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The rapid development of renewable energy generation aggravates the imbalance
between supply and demand in power grid, and exploring the potential of demand
side resource can effectively improve such problems. Industrial users (IU) is an
important demand response resource of power grid, and mining the load patterns
of IU is the basis of studying the demand response ability of IU, which plays an
important role in the safe operation and lean management of power grid. Lately,
the popularity of advanced metering infrastructures provides data support for
studying the load patterns of IU. However, the high dimensionality and the
complex non-linear relationship of IU’s load data bring difficulties to the task
of clustering. To solve the above problems, this paper proposes a load pattern
extraction method based on multidimensional electrical consumption feature
construction. Firstly, industrial load characteristic set of IU is created with five load
characteristic indexes weighted by improved entropy weight method. In addition,
convolutional autoencoder is established to extract the temporal feature of
industrial load data which is combined with industrial load characteristic set to
build a multidimensional feature set (MFS) for IU and finish multidimensional
electrical consumption feature construction (MECFC). Then, MFS is used as the
input of Self-Organization Map network to select the initial clustering centers of
K-means algorithm, overcoming the problem of local optimal solution, and
complete the IU daily load clustering. The experiment shows that the
algorithm based on MECFC solves the local optimal problem and have better
performance in stability and clustering effect than traditional methods.
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1 Introduction

In recent years, in order to solve the energy crisis and environmental pollution caused by
traditional energy, the proportion of all kinds of renewable energy generation on the power
supply side has been increasing (Gupta and Singh, 2022). Due to the intermittency and
randomness of renewable energy power generation, the imbalance between power supply
and demand in peak season is further aggravated. Therefore, it has become an urgent
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problem to explore the potential of demand side response (Zhang
and Gu, 2016). Compared with other types of users such as residents
and businesses, industrial users have advantage in large power
consumption, stable load and easy management, so it is seen as
an important demand side response resource of power grid (Hou
and Xing, 2020; Jiang, et al., 2021). Industrial users can sign
contracts with power companies to participate in load response,
peak cutting and valley filling, etc., to help rational distribution of
power resources and promote stable operation of the power grid (Xu
and Lai, 2015; Dai et al., 2022). However, as there are a large number
of industrial users with different power consumption characteristics
and demand side response capabilities, it is difficult to achieve
individual modeling analysis for every user. In order to solve this
problem, it is necessary to extract the typical power consumption
mode of industrial users from the massive load data, classify users
with similar power consumption patterns into the same cluster, and
formulate appropriate load control schemes for different groups, so
as to improve the operational quality and efficiency of the power grid
and promote the lean management of demand side (Shi, et al., 2017;
Dehghan-Dehnavi, et al., 2020).

With the advance of the digital construction of power grid and
the advanced measuring system, the popularization of advanced
metering infrastructure (AMI), the power grid has stored massive
load data of industrial users (Wang, et al., 2016). The emergence of a
large amount of industrial electricity information provides data
support for the research of load patterns, which is of great
importance for load forecasting (Huang, et al., 2020), abnormal
electricity detection (Zhang et al., 2020), demand side management
(Bañales, et al., 2021), etc. Load clustering is an important method to
extract typical electricity consumption patterns of users. It divides
similar data into the same class and obtains several disjoint clusters
by mining potential connections in load data (Deng, et al., 2021).
According to different types of input, load clustering can be divided
into direct clustering and indirect clustering. Direct clustering takes
the original load data as the input of the clustering algorithm. (Al-
Wakeel and Wu, 2016; Panapakidis, et al., 2017; Xu, et al., 2020).
separately adopts the improved K-means algorithm, the improved
fuzzy C-means algorithm and the improved spectral clustering
algorithm respectively to achieve the clustering of daily load
curve. Direct clustering method is simple and easy to interpret,
but it challenges the computational efficiency by placing the
clustering task in high dimensional space (Fang, et al., 2022).

Indirect clustering firstly uses dimensionality reduction technology
to reduce user load data dimensionality and takes low dimensionality
data as input for clustering algorithm. In indirect clustering, how to
obtain the low dimensional features that can represent the power
consumption characteristics of users through dimensionality
reduction method is the focus of current research. In (Song, et al.,
2019), six characteristic indicators of daily load curve were selected
manually to reduce the dimensionality of daily load curve. However, the
selection of such characteristic indicators is subjective and difficult to
describe the temporal characteristics of load data. In (Lin, et al., 2017),
piecewise aggregate approximation method was used to achieve data
dimensionality reduction, and then spectral clustering was used in load
classification. In (Koivisto, et al., 2012), Principal Component Analysis
(PCA) and K-means algorithmwere used for clustering. However, PCA
belongs to linear dimension reduction method and is difficult to
consider complex non-linear relations in time series data. In (Tian,

et al., 2014; Ryu, et al., 2019; Duan, et al., 2021), autoencoder (AE) is
used to learn the depth representation of load data, and then K-means
or spectral clustering method takes it as the input to obtain clustering
results.

