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Objective: Epilepsy is the second most common brain neurological disease after

stroke, which has the characteristics of sudden and recurrence. Seizure prediction

is seriously important for improving the quality of patients’ lives.

Methods: From the perspective of multiple dimensions including time-frequency,

entropy and brain network, this paper proposed a novel approach by constructing

the optimal spatiotemporal feature set to predict seizures. Based on strong

independence and large information capabilities, the two-dimensional feature

screening algorithm is performed to eliminate unnecessary redundant features.

In order to verify the effectiveness of the optimal feature set, support vector

machine (SVM) was used to classify the preictal and interictal states on both the

Kaggle intracranial EEG and CHB-MIT scalp EEG dataset.

Results: This model achieved an average accuracy of 98.01%, AUC of 0.96,

F-Score of 98.3% and FPR of 0.0383/h on the Kaggle dataset; On the CHB-MIT

dataset, the average accuracy, AUC, F-score and FPR were 95.93%, 0.92, 94.97%

and 0.0473/h, respectively. Further ablation experiments have confirmed that the

temporal and spatial features fusion has better performance than the individual

temporal or spatial features.

Conclusion: Compared to the state-of-the-art methods, our approach

outperforms most of these existing techniques. The results show that our

approach can effectively extract the spatiotemporal information of epileptic EEG

signals to predict epileptic seizures with high performance.

KEYWORDS

epilepsy, spatiotemporal features, fuzzy entropy, power spectral density, brain network,
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1. Introduction

Epilepsy is a neurological disease of brain activity, caused by
excessive and synchronous electrical discharges. As the second
most common disease after stroke, epilepsy affects approximately
70 million people worldwide, which is nearly 1% of the global
population, and approximately 80% in developing countries
according to the World Health Organization. The sudden and
recurring seizures are catastrophic for patients, easily resulting
in loss of consciousness, injury and even death by accidents
(Lenkov et al., 2013; Zhong et al., 2022c). Therefore, reliable
seizure prediction is prime important, as it can greatly improve
the quality of patients lives. Electroencephalogram (EEG) which
reflects the discharges of neurons, provides plenty of valuable
information about brain activities. Due to the advantages of
cheap price and high temporal resolution, EEG becomes one
of the most useful tools in the diagnosis and prediction
of epilepsy (Freestone et al., 2017; Jia et al., 2022; Peng
et al., 2022). Contrasting to the obvious difference in the ictal
states, EEG signals in the preictal states are similar to the
interictal states, which leads to a great challenge in how to
accurately forecast epileptic seizures. Therefore, the essence of
epilepsy prediction is to identify preictal EEG signals, that is,
to accurately distinguish between preictal and interictal states
(Chu et al., 2017).

Over the past few decades, with the development of machine
learning and deep learning, seizure prediction based on EEG
recordings has attracted extensive attention. Nejedly et al. (2019)
proposed an automatic seizure prediction approach using CNN
with an average sensitivity of only 79%. Usman et al. (2021)
extracted handcrafted and automatic features, which were then
fed into an ensemble classifier of SVM, CNN, and LSTM, and
finally achieved a high accuracy of 95.5%. Chen et al. (2021)
put forward an online seizure prediction method with an average
sensitivity of 84%. Successive variational mode decomposition
and transformers deep learning network has been proposed and
achieved an average sensitivity of 0.86 and FPR of 0.18/h on
iEEG signals (Wu et al., 2022). Although the good performance
of deep learning approach in seizure prediction, its lack of
interpretability has limited its clinical application. Therefore, this
paper still focuses on machine learning that requires handcrafted
features. The prediction performance using machine learning
mainly depends on whether the EEG features are effectively
extracted and screened.

Entropy, as a good non-linear feature for the complexity
evaluation of EEG signals, has been widely proposed for seizure
prediction in previous studies (Xiang et al., 2015; Song and
Zhang, 2016; Zhang et al., 2018). Zhang et al. (2018) put forward
the fuzzy distribution entropy to automatically detect seizure.
Sample entropy-based features and extreme learning machine to
distinguish interictal and preictal iEEG signals with a sensitivity
of 86.75% and a specificity of 83.80% (Song and Zhang, 2016).
Some methods are focused on time-frequency features such as
power spectral density (PSD) (Zhong et al., 2022b), empirical
mode decomposition (EMD) (Cho et al., 2016), and wavelet
transform (Faust et al., 2015; Sharma et al., 2015). A dual
self-attention residual network proposed by Yang et al. (2021)

has extracted the spectrograms by using a short-time Fourier
transform and achieved an accuracy of 92.07% on 13 patients
in the CHB-MIT dataset. Another important feature during the
process of epileptic seizures is synchronization, which can quantify
the degree of mutual coupling among brain regions. Previous
studies have reported that EEG synchronization can be employed
to predict seizures (Ibrahim and Majzoub, 2017; Zhang et al.,
2021). Some researchers combined the spatiotemporal features
to construct the multi-dimensional feature set. Zhong et al.
(2022a) proposed a novel method based on both entropy and
synchronization of iEEG signals, and achieved an accuracy of
82.95% on the Kaggle dataset. However, the frequency domain has
not been considered.

