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Infectious diseases create a significant health and social burden globally and can
lead to outbreaks and epidemics. Timely surveillance for infectious diseases is
required to inform both short and long term public responses and health
policies. Novel data inputs for infectious disease surveillance and public health
decision making are emerging, accelerated by the COVID-19 pandemic. These
include the use of technology-enabled physiological measurements, crowd
sourcing, field experiments, and artificial intelligence (AI). These technologies
may provide benefits in relation to improved timeliness and reduced resource
requirements in comparison to traditional methods. In this review paper, we
describe current and emerging data inputs being used for infectious disease
surveillance and summarize key benefits and limitations.
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Introduction

Infectious diseases create significant health and social burden globally and can lead to

outbreaks and epidemics, highlighted by COVID-19. As of November 29, 2022, there

have been almost 638 million confirmed cases and over 6 million deaths of COVID-19

globally.1 Prior to this, many other infectious diseases contributed significantly to global

mortality and morbidity. Infectious disease threats have arisen in the form of the 2009

Swine Flu pandemic, Middle East respiratory syndrome coronavirus and the West Africa

Ebola virus epidemic in West Africa. Cases of newly emerging infectious disease are likely

to rise in coming years due to changes in population demographics, climate change,

increases in international travel and changes in agriculture, land use, and sanitation (1).

Timely surveillance of infectious diseases is essential to plan targeted long and short term

public health response and prevention efforts. Traditionally, infectious disease data are

gathered by public health authorities in the form of positive laboratory tests and

hospitalization and death data. Various non-government organizations, such as the World

Health Organization (WHO) collect and report these data on a global level.1 Additional

global reporting for COVID-19 specifically has also been implemented by a number of

organizations,2 (2). However, such data requires significant effort from public health

officials and may not be consistently collected on a national or regional scale. There can
1https://covid19.who.int
2www.ncov2019.live
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also be delays in reporting and inconsistencies in reporting of

deaths and positive cases. Hospitalization and deaths capture

primarily severe cases and may not identify those who have mild

symptoms or are asymptomatic. Due to these limitations, these

data may not provide the true incidence of the disease.

Over recent years, novel data inputs have emerged to

complement traditional surveillance of infectious diseases. This

includes the use of sensors and mobile apps to collect symptoms

and disease data, crowd sourcing data using Internet based

surveys and mobile apps, field experiment data based on scenario

analysis, as well as social media and web search data in

conjunction with artificial intelligence methods to predict disease

outbreaks. Surveillance using these types of data inputs may

provide benefits over traditional data sources in that they can

provide additional timeliness and are often less resource

intensive. We aim to provide an overview of different types of

novel data inputs for infectious diseases.
Online physiological measures

During the early phase of the pandemic, many governments

implemented temperature checks, using classical thermometers,

as a surveillance method at specific locations. However, this was

limited by a single time point for each individual and may not

identify all positive cases (3). Real-time temperature reading tools

such as the smart thermometer and wearable devices have been

tested as potential tools for tracking COVID-19. These tools

measure physiological matrices of an individual to identify

deviations from a baseline level, which may indicate onset of an

illness.

Prior to COVID-19, the smart thermometer has been popularly

applied in the US for monitoring flu (Influenza) (4) and personal

health risk indicators. During early 2020, data from these

thermometers was utilized to forecast COVID-19 hot spots in

various US states by correlating anomalously high influenza

levels with confirmed COVID-19 cases (5). Similarly, continuous

wearable devices were originally applied to track influenza but

have been translated to detect COVID-19 (6). Data from

smartwatches and Fitbit trackers has been applied to detect pre-

symptomatic cases of COVID-19 (7). The WHOOP fitness

tracker has been used to identify pre-symptomatic COVID-19

cases by analyzing changes in respiratory rate and heart rate data

gathered from users (8).

Data inputs from wearables combined with additional sources

have also shown value in surveillance. Prior to the pandemic, the

TempTraq skin patch,3 a disposable skin patch with wireless

temperature monitoring, was used for diagnosis and early

detection of health risks. Data from the skin patch with data

from Fitbit smartwatches and bio specimens have been used to

assist health care workers to self-monitor COVID-19 (9). The
3www.temptraq.healthcare
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TemPredict (10) study investigated whether physiological data

such as temperature and heart rate collected by Oura Ring, with

self-reported daily symptoms, could predict COVID-19

symptoms. Results showed a correlation between elevated

temperature and self-reported fever (11) and algorithms have

been developed to identify onset of (12) and recovery from

COVID-19 (13). The Corona Data Donation project uses data

from wearable devices4 with data, such as age and postcode, to

provide a daily interactive fever map for COVID-19 hotspots

(14). The Digital Engagement and Tracking for Early Control

and Treatment (DETECT) study5 involved collection of data

from volunteers across the US via a smartwatch or activity

tracker with self-reported symptoms and diagnostic test results.

