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The Chimney Tops 2 wildfire (CT2) in 2016 at Great Smoky Mountains National
Park (GSMNP) was recorded as the largest fire in GSMNP history. Understanding
spatial patterns of burn severity and its underlying controlling factors is essential
for managing the forests affected and reducing future fire risks; however, this has
not been well understood. Here, we formulated two research questions: 1) What
were themost important factors characterizing the patterns of burn severity in the
CT2 fire? 2) Were burn severity measures from passive and active optical remote
sensing sensors providing consistent views of fire damage? To address these
questions, we used multitemporal Landsat- and lidar-based burn severity
measures, i.e., relativized differenced Normalized Burn Ratio (RdNBR) and
relativized differenced Mean Tree Height (RdMTH). A random forest approach
was used to identify key drivers in characterizing spatial variability of burn severity,
and the partial dependence of each explanatory variable was further evaluated.We
found that pre-fire vegetation structure and topography both play significant roles
in characterizing heterogeneous mixed burn severity patterns in the CT2 fire.
Mean tree height, elevation, and topographic position emerged as key factors in
explaining burn severity variation. We observed generally consistent spatial
patterns from Landsat- and lidar-based burn severity measures. However,
vegetation type and structure-dependent relations between RdNBR and
RdMTH caused locally inconsistent burn severity patterns, particularly in high
RdNBR regions. Our study highlights the important roles of pre-fire vegetation
structure and topography in understanding burn severity patterns and urges to
integrate both spectral and structural changes to fully map and understand fire
impacts on forest ecosystems.
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1 Introduction

The Great Smoky Mountains National Park (GSMNP) is situated over the Southern
Appalachians between Tennessee and North Carolina. This national park is one of the
world’s most ecologically rich, diverse, and important protected areas (National Park Service,
2017). Mountainous terrain, complex topography, and rainy temperate climate create
unique habitats for diverse flora and fauna (Whittaker, 1956; Jenkins, 2007). Fire in the
mountains has been a dynamic and natural process that influences ecosystem function and
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the structural and compositional heterogeneity of the forests (Kelly
et al., 2020). Yet, since the early 1900 s, fire suppression/prevention
and changing climate have significantly increased the fire
susceptibility of the forests (Cohen et al., 2007). During the last
week of November 2016, a fire began on the Chimney Tops within
the GSMNP (National Park Service, 2017). Due to accompanying
drought and strong winds, the Chimney Tops 2 wildfire (hereafter,
CT2) was recorded as the largest fire in the GSMNP history and
caused significant environmental, social, and economic damage
(Guthrie et al., 2017; National Park Service, 2017).

In addition to restoring the damaged GSMNP forests,
understanding how fire modifies these forests is essential for
managing the forests affected (e.g., devising restoration plans)
and reducing future fire risks (e.g., prescribed burn) (Harris and
Taylor, 2015; Schwartz et al., 2016). Recent advancements of
remote sensing and its easier access have promoted various
applications for fire monitoring and burn severity mapping
(Szpakowski and Jensen, 2019). Temporarily frequent land
surface observations from the earth-observing satellites (e.g.,
Landsat, Sentinel 2a, MODIS, VIIRS, etc.) can timely capture
pre- and post-fire conditions and assess fire severity. For
instance, Guindon et al. (2021) used historical Landsat data to
quantify decades of burn severity over the entire country of
Canada; Alonso-Gonzalez and Fernandez-Garcia (2021)
quantified burn severity globally using both Aqua and Terra
MODIS surface reflectance datasets. In addition to the passive
optical sensors, light detection and ranging (lidar) onboard
airborne or space-borne platforms can assess vertical forest
structure and its change over large areas by providing high-
resolution and consistent 3-dimensional measurements of
ground and vegetation canopy (Kampe et al., 2010; Jung et al.,
2011; Atkins et al., 2020; Park, 2020). For instance, Kane et al.
(2015) used bi-temporal lidar observations to characterize mixed
fire severity within the 2013 Rim fire, and Alonzo et al. (2017)
quantified canopy and surface layer consumption in boreal
forests using repeated lidar observations. These demonstrate
that both passive and active remote sensing data together can
provide unique and complementary information on fire severity
as well as pre- and post-fire vegetation conditions.