Although spatial synchronization, entropy, or time-frequency
features could be utilized to predict seizures, most of these methods
only consider a certain aspect of EEG signals characteristics.
Even some methods with multiple features have been resulting
in unsatisfactory performance due to not implementing proper
screening algorithms. Most of those current methods can
only achieve good results in a specific dataset. On the one
hand, the reason is that EEG signals in different datasets
lack unified labels. On the other hand, the types of epilepsy
are diverse, and the dynamics of epilepsy vary greatly among
different patients. Therefore, the typical EEG features of some
patients may not be suitable for others. Seizures can be seen
as the accumulation of abnormal fluctuations over time, and
then spread across brain regions through spatial synchronicity,
and are also affected by waveforms in different frequency
bands. To solve these problems mentioned above, this paper
extracts comprehensive multi-dimensional features including
non-linearity, time-frequency and spatial domains from the
perspective of spatiotemporal information. In order to select
the optimal feature set, a feature screening algorithm that
takes into account independence and information capabilities
is designed. And then the optimal feature set was as the
input to the SVM for training and testing. Our approach
achieved good prediction performances on both scalp and
intracranial EEG signals.

2. Materials and methods

2.1. Dataset description

In this study, the proposed model is tested on two public
EEG datasets, the CHB-MIT scalp EEG dataset1 and the Kaggle
competition iEEG dataset.2 These two public EEG datasets included
long-term EEG signals and multiple seizures have been recorded
for each subject.

CHB-MIT dataset consists of continuous scalp EEG recordings
of 23 epileptic patients from Boston Children’s Hospital over many
days. Multi-channel EEG signals were recorded with a sampling
rate of 256 Hz using the international 10−20 system. In this

1 https://physionet.org/content/chbmit/

2 https://www.kaggle.com/c/seizure-detection/data
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paper, the preictal state was defined as a 30 min signal before
the seizure onset; and the interictal state was determined as at
least 4 h far away from any seizure. The upcoming seizure is
excluded with an interval of less than half an hour between two
adjacent seizures to ensure the preictal states with the length of
30 min. Patients with at least three recorded preictal and interictal
states were screened. The reason is that less than three preictal or
interictal states would lead to an overfitting problem. A total of
14 patients are available for considering all these definitions and
constraints.Table 1 summarizes the details of these 14 patients used
in our experiments.

The Kaggle competition dataset consists of intracranial EEG
signals recorded from five dogs with naturally occurring epilepsy
using an ambulatory monitoring system. The iEEG recordings were
collected from 16 electrodes with a sampling rate of 400 Hz. Preictal
states were determined as 1 h before seizure onset and 1 h interictal
iEEG signals were restricted to be at least 1 week before or after
seizure in this dataset. All canines had experienced at least four
seizures, and a total of 44 seizures were recorded in this experiment.
The detailed information is shown in Table 2.

2.2. Methodology

The flow chart of the algorithm for seizure prediction using
the spatiotemporal information with the optimal features strategy
is shown in Figure 1, and the detailed steps are as below:

2.2.1. Pre-processing
The amplitude of scalp EEG signals is weak, making it

easily disturbed by the external environment, such as electrode
contact, power frequency interference, etc. In addition, various
physiological activities inside the human body also produce
artifacts, such as electrooculogram (EOG) artifacts caused by eye
movement and blinking, electromyogram (EMG) artifacts caused
by muscle shaking, and electrocardiogram (ECG) artifacts caused
by heart beating. These artifacts often affect and interfere with
the experimental results. In comparison, intracranial EEG signals
are less susceptible to interference, and their signals are relatively
clean and less affected by the environment. Therefore, different pre-
processing procedures are applied to intracranial and scalp EEG
signals, as described below:

The pre-processing of intracranial EEG signals is relatively
simple to avoid removing valuable information. Baseline drift was
removed by subtracting the mean value of the iEEG signal from
each data point (Wu et al., 2009). Then a simple fourth-order
Butterworth bandpass filter with a range of 0.5∼70 Hz was used
to filter the iEEG signal. For scalp EEG, in addition to the above-
mentioned pre-processing steps, the following measures were taken
to remove interference: a 50 Hz notch filter was used to remove
the power-line interference and independent component analysis
(ICA) has been developed to effectively remove artifacts in EEG
signals (Du et al., 2016). Artifacts such as eye movement, eye
blink, and muscle artifacts were removed by using ICA in the
EEGLAB toolbox (Delorme and Makeig, 2004) with the guidelines
(Urigüen and Garcia-Zapirain, 2015). Artifacts that cannot be
removed through signal processing, such as severe crying or intense
head movement, are excluded directly from the experimental data.

The results after pre-processing are shown in Figure 2. The EEG
signals become smoother, and the burr, interference as well as EOG
artifacts are effectively removed from the raw EEG signals.

