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Université de Paris, France

*CORRESPONDENCE

Jae-Hyung Jeon

jeonjh@postech.ac.kr

Yoon-Kyoung Cho

ykcho@unist.ac.kr

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Antigen Presenting Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 22 December 2022

ACCEPTED 06 March 2023
PUBLISHED 04 April 2023

CITATION

Song T, Choi Y, Jeon J-H and Cho Y-K
(2023) A machine learning approach to
discover migration modes and transition
dynamics of heterogeneous dendritic cells.
Front. Immunol. 14:1129600.
doi: 10.3389/fimmu.2023.1129600

COPYRIGHT

© 2023 Song, Choi, Jeon and Cho. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 04 April 2023

DOI 10.3389/fimmu.2023.1129600
A machine learning approach
to discover migration modes
and transition dynamics of
heterogeneous dendritic cells

Taegeun Song1,2†, Yongjun Choi3,4†, Jae-Hyung Jeon1,5*

and Yoon-Kyoung Cho3,4*

1Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang,
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Dendritic cell (DC) migration is crucial for mounting immune responses.

Immature DCs (imDCs) reportedly sense infections, while mature DCs (mDCs)

move quickly to lymph nodes to deliver antigens to T cells. However, their highly

heterogeneous and complex innate motility remains elusive. Here, we used an

unsupervised machine learning (ML) approach to analyze long-term, two-

dimensional migration trajectories of Granulocyte-macrophage colony-

stimulating factor (GMCSF)-derived bone marrow-derived DCs (BMDCs). We

discovered three migratory modes independent of the cell state: slow-diffusive

(SD), slow-persistent (SP), and fast-persistent (FP). Remarkably, imDCs more

frequently changed their modes, predominantly following a unicyclic

SD!FP!SP!SD transition, whereas mDCs showed no transition directionality.

We report that DC migration exhibits a history-dependent mode transition and

maturation-dependent motility changes are emergent properties of the dynamic

switching of the three migratory modes. Our ML-based investigation provides

new insights into studying complex cellular migratory behavior.

KEYWORDS
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1 Introduction

Cell migration is essential for homeostasis in living systems (1). Intriguingly, cell

motility shows complex dynamics beyond the classical diffusion theory (2). Therefore,

various random-walk models have been employed to explain anomalous diffusion

processes (3, 4). For instance, bacterial micro-swimmers and T cells deploy an effective

intermittent search process, alternating between slow and fast motion, such as the run-and-

tumble motion and Lévy walk (5, 6).
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Dendritic cells (DCs) exhibit adaptive motility patterns,

reflecting their immunological function as major antigen-

presenting cells (7, 8). Immature DCs (imDCs) typically navigate

using an intermittent search strategy, combining fast persistent

motility during patrolling and slow-diffusive motility for antigen

collection (9–11). In contrast, mature DCs (mDCs) mainly employ

fast persistent motility, enabling them to reach lymph nodes and

deliver antigens to T cells (12, 13). A recent single-cell study

employing microfabricated devices showed that deterministic

actin waves contribute to the intermittent search mechanism (14).

Additionally, identified Lévy walk patterns showed directional

persistence and zigzag motion as an in vivo search strategy (15).

Although extensive studies have been performed on the overall

cellular migration characteristics and physiological framework of

DC motility, the description of the average migration dynamics is

mostly restricted to the dichotomous approach, such as slow or fast,

diffusive or persistent, zigzag or non-zigzag.

We hypothesized that such simple interpretations overlook the

complex and heterogeneous dynamics of single-cell motility.

Intrigued by experimental observations of the heterogeneous

distribution of DC motility (Supplementary Figure S1), we

designed an unsupervised machine learning (ML) method to

uncover DC motility patterns at the single-cell level and

understand the distinct dynamic modes and their transition

dynamics quantitatively.

ML analysis is a powerful tool for classifying complex natural

phenomena. In the field of single-particle trajectory analysis (16),

ML has been exploited to reuse imperfect datasets (17), retrieve

information on location or polarization (18), and infer transport

models (19–21). ML technique was also applied to classifying

various mathematical diffusion models and cell mobility patterns

using trajectory data (22, 23). They differentiated the trajectory-to-

trajectory variation based on user-defined features. In addition,

deep-learning approaches have been proposed to extract

characteristic features from trajectories (24–26).

In this study, we developed an ML method to quantitatively

analyze complex and heterogeneous cellular motility processes and

discovered that the DC migratory patterns were classified into three

distinctive modes with unique characteristics. Our ML is a hybrid

machine combining unsupervised learning with supervised

learning. Compared to the above ML tools classifying cell-to-cell

variation patterns, our ML method was adapted to analyzing

temporally heterogeneous cell migration motion. Moreover, our

ML algorithm used only a minimal number of features specific to

characterizing cell migration motion and is interpretable in terms of

feature importance. We investigated the distribution and dynamic

transitions between these three modes and found that motility

changes upon maturation are emergent properties of these

processes. This ML-enabled approach paves the way for the

subsequent investigation of complex cellular migration dynamics.
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2 Materials and methods

2.1 GM-CSF-derived BMDCs

BMDCs were generated as previously described (12, 13). Briefly,

tibias and femurs from BALB/c mice (8–12 weeks old, female) were

flushed, and red blood cells were lysed with ammonium-chloride-

potassium (ACK) lysis buffer (Gibco). Bone marrow cells were

plated in 24 well tissue culture well plates (1 × 106 cells/mL) in

complete medium containing RPMI 1640, supplemented with 5%

fetal bovine serum (FBS), 1% antibiotic-antimycotic solution, 1%

HEPES buffer, and 0.1% 2-mercaptoethanol (all reagents were

purchased from Gibco) containing 20 ng/mL recombinant mouse

granulocyte-macrophage colony-stimulating factor (GM-CSF;

Peprotech). The medium was completely replaced with fresh GM-

CSF every two days. On day six, non-adherent and loosely adherent

cells were collected by gentle pipetting and transferred to Petri

dishes. After one day of culture, immature BMDCs, which appeared

as floating cells, were collected. Phenol-red-free RPMI 1640

medium (Gibco) was used for fluorescence microscopy

experiments, including cell height measurements and cell viability

tests. To generate mature dendritic cells (mDCs), immature DCs

(imDCs) were stimulated with 100 ng/mL lipopolysaccharide (LPS,

LPS-EB Ultrapure; Invivogen) for 30 min. Cells were carefully

washed three times and incubated for 6 h in fresh complete

medium, as described in previous studies (12, 13). After

incubation, floating cells were harvested as mDCs. All animal

experiments were performed according to protocols approved by

the Institutional Animal Care and Use Committee of the Ulsan

National Institute of Science and Technology (UNISTIACUC-

19-15).
2.2 DC characterization

The specific surface markers of imDCs and mDCs were

characterized by flow cytometry (Cytoflex, Beckman Coulter;

Supplementary Figure S2). The upregulated expression levels of

co-stimulatory molecules, CD86, CD80, and CD40, antigen-

presenting molecule MHC class II (I-A/I-E), and the chemokine

receptor CCR7 were evaluated as DC maturation markers, and

CD11c and CD11b were analyzed as dendritic cell markers. The

following antibodies were used in flow cytometry experiments: anti-

CD86-FITC (GL1, 1:200), anti-CD40-PE (1C10, 1:200), anti-MHC

class II (I-A/I-E)-FITC (M5/114.15.2, 1:200), and anti-CCR7-PE

(4B12, 1:200) were purchased from Thermo Fisher Scientific, and

anti-CD11b-APC (M1/70, 1:200), anti-CD11c-APC (HL3, 1:200),

and anti-CD80-PE (16-10A1, 1:200) were purchased from BD

Biosciences. The acquired data were analyzed using the FlowJo

software (BD).
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2.3 Fabrication of gel confiner