K-means algorithm is a classic classification and clustering
method, which has the advantages of simple operation, high
efficiency and strong interpretability, and is widely used in
electrical engineering. However, the K-means algorithm needs to
manually set the clustering number and initial clustering center. If
the initial clustering center is not selected properly, local
convergence will be easily caused and the clustering effect will be
affected (Si et al., 2021). In view of the above problems, Nikolaos
et al. (2015) combines kernel method with K-means algorithm to
improve the clustering effect, but there are problems such as long
running time and artificial setting of kernel function parameters (Xu
et al., 2015; Ai et al., 2020). Uses Hierarchical K-means to establish a
hierarchical structure of massive data and select initial clustering
centers for K-means to avoid the local convergence problem caused
by random selection of initial clustering centers. Xu et al. (2017)
selects the initial clustering center of K-means algorithm by
calculating the data density, but the accuracy of selecting the
initial clustering center only based on the data density is limited.

In order to extract the low dimensional characteristics of
industrial users and effectively solve the local optimal solution in
the traditional k-means method. This paper proposes a load pattern
extraction method based on multidimensional electrical
consumption feature construction (MECFC). Firstly, five indexes
such as daily load rate and daily peak-valley difference number of
industrial users were calculated, and each index was weighted with
the improved entropy weight method to form an industrial load
characteristic set indicating industrial users power consumption
characteristics. In addition, Convolutional Auto-Encoder (CAE) is
used to extract the temporal features of the industrial load data, and
themultidimensional electrical consumption feature set of industrial
users is constructed by combining the temporal features with
industrial load characteristic set to solve the problem of high
dimensionality of the industrial load data. Then, in order to solve
the local optimal problem caused by the random selection of initial
clustering center in the traditional K-means algorithm, the SK (SOM
K-means) algorithm is proposed. The algorithm selects the initial
clustering center of K-means algorithm by establishing Self-
Organization Map (SOM) neural network to calculate the local
density and distance attributes of nodes. Finally, taking the data set
of industrial users in Zhejiang province as an example, the proposed
method is compared with the traditional clustering method, which
proves that the proposed method has certain advantages in
clustering effect, operating efficiency and algorithm stability.

2 Industrial load characteristic set for
industrial users

2.1 Load data preprocessing

Let XL � x1, x2,/, xm{ } be the industrial user load data set,
where xi � xi,1, xi,2,/, xi,96{ }. During data acquisition, data may be
abnormal or missing due to measurement anomaly, communication
interruption, and human error. Therefore, it is necessary to
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preprocess the original data. This paper preprocesses load data from
missing data processing, outlier detection and filling, and data
normalization.

2.1.1 Missing data processing
x(i)
t is assumed to be user(i)’s the load data of the tth sampling

point. In the case of missing data values, in order to maintain the
smoothness of load curve, this paper adopts the method of filling
based on the mean value at the same time. The specific filling
method is as follows:

x i( )
j,t � 1

N
∑N

j ∈ ϑ
xj,t (1)

Where ϑ is the set of dates with measured values at tth sampling
point, xj,t represents the measured values of user at tth sampling
point within date j, N is the number of dates in ϑ. When the missing
data accounts for more than 20% of the daily load data, it is
considered as invalid data and is directly deleted.

2.1.2 Outlier detection
In addition to the condition of missing data, the load data may

also be abnormal due to the failure of the measuring device. For this
situation, this paper uses the horizontal similarity detection method
to identify the bad data.

Assume that xi is the ith daily load curve and xi,j is the load data
of sampling point j to be detected. Firstly, calculate the load change
rate δj of every sampling point j according to Formula 2, and then
specify the normal range of load change rate of each node. Finally,
determine whether the daily load change rate of each sampling point
is abnormal. If there is abnormal value, Formula 3 is used to correct
the abnormal value:

δj � xi,j+1 − xi,j

xi,j
× 100% (2)

xi,j � ∑a1
a�1xi,j−a +∑b1

b�1xi,j+b
a + b

(3)

where a1 and b1 respectively represent the number of points taken
forward and backward. In this paper, a1 = b1 = 5.