Fires interact with the existing vegetation (i.e., fuels),
topography, and weather conditions (Alexander et al., 2006;
Birch et al., 2015; Harris and Taylor, 2015). Such interactions
characterize fire behavior, burn severity patterns, and ultimately
post-fire regeneration. For instance, depending on the level of burn
severity, fires could maintain a vegetation type or mediate forest
change (Pyne, 1996), or continuously reshape forest stands by
restructuring individual trees and tree patches (Turner and
Romme, 1994). Pre-fire forest structure, such as the size and
arrangement of individual trees, is also a particularly important
factor leading to patterns of fire spread and damage (Perry et al.,
2011). Over many mixed forests like the GSMNP, fire severity
exhibits a considerable spatial variation within a single fire event.
However, the degree to which such mixed-severity fires are a result
of existing vegetation (fuels), topography, and weather remains
poorly understood. Particularly, quantifying the roles of the pre-
fire vegetation conditions has been recognized as a research priority
because fuel condition is one of factors that can be addressed by land
management.

In this study, we aim to understand spatial variation of remotely
sensed burn severity measures across gradients of environmental
conditions including pre-fire vegetation type and structure, and
topography in the GSMNP. First objective of this study is to identify
which biophysical factors are important in determining the patterns
of burn severity in the 2016 Chimney Tops 2 wildfire. Second
objective is to evaluate consistency and inconsistency of burn
severity measures from multitemporal Landsat and National
Ecological Observatory Network (NEON) lidar data. Section 2
presents the data and methodology. The results of this study are
presented in Section 3, and discussions and concluding remarks are
presented in Section 4 and Section 5, respectively.

2 Materials and methods

2.1 Study area

Our study region is defined based on the fire perimeter from the
Monitoring Trends in Burn Severity (MTBS) database shown in
Figure 1A (Eidenshink et al., 2007). The study region covers the area
burned by the CT2 fire in 2016 (Figure 1B), and its extent is about
3,994 ha. The selected area’s elevation ranges from 405 m to 1,638 m
(Figure 1E). Along the elevation gradient, annual precipitation
amounts range from 127 to 203 cm, and they increase with
elevation (Shanks, 1954). The mean annual temperature is 13°C
varying up to 6.7°C. The GSMNP is ecologically rich and diverse.
This park consists of more than 1,600 species of flowering plants,
including about 100 native shrub and tree species (Jenkins, 2007). It
is one of the largest deciduous, temperate, and old-growth forests
that still exist in North America. The distribution of vegetation in
the park is strongly influenced by topography, moisture, and other
environmental gradients (Whittaker, 1956) (Figure 1C). Before the
fire event, most of our study region was densely tree covered (~98 ±
6%), and the mean forest height was 21.6 ± 7.4 m (Figure 1D, see
Section 2.4).

2.2 Vegetation type map

The National Park Service developed a seamless and complete
GIS vegetation database of GSMNP. Photo interpretation of color
infrared aerial photographs (1997–1998), GPS-assisted field
observations, and the hierarchical GSM Vegetation Classification
System containing over 150 overstory and understory classes were
used to create the vegetation database. The vegetation type map is
available from https://www.sciencebase.gov/catalog/item/
542ecdb6e4b092f17df5ac4a. The overall attribute accuracy of the
vegetation type map is 80.4% (Kappa Index = 80.0). The map
provides 150 over- and understory forest types, but we only
focused on the forest types whose occurrence is more than 5% of
the total vegetated area within our study region (Figure 1C). Over
the defined study region, Successional Hardwood Forest (SHF),
Chestnut Oak Forest (COF), Yellow Pine Forest (YPF), Oak-
hickory forest (OHF), Northern hardwood/acid hardwood forest
(NHF/AHF), and others occupy 6.4%, 27.8%, 12.8%, 14.9%, 13.9%
and 24.2% of the total vegetated regions. We use these six forest
types for the following analyses.
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2.3 Landsat based burn severity and
vegetation indices

To quantify the burn severity of the CT2 fire, we first checked the
differenced Normalized Burn Ratio (dNBR) and the burn severity
classification from the publicly available MTBS database. In general,
Normalized Burn Ratio (NBR, Eq.1) is sensitive to the amount of
leaves, moisture, and char or ash in the soil, thus the difference
between pre- and post-fire NBR has been often used as a proxy of fire
damage. Our initial assessment of MTBS dNBR product showed
unexpected biases because of a seasonal mismatch in pre- and post-
fire NBR (Eq.2). Also dNBR has been generally considered to have
biases due to pre-fire vegetation conditions (Wulder et al., 2009).
Thus, in this study, we decided to use the Relativized dNBR,
i.e., RdNBR (Eq.3) (Miller and Thode, 2007), and directly
compute RdNBR from two cloud-free Landsat 8 OLI L2 surface
reflectances collected in 2015 (DOY 257) and 2017 (DOY 246). Note
that we alternatively took 2015 as a pre-fire state due to the absence
of cloud-free images in 2016. All Landsat data was obtained from
Harmonized Landsat and Sentinel (HLS) data archive at https://hls.
gsfc.nasa.gov/. The Landsat surface reflectances from HLS are
normalized for per-pixel view and per-granule illumination
angles (Claverie et al., 2017). View angle is set to nadir and solar
zenith is set to a temporally constant value at each tile’s center and
varies with latitude. Higher values of the satellite-derived burn
severity index (e.g., dNBR and RdNBR) indicate a decrease in