The long-term continuous EEG recordings need to be
segmented. The duration of the segment is commonly performed
from 5 to 30 s. In our method, a 5 s non-overlapping moving
window was used to divide the clean EEG signals into 5 s epochs.
EEG analysis and feature extraction were performed with the
software package MATLAB R2016b (The MathWorks, Inc., Natick,
MA, United States) and its EEGlab and statistics toolbox.

2.2.2. Features extraction
Accurate extraction of the EEG features that can distinguish

between preictal and interictal states is the key to improving
the prediction accuracy. This paper analyses epileptic EEG
signals from multiple dimensions such as non-linear, time-
frequency and brain networks with the purpose of deeply
mining the signals’ spatiotemporal features. The temporal features
include the non-linear feature fuzzy entropy and the spectral
features; and the spatial features are jointly constructed from
the statistical parameters and the synchronization of the brain
network. The principle of these spatiotemporal features is as
follows:

2.2.2.1. Fuzzy entropy

Entropy originally measures the degree of chaos in a
thermodynamic system, and it can also describe the probability of
the occurrence of new events in a time-series signal. Fuzzy entropy
(FuzzyEn) was proposed by Chen et al. (2007) to measure the
complexity of time series, which is then used as a non-linear feature
to evaluate the complexity of EEG. FuzzyEn can be obtained by the
following steps:

For a time series of N points U = {u(i), i = 1, . . . ,N},
m-dimensional vectors X(i) are formed as:

X (i) = [u (i) , u (i + 1) , · · · , u (i + m− 1)]− u0 (i) , (1)

i = 1, 2, · · · ,N −m + 1

where u0(i) =
1
m
∑m−1

j = 0 u(ij) and m indicates the
embedding dimension.

The distance matrix dm
ij between vectors X(i) and X(j) is

constructed as:

dm
ij = d[X(i),X(j)] = max

p = 1,2,··· ,m

{
|u(i + p− 1)

− u0(i)| − |u(j + p− 1)− u0(j)|
}

(2)

where k indicates the sequence number of elements of the
reconstructed vector.

The similarity degree Am
ij can be calculated through the fuzzy

function A(x):

A(x) =

 1, x = 0

exp
[
−ln(2)

(
x
y

)2
]
, x > 0

(3)

Am
ij = exp

[
−ln(2) · (dm

ij /r)2
]
, j = 1, 2,N −m + 1 (4)

and j 6= i
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TABLE 1 Summary of the 14 patients in the CHB-MIT dataset.

Patients Gender Age No. of seizures Total record time (h) No. of electrodes

chb01 Female 11 7 40.55 23

chb03 Female 14 7 28 23

chb05 Female 7 5 39 23

chb06 Female 1.5 9 66.7 23

chb07 Female 14.5 3 68.1 23

chb08 Male 3.5 5 20 23

chb09 Female 10 4 67.8 23

chb10 Male 3 7 50 23

chb14 Female 9 8 26 23

chb15 Male 16 20 40 31

chb18 Female 18 6 36 22

chb20 Female 6 8 29 28

chb21 Female 13 4 33 28

chb23 Female 6 7 28 28

TABLE 2 Information for the canines in the Kaggle competition dataset.

Dogs No. of seizures Interictal states
(10 min)

Preictal states (10 min) No. of electrodes

Dog1 4 480 24 16

Dog2 7 500 42 16

Dog3 12 1440 72 16

Dog4 16 804 97 16

Dog5 5 450 30 15

FIGURE 1

The flow chart of the algorithm.
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FIGURE 2

The clean electroencephalogram (EEG) signals after pre-processing.

Define the function8m(r) as:

Cm
i (r) =

1
N −m

N−m + 1∑
j = 1,j6= i

Am
ij (5)

8m (r) =
1

N −m + 1

N−m + 1∑
i = 1

Cm
i (r) (6)

Similarly,8m+1(r)can be calculated by the above process. For a
finite set, FuzzyEn can be estimated by

FuzzyEn (m, r,N) = lnφm (r)− lnφm + 1 (r) (7)

This paper set the dimension m = 2 and the tolerancer = 0.2×
std
(
standard deviation

)
.

2.2.2.2. Power spectral density (PSD)

Welch method was used to calculate the PSD of EEG signals
with the advantages of fast calculation speed and multiple windows
for selection (Zhang and Parhi, 2016). In accordance with Welch’s
periodogram method, the PSD of the EEG segment in each
frequency band was estimated by the following steps (Welch, 1967):

First, the EEG signal xN(n), n = {0, 1, ,N − 1} is divided into
L segments. Each segment has M points and the PSD for the ith
segment is obtained as:

Pi (w) =
1
U

∣∣∣∣∣
M−1∑
n = 0

xNi (n) d2 (n) e−jwn

∣∣∣∣∣
2

, i = 1, 2,M − 1 (8)

where U = 1
M
∑M−1

n=0 d2
2(n) and d2(n) is the window function.