Under-agarose migration by gel confinement was performed as

described previously (13, 27). Briefly, the gel confiner consisted of a

custom-designed PDMS structure and low-melting agarose gel. The

PDMS structure consisted of a 10:1 ratio for the main body and a

30:1 ratio for the sticky PDMS-coated bottom. Before casting the gel

solution, the PDMS structure was placed in a Petri dish. Low-

melting agarose (2.4%) was dissolved in phenol-red free HBSS

buffer and heated at 80°C for 20 min, and the resulting solution

was cooled at room temperature to 40°C. The same volume of 2×

conditioned medium (RPMI 1640, 10% FBS, 2% HEPES buffer, 2%

antibiotic-antimycotic solution, and 0.2% 2-mercaptoethanol) was

mixed to a final concentration of 1.2% and cast to the PDMS

structure. The gel was cured for 20 min at room temperature. The

cured gel confinement was incubated overnight in a cell culture

incubator with complete medium. Subsequently, to prevent non-

specific cell-to-cell interactions in the migration assay, 800 cells in a

small drop of cell suspension were seeded on 10 mm diameter

coverslips with 20 mg/mL bovine fibronectin-coating. The cells were

incubated for 30 min in a cell culture incubator to enable them to

settle on the substrate. Subsequently, the cells were carefully covered

by gel confinement, and motility was imaged after 1 h. In the

experiments to measure cell motility, the field of view (FOV) was

located within the radial distance of 1.7 ± 0.6 mm from the center,

and there was no significant difference in cell behavior observed at

the center and edge positions.
2.4 Measurement of Young’s moduli of the
agarose gel block

Agarose gel blocks were prepared at concentrations of 1.2% (w/

v) with the same gel confinement fabrication. The mechanical

properties of the gels were determined using a rheometer

(MCR502 WESP; Anton Paar). The gel height was approximately

1.0 mm. The shear moduli (G, Pa) were analyzed using the

relationship between shear stress and shear strain before gel

disruption, and Young’s moduli (E, kPa) were calculated using

the following equation: E = 2(1 + v)G, with the Poisson’s ratio (v) of

agarose set as 0.5 (28).
2.5 Measurement of cell height under
confinement

To check the reproducibility of the confined environment, the

height of the fluorescence-stained DCs under 2D gel confinement

was measured using a laser scanning confocal microscope (A1R,

Nikon), as shown in Supplementary Figure S3. The DC suspensions

were stained using DiO (Invitrogen) for three minutes and washed

thrice with complete medium. After three minutes of recovery,

stained DCs were seeded onto the substrate and covered by gel

confinement. The 3D confocal image was acquired using a 100x
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plan apo lens, and the z interval was 0.5 mm. Cell height was

measured manually using a NIS Element (Nikon).
2.6 Live-cell imaging

Live-cell imaging was performed using an inverted microscope

(Eclipse Ti-E, Nikon) configured with a 10x dry objective lens and

sCMOS camera (Flash4.0, Hamamatsu). The cells were imaged for

24 h, and bright-field images were obtained every 1 min. The

recorded images were processed using the z-max intensity

projection for non-labeled automatic tracking (29). The sample

focal plane was focused, and two more image sequences were

obtained along the z-axis. Subsequently, rolling-ball background

subtraction was performed, and the maximum intensity projection

overlaid the z-stacks, facilitating contrast enhancement for cell

segmentation. During the experiments, an incubator (Chamlide

HK; Live Cell Instrument) maintained the microscope at 37°C with

95% humidity and 5% CO2.
2.7 Tracking of cellular migration

For tracking, cells in the pre-processed image were

automatically detected using the IMARIS (Bitplane) ‘Spots’

function. Cells were identified using intensity thresholding and

size estimation as 20 mm diameter particles. The position of the

center of mass was tracked, and tracking errors such as

misconnections between different objects or misrecognized objects

were corrected manually.
2.8 Data pre-processing

We obtained the following raw trajectories of DC migration:348

(imDCs, training dataset), 383 (mDCs, training dataset), 449

(imDCs, testing dataset), and 350 (mDCs, testing dataset).

Among them, a few raw trajectories were not tracked perfectly,

and as a result, a few data points were absent in the trajectories.

Therefore, we polished such trajectories. The number of imperfect

trajectories (fraction) was identified as 16 (4.5%, imDC training

dataset), 20 (5.22%, mDCs training dataset), 26 (5.79%, imDC

testing dataset), and 20 (5.71%, mDCs testing dataset). The

missing data points were attributed to tracking errors that mainly

arise from cell-to-cell interactions during attachment between two

distinct cells and partially from the finite field of view, resulting in

the incomplete observation of cell movement near the edge of the

observation window. Thus, we manually analyzed the trajectories

using the following rule: First, we chose an arbitrary time window

(≤ 10 min) and applied the spline interpolation provided in the

Python library “scipy” package to the raw data (30). If the untracked

period was ≥10 min, we split the trajectory into two before and after

attachment. Splitting an imperfectly tracked trajectory into two

independent short trajectories does not seriously alter the statistics
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and the detection of migration patterns of single trajectories because

this portion is approximately 4%–6% of the trajectory data. We also

evaluated the interval of missing points, such as 20 min or 30 min

time windows; however, the results shown in analyzed motility data

did not differ qualitatively. If we consider three dynamical modes,

the statistical properties of the modes are robust against the

interval of missing points owing to the relatively few imperfect

trajectories obtained.

After data polishing, we removed inappropriate track samples

in our ML analysis that failed to satisfy any of the following

three criteria as previously referred (12, 14): Mean track

speed ( < VD>t ≥ 1:5  mm=min), track duration (Tobs ≥ 60  min),

and maximal displacement from the starting position

(max j~Rj ≥ 20  mm).
2.9 Hybird Machine learning kernel

We constructed a hybrid ML kernel combining two machines

each used as unsupervised and supervised learning. Firstly, the K-

means clustering was applied to generate pseudo labels for 1 h long

segmented trajectories as a training data set. Then, randomly

chosen 2000 trajectories (36.6%) are used for training XGBOOST.

The trained XGBOOST predicted the label for unknown trajectories

in the segment pool with a 99.6% accuracy.

In our novel kernel design, the classical K-means clustering with

silhouette score systematically determines the number of clusters,

and the decision-tree-based XGBOOST provides the importance of

the feature. The benefits of two distinct types of machines are

providing a deeper understanding of trajectories. Thus, our

designed kernel possibly adapts to similar single-particle-tracking

data analysis with user-defined features.
2.10 Silhouette score used to determine
number of clusters

The silhouette score has been widely used to infer the number of

clusters in ML algorithms (31). With the given cluster numbers as a

hyperparameter, we measured the mean distance of a given data point

within the cluster to which it belongs. For data point i, the mean

distance within the cluster is estimated as DW(i) = 1
jCI j o

j∈CI

d(i, j) ;  

where d(i, j) represents the Euclidian distance between the i and j data

points in the cluster CI , and jCI j is the size of the cluster. We estimated

the dissimilarity of the data point i by measuring the minimum

distance between the data point and other clusters, which is defined

asDD(i) = min
fCJ g

1

jCJ j
oj∈CJ

d(i, j), where i ∈ CI , j ∈ CJ , and fCJg is the
set of all neighboring clusters for J ≠ I : The silhouette score for data

point i is defined as s(i) = DD(i)−Dw(i)
max½Dw(i),DD(i)�. Thus, the average silhouette

score lies between ½−1, 1�. The limit of 1 describes a sample (i.e., cluster)

that is well separated from neighboring clusters.
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2.11 Molecular inhibition in the migration
assay