2.1.3 Data normalization
Since the power values of loads of different industrial users may

be quite different, in order to better quantify the similarity between
data and improve the accuracy of subsequent multidimensional
power characteristics acquisition, the load data should be processed
by Min-Max standardization:

xi,j
′ �

xi,j − min
1≤ j≤Nj

xi,j{ }
max

1≤ j≤Nj

xi,j{ } − min
1≤ j≤Nj

xi,j{ } j � 1,/Nj (4)

where Nj is the amount of industrial users daily load data.

2.2 Load characteristic indexes for industrial
users

The power consumption characteristics of industrial users
indicate the characteristics and properties of industrial users in

the habit of using electricity, which can be described by the load
characteristic indexes. In this paper, daily load rate l1, daily peak-
valley difference rate l2 and daily maximum load utilization hours
l3 are selected to reflect the load variation characteristics and time
utilization efficiency of industrial users. In addition, the
electricity price of industrial users varies significantly in
different periods. The load rate of peak period l4 and valley
period l5 are selected to reflect the sensitivity of users to electricity
price. Table 1 shows the specific calculation method of each
index.

In Table 1, Pave, Pmax, Pmin, Pave,peak, Pave,low denotes the
average daily load, daily maximum load, daily minimum load,
average peak period load and average valley period load of
industrial users, respectively, and the peak period is 9:00–12:
00 and 17:00–22:00; valley period time is 23:00–0:00 and 0:
00–8:00.

The above indexes describe the power consumption
characteristics of industrial users from different degrees, and
their degree of emphasis and importance varies. Therefore, it is
necessary to set the weight coefficient of the load characteristic
indexes so that they can objectively describe the importance of
each index. In this paper, entropy weight method is used to
determine the weights of different indexes. The specific steps are
as follows: firstly, the entropy of each index needs to be
calculated. Given that the index quantity to be weighted is
5 and the daily load data quantity is m, the entropy
calculation formula of the c index is as follows:

hc � − 1
ln 5

∑m

d�1lcd ln lcd (5)

where lcd is the cth index value corresponding to the dth sample.
According to the calculated entropy value of each index, the

improved entropy weight calculation formula is adopted to calculate
the corresponding weight value of each index. The weight
calculation formula of the cth index is as follows:

ωc � e∑5

d�1hd+1−hc − ehc∑5
e�1 e∑5

d�1hd+1−he − ehe( ) (6)

The calculated weights are assigned to the above five power
consumption characteristics indexes, and the above indexes are
combined to form the industrial load characteristic set L �
ω1l1,/,ω5l5{ } for industrial users.

TABLE 1 Load characteristic indexes of industrial users.

Load characteristic indexes Calculation

Daily load rate l1 l1 � Pave
P max

Daily peak-valley difference l2 l2 � Pmax−Pmin
P max

Daily maximum load utilization hours l3
l3 � ∫24

0
Ptdt

P max

Load rate of peak period l4 l4 � Pave,peak

P max

Load rate of valley period l5 l5 � Pave,low

P max
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3 Multidimensional electrical
consumption feature construction for
industrial users

The above five load characteristic indexes are artificially
specified, which are subjective and difficult to represent the
complex temporal relationship in the load curve. In order to
improve the effect of industrial load clustering, it is necessary to
consider the time sequence characteristics of load data and
extract temporal features of industrial user load data.
Traditional feature extraction method, such as Principal
Component Analysis (PCA) or Independent Component
Analysis (ICA), is difficult to mine the non-linear relationship
between the data. Auto-Encoder (AE) is an unsupervised learning
algorithm, which is composed of input layer, hidden layer and
output layer, and belongs to a kind of neural network (Liu, et al.,
2017). CAE uses convolution layer and pooling layer to replace
the fully connected layer in traditional autoencoders, and its
structure is shown in Figure 1. Due to weight sharing in the
convolutional layer, the number of training parameters in CAE is
less than that in the fully connected layer, which reduces the
overfitting situation and speeds up the training speed, and is
suitable for processing more complex high-dimensional data.