Then, the PSD of the xN(n) can be expressed as:

P (w) =
1
L

L∑
i = 1

Pi (w) (9)

Mathematically, the PSD in the ith frequency band (delta, theta,
alpha, beta, and gamma) is calculated as (Zhang and Parhi, 2016):

Pi = log
∑

ω∈ bandi

P (ω),
{

i = delta, theta, alpha, beta, gamma.
}

(10)

where delta (0∼4 Hz), theta(4∼8 Hz), alpha(8∼14 Hz),
beta(14∼30 Hz) and gamma (>30 Hz). Therefore, Rhythm
Power Spectral Density (RPSD) can be calculated according to
formula (10). Spectral power ratio (SPR) represents the difference
between the PSDs in two different bands in the same time window.
SPR of the spectral power in band k over that in band l can be
computed as:

Pk−l = Pk − Pl (11)

where Pk represents the PSD in band k; Pl represents the PSD in
the band l.

For a single-channel EEG signal, all possible combinations
of five frequency bands lead to a total number of 10 SPR and
5 RPSD features. SPR and RPSD features have been confirmed
to be good features for seizure detection (Bandarabadi et al.,
2014) and prediction (Parhi and Zhang, 2013). Compared to the
RPSD features, certain SPR features are stronger indicators of an
upcoming seizure (Zhang and Parhi, 2016).

2.2.2.3. Spatial features based on brain networks

PLV, as an independent of amplitude, is suitable to measure the
phase synchronization of EEG signals, which can be computed as
follow (Lachaux et al., 1999):

PLV(t, f ) =
1
N

∣∣∣∣∣
N∑

n = 1

exp
(
j
{
1φ

(
t, f
)})∣∣∣∣∣ (12)

where18(t, f ) is the instantaneous phase difference between a pair
of EEG channels at time t and frequency f. Taking channels 1 and 2
for example,18(t, f ) is calculated as:

18
(
t, f
)
= 8ch1

(
t, f
)
−8ch2

(
t, f
)

(13)

where 8ch1(t, f ) and 8ch2(t, f ) are the instantaneous phases of the
EEG signals in channel 1 and channel 2, respectively. Instantaneous
phase φ(t) is obtained by the Hilbert transform (Ihlen, 2009). The
value of PLV ranges from 0 to 1. The larger the PLV value, the
stronger the synchronization of the signal, and vice versa.

From the perspective of graph theory, the complex phase-
synchronized brain network established by PLV belongs to the
undirected connection graph, which contains rich topological
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FIGURE 3

Majority voting diagram.

A B

FIGURE 4

Comparison of the fuzzy entropy between the preictal and interictal states. (A) Is the fuzzy entropy for dogs in the Kaggle dataset and (B) is for
patients in the CHB-MIT dataset.

statistical features. In addition to the synchronization, 6 statistical
features including small-world attributes (Humphries et al., 2006),
global efficiency, degree, clustering coefficient, characteristics path
length and eigenvector centrality (Rubinov and Sporns, 2010) have
been chosen as the spatial features.

2.2.3. Optimal spatiotemporal feature set
selection

In summary, for each electrode, 23 spatiotemporal features,
which include 1 FuzzyEn, 5 RPSD, 10 SPRs, and 7 topological
statistical features are extracted every 5 s. As more and more
features have been extracted for multi-channel long-term EEG
signals, there are a large number of irrelevant redundant features in
the spatiotemporal features. This greatly reduces the performance
of the classifier, causing the curse of dimensionality. Therefore,
the feature selection algorithm is essential. The critical strategy
is to select the most important EEG features that can best
express the characteristics of preictal states, thereby removing the
redundant features to reduce the dimension of features. This paper
proposed a two-dimensional feature selection algorithm based
on independence and information capability in order to form
the optimal epilepsy spatiotemporal feature set. The stronger the
independence of the features (lower the correlation between the
features) contained in the feature set, the less redundancy of the
features is guaranteed. The larger the information content of the

feature set, the more comprehensive and effective features can
be obtained to measure the epileptic EEG signals. Therefore, the
spatiotemporal feature set selection algorithm should satisfy strong
independence and large information.

Pearson correlation coefficient (Barakchian et al., 2020) has
been used to calculate the correlation between features. The

FIGURE 5

Comparison of power spectral density (PSD) between preictal and
interictal states for five canines in the Kaggle dataset.
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FIGURE 6

Comparison of PSD between preictal and interictal states for 14
patients in the CHB-MIT dataset.

independence of the ith feature indican be evaluated as:

ri,k =

∑n
j = 1

(
fji − fi

) (
fjk − fk

)
√∑n

j = 1 (fji − fi)2(fjk − fk)2
(14)

i, k = 1, 2, · · · ,m(i 6= k); j = 1, 2, · · · , n.

indi =

m∑
k = 1

(1−
∣∣ri,k

∣∣) (15)

where ri,k represent Pearson correlation coefficient between two
features i and k with n samples; fji and fjk represent the value of
the features i and k at the jth sample, fiand fk represent the means
of fji and fjk, respectively. m is the number of all features and n is
the total number of samples.