To study the role of myosin II and the Arp2/3 complex, the

molecular inhibitors blebbistatin (20 mM, Sigma-Aldrich), CK666

(100 mM, Sigma-Aldrich) and SMIFH2 (12.5 mM, Sigma-Aldrich)

were used during DC migration. Each inhibitor was mixed in an

uncured gel (40°C) before casting. After gel casting and curing at

RT, the gel confiner was incubated in complete medium with the

same inhibitor concentration overnight. DMSO (0.1% (v/v); Sigma-

Aldrich) was used as a negative control. Subsequently, the DCs

located on the substrate were carefully covered with an inhibitor-

containing gel confiner. Cell motility assays were conducted after

1 h of incubation with covering by the gel confiner, similar to the

approach described above.
2.12 DC viability under inhibitor effect

Ethidium homodimer (EthD-1; Thermo Fisher Scientific) was

used to evaluate DC viability. After 24 h of incubation, DCs under

gel confinement were stained with EthD-1 in complete medium

(500 nM) in an incubator for 20 min. Fluorescent-stained dead cells

were counted manually using epifluorescence microscopy with a

20× Plan Apo lens (Nikon TiE). Cell survival rate was calculated as

the number of stained cells per the number of whole cells in the field

of view. More than 50 cells were analyzed for each experiment, and

three independent experiments were performed.
2.13 Statistical analysis

Unless stated otherwise, all data represent the mean ± SEM of

three independent experiments for each condition. Normality was

determined using the D’Agostino and Pearson tests. The Mann-

Whitney and Kruskal-Wallis tests, along with Dunn’s post hoc test,

were used to determine statistical significance. To prevent type I

errors due to the large number of samples and confirm statistical

significance, randomly selected samples were used to obtain the P-

values. The criteria for random selection followed the hypothesized

sample size, with a statistical power of 0.8. All statistical analyses

were performed using the Origin Pro 2020 software (OriginLab).
3 Results

3.1 Collection of single-cell migration
trajectories

To investigate the motile behaviors of DCs, we used primary

mouse bone marrow-derived DCs (BMDCs) and characterized the DC

phenotype (Materials andMethod, Supplementary Figure S2).We used

a gel confiner for long-term (24 h) monitoring of an unbiased
frontiersin.org
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population of freely migrating cells (Figures 1A, B). The gel confiner

allowed for precise control over the degree of confinement in

experiments involving multiple chips (Supplementary Figure S3).

The detailed fabrication steps are described in our previous reports

(13, 27). Cellular movements were imaged every 1 min using bright-

field microscopy with a millimeter-scale broad field of view (1.3 × 1.3

mm2; Supplementary Movies 1, 2). Using live-cell tracking data

(Figure 1C), we found that mDCs showed faster and more persistent

motility than imDCs, which is consistent with the results of previous

studies (Figures 1D, E) (12, 13). However, outliers were consistently

present (Figure 1F), and these atypical phenomena were often

neglected in the pooled population analysis (Supplementary Figure S1).

Our ML kernel was designed to analyze individual,

unperturbed, heterogeneous cellular motility. To construct the

ML kernel, we prepared two independent datasets: one for

training and the other for testing. The input data were pre-

processed to remove trivial errors (Materials and Method). After

pre-processing, we obtained trajectories of 301 (imDCs) and 348

(mDCs) for training and 460 (imDCs) and 371 (mDCs) for testing.
Frontiers in Immunology 05
3.2 Developing the ML kernel to analyze
DCs migration

To analyze dynamic heterogeneity in a single DC migration, we

segmented the trajectory data into 1 h long tracks and obtained a

total of 8787 tracks from the testing dataset (Figure 2A). For the

training dataset, we prepared 5741 segmented tracks. From the

segmented tracks, we extracted five features quantifying motility

(radius of gyration, end-to-end distance, and average kinetic

energy) and directionality (asphericity A and turning angle

fluctuation Dq) as the input bases for the machine kernel

(Figure 2B). The mathematical details of these features that

enable quantification of the motility propensity and directionality

of DC migration are as follows:

3.2.1 Radius of gyration
To measure the second moments of positional fluctuations, we

calculated the gyration tensor Rij =
1
N2 ∑

N

tl=1
∑
N

tm=1
(ri(tl) − <ri>)(rj(tm) −

<rj>). Here, the symbol <O> denotes the mean, and the subscripts
A B

D E

FC

FIGURE 1

Heterogeneous dendritic cell (DC) motility under confinement. (A) Scheme of a gel confiner for an under-agarose assay with stable and reproducible
confinement. The agarose gel (Averaged Young’s elastic modulus: 11.1 kPa) provided a tissue-like environment, and the sticky bottom beneath the
PDMS structure enabled stable and reproducible confinement over a large area (78.5 mm2) (B) Phase-contrast images of DCs with and without the
gel confiner. Scale bar = 10 mm. (C) 2D cellular migration trajectories of immature DCs (imDCs) and mature DCs (mDCs) for 24 h. The starting point
of each trajectory was translated to the origin of the plot. Color codes indicate the track duration. Scale bar = 100 mm. One representative
experiment out of three is shown. (D) Mean track speed of imDCs and mDCs. In the box plots, the bars include 95% of the points, the center
corresponds to the median, and the box contains 75% of the data. Data were pooled from three independent experiments (imDC n = 460; mDC
n = 371). The Mann-Whitney test was used to compare two groups. ***: P< 0.001. (E) Mean square displacement (MSD) curves of imDCs and mDCs.
Lines indicate averaged MSD from three independent experiments, and the error bar indicates the S.E. (F) Examples of heterogeneous motility
patterns of DCs. Motility directions are marked with arrows. The color codes indicate instantaneous speed. Scale bar = 100 mm.
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i, j represent the position coordinates x, y, respectively, and l,m

denote the time index running from one to N where N is the

trajectory length (50 ≤ N ≤ 60). The radius of gyration is obtained

from the gyration tensor as follows:

Rg ≡
ffiffiffiffiffiffiffiffiffi
TrR

p
: (1)

Because the <ri> is the center of mass coordinate, Rg represents the

average spreading along the coordinates x and y.
3.2.2 Asphericity
From Rij we can calculate the spreading of the migration

trajectory along its principal axis. This shape-related property,

called asphericity, can be defined as

A ≡
(l1 − l2)2 
(l1 + l2)2

(2)

where the l1,2  is the eigenvalue of the gyration tensor Rij. The

asphericity is normalized in ½0, 1� such that the two limiting values

represent a perfect circular shape for zero and a straight-line shape

for unity.
3.2.3 Energy consumption
The degree of spreading in equation (1) can be related to the

total kinetic energy spent over the entire migration event. To

measure the relationship between the spreading and energy

consumption, we evaluated the average kinetic energy as follows:

E ≡
1

N − 1 o
N−1

n=1
VD(tn)

2 :   (3)
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Here, VD(tn) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rx(tn+1)−rx(tn))

2+(ry(tn+1)−ry(tn))
2

p
(tn+1−tn)

is the average migration

speed at t = tn over 1 min.