XL � x1, x2,/, xm{ } is the load data set of industrial users,
wherem denotes the daily load data amount, xi is the ith industrial
load data, and each data dimension is 96. CAE includes encoder
and decoder. In the process of encoding, the initial input vector xi
first passes through the action of the convolution layer and the
pooling layer in the encoder to obtain the feature vector h of the
original vector in the hidden layer. In the decoding process, h in
the hidden layer is reconstructed by the inverse convolutional
layer and the upper sampling pooling layer in the decoder, and
the output vector with the same dimension as the input vector xi
is obtained. The process of encoding and decoding is shown in
Eqs 7, 8:

h � ϕe We ⊗ x + δ1( ) (7)
~x � ϕd Wd ⊗ h + δ2( ) (8)

Formula 7 represents the CAE encoding process. Where We

represents the one-dimensional encoder convolution kernel; δ1
represents bias in the encoding process; ⊗ represents the
convolution operator; h is the low dimensional feature vector of
the hidden layer after encoding; ϕe represents the activation function
of encoder, and ReLU function is adopted in this paper.

Formula 8 represents the CAE decoding process. Where Wd

represents the one-dimensional decoder convolution kernel; δ2
represents the bias in the decoding process; ~x represents
reconstructed input data; ϕd represents the activation function of
decoder, and Sigmoid function is adopted in this paper.

In this paper, Mean-square Error (MSE) is used as the CAE
training loss function. CAE learns the optimal network parameters
by minimizing the loss function, so that the reconstructed data x̃i is
as close to the input xi as possible, and then obtains the low-
dimensional feature vector h of the original input on the hidden
layer, where the dimension of h is less than xi. Thus, temporal
feature extraction of industrial load data is realized while the
dimension of input data is reduced.

The low-dimensional feature vector H in CAE hidden layer is
extracted as the temporal feature of industrial user load data, and is
combined with the industrial load characteristic set L to form the
multidimensional feature set C, and finish the multidimensional
electrical consumption feature construction, C � L,H{ } �
l1,/, l5, h1,/, hn{ }.

4 Industrial user load clustering based
on SK algorithm

4.1 Introduction to SK algorithm

When traditional K-means method deals with clustering tasks, it
will encounter two problems: 1) It is difficult to determine the initial
clustering center; 2) The number of clustering k is difficult to
determine. Rodriguez and Laio (2014) proposes two assumptions
in the density peak clustering algorithm: 1) Clustering center
generally has a large local density, that is, there are a large

FIGURE 1
Convolutional auto-encoder network structure.
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number of sample points around it; 2) The distance between
different clustering centers is far. Based on the above two
assumptions, this paper proposes a clustering algorithm based on
SK algorithm. Firstly, SOM network is established to obtain the
mapping relationship between daily load data and output layer
nodes, then the local density of output layer nodes and the
distance attribute of each node are calculated, and the initial
clustering center of K-means algorithm is selected according to
the two attributes of output layer nodes to improve the clustering
performance of industrial users’ load.

4.2 Initial clustering center determination
based on SOM network

SOM is an important unsupervised learning method, which is
often used in clustering, high dimensional visualization, data
compression, feature extraction and so on. SOM is essentially a
double-layer neural network, consisting of an input layer and an
output layer. The relationship between the output layer nodes and
the input data is established through a competitive learning process,
where each node competes to be the closest match to a given input
data point. The output layer notes have the same dimension as the
input data, and its network structure is shown in Figure 2.

In this paper, the specific steps to select the initial clustering
center based on SOM are described as follows:

1) Establish self-organizing mapping neural network.

SOM network is constructed with multidimensional feature set
C for industrial users as input. The number of samples is set as m,
and the dimension of samples is set as f. Set the number of neurons
in the input layer as m and the number of nodes in the output layer
as M*N, and M = N = 4. And randomly initialize the weight of

neurons in the output layer W � [W1,1,/,W4,4],
and Wg,h � [wg,h,1, wg,h,2,/, wg,h,f].

2) Traversing every node in the output layer to find the
winning node.

Read Co from multidimensional feature set of industrial users as
input, and the Euclidean distance to each node do,g,h is calculated,
and the closest point Wg,h is selected as the winning node.

3) Calculate the weight updating amplitude G of each node.

Set the weight update amplitude at the winning node as 1. Based
on the Gaussian kernel function, the update amplitude of all nodes is
calculated according to the distance between each node and the
winning node. The calculation formula is as follows:

gu,v �
1, u � g, v � h

e−
g−u( )2
2δ2 × e−

h−v( )2
2δ2 , else

⎧⎪⎨⎪⎩ (9)

where δ is the distance parameter, indicating the sensitivity of g to
the distance between nodes. As the number of iterations t increases,
δ becomes smaller and smaller. Its updated formula is as follows:

δt � δ0
1 + t

maxstep/2
, t ∈ 0,maxstep( ) (10)

where δ0 is the initial distance parameter, which is taken as δ0 � 1 in
this paper; maxstep indicates the maximum number of
iterations, maxstep � T × m.

