synthesized training samples by inverse sampling of

the hidden variables for this category.
Conclusion

In this study, based on images collected from WoRMS, we applied

and optimized EchoAI with EfficientNetV2 as the backbone model for

classifying marine echinoderms at the levels of class, order, family,

genus, species. At the genus level, the size of the dataset is 4002 and the

total number of categories is 459. The trained model achieves an

accuracy of 0.612 in the test set. The classification by EchoAI is

interpretably analyzed using Grad-CAM, and online classification

prediction service is provided based on EchoAI. In addition, the

classification module can also be extended to other platforms, such as

laboratory image analysis equipment, underwater vehicle, etc., to help

improve the efficiency of the marine survey and real-time monitoring.

The study would help investigate the diversity, abundance and

distribution of species at a global scale, and the strategy can also be

applied to the image classification of other marine organisms.
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