photosynthetic and surface materials holding water and an
increase in ash, carbon, and soil cover (Miller and Thode, 2007).

NBR � ρnir − ρswir7
ρnir + ρswir7

(1)

dNBR � NBRpre −NBRpost( ) × 1000 (2)

RdNBR � dNBR

sqrt abs NBRpre( )( ) (3)

where ρnir and ρswir are surface reflectances at near-infrared (NIR,
Band 5) and shortwave infrared (SWIR, Band 7) wavelengths.
NBRpre and NBRpost stand for pre- and post-fire NBR values.

Additionally, we also calculated the Normalized Difference
Vegetation Index (NDVI), Normalized Difference Moisture Index
(NDMI), and Land Surface Temperature (LST) from the pre- and
post-fire Landsat images. NDVI quantifies the amount of living
green plant material and is linearly related to absorbed
photosynthetically active radiation (e.g., Sellers, 1985). It is
calculated from contrasting reflectances at near-infrared (ρnir)
and red (ρred) bands (Rouse et al., 1974) (Eq.4):

NDVI � ρnir − ρred
ρnir + ρred

(4)

The NDMI uses NIR and SWIR bands to create a difference ratio
that is sensitive to the moisture levels in vegetation (Eq.5) (Wilson
and Sader, 2002). It has been widely used to monitor droughts and

FIGURE 1
Geographical location of 2016 Chimney Tops 2wildfire in Great SmokyMountains National Park (A) and a view of burnt forest captured during 2018s
field trip (B). Spatial distribution of vegetation type (C), mean forest height (D), and digital elevation (E) over the study region. A fire marker in panel (D)
indicates the location of the first fire ignition of the CT2 fire. In panel (C), HF, COF, YPF, OHF, and NHF/AHF stand for successional hardwood forest,
chestnut oak forest, yellow pine forest, oak-hickory forest, and northern hardwood/acid hardwood forest, respectively.
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fuel levels in fire-prone areas. Note that SWIR bands for NBR and
NDMI are different: Band 7 (2.11–2.29 μm) and 6 (1.57–1.65 μm)
were used for NBR and NDMI, respectively.

NDMI � ρnir − ρswir6
ρnir + ρswir6

(5)

To retrieve Landsat-based LST, we followed the approach
proposed by Avdan and Jovanovska (2016). Since temperature is
the main controller of fuel moisture content that is associated with
fire ignition, spread, and other fire behavior, LST is expected to have
some degree of relation with burn severity. We first computed Pv
from NDVI, which is a measure of vegetation proportion in each
pixel (Eq. 6). Based on the computed Pv, land surface emissivity (Eq.
7) and LST are sequentially calculated (Eq. 8). Note that the top-of-
atmosphere brightness temperature (BT) required in Eq. 8 was
directly obtained from the Landsat L2 product.

Pv � NDVI −NDVI min

NDVI max −NDVI min( )2 (6)
ε � 0.004 × Pv + 0.986 (7)

where 0.004 and 0.986 correspond to the average emissivity of bare
soil and vegetated areas, respectively (Sobrino and Raissouni, 2000).

LST � BT/ 1 + λ ×
BT

ϱ × 1n ε( )( )[ ] (8)

where, BT = brightness temperature; λ = wavelength; ϱ = constant of
Boltzmann; and ε = surface emissivity.