4) Update the weight W of each node.

After the weight updating amplitude G of each node is obtained,
the weight value of the winning node and its domain node is
updated. The node weight updating formula is as follows:

Wu,v � Wu,v + η · gu,v · Co −Wu,v( ) (11)
Where η represents the learning rate, which is similar to δ and also
becomes smaller as the number of iterations t increases. Its updated
formula is as follows:

ηt �
η0

1 + t
maxstep/2

, t ∈ 0,maxstep( ) (12)

where η0 is the initial learning rate, which is taken η0 � 1 in this
paper.

5) Repeat steps 2-4 until the number of iterations reaches maxstep,
and the weight matrix of each node in the output layer is
obtained after the training is completed.

6) Calculate the local density ρ of each node.

According to the weight matrix of nodesW4×4 in the output layer,
the mapping relationship between input and output nodes is obtained,
and the corresponding input quantity of each output node is counted,
which is taken as the local density ρ of nodes in the output layer.

7) Calculate the distance attribute γ of each node.

FIGURE 2
SOM network structure.
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In order to facilitate calculation, the weight matrix W4×4 is
changed into column vectors W1×16 in order. If the node Wr is not
the node with maximum local density, its distance attribute is
defined as the closest distance between nodes whose local density
is higher than its. Calculate the distance between nodesWr andWs,
and then obtain the distance attribute γ of each node. The
calculation formula is as follows:

dr,s � dis Wr,W s( ) �
���������������∑f

η�1 wr,η − ws,η( )2√
(13)

γr � min
ρr > ρs

dr,s( ) (14)

If the node Wr is the node with maximum local density, then
define distance attribute γ as the Euclidean distance between the
node Wr and the node farthest away from it. And the calculation
formula is modified as follows:

γr � max
r,s∈R

dr,s( ) (15)

8) Select the K-means initial clustering center.

Calculate the local density ρ and distance attributes γ of each
node in the output layer according to steps 6 and 7, k nodes with
large ρ and γ are selected and their weights are set as the initial
clustering centers of the k-means algorithm. k represents the
number of clusters.

4.3 Determine the number of clusters

The K-means algorithm needs to set the clustering number k
artificially. If the value of k is improperly selected, the clustering
effect will be adversely affected. In this paper, by observing DBI and
SC under different number of clusters, k value with smaller DBI
value and larger SC index value is selected as the number of
experimental clusters. DBI and SC calculation formulas are
detailed in Section 4.4.

4.4 Clustering performance evaluation

Load clustering expects each type of curve to have high intra-
class similarity and low inter-class similarity (Zhang, et al., 2015). In
this paper, Calinski-Harabasz Index (CHI), Davies-Bouldin Index
(DBI) and the Silhouette Coefficient (SC) are used as indicators to
evaluate the load clustering performance.

4.4.1 Calinski-harabasz index (CHI)
The CHI calculates the ratio between the degree of inter-

cluster dispersion and the degree of intra-class dispersion. The
larger the CHI is, the greater the intra-class similarity and the
smaller the inter-class similarity, that is, the better the
clustering performance. The calculation formula of CHI is as
follows:

ICH � SB
K − 1

/ SW
N −K

(16)

where SB and SW stand for inter-class variance and intra-class
variance respectively; K stands for cluster number; N stands for
the number of data.

The calculation formulas of inter-class variance SB and intra-
class variance SW are as follows:

SB � ∑K

k�1∑N

j�1ωk,j ck − �x‖ ‖2 (17)
SW � ∑K

k�1∑N

j�1ωk,j xi − ck‖ ‖2 (18)

where ck represents the clustering center of the kth cluster; �x
represents the center of all data samples; ωk,j represents the
membership relationship between the jth object xj and the kth

cluster, If xj belongs to the kth cluster, it takes 1, otherwise, it takes 0.

4.4.2 Davies-bouldin index (DBI)
DBI describes the tightness of data in the same cluster, and the

smaller the value, the lower degree of dispersion and the better the
clustering performance. The formula for calculating DBI is as
follows:

IDBI � 1
k
∑k

i�1max i≠j
Ci + Cj

di,j
( ) (19)

Where Ci and Cj represents the average distance from the samples
in the ith and jth cluster to the cluster center; di,j is the distance
between the ith and jth clustering centers.