3.2.4 End-to-end distance
In addition to fast-spreading and high energy consumption, the

directional propensity of migration can also affect the degree of

overall spreading. We measured this effect in terms of the end-to-

end distance:

Rete =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rx(tN ) − rx(t0))

2 + (ry(tN ) − ry(t0))
2

q
(4)
3.2.5 Variance of turning angles
To measure the directional persistence, we have added a feature

indicating the variance of turning angles. The q is the angle between
~D(tn+1) and ~D(tn)  in the range ½−p , p) (Figure 2B), with a positive

value in the counterclockwise direction where ~D(tn;Dt) =~r(tn +
Dt) −~r(tn). Using the segmented tracks, we calculated the variance

of the turning angles as follows:

Var½q� ≡ 1
N − 2 o

N−2

i=1
(qi − <q>)2: (5)
3.3 ML-based discovery of three distinct
modes of DCs migration

With the five extracted features from the segmented trajectories,

we constructed the input data of size 5741×5 for training the

machine (Figures 2A, B). First, we applied K-means unsupervised
A B DC

FIGURE 2

Overview of the machine learning method. (A) Track segmentation. We obtained 649 raw trajectories from the training datasets. After performing
the data pre-processing, we segmented the trajectory into 1 h long pieces indexed with their start and end times. Using 5741 segmented trajectories,
we made a trajectory pool. (B) Feature extraction. Using the segmented tracks, we calculated five features: radius of gyration (Rg), asphericity (A),

energy consumption (E), end-to-end distance (Rete), and variance of turning angles (Var½q�). (C) The construction of the machine kernel. Using the
input data, we performed K-means (32, 33) clustering to classify the trajectories using an unsupervised learning method and specify the label. Next,
with the randomly chosen 2000 labeled trajectories, we trained XGBOOST (34) using supervised learning. The trained XGBOOST showed 99.6%
agreement with the K-means clustering results for the label prediction. The hyperparameters were optimized using a cross-validated grid search in
both methods. (D) Segment identification. Using the trained XGBOOST, we analyzed the original trajectory with a 1 h time window to identify the
dynamic state of each segment.
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clustering (32, 33) to the input data to examine the number of

distinct motility patterns of DCs. Next, we used the results from K-

means clustering as pseudo-labels and cross-validated these using

the supervised learning algorithm XGBOOST (34) (Materials and

Method, Figure 2C). We point out that the combination of the

unsupervised and supervised learning is advantageous when the

cell-to-cell migration variation originates from temporally

heterogeneous motion of a cell. After trained with the input data,

the XGBOOST machine enables us to analyze unsegmented raw

trajectories and decipher the migration pattern in the 1 h interval

time windows along the trajectory (Figure 2D). We validated the

ML method and its output by demonstrating that pattern

classification is robust to variations in feature selection and their

possible combinations.

In Figure 2C, we examined the average silhouette score to

determine the number of distinct clusters in the migration

patterns (31). The plot shows that the silhouette score reached

the maximum when the number of distinct clusters was three if we

used all five features introduced in our ML analysis. To assess the

robustness of the results, we performed ML analysis with various

combinations of input features. For this test, we used a training

dataset of 5741 segmented trajectories. In Supplementary Figure S4,

we evaluated the silhouette scores for five distinct combinations of

the input features. For all cases, we confirmed that the DC

migration data most likely consisted of three dynamic modes. We

temporarily refer to the three groups as I, II, and III based on their

population size.

The XGBOOST machine also allowed us to evaluate the

statistical properties of the migration trajectories in each group

with feature importance and the distribution of the five features

(Supplementary Figure S5). It turns out that asphericity, A, is the

most important feature among the five when determining the group

assignment (Supplementary Figure S5A). It plays a critical role in

differentiating group I from groups II and III (Supplementary

Figure S5B). The features, Rg ,    Rete, and E are effective in

distinguishing group II and group III (Supplementary Figures

S5C–E). These features quantify DC migration motility. In terms

of Rg ,    Rete, and E, groups I and II exhibi ted almost

indistinguishable “slow” motility patterns, whereas group III, with

high motility, differed from the other two groups. The variance of

the turning angles showed a minor contribution, with a similar

unimodal profile for all three groups (Supplementary Figure S5F).

In Table 1, a few important dynamic features of groups I, II, and III

are summarized. Based on averaged dynamic properties, we

assigned the dynamic modes of groups I, II, and III to slow-

diffusive (SD), slow-persist (SP), and fast-persist (FP) phenotypes,
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respectively (Table 1; Figure 3 and Supplementary Movies 3-5).

Note that the name has been given by the clustering results in five-

dimensional feature space reflecting averaged dynamical properties,

thus, slow and fast do not assign from their absolute velocity.

DCs in the SD mode perform anti-persistent walks at a slow

average speed, whereas FP mode cells show directional random

walks at a fast average speed. The SP mode differed from the other

two modes. It had a directional walk analogous to that of FP mode

cells. However, the feature properties differed significantly from

each other (Supplementary Figure S5). In terms of average speed,

the SP mode was similar to the SD mode.
3.4 Migration dynamics of SD, SP, and FP
modes

We investigated the dynamic properties of the SD, SP, and FP

modes based on commonly used statistical observables, including

mean-squared displacements (MSDs) and Van-Hove self-

correlation functions. We also examined observables such as the

turning angle heat map and density map of the phase space, (Vn,

Dqn). Additionally, we investigated the zigzag-like patterns of DC

migration in detail.

3.4.1 Mean-squared displacements
From a single trajectory, we calculated the MSD as a function of

lag time Dt using the following definition:

MSD =
1

T − Dt

Z T−Dt

0
½~r(t + Dt) −~r(t)�2dt ∝ Dta :  (6)

Here the power-law exponent a is called the anomalous exponent

and provides dynamic information on the diffusion process: 1) a =

1: the diffusion is normal. 2) 0 < a < 1: diffusion is sub-diffusive. 3)

1 < a < 2: Diffusion is super-diffusive. 4) a = 2 :The diffusion is

ballistic such that the cell (or particle) moves at a constant velocity.

In terms of anomalous exponent, DCs in the SD mode are sub-

diffusive, and DCs in the SP and FP modes are super-diffusive. The

MSD plot indicates that cell migration dynamics change over time

(Figure 3E). The measured values of a in the short- and long-time

regimes differed for all three dynamic modes.

Compared with the averaged MSD (Figure 3E), the individual

MSD curves showed a broad scatter for the SD and SP modes

(Supplementary Figure S6A), indicating the prevalence of

substantial cell-to-cell variation in the SD and SP migrations. We

quantified the cell-to-cell dynamic heterogeneity in terms of P(a)
(Supplementary Figure S6B). Notably, the corresponding
TABLE 1 Summary of the characteristics of each group (dynamic mode).

Group I Group II Group III

Average speed ± Standard Deviation (mm/min) 2.58 ± 1.90 2.21 ± 1.61 6.27 ± 2.66

Anomalous exponent 0.59 1.47 1.67

Directionality X O O

Dynamic mode Slow-diffusive (SD) Slow-persist (SP) Fast-persist (FP)
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distributions for the SD and SP modes showed wide spread from its

peak value. The result indicates that most of the individual SD-

mode DCs moved more persistently than expected based on the

averaged quantity (a ≈ 0:6). For the SP-mode DCs, a few individual

DCs exhibited sub-diffusive motion, even though the averaged MSD

indicates super-diffusive movement with a ≈ 1:5.