2.4 NEON lidar data and vegetation
structural variables

NEON Airborne Observation Platform (AOP) has collected lidar
data over the GSMNP regions on an annual basis using the Optech
ALTMGemini (Vaughan, ON, Canada) (Kampe et al., 2010; Kane et al.,
2014). The AOP has collected full-waveform lidar data over the GSMNP
regions since 2016. The lidar produced about 4 laser points per square
meter, with amaximum of 5 returns per point. In this study, we used the
lidar data collected in June 2016 and June 2018 to investigate changes in
pre- and post-fire GSMSP forest structure. Note that we chose 2018 data
as a post-fire lidar collection rather than 2017 (October) to avoid a
seasonal mismatch between pre- and post-fire lidar data (Calders et al.,
2015). The digital terrain model (DTM) and canopy height model
(CHM) were generated at 1 m spatial resolution following standard
NEON-generated processing algorithms (Kampe et al., 2010). To
facilitate analyses of spectral and structural changes derived from
Landsat and lidar, we resampled 1 m lidar data into 30m spatial
resolution, which is comparable to Landsat spatial resolution. All
lidar-derived structural variables are geometrically co-registered to
ensure the same location is assessed by Landat-based land surface
variables. Mean tree height (MTH) was used to summarize forest
canopy structure in this study, calculated as the average of 1 m
canopy heights within 30 m grid cells. We also introduced fractional
tree cover (TC) calculated as the percent of 1 m pixels >2m in height
within a 30 m grid cell. Pre- and post-fire MTH were used to quantify
forest structural changes induced by the CT2 fire, i.e., RdMTH. The
RdMTH is a relativized form by normalizing differences with pre-fire
conditions, as below.

RdMTH � MTHpost −MTHpre

MTHpre
× 100 (9)

2.5 Analytical approach for modeling burn
severity

Our primary objective is to identify key controlling factors in
characterizing burn severity patterns of the CT2 fire. Topographical
features and pre-fire vegetation conditions were the main explanatory
variables. We used elevation, slope, aspect, and topographic position
index (TPI) (Jenness, 2006) as topographical features. TPI is an index
showing the morphological characteristics of landscapes. It shows the
difference in elevation between a focal cell and all cells in the
neighborhood (Jenness, 2006). In the case of plan curvature, negative
curvatures illustrate concave, zero curvature represents flat, whereas
positive curvatures are known as convex. This index not only can
provide important morphological characteristics but also hydrological
(e.g., soil wetness, snow accumulation, etc.) variations of the study region
(e.g., Choubin et al., 2019).

A random forest regressionmodel was used in this study to quantify
the factors explaining the spatial patterns of satellite and lidar observed
fire damage over the GSMNP. Random forest regression is a non-
parametric statistical method, and it does not require distributional
assumptions on covariates in relation to the response variable (Breiman,
2001). In this study, we set 100 binary decision trees in the model, and
each node is split using the best break among all variables. Note that we
identify the optimal number of decision trees through experimental
model runs (not shown here). The explanatory covariates used can be
categorized into two groups: topographical features, i.e., Elevation,
Aspect, Slope, TPI, and pre-fire vegetation composition and structure,
i.e., vegetation type, NDVIpre, NDMIpre, LSTpre, MTHpre, and TCpre. We
also computed variable importance from the random forest regression
model. The variable importance is a measure based on how much the
error increases when the variable is excluded. A larger error before and
after permutationmeans greater importance of the variable in themodel
and contributes more to predictive accuracy than other variables
(Breiman, 2001). The relationship between explanatory variables and
target fire severity indices (here, RdNBR and dMTH) was also evaluated
using partial dependence plots, which display the marginal effect of an
individual predictor on the response variable (Liaw and Wiener, 2002).
Additionally, to understand compounding interactions between pre-fire
vegetation conditions and topography, we also investigated how
topographical features characterize spatial distribution of vegetation
type and structure, i.e., MTHpre. All random forest analyses were
carried out with the “treebagger” package in Matlab (R2021a).

3 Results

3.1 Burn severity patterns of 2016 Chimney
Tops 2 wildfire

Fire severity across our study region was highly variable
(Figure 2). Our Landsat- (RdNBR) and lidar- (RdMTH) based
analyses show a similar spatial pattern of fire damage during the
CT2 fire (Figures 2A,C). In particular, we observed widespread,
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severe, and patchy damaged forests over the central and
northeastern parts of the study region. According to the fire
severity classification based on RdNBR thresholds defined by
Miller and Thode (Miller and Thode, 2007) (Figures 2E,F), the
CT2 fire burned approximately 2,608 ha (RdNBR>=69), whereas the
rest of the region (1,386 ha) was not likely damaged by the fire.
About half (1,333 ha) of the burned regions are damaged with a low
degree (69<=RdNBR<=315) of fire severity and the other two one-
fourths of the regions are categorized as moderate (566 ha, 22%)
(316<=RdNBR<=640) and high (708 ha, 27%) (641<=RdNBR)
severity class.