4.4.3 Silhouette coefficient (SC)
SC combined with two factors of cohesion and separation degree,

describes the definition of contour of each category after clustering, and
the larger the value, the better the clustering performance.

ISC � 1
N

∑N

i�1
bi − ai

max bi − ai{ } (20)

where ai represents the average distance between data i and other
points in the same cluster; bi represents the minimum average
distance between data i and samples in other clusters.

4.4.4 The overall process of industrial users load
pattern extraction

Figure 3 is a detailed algorithm flow chart of the proposed load
pattern extraction method of typical power consumption modes of
industrial users based on multidimensional electrical consumption
feature construction and SK algorithm.

5 Example analysis

5.1 Experimental data

After data preprocessing, this paper selects the winter typical
daily load data of 574 industrial users in a district of Zhejiang
Province, China in 2020 for cluster analysis. The daily load data is
collected every 15 min, that is, 96 points a day. The total daily load
curve is shown in Figure 4. Experiments in this paper were carried
out in python 3.8.5, AMD Ryzen 7 4800H with Radeon Graphics
2.90 GHz environment.
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5.2 Construct multidimensional electrical
consumption feature set

According to Table 1, the power consumption characteristic
index of industrial users is calculated, and the weight vector W1 of
users is calculated with the entropy weight method. The CAE takes
96*1 daily load data as input. The encoder consists of five

convolutional layers, the number of convolutional cores is 16, 32,
64, and 128, the size of convolutional kernel is 3, and the step size is
2, 1, 2, and 2. Finally, 12-dimensional sequences are output in the
hidden layer. After that, five deconvolution layers are used to
reconstruct the data. The number of deconvolution layers’
kernels is 64, 32, 16, and 1, the size of the convolution kernels is
3, and the step size is 2, 1, 2, and 2, respectively. Adam optimizer is
used in the training process. The training times are 300 and the
batch size is 8. CAE network parameters are shown in Table 2. After
the training is completed, the hidden layer sequence is taken as the
temporal feature of the load data of industrial users, and combined
with industrial load characteristic set of industrial users, the
multidimensional feature set of industrial users is obtained as the
input of the SK algorithm.

5.3 Determination of optimal clustering
number and selection of initial clustering
center

In this paper, the number of clusters is changed from 2 to 12 to
observe DBI and SC under different number of clusters. The change
curve of DBI and SC is shown in Figure 5. When the number of
clusters k = 4, the DBI value is small and the SC value is large, so the
optimal cluster number of industrial users is taken as 4.

FIGURE 3
Flow chart of industrial load clustering.

FIGURE 4
Total daily load curve of industrial users.
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SOM network is established and local density ρ and distance
attribute γ of output layer nodes are calculated. In order to directly
reflect the local density and distance attribute of each node in the
output layer, the heat map of each node attribute is drawn in
Figure 6. The darker the color in the figure, the larger the local
density and distance attribute value of the node. The figure shows
that the nodeW1,4,W3,4,W4,1 andW4,2 are the four nodes with large
ρ and γ at the same time, so the four nodes are selected as the initial
clustering center of the k-means algorithm.

5.4 Analysis of typical load pattern of
industrial users

Figure 7 shows the clustering result diagram of industrial users,
indicating typical load patterns of industrial users in this area.
According to the clustering results, it can be seen that there are

four typical power consumption modes for users in this area, and the
peak load time, peak-valley difference and fluctuation rate are
different among all types. Therefore, it is necessary to analyze
each power consumption mode and formulate appropriate load
management strategies.

Typical load pattern mode 1 of industrial users belongs to peak-
avoiding load. This type of load pattern consumes less electricity in
the peak period of the grid, but more electricity in the valley period,
with high peak-valley difference, load rate of valley period and low
load rate of peak period. The peak load time is 0:00–8:00 and 20:
00–24:00, and the electricity consumption is very small between 8:
00 and 20:00. Such users are greatly affected by TOU, and can well
respond to the call of peak load shifting of the grid. They can actively
use electricity in the off-peak hours of the grid load, and suspend
production electricity in the peak hours.

Typical load pattern mode 2 of industrial users belongs to
continuous load. This type of load pattern maintains a high level
of electricity consumption throughout the day and requires high
power continuity, with high daily load rate, daily maximum load
utilization hour and low daily peak-valley difference. This kind of
users generally have large power consumption and weak load
transfer ability. Power companies need to have agreements with
such customers in place to encourage them to use less electricity
during tight months.