By evaluating changes in heart rate, sleep, activity levels, and

symptoms, these data can identify cases with greater success than

symptoms alone (15).
Crowd sourcing-surveillance

Crowd sourcing involves the collection of information from a

large group of people. With the increasing use of the internet

these methods are now utilizing digital platforms. For infectious

disease surveillance, studies often capture data on self-reported

infection via apps or online surveys.

Online surveys for surveillance began in 2003 with the Great

Influenza Survey (de Grote Griepmeting) which collects influenza

symptoms from participants on a weekly basis. This shows

similarity between seasonal influenza measured in the study

compared to data reported by general practitioners (16).

Tracking influenza through online surveys expanded quickly,

with influenza systems now set up in the US (17), Portugal (18),

Europe (16), and Australia (19). Since COVID-19 emerged,

many of these systems have been adapted to include surveillance

for COVID-19 (20,21). The CoronaSurveys (22) and the Global

COVID-19 Trends and Impact Survey (23) provide global and

country specific daily incidence rates and risk areas for COVID-

19. Both surveys are available in multiple languages, attracting

participants globally. These types of data collection have shown

to provide more timely outbreak signals than testing,

hospitalization, and death counts (24). Some systems also

incorporate an information feedback loop. The Flu Near You

(17) surveillance program tracks influenza symptoms in the US

and Canada. Users are able to compare these data with

influenza data from the Centers for Disease Control and

Prevention sentinel influenza network, and Google Flu Trends.

Participants can also identify local sources for influenza

vaccination (17).

Numerous mobile phone apps have also been developed to

track COVID-19. The COVID Symptom Study app records user
4www.corona-datenspende.de/science/en
5https://detect.scripps.edu
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reported symptoms.6 This data has been used to track population

incidence of COVID-19 and to identify hot spots and regions at

high risk for COVID-19 (25). The data has been also applied to

reveal long-lasting and short-term COVID-19 symptoms (26).

Other studies have focused on monitoring contact patterns and

evaluating adherence to social distancing policies. A UK contact

tracing survey documented participants age, contact location and

level of physical contact (27). Comparing contact patterns during

lockdown and social contacts made during a non-epidemic

period showed physical distancing measures substantially reduced

contact levels. Citizens in China are required to scan a QR code

when accessing public spaces to verify their infection status. The

QR code provides individual infection risk, based on locations

and medical information(28). Contact tracing via QR coding

system has been implemented in various other locations, such as

the UK (29) and Australia (30).

Crowd sourcing methods are expanding to collect data for a wider

range of diseases. The Mo-Buzz system identifies dengue hot spots in

the Colombo, Sri Lanka (31). Participants provide dengue symptoms

and post pictures of potential dengue mosquito–breeding sites. The

system provides data as visual maps and also recommends

educational materials. In Puerto Rico, a similar surveillance program

called SaludBoricua monitors a number of acute illnesses including

influenza, dengue, and leptospirosis (32).
Novel field experiments

Asymptomatic individuals can also contribute significant risk to the

spread of diseases. As discussed previously, various efforts have been

made to identify asymptotic individuals via contact tracing. A number

of field experiments have also been performed to automatically

monitor contact patterns. Data inputs are gathered using applications

designed for cellular devices utilizing GPS location tracking.

The UK FluPhone study (33) investigated how social encounters

shape the spread of infectious diseases. Participants reported

influenza-like symptoms through the Fluphone app. The app also

collects proximity of participants’ devices through Bluetooth and

location via GPS. Participants were informed about an estimate of

the number of encounters they made and a real-time visualization

of the spread of virtual SEIR type diseases in the contact network

(34). The Safe Blues experiment7 is a similar study, which took

place at the University of Auckland during 2021–2022 (35,36),

examining how physical interactions affect the spread of diseases.

The Safe Blues Android app spreads multiple safe virtual virus

strands via Bluetooth based on individual’s physical proximity, with

strands mimicking the behavior of biological viruses. Data is

presented as a real-time and historic dashboard.

The 2018–2019 “Contagion! The BBC Four Pandemic”

experiment (37) recruited nearly 30,000 volunteers to download
6https://health-study.joinzoe.com/us-2
7www.safeblues.org
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the “BBC Pandemic app.” The app records GPS location during

daily activities, and self-reported contacts. Analysis showed that

the contact network structure constructed had the potential for

understanding and controlling real-world diseases such as the

spread of influenza-like viruses (38). The data was also used to

simulate various non-pharmaceutical intervention strategies, such

as case isolation and social distancing to investigate their

effectiveness on limiting the spread of the disease (39).