In terms of the features’ information capacity, this paper
used the variance entropy product to measure the amount of
information (Daoud and Bayoumi, 2019). Variance is used to
evaluate the fluctuation of features, and entropy can measure the
complexity of features. First, calculate the variance and information
entropy of the ith feature. The variance σ2 (Xi) and the entropy
H (Xi) were defined by formulas (17) and (18), respectively. Then,
multiply the variance and entropy to measure the information of
features (formula 19). Finally, the features are selected with the
highest variance entropy product.

σ2 (Xi) =
1
N

N∑
j = 1

(
xi
(
j
)
− µi

)2 (16)

(Xi) = −

N∑
j = 1

p
(
xi
(
j
))

log2p
(
xi
(
j
))

(17)

inf i = ó (Xi) ·H (Xi) (18)

where Xi, µi and N are the ith feature, the mean of the ith
feature, and the total number of features, respectively. p

(
xi(j)

)
is

the probability mass function of the ith feature.

In the two-dimensional space with independence as the abscissa
and information amount as the ordinate, the features with high
independence and a large amount of information are screened out.
Scorei is defined to represent the independence and information of
the ith feature as:

Scorei = inf i·indi (19)

Then features with high Scores are selected to form the optimal
spatiotemporal feature set.

2.2.4. Classification and post-processing
SVM, as a common classifier in EEG signals, is used for

training and classification. The kernel function selected for SVM
in this paper is the default parameter radial basis function:
K(x, xi) = exp(−ã|x−xi|

2). In order to improve the recognition
performance of the algorithm, post-processing is to reprocess the
classification results of EEG signals in continuous time windows.
Specifically, a majority vote is performed on the output results
within a 1 min time window and the majority voting diagram is
shown in Figure 3.

2.3. Evaluation metrics

In order to verify whether the epileptic EEG spatiotemporal
feature set constructed by the algorithm proposed in this paper
can distinguish between the preictal and interictal states, four
indicators including accuracy rate (ACC), the area under the
receiver operating characteristic curve (AUC), F-score, and false
positive rate (FPR) were introduced to evaluate the performance.
The evaluation measures are defined as follows (Moridani et al.,
2019):

ACC =
TN + TP

TN + FP + TP + FN
× 100% (20)

F − score =
2TP

2TP + FP + FN
× 100% (21)

FPR =
FP

FP + TN
× 100% (22)

where TP, TN, FP, and FN refer to true positive, true negative, false
positive and false negative, respectively.

3. Results and discussion

3.1. Spatiotemporal feature analysis

3.1.1. Fuzzy entropy
Figure 4 shows the comparison of the fuzzy entropy between

the preictal states and the interictal states. The change of fuzzy
entropy for each sample is inconsistent. For Dog2, Dog3, and Dog4,
the fuzzy entropy in the preictal state was significantly greater than
that of the interictal state, making it relatively easy to distinguish
between the preictal and the interictal states. However, fuzzy
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A B

FIGURE 7

Comparison of the RPSD and DRPSD in Dog4. (A) Is the RPSD and (B) is the SPR. Note that the abscissa label of panel (B) represents the difference
values obtained by subtracting two different RPSDs. Specifically, TD, theta minus delta; AD, alpha minus delta; BD, beta minus delta; GD, gamma
minus delta; AT, alpha minus theta; BT, beta minus theta; GT, gamma minus theta; BA, beta minus alpha; GA, gamma minus alpha; GB, gamma minus
beta.

A

B

FIGURE 8

Comparison of the spatial features based on brain network between the interictal and preictal states. Patient number chb06 has been taking as an
example. (A) Brain network in the interictal state and (B) is in the preictal state.

entropy of Dog1 and Dog5 are basically overlapped in these two
states, making it difficult to distinguish between these two states.
For epileptic patients in the CHB-MIT dataset, except patients
chb01, chb14, and chb20, the fuzzy entropy in the preictal states
is greater than that of the interictal states. The experimental results
show that the fuzzy entropy of the epileptic EEG in most of the
patients is significantly larger than the interictal states, indicating

that the brain activity has changed before the seizure. And the
higher complexity of EEG occurs in the preictal states, indicating
the upcoming seizure. The experimental results also show that
the fuzzy entropy of epileptic EEG signals has large individual
differences. Some samples have good classification effect, while
others are not sensitive, making it not suitable for each subject.
Therefore, although fuzzy entropy can be regarded as an important
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feature to predict epileptic seizures, it is not suitable as a single
feature of epileptic EEG for seizure prediction.