FP mode migration was relatively homogeneous compared to

the SD and SP modes. The P(a) was narrowly distributed around

the peak value. A notable feature of the FP mode is that a few MSD

curves show oscillatory behavior. We determined that such patterns

could occur if the trajectory has a closed ellipse form in two-

dimensional space. Although masked in the MSD plot, similar

oscillating MSDs were found in the SD and SP modes as well.
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3.4.2 Distribution of displacements
The displacement probability density function (PDF) P(xjDt)

measures the probability of finding DC’s displacement in the

interval ½x,   x + dx� over a given lag time where x = x(t + Dt) −
x(t) is the (x-component) displacement. As shown in

Supplementary Figures S7A, B, we plotted the P(xjDt) at several
lag times for the three modes. For all migration modes, the PDFs

were neither Gaussian nor followed a power law. The non-

Gaussianity indicates that the SD and SP modes cannot be

governed by Gaussian-based anomalous diffusion models, such as

fractional Brownian motion and scaled Brownian motion (35). The

exponential-like tail and cusp at the center in the PDFs strongly

suggests that DC migration is temporally heterogeneous and shows
A B

D

E F

C

FIGURE 3

Statistical characteristics of three distinct machine-defined modes of dendritic cell (DC) motility. (A) Scheme of three distinct modes in a trajectory.
(B) Sample trajectories of slow-diffusive (SD), slow-persistent (SP), and fast-persistent (FP) migration modes. Representative trajectories of each
migration mode are shown together at the bottom panel (scale bar: 100μm). (C) Schematic trajectories with the definition of the displacement

vector ~D(tn;Dt) and turning angle. The turning angle ranges from −p (clockwise turning) to   p (counterclockwise turning). In the phase-space density

map, we measured the magnitude difference for successive displacement vectors Vn = (j~D(tn+1;Dt)j − j~D(tn;Dt)j)=Dt and their turning angle difference
Dqn = qn+1 − qn. (D) The turning angle heat map (examples of individual trajectories are shown in Supplementary Figure S8). (E) The MSD curves for
SD (blue), SP (green), and FP (red) modes. The guidelines show the anomalous exponent at long times. (F) The density map of phase space (Vn,Dqn)
at Dt = 3 min (examples at different time lags are shown in Supplementary Figure S9). The dots indicate data from a single-track segment. Dashed
lines serve as visual guides. Data were pooled from three independent experiments for imDC and mDC.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1129600
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2023.1129600
cell-to-cell heterogeneity. The fluctuation in the instantaneous

diffusivity of DC movement and its wide distribution may result

in the cusp and the exponential-like tail, as reported in studies using

the fluctuating diffusivity model (36, 37).

3.4.3 Turning angle heat map
The turning angle q(Dt) refers to the angle between two

consecutive displacement vectors (Figure 3C). The displacement

vector over a given lag time Dt is defined as ~D(tn;Dt) =~r(tn + Dt) −
~r(tn) and tn = nDt. The turning angle was calculated as follows:

qn(Dt) = cos−1 (
~D(tn+1;Dt) · ~D(tn;Dt)
~D(tn+1;Dt)
�� �� ~D(tn;Dt)�� �� )  (7)

where the q ∈ ½−p , p �, and the sign is positive (or negative) in the

counterclockwise (or clockwise) direction, respectively. Next, we

plotted the heat map of the normalized distribution for turning

angles as a function of lag time. The corresponding heat maps for

the three migration modes are shown in Figure 3D.

The heat map illustrates the change in directional persistence

with time lag Dt (Figures 3C, D). Up to Dt   e   3 min, the turning

angle <q> showed a peak at 0, indicating that the cells keep moving

in the same direction. This was true for all three modes. In contrast,

for Dt > 3 min, the SD migration mode exhibited a strong anti-

persistent memory with two peaks at q ≈ ±p , which extended over

several tens of minutes, resulting in sub-diffusive migration with an

anomalous exponent a = 0:6 (Figure 3E and Supplementary Figure

S6). The SP migration mode was clearly distinguished from the SD.

The strong peak at q ≈ 0 indicates that the SP mode is a directional

walk consistent with its superdiffusive motion (a = 1:5) observed

from the averaged MSD plot. Concurrently, the SP mode has the

feature of anti-persistent walks (q ≈ ±p) (Figure 1D). We found

that this seemingly contradictory migration pattern is a signature of

zigzag directional walk; see our further analysis below. The FP mode

migration mode showed a strong directional walk (Figure 3B). The

heat map suggests that migration directionality is maintained for

the total length of the trajectory (60 min) without significant

dispersion of the angle fluctuation <q2> with increasing

time (Figure 3D).

Additionally, we examined the heat maps obtained from a single

trajectory (Supplementary Figure S8). For each dynamic mode, we

plotted ten randomly chosen heat maps, which confirms that the

pattern in the averaged heat maps (Figure 3D) is indeed observed at

the single-trajectory level.

3.4.4 Density map of phase space
To examine the radial and angular motions together, we

constructed the phase-space (Dqn,  Vn) where Dqn = qn+1 − qn,

and Vn =
(j~D(tn+1;Dt)j−j~D(tn ;Dt)j)

Dt . Supplementary Figure S9 shows scatter

plots of (Dqn,Vn) for several lag times in the three modes. For the

radial contribution, the SD mode was symmetric, whereas the other

two modes were asymmetric. For the latter modes, Vn is thicker on

the positive side or shifted to the right, which indicates that the cell

moved away from the origin with time.

For the angular part, the SP mode showed a thick shoulder (± p)
and small peaks at q = ± 2p for Dt ≥ 3 min. When Dqn  has peaks at
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± 2p with a nonzero radial velocity, the corresponding trajectory

shows two opposite turning events sequentially. The shoulder structure

at ± p with a nonzero radial velocity may also indicate a zigzag-like

motion, which will be described in the next section. The FP mode is

characterized by a unimodal peak near zero, which shows a curved or

straight motion by maintaining the turning angle for the overall

relaxation time scale.
3.4.5 Analysis of zigzag pattens in the DC
migration data

A recent study proposed a zig-zag Lévy walk as a

phenomenological motility model for DC migration (15). The

zigzag Lévy walk is characterized by repeating persistent runs,

where each run is composed of zigzag-like (i.e., left-right or right-

left) random walks. Here, we systematically analyzed the DC

trajectories to examine whether zigzag migration patterns were

prevalent during the DC migration dynamics. In a nutshell, our

analysis showed that the SP mode is a plausible candidate for

defining empirically observed zigzag migration.

For the analysis, we constructed the phase space of successive

turning angles (qn,   qn+1), where the subscript n runs from the start-

time segment to the last one. We showed the density maps of (qn,
  qn+1) at several lag times for the three dynamic modes

(Supplementary Figure S10). The schematic in Supplementary

Figure S10B shows the trajectory motifs corresponding to the

nine specific dense spots in the density maps. From the density

maps, we calculated a zigzag fraction (Supplementary Figure S11),

which is the ratio of the total number of scatters between the first

and third quadrants of the density map as a function of lag time.

Note that our zigzag fraction is distinguished from the zigzag

preference factor introduced in reference (15), in that our turning

angles were defined from the displacement vectors of a given lag

time, whereas, in reference (15), the turning events were determined

using specific criteria, and the turning angles were obtained from

these specific turning events.

The density maps in Supplementary Figure S10C show a few

distinct patterns depending on the lag time and migration mode.

At the shortest lag time (Dt = 1 min), a common feature for all

three modes is that the phase densities are concentrated around

the origin. This suggests that the directional persistence of

migration movement is conserved in this short-time regime

(Supplementary Figures S10A, B). This tendency is consistent

with the fact that directional persistence is lost at Dt = 3

min (Figure 3D).