A number of these experiments have been conducted in the

context of mass-gatherings. The RESTART-19 experiment

conducted in Germany examined the transmission risks of

SARS-CoV-2 in indoor mass-gathering events (40). Using

contact tracing devices, participant movements were measured

during a concert. This data was incorporated with a

computational model of the arena simulating infectious aerosol

distribution allowing the development of an individual-based

model to estimate the excess burden of the COVID-19 epidemic

caused by this event. The study concluded that with moderate

hygiene practices and conditions of good ventilation, mass-

gathering events contribute little to the spread of COVID-19.

A similar experiment in South Korea recruited healthcare workers

involved in two protests (41) to self-report COVID-19 symptoms via

an app. Following the rallies, PCR tests were conducted for 609 of the

646 (94%) of the attendees, with all tests negative. However, the PCR

tests were performed on a sub sample of attendees and may not

provide the true incidence rate. An indoor mass-gathering

randomized clinical trial in Spain also assessed the risk of COVID-

19 transmission during a concert (42). Contact tracing during the

event was performed through a mobile phone app. After eight days,

PCR tests showed that less than 1% of participants in the control

group had a positive test result and no participant the intervention

group tested positive. This provided preliminary evidence on the

effectiveness of comprehensive measures to create safe indoor mass-

gathering events.

To develop safe practices for mass-gatherings a series of trials

called Fieldlab Events were carried out in The Netherlands

during February and March 2021.8 Four types of experiments

investigated the risk of relaxing mask wearing and social

distancing measures during mass-gathering events. Contact

tracing devices and cameras were used to monitor participants’

behavior during the events. Seven preventive measures were

recommended for gatherings in addition to venues adhering to

ventilation regulations for indoor events.
Artificial intelligence assisted data sourcing

Combining artificial intelligence (AI) and information available

from informal sources is another surveillance method being

applied to infectious diseases. These methods allow analysis and

interpretation of large datasets sourced from various sources such
8www.fieldlabevenementen.nl/fieldlab-english
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TABLE 1 Global surveillance systems incorporating artificial intelligence.

System Type(s) of surveillance AI
methods

Data sources

GPHIN Disease outbreaks, infectious diseases, contaminated food and water
bioterrorism and exposure to chemicals, natural disasters, and issues
related to the safety of products, drugs and medical devices and
radioactive agents

KB, ML,
NLP

Newspapers, online articles, emails, expert blogs, public health bodies
and social media

HealthMap Infectious disease outbreaks ML, NLP News media (e.g., Google News), expert-curated accounts (e.g.,
ProMED Mail), and validated official alerts World Health Organization
announcements

BlueDot Infectious disease outbreaks and risk assessments ML, NLP Online articles and airline data

Metabiota Infectious disease outbreaks and risk assessments ML, NLP Data from various communities and regional clinics, online reports,
social media data and airline data

WHO-
EIOS

Outbreaks, risk assessments, pattern discovery and forecasting new
outbreaks of all diseases

ML, NLP Online media and specific social media sources, government and official
web sites, news aggregators, blogs and expert groups, and collaborating
initiatives (ProMED, GPHIN, HealthMap and the Europe Media
Monitors

BioCaster Infectious disease outbreaks ML, NLP Google News, ProMed Mail, MedISys, WHO, The United Nations, The
European Centre for Disease Prevention and Control, Center for
Infectious Disease Research and Policy, EurekAlert!, China News
Service, The Food and Agriculture Organization of the United Nations

MedISys Monitoring infectious diseases, bioterrorism, and chemical, biological,
radiological and nuclear threats

KB, NLP,
ML

Online articles
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as online news and media, expert blogs, validated official alerts

(e.g., WHO), clinical reports, social media, and airline data. The

most common types of AI methods applied include knowledge-

based (KB) techniques, natural language processing (NLP), and

machine learning (ML). KB techniques use specific keywords and

phrases determined by experts to quickly search through various

types of information sources. NLP enables machines to process

and interpret human language and perform tasks such as

translation and disease classification. ML is the process of

applying algorithms that allow machines to automatically learn

and improve from experience (43). Table 1 presents key global

systems that incorporate AI methods for public health

surveillance and their data sources.

The Global Public Health Intelligence Network (GPHIN9) was

the first digital tool providing early warnings for diseases

worldwide (44), and provided early detection of SARS in 2002 (45).