Typical load pattern mode 3 of industrial users belongs to
daytime production load. This type of load pattern consumes
more electricity in the peak period of the grid, but less electricity
in the valley period, with high peak-valley difference, load rate of
peak period and low load rate of valley period. The power
consumption of these users is mainly from 8:00 to 17:00. During
this time period, the load is stable, and the power consumption
decreases slightly at noon. These users use electricity in concentrated
and continuous hours, which affects the stable operation of the
power grid. Such users should be encouraged to reduce their use of
electricity during peak periods.

TABLE 2 Network Structure of CAE.

Layer type Input shape Kernel size Kernel number Step Output shape

Input 96*1 — — — 96*1

Conv1 96*1 3 16 2 48*16

Conv2 48*16 3 32 1 48*32

Conv3 48*32 3 64 2 24*64

Conv4 24*64 3 128 2 12*128

Flatten 12*128 — — — 1,536

Embedding 1,536 — — — 12

Dense 12 — — — 1,536

Reshape 1,536 — — — 12*128

Conv_trans1 12*128 3 64 2 24*64

Conv_trans2 24*64 3 32 1 24*32

Conv_trans3 24*32 3 16 2 48*16

Conv_trans4 48*16 3 1 2 96*1

FIGURE 5
SC and DBI curve of industrial users.
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Typical load pattern mode 4 of industrial users belongs to
daytime production load. This kind of user consumes more
electricity in the daytime, but less electricity in the evening.
The peak load appears between 9:00–11:00 in the morning and
14:00–16:00 in the afternoon, and the demand for electricity
continuity is not high. For such users, power companies can
contact users in advance to adjust the power consumption mode
according to the actual demand of the power grid and the day-
ahead dispatching requirements, so as to improve the operation
level of the power grid.

5.5 Comparative analysis of clustering
performance

In order to verify the effectiveness of multidimensional electrical
consumption feature construction and SK algorithm (MECFC-SK)
proposed in this paper, the performance of the proposed algorithm
in industrial daily load clustering is compared with K-means, PCA +
K-means, and Denoising Auto-Encoder (DAE) + K-means
algorithms. CHI, DBI and SC are introduced to quantitatively
analyze the clustering effect.

FIGURE 7
Industrial users daily load clustering result diagram: (A) Typical load pattern 1; (B) Typical load pattern 2; (C) Typical load pattern 3; (D) Typical load
pattern 4.

FIGURE 6
Heat map of SOM output layer nodes: (A) Local density; (B) Distance attribute.
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Table 3 records the evaluation indicators values of different
algorithms in the data set. Compared with the above three
algorithms, the algorithm proposed in this paper is better in each
index, indicating that the MECFC-SK proposed in this paper is more
effective than the traditional dimension reduction method, which can
make the clustering has higher internal similarity and has greater
external discrimination, and has better clustering performance.

In addition, in order to visually display the differentiation of
clusters of daily load data under various algorithms, this paper uses
the t-distributed stochastic neighbor embedding (t-SNE) algorithm
to reduce the multidimensional power feature set to 2 dimensions.
Data visualization can be realized by drawing scatter plots on a plane
(Van der Maaten and Hinton, 2008). The scatter diagram of daily
industrial load data after dimension reduction in each algorithm is
shown in Figure 8.

Table 4 shows the average values of CHI, running time and
iteration after 50 experiments using SK algorithm and tradition
K-means in each simulation data set. Each simulation data set is
built by adding different ratios of sample data and noise to the
original data set. The purpose of adding sample data is to prove
that SK algorithm can improve the running speed of traditional
K-means algorithm, and the sample expansion ratio s varies from
100% to 600%. The purpose of adding noise is to prove that SK
algorithm has better robustness in clustering performance, and
the noise ratio r varies from 5% to 30%. When the noise ratio is
small, there is a large gap between the two CHI, and the clustering
effect of SK algorithm is obviously better than that of traditional
K-means algorithm. As the ratio of sample expansion and noise
continues to increase, SK has a small reduction in CHI compared
with the traditional K-means algorithm, and it is significantly
superior to the traditional K-means algorithm in terms of
running time and iteration times, which proves that the SK
algorithm proposed in this paper has a great improvement in
operational efficiency.