In the SD mode, as lag times increase, the dense concentration in

the phase density at the origin becomes dispersed. At Dt ≥ 3 min, the

density map became dense at the four corners ( ± p ,±p), indicating
that there exists an abundant pool of twomotifs: (p , p) and ( − p ,−p),
representing a circular motif, and (p ,−p) and ( − p , p), indicating the
presence of zigzag-like motifs (Supplementary Figure S10B). However,

the SD mode is not a zigzag migration in the long run because zigzag

movements do not result in a persistent run. The zigzag fraction (the

ratio of the total number of scatters between the first and third

quadrants in the density map) in the SD mode migration was always

less than unity (Supplementary Figure S11).
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The SP mode shows nine dense spots for Dt ≥ 1 min. In

addition to the four corners (± p ,±p) and the origin, a dense

area exists at (± p , 0) and (0,± p). This corresponds to the thick

shoulder structure observed in Supplementary Figure S9, and the

motifs exhibit a zigzag motion (Supplementary Figure S10B).

Because this phase space was obtained from two successive

events, it does not directly represent zigzag migration.

Nevertheless, the coexistence of a persistent motif and zigzag

motif suggests that the SP mode is a class of zigzag migrations.

This view is also supported by the zigzag fraction pattern, which is

larger than unity (Supplementary Figure S11).

For the FP mode, the phase density always includes a

concentrated region at the origin, which can be expected due to

its strong persistent movement over the entire observation period.

The zigzag fraction increased to ~1.1, subsequently decreasing to

saturation around unity (Supplementary Figure S11). It can be

inferred that after a long relaxation time, the trajectory shape is

curved due to strong directional persistence, indicating that the

zigzag patterns are smeared (or show weak wiggling) owing to the

large curves.

Based on the above analyses, we recapitulate the dynamic

characteristics of the three modes in the following: The SD

migration showed a non-Gaussian subdiffusion pattern

(Supplementary Figure S7) and differs from a zigzag-type anti-

persistent walk. The phase-space density map P(Dqn) shows a peak
at 0 and P(Vn) is symmetric at 0 (Figure 3F and Supplementary

Figures S8, S9), indicating that successive displacements preserve
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the same turning angles. Accordingly, SD migration was curly, as

displayed in the exemplified trajectories (Figure 3B).

The SP mode exhibited a zigzag-like persistent walking pattern

(Figure 3B). Interestingly, in the turning angle heat map, DCs show

features of both persistent (q ≈ 0) and anti-persistent (q ≈ ±p)
walks (Figure 3D). The MSD analysis shows that SP migration is

super-diffusive with a ≈ 1:5 for Dt > 10 min (Figure 3E). For Dt <
10 min, the SP mode of migration was similar to that in the SD

mode. SP cell migration was highly heterogeneous (Supplementary

Figure S6), and showed non-Gaussian diffusion with a displacement

PDF similar to that of SD motion (Supplementary Figure S7). The

phase-space maps and zigzag preference factor demonstrated that

SP migration shows an empirically observed zigzag pattern

(Figure 3F and Supplementary Figures S9-11).

The FP migration mode showed a strong directional walk

(Figure 3B). Migration directionality is maintained for the total

length of the trajectory (60 min) without significant dispersion of

the angle fluctuation <q2> with increasing time (Figure 3D). FP

migration is not ballistic but super-diffusive with a ≈ 1:7

(Figure 3E), indicating faster and more directional motility than

the SP mode. Unlike the SD and SP modes, FP migration dynamics

are homogeneous (Supplementary Figure S6). Interestingly, P(Dxjt)
is an exponential distribution, indicating that a power-law tail does

not exist. Actively diffusing biological particles often exhibit a

power-law PDF of displacement as a signature of Lévy walks.

Examples include Escherichia coli (i.e., run-and-tumble micro-

swimmers) (5), motor-driven macromolecules in the cytoplasm
A B

C

FIGURE 4

Distribution of migration modes. (A) Representative images depicting the mode assignment for the individual cell migration track. Each line
represents the migration mode for the cellular migration trajectories, with colors indicating SD (blue), SP (green), and FP (red) modes. Background
subtraction was performed to increase the contrast of the bright-field image (scale bar = 100 μm). (B) Mode mean track speed of immature DCs
(imDCs) and mature DCs (mDCs). Data were pooled from three independent experiments. (SD: imDC n = 3660; mDC n = 1624, SP: imDC n = 1953;
mDC n = 1192, FP: imDC n = 132; mDC n = 226). Cohen’s d (d) was used to indicate the standardized difference between the two means.
(C) Occurrence frequency of SD, SP, and FP modes in the imDC and mDC motility data.
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A

B

DC

FIGURE 5

Molecular inhibition in motility mode dynamics (A) Representative images of imDCs and mDCs under the effect of drugs. Each line represents the
migration mode for the cellular migration trajectories with colors indicating SD (blue), and SP (green) modes. Background-subtraction was
performed to increase the contrast of the brightfield image (scale bar = 100 μm). (B) Mean track speed of imDCs and mDCs after treatment with
DMSO (0:1%), 20 mM blebbistatin (BL, myosin II inhibition), 100 mM CK666 (CK, Arp2/3 inhibition) and 12.5 mM SMIFH2 (SM, Formin inhibition). In the
box plots, the bars include 95% of the points, the bar corresponds to the median, square corresponds to mean, and the box contains 75 % of the
data. Data were pooled from three independent experiments (imDC: SD, DM n = 3702 , BL n = 1491, CK n = 2910, SM n = 3760; SP, DM n = 1815,
BL n = 1508, CK n = 1613, SM n = 1957; FP, DM n = 99 BL n = 11, CK n = 15, SM n = 102; mDC: SD, DM n = 1588, BL n = 607, CK n = 973, SM n =
2371; SP, DM n = 1228, BL n = 612, CK n = 584, SM n = 1474; FP, DM n = 162, BL n = 10, CK n = 9, SM n= 217);. The Kruskal-Wallis test with Dunn’s
post hoc analysis was used to determine statistical significance. *: P < 0:05,   ***: P < 0:001, N.S.: P > 0:05 , #: very low incidence. (C) Occurrence
frequency of SD, SP, and FP modes for imDC and mDC migration after drug treatment. (D) Cumulative distribution of consecutive mode lifetime for
imDCs and mDCs migration after drug treatment.
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(38), mRNA-protein complexes (39), foraging birds (40), and

chemokine-stimulated immune cells (CD8+ T cell) (6). However,

the results of our analysis indicate that DC migration dynamics do

not belong to the class of Lévy walks, regardless of maturation

(Supplementary Figure S7).
3.5 Actin nucleation and contraction affect
the migratory mode distribution of imDCs
and mDCs

To investigate how the maturation status of DCs influences the

distribution of the three migration modes, we assigned the

migration mode 1 h interval traces over time until the cell finally

escaped from the field of view (Figure 4A and Supplementary

Movies 6, 7). The speed and fraction of the three migration

modes suggest that DC migration occurs mostly in the SD and SP

modes, and their speeds are unaffected, regardless of their

maturation status (Figures 4B, C). The FP mode was more

frequently observed in mDCs than in imDCs.

Cell speed and persistence are controlled by the regulation of

actin dynamics (41, 42). Because myosin II-mediated contractility

and actin polymerization key mechanism of cell motility (43), we

sought to test how actin mediators influence migration mode

distribution (Figure 5A and Supplementary Movies 8-15). During
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experiments, they survived similarly to the controls over the next

24 h (Supplementary Figure S12A).