The system automatically extracts data from media aggregators

such as Google News, other online news, public health

organizations and expert blogs, which are analyzed using KB, NLP,

and ML methods. These findings are validated and fine tuned by

experts and displayed as maps, graphs and listed documents (45).

Initially the system monitored human diseases, however the

platform has been expanded to include food safety surveillance.

The HealthMap,10 BlueDot11 and Metabiota12 platforms

integrate data from a range of formal and informal sources

including news media such as Google News, expert curated
9www.gphin.canada.ca
10www.healthmap.org
11www.bluedot.global
12www.metabiota.com
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accounts such as ProMed-Mail, social media and validated

official alerts such as WHO (46). These systems use NLP and

ML to analyse these data for public health use. HealthMap was

among the first systems to issue an early warning of COVID-19

outbreak 11 days prior to WHO confirming the disease (46).

BlueDot (47) reported COVID-19 outbreaks 10 days before the

disease was confirmed by WHO, and has successfully identified

urban areas with high risk of spreading the disease (48).

The Epidemic Intelligence from Open Sources (EIOS13) is an

initiative of WHO which integrates existing and new surveillance

initiatives, networks, and systems globally (49). Data is gathered

from a range of sources including traditional online media, social

media, government and official web sites, blogs, and collaborating

initiatives, such as the HealthMap and ProMed-Mail. Using NLP

and ML the system sorts and categorizes articles by topics, country,

language, source and contextual indices. Data from both EIOS and

BlueDot were used to enhance event-based surveillance in Japan

during the 2020 Olympic and Paralympic Summer Games, which

helped to identify events, characterize risk and reduced the

surveillance workload of Japan (50).

BioCaster14 analyzes data from local and international news,

sourced from news aggregators such as Google News and RSS

feeds. Using NLP and ML the system automatically provides

information of disease prevalence and outbreaks specific to a

given location, as visual maps and graphs (51). Similarly, the

Medical Information System (MedISys15) monitors events

occurring across the globe using information from news articles
13www.who.int/initiatives/eios
14www.biocaster.org
15MedISys.newsbrief.eu
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(52). The system curates data from official government websites,

health news and the general media, and performs categorization

of a range of public health threats by applying KB, ML and

NLP techniques.
Discussion

These data inputs have several strengths in comparison to

traditional methods. A key strength is timeliness as they often

rely on automatic data collection. They may also reach to a wider

population, more localized areas and population groups, and thus

data collected from these systems can be more comprehensive.

They can capture important aspects of a disease or transmission,

such as changing behavior and perceptions regarding public

health policies. These systems also require less human capital to

run, and hence are less costly. When all aspects of digital systems

are integrated, including data collection, analysis and

presentation, this increases flexibility. Despite these benefits, there

are notable limitations.

Tools measuring physiological indicators have limited

specificity as they often rely on syndromic definitions of diseases,

and there is difficulty in adjusting for confounders. Gathering

more information in relation to demographics and risk factors to

address this may lead to decreased in participation (53). Some

systems using physiological measurements, as well as crowd

sourcing, phone data, and mobile apps depend on user generated

data. This method of data collection has inherent challenges,

including introducing bias as those who choose to participate

may not be representative of the general population. Data may

also be biased due to user demography. Crowd sourcing can also

require a participation over a long period time with recruitment

of participants and ongoing engagement challenging.

Similarly, field experiments require a large number of

participants making such experiments challenging to implement.

This is highlighted by the lengthy disruption in the Safe Blues

experiment due to the lockdown started during August 2021 in

New Zealand (36). Furthermore, the results of these studies are

restricted to specific populations, and may not be useful for

different population groups or locations.

While powerful, mobile phone apps based on contact tracing,

QR codes, and GPS based location trackers can create privacy

and ethical challenges (54), and thus can be inefficient due to

low user uptake (55,56). Privacy and ethical concerns can also

arise from social media and web search data, due to the fact that

such data are not primarily health related, often include personal

characteristics, and owned by private online platforms (57). Such

data can incorrectly predict prevalence due to having irrelevant

information in search outputs or changing user behavior (58).
Frontiers in Digital Health 05
AI enabled systems collect and interpret data from a broad

range of sources in real time and can potentially monitor disease

trends and detect emerging diseases. However, this technology

requires a large volume of data to make useful insights, and

specialist computational infrastructure is needed to manage and

store such data. Additionally, many of these data sources are

unstructured and contain missing information and errors which

again requires specific skills to analyze. As many of the AI

enabled system integrate data from social media, they may not be

representative of the population, with younger people over-

represented in the samples (59).

In summary, new digital technologies provide benefits and

opportunities to improve disease surveillance globally. However,

the limitations of these data inputs and associated methods must

be understood and addressed when incorporated into public

health practice.
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