3.1.2. PSD
Figure 5 shows the comparison of PSD between the preictal

and interictal iEEG signals for five canines. The results indicate
that the PSDs in the interictal states were higher than that in the
preictal states. And there are more outliers in both the preictal and
interictal states for Dog4. The individual differences exist in the
PSD of epileptic EEG signals. As shown from Figure 5, there is
some overlap in the overall trend between the interictal states and
the preictal states for each subject. Figure 6 compares the PSD of
preictal and interictal scalp EEG of 14 patients in the CHB-MIT
database. Most of these patients had significant differences in PSD
between the preictal and interictal states. Especially for patients
chb01, chb03, chb07, chb08, and chb09, the PSD of their EEG
signals could be available for distinguishing between preictal and
interictal states. However, for an individual patient (such as patient
chb21), it is almost impossible to classify the preictal and interictal
states using PSD due to the overlapping of PSD in these two states.
Therefore, only using PSD as a feature to classify the interictal and
the preictal EEG signals is inappropriate and cannot achieve good
prediction accuracy.

In order to further analyze the PSD variation of each rhythm,
this paper calculated the RPSD and SPR of each subject. Taking
Dog4 as an example, the results are shown in Figure 7. Except
for theta rhythm, RPSD is higher in the interictal states than in
the preictal states. RPSD of beta and gamma rhythms have more
outliers in the preictal states. Meanwhile, the RPSD of theta has
no significant differences between the preictal and the interictal
states while the SPR associated with theta rhythm was significantly
different. For BT (beta-theta) and AT (alpha-theta), the SPTs in the
interictal states are greater than those in the preictal states, and
more outliers appear in preictal states. These results suggest that BT
and AT may be good features to distinguish between interictal and
preictal states. However, some other SPRs, such as GA (gamma-
alpha) and GB (gamma-beta), are difficult to distinguish these
two states. For each subject, some specific features may be more
suitable. Therefore, RPSD and SPR are combined to further screen
the optimal features set.

3.1.3. Spatial features based on brain networks
PLV which is a good measure of phase synchronization was

used to construct brain networks in this paper. CHB-MIT scalp
EEG dataset has electrode position information, which makes the
display of the constructed brain network more convenient and
intuitive. Therefore, taking a patient in this dataset as an example
to compare the spatial features between the preictal and interictal
states, and the results are shown in Figure 8. The results showed
that the synchronization between the electrodes in the preictal
states was higher than that in the interictal states, indicating
that the abnormal EEG signals had begun to spread and affect
more brain regions before the seizure onset. Spatial coupling and
connectivity can also be observed from the brain network topology
drawn from the adjacency matrix. Topological connectivity has
been altered in the preictal states with significant enhancement and
been covered with most areas of the brain. The results show that the
statistical characteristics of network topology can effectively extract

epilepsy information before seizures and can be further applied to
seizure prediction.

3.2. Comparing the optimal
spatiotemporal features selection
algorithms

An ablation study is carried out to verify the feature
selection algorithm on both the Kaggle competition and CHB-
MIT datasets. Four feature selection schemes, namely without
features selection, independence-based, information-based, and the
feature score proposed in this paper, are compared. The results
are shown in Table 3, the accuracy rate without feature selection
is the lowest, followed by independent-based or information-
based feature selection with an accuracy rate below 80%. The
feature score algorithm composed of the independence and the
information achieved the highest accuracy, reaching 98.01% on
the Kaggle competition dataset and 95.93% on the CHB-MIT
dataset. The experimental results illustrate that our proposed
feature selection algorithm can effectively extract the optimal
spatiotemporal features and accurately distinguish between the
preictal and interictal states.

3.3. Prediction performance verification

3.3.1. Performance evaluation of seizure
prediction based on the Kaggle dataset

Table 4 shows the performances of preictal and interictal iEEG
signal classification for five epileptic dogs on the Kaggle dataset.
Our method achieved an average ACC of up to 98.01%, an average
AUC of 0.96 and an average F-score is 98.30% with an FPR of
only 3.83%. Dog4 has the highest prediction accuracy, reaching
100%. The reason may be that, on the one hand, our proposed
spatiotemporal features can better express the epileptic information
about impending seizures for Dog4; on the other hand, Dog4 has
the largest amount of preictal iEEG data (16 seizures), making
more data available for training and testing, which improves the
performance of the classifier. Compared to other canines, the
accuracy of Dog5 is relatively low, especially the FPR is up to 11%.
The reason may be the small sample size (only 5 seizures occurred).
Alternatively, it is also possible that Dog5 has a damaged electrode
that has been removed in the pre-processing, which may lead to
a loss of spatial information. Overall, the optimal spatiotemporal
features proposed in this paper can well distinguish the preictal and
interictal states.

To explore the impact of features on epilepsy prediction, an
ablation study is conduct to compare our proposed method with
two other methods that use either temporal features or spatial
features alone. As shown in Table 5, only temporal features are
used as the input to the classifier with average accuracy, AUC,
F-score, and FPR of 87.7, 0.84, 87.91, and 4.42%, respectively. Using
only brain network-based spatial features to distinguish between
interictal and preictal states, the results yielded an average accuracy
of 81.75%, an average AUC of 0.73, an F-score of 80.91%, and an
FPR of 19.64%. It is evident that our proposed method which fuses
spatial and temporal features greatly improves the performance of
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TABLE 3 Comparison of four feature selection schemes.