Although the overall speed of both imDCs and mDCs was

reduced (Supplementary Figure S12B), which is consistent with

previous studies (14, 44–46), the FP mode was absent, and the mean

speed of both SD and SP modes was decreased significantly for both

cases of myosin II and Arp2/3 inhibition (Figure 5B). Remarkably,

myosin II inhibition increased the SP mode of migration in the

imDC population (Figure 5C), whereas Arp2/3 inhibition increased

the SD mode of migration of mDCs. Therefore, after the inhibition,

mode fractions seem to converge to a similar value irrespective of

maturation status.

Next, we determined the mode lifetime, length of mode

continuity, and how molecular inhibition influenced the mode

longevity. Interestingly, myosin II inhibition reduced imDC SD

mode durations while increasing mDC SD and SP mode lifetimes

(Figure 5D). Arp2/3 complex inhibition enhanced the lifespan of

mDCs in the SD mode but not that of imDCs, demonstrating that

mode lifetime dynamics and the control of actin dynamics are

highly dependent on DC maturation status.

Unlike myosin II and Arp2/3 inhibition cases, the FP mode was

maintained in DCs treated with a Formin inhibitor, SMIFH2 (12.5

mM) (Figure 5A). While the speed of the SD and SP modes was not

changed much, there was a decrease in the speed of the imDC FP

mode, but not in mDC (Figure 5B). Analysis of the mode fraction
A B

C

FIGURE 6

Transition dynamics of migration modes. (A) Transition model between the three migration modes. Pij denotes the transition rate from modes i to j
(including self-transition) where i, j ∈ fSD, SP, FPg. (B) Fraction of homogeneously (non-transitionary) and heterogeneously (transitionary) migrating
cells over the observed duration. (C) The time trace of migrating modes is depicted graphically, as well as the time points at which the mode shift
occurs (red inverse triangle). The mode transition may occur in one step (e.g., SP!SD) and two steps (e.g., SP!FP!SD). The probabilities of a one-
step or two-step mode transition from modes i to j (i ≠ j) were evaluated and plotted together for the cross-transition between different migration
modes. The transition, including the FP mode, shows distinct pathways depending on the maturation level. imDCs showed the cyclic mode
transition (SD!FP!SP!SD), whereas mDCs had a more bidirectional transition. Data were pooled from three independent experiments. All plots
shown here were obtained from three independent experiments.
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showed that the ratio of SD and SP mode was comparable to Arp2/3

inhibition cases. However, FP mode was preserved only in DCs

treated with SMIFH2 (Figure 5C). It is noteworthy that SMIFH2

treatment also impacts mode lifetime. A comparable pattern to

CK666 treatment was observed when DCs were treated with

SMIFH2. However, an increase in the FP mode lifetime of imDC

was observed, whereas no such change was detected in

mDC (Figure 5D).
3.6 Maturation status-specific migratory
mode transition dynamics

To study the transition dynamics of the DC migration modes,

we constructed a transition matrix (Figure 6A) that showed several

noteworthy features. First, self-transition predominates, signifying

that DCs move with strong mode persistence. Compared with

imDCs, mDCs have higher self-transition rates for the SP and FP

migration modes and lower self-transition rates for the SD

migration mode. This tendency explains why mDCs moved more

persistently than imDCs; mDCs avoided SD migration in favor of

SP or FP migration. Second, SD was the most recurrent migration

mode for both imDCs and mDCs. The highest sum of influx rates

was observed for the SD mode ( ∑
i∈fSD, SP, FPg

Pi!SD). Third,

maturation increases the transition to FP mode. Comparing the

FP column of the transition matrix of imDCs and mDCs, we found

that every component of the transition from SD, SP, and FP to FP

was significantly increased.

Irrespective of maturation, DC migration is dominated by two

slow modes (SD and SP), suggesting that DCs usually move at a

slow speed with or without directional persistence. The high

energy-consuming FP migrat ion mode was observed

intermittently, and the frequency of occurrence increased after

maturation. In Figure 6B, we plotted the population fraction of

mode-preserving (single-mode) and mode-changing (multi-mode)

cellular migration tracks. Interestingly, mDCs have a larger fraction

of single-mode migration tracks than imDCs, indicating that

maturation participates in stabilizing the innate migration of DCs.

Next, we examined the cross-transition dynamics among different

migration modes (Figure 6C). Mode changes can occur in one or two

steps. We emphasize that the cross-mode transition diagram should be

distinguished from the total transition matrix, as shown in Figure 6A.

For both imDCs and mDCs, a single-step change was the dominant

pathway for the transition between the SD and SP modes. For the

transition from the SD to FP modes, the one-step pathway was the

most common for imDCs. For mDCs, the fractions for the one-step

(SD!FP) and two-step (SD!SP!FP) transitions were similar. From

the SP to FP transition, the two-step transition (SP!SD!FP) was the

primary pathway for imDCs, whereas both one- and two-step

transitions were similar for mDCs. Taken together, imDCs

predominantly followed the unicyclic SD!FP!SP!SD transition

(Supplementary Movie 16). In contrast, mDCs showed no

transition directionality.
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Our results suggest that ML-assisted analysis can successfully

identify the heterogeneous motility patterns of DCs. We found that

the overall diffusive and persistent cellular motion of DCs are

emergent properties of the dynamic switching of the three

migratory modes, SD, SP, and FP, controlled by intracellular actin

dynamics. Emerging literature on both experimental and modeling

studies on innate DCs migration has reported dynamic switching

between diffusive and persistent motility (9, 14, 45, 47, 48). For

instance, the universal coupling between cell speed and cell

persistence model could explain the general trend that faster cells

tend to turn less, which successfully predicted the three typical

patterns of experimental cell trajectories; diffusive, persistent, and

intermittent (45). When imDCs were confined in a 2D chip or a 3D

collagen gel, they exhibited two distinct migration states: persistent

and diffusive migration (14, 45). A subsequent study reported that

the persistence-speed coupling of DC motility enhances the search

efficiency (48). In addition, a zigzag generalized Lévy walk model

incorporating both the zigzag-turning walk and the intermittent

walk characteristics was proposed to explain the search strategy of

DCs (15). However, it should be noted that the time scales varied

between studies. At very short time scales, cellular mobility could

always be persistent, yet at very long-time scales, it might be

diffusive. DCs migration trajectories were often collected at 3 min

intervals for ~ 15 h (14, 45, 48), whereas the zigzag generalized Lévy

walk model used 10 min-long trajectories collected at 10 sec time

intervals (15). In addition, many distinct interpretations of

directional persistence have been implemented (12, 14, 15, 45, 47,

48). For instance, if a 12-minute segment of a trajectory collected

with 3 min time interval contained less than two abrupt directional

changes, it was classified as persistent, where abrupt means the

turning angle between two consecutive displacement vectors is

greater than 90 degrees (14, 45). The path persistence, the length

of the cell path divided by the diameter of the theoretical circle that

holds the whole trajectory, is 1 for highly persistent trajectories and

0 for purely random migration tracks (12). In this study, we used an

unsupervised ML technique to classify the cell motility patterns

using one-hour-long cell migration tracks segmented from

trajectory data collected for ~ 24 h at fine time intervals of 1 min,

which allowed us to avoid using an arbitrary definition of diffusive

or persistent motility.