In order to prove that the initial clustering center selected by
the algorithm in this paper can avoid the local optimal case and
has better stability than traditional K-means, the coefficient of
variation (CV) of CHI, operation time and iteration times
obtained by the two algorithms on different simulated data
sets are compared. CV is a normalized measure describing the
degree of data dispersion, which is defined as the ratio of data

TABLE 3 Comparison of clustering performance of each method.

Clustering method CHI DBI SC

PCA + K-means 673.53 0.631 0.336

K-means 632.15 0.594 0.407

DAE + K-means 762.24 0.510 0.519

MECFC-SK 927.93 0.391 0.634

The bold values are the index values calculated by the proposed method in this paper.

FIGURE 8
Scatter diagram after t-SNE dimension reduction: (A) K-means; (B) PCA + Kmeans; (C) DAE + Kmeans; (D) MECFC-SK.
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standard deviation to the mean, which can effectively avoid the
influence of the two groups of data dimensions and measurement
scales. Table 5 shows the statistical table of CV collected on each
simulation data set. It can be seen from the table that the CV of
CHI of SK algorithm is much lower than that of traditional
K-means, which proves that the clustering performance of SK
algorithm in each experiment has little fluctuation, and
effectively solves the problem that the traditional K-means
algorithm is prone to fall into the local optimal solution. As
shown in Table 5, CV of running time and the CV of iteration of
the two algorithms are both low, indicating that the running time
of the two algorithms does not fluctuate much in each clustering
task. In addition, it can be seen from the experimental data
recorded in Table 4 that the SK algorithm performs better in
running time and iteration than traditional K-means. Therefore,
it can be verified that SK algorithm is superior to Traditional
K-means in running time and number of iterations in each
experiment, which proves that SK algorithm has good stability
and accelerates the speed of clustering.

6 Conclusion

Mining typical load patterns of industrial users can classify
industrial users according to their power consumption habits and
group users with similar power consumption characteristics into one
category for demand-side management. In order to extract the

typical load patterns of industrial users accurately, this paper
proposes an extraction method of typical load patterns of
industrial users based on multidimensional electrical
consumption feature construction and SK algorithm, which
intends to solve the problems of high dimension and complex
non-linear relationship of industrial users load data, and local
convergence in traditional k-means algorithm. The data set of
industrial users in Zhejiang Province, China is taken as an
example. Compared with other clustering algorithms, the
effectiveness of this method is proved, and the conclusions are as
follows:

(1) In this paper, temporal features of industrial daily load data are
obtained based on CAE and combined with industrial load
characteristic set to construct multidimensional feature set of
industrial users, which can effectively extract low-dimensional
vectors of original data to achieve data dimension reduction and
improve clustering performance.

(2) The SK clustering algorithm proposed can effectively solve the
local optimal problem caused by the random selection of initial
clustering center by traditional K-means method, improve the
stability of the algorithm, speed up the algorithm running speed,
and improve the clustering accuracy.

(3) By clustering the daily load data of industrial users, typical load
patterns of users can be extracted, users can be classified
according to their power consumption habits, and
appropriate management schemes can be formulated for

TABLE 4 Comparison of SK and traditional K-means clustering effect.

Sample expansion ratio s/% Noise ratio r/% SK algorithm Traditional K-means

CHI Running time/s Iteration CHI Running time/s Iteration

100 5 1880.4 0.30 3.12 1,571.7 1.82 13.4

200 10 1706.2 0.61 3.64 1,564.5 2.77 13.86

300 15 1,546.4 0.97 4.02 1,424.9 4.17 19.50

400 20 1,464.4 1.48 4.70 1,206.1 5.15 14.82

500 25 1,240.9 1.91 5.04 1,006.4 6.39 15.32

600 30 1,021.1 2.50 5.42 883.6 8.71 18.08

TABLE 5 Coefficient of variation table.

Data set SK algorithm Traditional K-means

CV of CHI CV of running time CV of iteration CV of CHI CV of running time CV of iteration

simulation data set 1 0.002 0.30 0.29 0.03 0.55 0.55

simulation data set 2 0.003 0.30 0.31 0.10 0.39 0.40

simulation data set 3 0.004 0.42 0.42 0.09 0.51 0.51

simulation data set 4 0.003 0.40 0.40 0.05 0.57 0.58

simulation data set 5 0.004 0.35 0.37 0.09 0.55 0.55

simulation data set 6 0.003 0.39 0.40 0.10 0.59 0.60
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various users, which plays a positive role in promoting lean
management and safe and reliable operation of the power grid.
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