Burn severity varies significantly by forest type. The resulting
patterns from both RdNBR and RdMTH indicate that Yellow Pine
Forest covered regions were most severely damaged by the CT2 fire
and followed by Chestnut Oak Forest (Figures 2B,D). More than
70% and 30% of the Yellow Pine Forest and Chestnut Oak Forest
were impacted by high burn severity (based on RdNBR), and it links
to about 24% and 15% of MTH reduction respectively. In contrast,
most Successional Hardwood Forest and Northern hardwood/acid
hardwood forest -covered regions were undamaged or lightly
damaged (only −3.9 and −8.7% of RdMTH, respectively).
Though both severity measures display a predominant spatial

FIGURE 2
Spatial pattern of the relativized differenced Normalized Burn Ratio (RdNBR) (A), relativized mean tree height (C), and burn severity classification
based on the RdNBR thresholds defined byMiller and Thode (Miller and Thode, 2007) (E). Probability density function (pdf) of RdNBR (B) and RdMTH (D) by
vegetation type classes. (F) Vegetation type specific distribution of burn severity classes. Green, yellow, orange, and red stand for undamaged, low,
moderate, and high severity class. HF, COF, YPF, OHF, and NHF/AHF stand for successional hardwood forest, chestnut oak forest, yellow pine forest,
oak-hickory forest, and northern hardwood/acid hardwood forest, respectively.
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agreement, we found that there is a discernible discrepancy over the
central region near the Bull Head peak where relatively shorter
Yellow Pine Forest canopies dominated. This discrepancy will be
further reported and discussed in the following section (Section 3.3).

3.2 Importance of pre-fire vegetation
structure and topography

To identify explanatory variables playing key roles in
characterizing spatial patterns of burn severity, we developed RF-
models for RdNBR and RdMTH, and quantified the importance of
the variables (Figure 3). The RF-based models for both RdNBR and
RdMTH reasonably well capture the spatial variation of the CT2 fire
induced burn severity. The developed model for RdNBR (N = 6,768)
can explain 94% of variation. MTHpre, elevation, TPI, vegetation
type, and slope are the five most important variables identified in
this model. Interestingly, we also find MTHpre, TPI, slope, and
elevation are key variables in explaining forest structural changes,
i.e., RdMTH. Our analysis shows that the RF-model for MTHpre

(N = 6,768) can capture 80% of variation in the tree height changes
in the CT2 fire. In addition, our analysis identifies the pre-fire
canopy moisture level (NDMIPre) and land surface temperature
(LSTPre) important in the burn severity characterization. However,
the RF-model for the RdMTH tends to overestimate severely
damaged forests that experienced greater than 40% of MTH
reduction. We initially anticipated that vegetation type plays an

important role in characterizing burn severity patterns due to
species-specific fire flammability and resistance (Popović et al.,
2021). However, our results suggest that vegetation type is less
important in the CT2 fire likely due to confounding interaction with
other variables (e.g., elevation, MTHpre, etc.). We further discuss its
importance and relation with other variables in the latter part of this
section.

Figure 4 and Figure 5 demonstrate the partial dependence of
each explanatory variable on regulating the RdNBR and RdMTH,
respectively. First, both partial dependence plots for the RdNBR and
RdMTH reveal that fire damage increases with higher elevation and
decreases with lower elevation. Despite general agreement in the
tendency of partial dependence, we noticed that RdNBR based
severity rapidly increases from low to medium elevation whereas
RdMTH-based severity increases from medium to high elevation
range. Shorter pre-fire canopy heights tend to be more damaged
whereas taller trees tend to be less damaged. Higher land surface
temperature likely increases the degree of burn severity for both
Landsat- and lidar-based burn severity metrics. Other important
topographical features identified are slope and TPI. These two
features together suggest that burn severity is generally higher in
upper and steep hills whereas the bottom of the valley with flat
conditions is likely less damaged. In the case of RdNBR, we find an
obvious pattern showing that south-facing forest stands experience
higher damage while north-facing stands tend to be less damaged.
This aspect-dependent relation is also evident in the RdMTH but the
severity peaks at south and south-east facing forests. Our partial

FIGURE 3
Variable importance quantified from the random forest model for the RdNBR (A) and RdMTH (B). The performance of the models for the RdNBR (C)
and RdMTH (D) evaluated with independent testing data.
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FIGURE 4
Partial dependence plots of explanatory variables (n = 10) on regulating RdNBR of the CT2 fire in Great Smoky Mountains National Park: (A)
Vegetation type, (B)NDVIpre, (C)NDMIpre, (D) Elevation, (E) Slope, (F) Aspect, (G) TPI, (H) LSTpre, (I)MTHpre, and (J) TCpre. In panel (A), numbers stand for six
vegetation type classes, i.e., HF, COF, YPF, OHF, NHF/AHF, and others, respectively.