Remarkably, our analysis suggests that imDCs changed their

migration modes more frequently, and predominantly followed a

unicyclic SD!FP!SP!SD transition, indicating that imDCs

rapidly increase their speed during the shift from diffusive to

persistent motility; however, persistence progressively declines

when switching back to diffusive motility. In contrast, mDCs

show no transition directionality. Based on these findings, we

hypothesized that imDCs may evacuate the antigen-cleared

location quickly and subsequently slow down gradually to find a

new site to set before displaying diffusive motility to acquire

antigens. Even though the time scale was much shorter (< 30
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min), faster acceleration than deceleration of imDC motility was

also noted in the 1D channel (47). Although persistence-speed

coupled biphasic intermittent random walks have been shown to

boost the search efficiency of imDCs (48), further analysis of the

roles of the SP mode in the deceleration process is required.

DCs movement under confinement is commonly referred to as

“amoeboid.” This is because the movement is independent of

adhesion molecules but driven by protruding actin network at the

front and squeezing contractions of actomyosin at the back of the

cell (41). However, the molecular processes that govern the dynamic

oscillation of intrinsic DC motility patterns in the absence of an

external stimulus are not fully understood. Recent studies report

that polarization due to spontaneous actin polymerization waves

(14) and intracellular trafficking of myosin II (47) plays a key role in

deterministic alteration between different migration modes of

imDCs. Our findings that mDCs have more SP and FP mode

motility than imDCs align with previous research, showing that DC

maturation induces inherent changes in motility, resulting in faster

and more persistent migration overall (12). When we examined the

involvement of myosin II and Arp2/3 in three migratory modes of

imDCs and mDCs, we discovered that myosin II or Arp2/3

inhibition entirely eliminated the FP mode and considerably

lowered the mean speed of both the SD and SP modes. Myosin II

inhibition increased the SP mode of migration in the imDCs, which

is in agreement with previous report demonstrating reduced speed

and increased persistence of imDC migration when Myosin II

activity was interfered with Y27632 (14). Our results indicate that

the increase in SP mode is more pronounced in imDCs because

their original motility is more diffusive than that of mDCs. The SD

mode of migration, on the other hand, was increased in mDCs by

blocking the Arp2/3 complex. For imDCs, which are inherently

more diffusive, the effect was minimal.

A previous report suggested that directional persistence is the

cumulative effect of several interconnected feedback loops that

influence actin polymerization at the leading edge (49). The

Arp2/3 complex has been reported to play diverse roles in cellular

motility, such as generating mechanical cues for cell polarization

(49), facilitating nuclear deformation (50), and facilitating

migration in dense tissues by forming mechanosensitive actin

patches (46). Thiam et al. demonstrated that perinuclear Arp2/3-

driven actin polymerization facilitates DC migration by deforming

the nucleus, allowing the cell to squeeze through narrow gaps in the

extracellular matrix (50). Additionally, Gaertner et al. showed that

the Wiskott-Aldrich syndrome protein (WASp), which activates the

Arp2/3 complex, triggers mechanosensitive actin patches that

facilitate immune cell migration in dense tissues by sensing and

responding to the mechanical properties of the environment (46).

Hence, when DCs are subjected to a gel confiner that imitates

physiological mechanical load and confinement, treatment with

CK666 fails to elicit a response to physical influence, causing DCs to

lose their capacity to survey their environment. Our findings

support this idea, as they demonstrate that the inhibition of

Arp2/3 reduces the persistence of movement in both SP and

FP modes.
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Formin regulates actin polymerization by generating linear

actin filaments, unlike Arp2/3 which produces branched actin

networks. Our findings align with a recent study (14) that showed

Arp2/3 inhibition reduces persistent migration, while Formin

inhibition leads to a comparable distribution of diffusive and

persistent migration similar to control DCs. The study also

highlighted the importance of both Arp2/3 complex and Formin

proteins in regulating actin dynamics and cell polarization, and

demonstrated their cooperative role in generating actin waves that

drive cell migration (14). Inhibiting Arp2/3 or formins had a

significant impact on actin polymerization waves, where Formin

inhibition led to a higher nucleation rate and shorter-lived waves,

while Arp2/3 inhibition entirely suppressed wave formation.

Future studies should extend the current ML-based

classification strategy to investigate DCs migration under different

biological, chemical, or physical stimuli, and to examine the effect of

other DC subtypes. While GM-CSF derived BMDCs are commonly

used in vitro models for studying DC motility (9–14), fms-related

tyrosine kinase 3 ligand (Flt3L)-derived BMDCs have been

proposed as a more in vivo-like model (51–53). As Flt3L and

GM-CSF are essential regulators of DC development in vivo, it

would be intriguing to study the differences in DC motility

dynamics between these two cell types.

DC motility is also affected by antigens. When DCs encounter

danger signals, such as pathogen-associated molecular patterns

(PAMPs) that are recognized by Toll-like receptors (TLRs), they

can respond by changing their motile behavior (54). For example, it

has been shown that different TLR ligands elicit distinct patterns of

DC migration, with some ligands inducing faster and more

directional migration than others. Furthermore, the duration of

antigen stimulation can also impact DC motility (13). Moreover, a

recent study has demonstrated that extracellular ATP may

accelerate DC mobility, suggesting that DCs may be more

effective at antigen uptake through ATP released by infected or

dead cells (55). In addition, it has also been shown that self-antigens

may trigger such motility changes. Recent research has shown that

the dynamics of DC macropinocytosis, which are regulated by

Myosin II, are connected to cell migration dynamics and may

improve searching efficiency (9). Using ovalbumin as an antigen,

this study demonstrates that the antigen capture mechanism may

govern DC motility dynamics even in the absence of PAMPs or

damage-associated molecular patterns (DAMPs). Consequently,

investigating DC motility dynamics in response to various

antigens can provide new insights into the complex interplay

between DCs and the immune system, and could have important

implications for developing novel immunotherapies and vaccines.

Furthermore, microscopic features and molecular mechanism

responsible for dynamic switching of different migration modes

remains to be investigated. Recent studies have shown that the

stability of actin intercellular flow is a crucial feature for

maintaining their lifespan of motility on a microscopic scale, and

a number of molecules, including myosin II, Arp2/3 and Formin,

are referred to explain the process (14). In the present study, we

noticed that blebbistatin administration altered the hour-scale
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mode lifetime in both imDCs and mDCs. For CK666, the mode

lifetime shift was much larger in mDCs than in imDCs. In contrast,

SMIFH2 uniquely shift FP mode lifetime in imDC. These results

may indicate that the regulation of mode transition varies

depending on the maturation status.

We acknowledge the limitation of this study. Firstly, it was

necessary to pool the data from a minimum of three independent

experiments to achieve sufficient sample numbers for ML analysis.

Although the GM-CSF derived BMDCs used in each experiment

may differ, we could not collect a sufficient number of cells without

pooling because we used a small number of DCs per chip (~ 10

cells/mm2) to minimize the influence of neighboring cells because

this study aims to investigate innate DC random motility in 2D

space in the absence of external stimuli. In addition, the data from

cells that inevitably interacted (5.36%) were excluded from the

analysis. This approach may not reflect natural cell behavior in-

vivo, but it may help understand the fundamental principles of cell

migration and study the impacts of individual stimuli. Secondly, the

number of FP mode tracks was much smaller than SD or SP mode

because fast migrating cells easily escape from the field of view.

Despite these constraints and the variation between and across

datasets, we identified distinctive migration modes both from cross-

validation of training data and independent testing data sets.

In summary, ML-enabled discovery of the history-dependent

mode transition of motile cells provides a new paradigm for

understanding complex cellular motility as an alternative to the

current analysis of memoryless diffusive particles. We envision this

approach can be further utilized to understand the complex

dynamics of cellular migration in response to external stimuli,

such as chemokines, physical confinement, or environmental

stiffness, as well as pathogens and cancer cells.
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55. Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil A-M, Sáez JC. ATP
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