Dataset ACC (%)

Without features
selection

Independence-based Information-based Feature score

Kaggle competition 69.86± 27.19 78.07± 8.27 75.84± 4.06 98.01± 2.60

CHB-MIT 66.14± 18.11 73.57± 3.57 79.96± 2.75 95.93± 5.74

TABLE 4 Performance evaluation of our proposed method on the Kaggle dataset.

Subjects ACC (%) AUC F-score (%) FPR (%)

Dog1 99.65± 0.69 0.99± 0.01 99.66± 0.69 0.70± 1.39

Dog2 96.28± 9.68 0.93± 0.19 97.03± 7.70 7.43± 19.35

Dog3 99.77± 0.60 0.99± 0.01 99.76± 0.61 0.13± 0.44

Dog4 100.00± 0.00 1.00± 0.00 100± 0.00 0.00± 0.00

Dog5 94.34± 7.93 0.89± 0.16 95.04± 6.77 11.04± 15.94

Total 98.01± 2.60 0.96± 0.05 98.30± 2.19 3.83± 5.05

TABLE 5 Comparing the proposed spatiotemporal features method for seizure prediction to the temporal or spatial features method on the Kaggle
dataset.

Features ACC (%) AUC F-score (%) FPR (%)

Spatial features Brain networks 81.75± 8.72 0.73± 0.12 80.91± 10.89 19.64± 15.01

Temporal features FuzzyEn+ PSD 87.7± 4.17 0.84± 0.08 87.91± 5.12 4.42± 5.09

Our method FuzzyEn+ PSD+ Brain networks 98.01± 2.60 0.96± 0.05 98.30± 2.19 3.83± 5.05

TABLE 6 Performance evaluation of our proposed method on the CHB-MIT dataset.

Patients ACC (%) AUC F-score (%) FPR (%)

chb01 99.95± 0.11 0.99± 0.01 99.95± 0.11 0.05± 0.11

chb03 97.36± 1.41 0.96± 0.01 98.32± 1.36 0.15± 0.33

chb05 99.36± 0.48 0.99± 0.01 99.36± 0.48 0.39± 0.87

chb06 99.65± 0.61 0.99± 0.01 99.65± 0.60 0.28± 0.58

chb07 85.19± 14.50 0.80± 0.29 74.14± 12.51 22.22± 38.49

chb08 85.28± 20.01 0.71± 0.40 87.77± 13.51 19.50± 43.60

chb09 88.33± 21.51 0.77± 0.43 79.76± 38.67 1.18± 2.36

chb10 99.72± 0.38 0.99± 0.01 99.71± 0.38 0.56± 0.77

chb14 91.09± 19.35 0.82± 0.38 93.74± 13.00 17.82± 38.69

chb15 99.12± 0.49 0.98± 0.01 99.16± 0.78 0.94± 1.25

chb18 99.48± 0.86 0.98± 0.02 99.49± 0.84 0.90± 1.81

chb20 99.17± 0.69 0.98± 0.01 99.16± 0.71 0.22± 0.49

chb21 98.57± 1.15 0.98± 0.01 98.68± 1.01 1.78± 1.45

chb23 99.72± 0.28 0.99± 0.01 99.73± 0.27 0.22± 0.50

Average 95.93± 5.74 0.92± 0.10 94.97± 8.40 4.73± 8.25

TABLE 7 Comparing the proposed spatiotemporal features method for seizure prediction with only temporal or spatial features on the CHB-MIT
dataset.

Features ACC (%) AUC F-score (%) FPR (%)

Temporal features FuzzyEn+ PSD 86.40± 4.78 0.81± 0.05 84.49± 5.78 7.01± 6.45

Spatial features Brain networks 82.19± 4.79 0.77± 0.10 82.66± 4.93 11.17± 8.74

Our method FuzzyEn+ PSD+ Brain networks 95.93± 5.74 0.92± 0.10 94.97± 8.40 4.73± 8.25
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TABLE 8 The comparison results between the proposed method and other existing state-of-the-art techniques.

References Features Classifier Dataset ACC (%) AUC F-Score (%) FPR (/h)

Usman et al., 2021 CNN, Statistical and spectral
moments

Ensemble of SVM, CNN and
LSTM

Kaggle 95.53 − SPE:95.81SEN:94.20 −

CHI-MIT 96.05 − SPE:96.28SEN:95.65 −

Hussein et al., 2021 Continuous wavelet
transform

SDCN Kaggle − 0.928 SPE: 85.6SEN:88.45 −

CHB-MIT 98.82 0.97 SPE:98.90SEN:98.75 0.06

Xu et al., 2020 CNN CNN Kaggle − 0.981 SEN:93.5 0.063

CHB-MIT − 0.988 SEN:98.8 0.074

Truong et al., 2018 Spectrogram CNN Kaggle − − SEN:75 0.25

CHB-MIT − − SEN:81.4 0.06

This manuscript FuzzyEn+ PSD+ Brain
networks

SVM Kaggle 98.01 0.96 98.3 0.038

CHB-MIT 95.93 0.92 94.97 0.047

seizure prediction. Therefore, it is necessary to consider both spatial
and temporal features when analyzing epileptic EEG signals.