FIGURE 5
Partial dependence plots of explanatory variables (n = 10) on regulating RdMTH of the CT2 fire in Great Smoky Mountains National Park: (A)
Vegetation type, (B)NDVIpre, (C)NDMIpre, (D) Elevation, (E) Slope, (F) Aspect, (G) TPI, (H) LSTpre, (I)MTHpre, and (J) TCpre. In panel (A), numbers stand for six
vegetation type classes, i.e., HF, COF, YPF, OHF, NHF/AHF, and others, respectively.
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dependence analysis from both Landsat RdNBR and lidar RdMTH
data shows vegetation type dependent burn severity patterns
confirming two most severely damaged forests (Yellow Pine
Forest and Chestnut Oak Forest) and two least damaged
forests (Successional Hardwood Forest and other forest class).
For the case of TC, we find opposite patterns in RdNBR and
RdMTH indicating an increase of RdNBR and a decrease of
RdMTH over higher tree covered regions. In the RF model for
RdMTH, lower pre-fire NDMI which is a proxy of vegetation
moisture content burned more severely than those with higher
NDMIpre but this pattern is not consistent in the RdNBR though
it is a less important variable.

The pre-fire vegetation structure and topographical features
derived from the NEON AOP lidar data over the GSMNP were
identified as key explanatory variables in explaining spatial burn
severity patterns measured from both multitemporal Landsat
and lidar data (Figure 3). We initially anticipated that vegetation
type can be a key variable as species-dependent fire resistance
may play a critical role in determining fuel characteristics and
severity patterns (Hengst and Dawson, 1994; Fernández-
Guisuraga et al., 2021). In contrast, our results suggest that
vegetation type is relatively less important in the CT2 fire. We
then hypothesized that topographical features govern forest type
occurrence and structure, thus these variables are standing out
from our analyses. To test this hypothesis, we further
investigated how topography alone can explain forest type
occurrence and structure. The results shown in Supplementary
Figures S1, S2 supported our hypothesis. Particularly, elevation
and aspect could reasonably predict spatial distribution of
MTHpre. Aspect and TPI were identified as important features
of forest type distribution. Supplementary Figure S3 shows
distribution of species with respect to environmental
conditions. In general, north- and northeast-facing slopes at
higher elevation are most likely to have Northern hardwood/
acid hardwood forest, and other forest types, whereas we found
more Chestnut Oak Forest and Yellow Pine Forest over lower
elevation with south- and southwest-facing slopes. Partial
dependence of TPI implies that the upper hill is the most
favorable location for Chestnut Oak Forest and Yellow Pine
Forest and the bottom of the valley is much favorable for the
other forest class. These topographical controls on forest type
distribution also strongly limit tree growth, i.e., taller trees in
north facing, shorter trees in south facing. For instance, trees in
the Yellow Pine Forest, that face north and are located at the
bottom of the valley, reach ~25 m, but trees facing south are only
10 m tall at the top of the ridge. Topographic associations
between valley bottoms and vegetation growth, i.e., MTHpre,
likely reflect more favorable edaphic conditions along the
channel banks, as well as more sheltered microclimates and
available water (Moeslund et al., 2013a; Moeslund et al.,
2013b). As a whole, the observed spatial pattern of forest type
distribution and their height growth suggest a closely linked
biogeographical niche governed by topography-mediated
microclimate and forest structure (Moeslund et al., 2013a;
Moeslund et al., 2013b). This close association between pre-
fire vegetation composition/structure and local topography
indicates there are discernible compounding interactions
between these factors on burn severity patterns.

3.3 Comparison between Landsat- and lidar-
based burn severity measures

Our analyses reveal how two different burn severity measures
from Landsat and lidar perform in the CT2 fire case (Figure 6).
Complementary analysis reveals that spectral burn severity indices
from Landsat including dNDVI (= NDVIpre-NDVIpost), dNBR, and
RdNBR tightly share their variations (Supplementary Figure S4). It
indicates that they could capture fire-induced damage in a similar
manner. Yet, relations between spectral indices and lidar structural
variables tend to be linear at low and moderate burn severity levels
(based on RdNBR) but their linearity turns to non-linear at higher
damage class (>800 RdNBR) (Figure 6). This non-linear relation is
even inverted when RdNBR is greater than ~950. This inverted
relation explains why RdNBR and RdMTH display inconsistent
burn severity patterns in the central part (near the Bull Head peak)
of our study region (Figures 2A,C). Interestingly, these relations
between RdNBR and RdMTH are invariant across vegetation classes
except Northern hardwood/acid hardwood forest stands. We find
that about two times less RdNBR changes in Northern hardwood/
acid hardwood forest than in the other five classes with respect to the
change in MTH. For instance, 20% of MTH reduction in Northern
hardwood/acid hardwood forest and other five forest classes mean
~400 and ~800 of RdNBR, respectively. This implies a varying
sensitivity of RdNBR to structural changes in different forest types.

In addition to vegetation type dependent varying sensitivity of
RdNBR to RdMTH, we also find a varying sensitivity of RdNBR to
RdMTH over different pre-fire forest structures (Figure 7). To the
increase of RdNBR, taller and old growth forests tend to have less
dynamic RdMTH change than shorter and younger forest stands.
This structure dependent response likely causes the observed non-
linear and inverse relation between RdMTH and RdNBR at high-
severity burn (Figure 6).

4 Discussion

The topographical features derived from the NEON AOP
lidar data over the GSMNP were identified as key explanatory
variables in explaining spatial burn severity patterns. Generally,
topography including elevation, topographic position, aspect,
and slope plays an important role in determining local patterns
of potential incident solar radiation. Topography-induced
variation in solar energy can influence local vegetation
patterns and flammability through multiple mechanisms: soil
moisture, temperature, and light availability (Lydersen and
North, 2012; Moeslund et al., 2013a). For instance, southern
aspects generally receive more sunlight leading to more xeric and
warmer conditions (Stage, 1976) (Supplementary Figures S3A, D)
and thus resulting in drier fuels and smaller trees
(Supplementary Figure S3G), which may burn with greater
severity. Furthermore, topography is also a determinant of fire
spread behavior. Fire spreads more readily upslope than
downslope, and daytime upslope winds that develop from
differential heating in mountainous terrain can drive upslope
fire spread (Weng et al., 2004; Werth et al., 2011). Middle and
upper slope positions often experience higher fire line intensities
because of higher effective wind speeds, lower canopy cover, and
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preheating of fuels as fires move upslope (Figure 4G; Figure 5G)
(Rothermel, 1983).

The association we observed between pre-fire structure
(i.e., MTHpre) and fire severity may be linked to several
mechanisms. Because taller trees usually have bigger stems
and thicker bark, it has been linked to the reduced fire-
induced mortality (Hély et al., 2003). Alternatively, fuel
characteristics over large tree dominated areas may have
been burned less intensely (Figure 4I; Figure 5I). Thus, the
patterns we observed may have been created by variation in fire
intensity, spreading pattern, variation in the susceptibility of
trees to damage and mortality, or a combination of these factors.
Another potential confounding issue is that there is a historical
disturbance gradient within the fire footprint where higher
elevations were minimally disturbed and lower elevations
were progressively more disturbed in the early part of the
20th century. This disturbance has likely had a range of
effects on vegetation structure and composition, either

directly or through changes to soils (Tucker, 1979; Tuttle and
White, 2016).

In this study, we did not include weather variables (e.g.,
temperature, humidity, wind, etc.) in characterizing spatial
patterns of burn severity since spatially explicit weather data
was not available at a fine scale. According to the regional
weather data (Supplementary Figure S5), November of
2016 when the CT2 fire happened was a very dry month (and
year) with unprecedented wind gusts (National Park Service,
2017). Under extreme fire conditions, we expect that local
weather conditions may play a significant role in determining
fire spread and severity patterns (Viedma et al., 2020). Without
accounting for fire weather, however, our RF-based analyses
could explain a significant portion of the spatial variation of
burn severity (R2 of RdNBR = 0.94, R2 of RdMTH = 0.8). This is
likely because our analysis indirectly accounted for weather-
induced burn severity patterns by introducing proxies such as
topography, canopy moisture level, and land surface
temperature which govern fire spread and microclimate
conditions. Our RF-based analysis revealed that LST is an
important variable for both RdNBR and RdMTH modeling.
Hotter land surfaces in the study region tend to be severely
damaged whereas cooler surfaces are less damaged. Further,
interactions between topography (and/or pre-fire vegetation)
and weather conditions (e.g., wind direction) might reflect fire-
weather interaction into the developed RF-models.