3.3.2. Performance evaluation of seizure
prediction based on the CHB-MIT dataset

Table 6 shows that our approach has also achieved a good
prediction performance on the CHB-MIT scalp EEG signals. The
results obtained an average accuracy, AUC, F-score and FPR of
95.93%, 0.92, 94.97%, and 0.0473/h, respectively. The prediction
accuracy of most patients exceeds 99% such as chb01, chb05,
chb06, chb10, chb15, chb18, chb20, and chb23. However, not all
patients have good prediction accuracy such as chb07, chb08, and
chb14, which have an accuracy of less than 90%. The reason
may be that these patients had relatively few training samples
(3−5 seizures). Among them, the chb07 with only three seizures
had the lowest accuracy of 85.12%. And FPR may be another
reason for this unsatisfactory classification effect of chb07 and
chb08. For these two patients, the FPR shows that it is easy
to misjudge the interictal states as preictal states. Overall, our
proposed approach was validated for predicting epileptic seizures,
indicating that the optimal spatiotemporal feature set is effective.
It was also found that the prediction performance varies greatly
between different patients.

Table 7 shows that the average accuracy, AUC, F-score and
FPR of using temporal features are 86.4, 0.81, 84.49, and 7.01%,
respectively. While using the spatial features related to the brain
network, the average accuracy, AUC, F-score and FPR are 82.19,
0.77, 82.66, and 11.17%, respectively. These results are consistent
with that on the Kaggle dataset, indicating that the optimal
set generated by fusing spatiotemporal features can significantly
improve the prediction performance of epileptic seizures.

3.3.3. Comparison with existing state-of-the-art
methods

Table 8 provides the comparison results on seizure prediction
performance between our method and other existing state-of-the-
art methods using the same datasets (American epilepsy society-
Kaggle iEEG dataset and the CHB-MIT scalp EEG dataset). Syed
(Usman et al., 2021) performed a deep learning approach that

extracts both the handcrafted and the automated features as
the input to an ensemble classifier of SVM, CNN, and LSTM,
resulting in an accuracy of 95.53 and 96.05% on Kaggle and CHB-
MIT datasets, respectively. A semi-dilated convolutional network
(SDCN) was proposed by Hussein et al. (2021) which EEG signals
were converted into a mage-like format by continuous wavelet
transforms. The results finally achieved the AUC of 0.928 on
the Kaggle dataset and a high accuracy of 98.82% on the CHB-
MIT dataset. Xu et al. (2020) developed an end-to-end deep
learning method with a higher AUC of 0.981 and 0.988 on the
Kaggle dataset and CHB-MIT dataset, respectively. Truong et al.
(2018) proposed a convolutional neural network extracting time
and frequency domain information by using short-time Fourier
transform (STFT), which has only obtained an average sensitivity
of 75% and FPR of 0.21/h on the Kaggle dataset and the average
sensitivity of 81.4% on CHB-MIT dataset.

Compared to the other existing state-of-the-art methods, our
proposed approach achieves better FPR on both of these two
datasets, illustrating that the probability of our error warning in
predicting seizures is the lowest. Meanwhile, our method also
obtains better performance than other methods on the Kaggle
database. For the CHB-MIT dataset, the accuracy of our model is
slightly lower than that of Hussein et al. (2021) and Usman et al.
(2021), but the complex features and three classifiers combination
required in the method proposed by Usman has caused high
complexity and the sensitivity; and Hussein’s paper only achieved
the accuracy of 88.45% on iEEG dataset. Furthermore, both of these
two methods are not provided the indicator FPR. In summary,
compared with the existing advanced techniques, our method still
has certain advantages in seizure prediction on both intracranial
and scalp EEG signals.

4. Conclusion

In this paper, epileptic spatiotemporal information is deeply
mined from comprehensive multiple dimensions of time-
frequency, non-linearity and brain network. A novel prediction
model is proposed by using spatiotemporal information with
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optimal features strategy for seizures early warning. The optimal
spatiotemporal features set was formed by screening the high
independence and rich information of the extracted features. This
feature set has been input into SVM for training and recognition.
On the Kaggle intracranial EEG dataset, this model achieved an
average accuracy of 98.01%, AUC of 0.96, F-Score of 98.3% and
FPR of 0.0383/h, respectively; and On the CHB-MIT scalp EEG
dataset, the average accuracy, AUC, F score and FPR were 95.93%,
0.92, 94.97%, and 0.0473/h, respectively. An ablation study was
performed to compare our model with two other methods using
only temporal features or spatial features. The results show that
our method achieves more effective performance. Compared to
other existing state-of-the-art approaches on the same datasets, this
present method has certain advantages in prediction performance.
It is further confirmed that our spatiotemporal information can
effectively identify the preictal states, which is helpful to the early
warning of seizures for the clinical epileptic patients.
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