In this study, by comparing burn severity measures from
Landsat and lidar observations, we confirmed that there is a
generally good agreement between spectral (RdNBR) and
structural (RdMTH) measures (Wulder et al., 2009; McCarley
et al., 2017). However, vegetation type and pre-fire structure
dependent RdNBR sensitivities were noticed (Figure 6; Figure 7).
We observed unexpected non-linear and inverse relations
between RdMTH and RdNBR at highly damaged forests
(Figure 6). Possible explanations for the observed pattern are
twofold: First, residual structures such as dead standing trees
were still measurable from the post-fire lidar observation but its
spectral responsiveness is low to the RdNBR (see Figure 1B;
Figure 8) (Bolton et al., 2015). Second, understory, subcanopy,

FIGURE 6
Comparison between burn severity measures (RdNBR and dMTH) from passive and active remote sensing sensors. Relations from all vegetation
types and each type shown in (A) and (B) respectively. In panel (A), the red circle and blue triangle represent median andmean values, and error bars stand
for the 25th and 75th percentile. In panel (B), the colored circles represent median values of each vegetation type.

FIGURE 7
Relations between MTHpre, RdMTH, and RdNBR in yellow pine
forests (YPF).

Frontiers in Remote Sensing frontiersin.org09

Park and Sim 10.3389/frsen.2023.1096000

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1096000


and/or soil burning may increase RdNBR significantly but not
RdMTH because RdMTH represents more upper canopy status
than lower canopy and/or soil. Spectral burn severity indices
from Landsat NIR and SWIR bands generally provide how much
photosynthetically active vegetation is damaged by fire events.
Surface reflectances at different wavelengths are a result of
photon interaction with vegetation media and soil, however,
the lidar based matrix we used represents mostly changes in
upper canopy status rather than lower canopy and near-surface
vegetation. This difference may result in the observed
discrepancy in burn severity measures.

Over the GSMNP regions, NEON AOP collected lidar data on
an annual basis since 2016. The collected multi-temporal lidar
observations are fortunate and grant a unique opportunity to
understand how the CT2 fire event modified the GSMNP forests
and what environmental factors primarily characterize spatial
variability of burn severity over the highly mixed severity fire.
Furthermore, future repeat lidar data acquisition over the
GSMNP can offer insight into processes of forest regeneration
after fire events across varying degrees of burn severity,
topography, and pre-fire vegetation structure and composition.
A growing number of repeat lidar data acquisition allows us to
investigate forest structural changes after disturbance by
providing multidimensional information. In addition to the
GSMNP, the repeating lidar collections over a range of
ecosystems and disturbance histories are already available
within the NEON sites (Atkins et al., 2020) and other long-
term research sites (e.g., G-LiHT, LVIS, etc.) (Leitold et al., 2021).
Repetitive spaceborne lidar measurements from NASA Global
Ecosystem Dynamics Investigation (GEDI) and ICESat-1and2
also expand our capability to sample multi-temporal forest
structure characteristics and its changes (Neuenschwander and
Pitts, 2019; Dubayah et al., 2020). Synergistic uses of such high
spatial resolution multi-temporal 3-D data with optical passive
sensors (e.g., Landsat, Sentinel-2, etc.) and other supporting
measurements (e.g., field measurements) will greatly improve
our understanding of carbon turnover, the timing and duration
of subsequent changes in forest structure, and the associated
impacts on productivity, demography, runoff, and nutrient
cycling across ecosystems.

5 Concluding remarks

We used multitemporal Landsat and lidar observations to
quantify fire severity at the GSMNP. Our analysis revealed that
the CT2 fire was a mixed-severity fire, and about 22% and 27% of the
burned area was damaged moderately and severely. We found that
topography and pre-fire vegetation structure played significant roles
in characterizing heterogeneous mixed burn severity patterns.
Elevation, mean tree height, and topographic position emerged as
key controlling factors. We generally observed consistent spatial
patterns from Landsat and lidar-based severity measures. However,
vegetation type and pre-fire structure-dependent relations between
RdNBR and RdMTH caused locally inconsistent severity,
particularly in high RdNBR regions. Our study highlights the
critical roles of topography and pre-fire vegetation structure in
understanding burn severity patterns and urges to integrate both
spectral and structural changes to fully map fire impacts on forests.
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