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As personalization technology increasingly orchestrates individualized shopping
or marketing experiences in industries such as logistics, fast-moving consumer
goods, and food delivery, these sectors require flexible solutions that can
automate object grasping for unknown or unseen objects without much
modification or downtime. Most solutions in the market are based on
traditional object recognition and are, therefore, not suitable for grasping
unknown objects with varying shapes and textures. Adequate learning policies
enable robotic grasping to accommodate high-mix and low-volume
manufacturing scenarios. In this paper, we review the recent development of
learning-based robotic grasping techniques from a corpus of over 150 papers. In
addition to addressing the current achievements from researchers all over the
world, we also point out the gaps and challenges faced in AI-enabled grasping,
which hinder robotization in the aforementioned industries. In addition to 3D
object segmentation and learning-based grasping benchmarks, we have also
performed a comprehensive market survey regarding tactile sensors and robot
skin. Furthermore, we reviewed the latest literature on how sensor feedback can
be trained by a learning model to provide valid inputs for grasping stability. Finally,
learning-based soft gripping is evaluated as soft grippers can accommodate
objects of various sizes and shapes and can even handle fragile objects. In
general, robotic grasping can achieve higher flexibility and adaptability, when
equipped with learning algorithms.
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1 Introduction

Robotic grasping is an area of research that not only emphasizes improving gripper
design that can handle a wide variety of objects but also drives advances in intelligent object
recognition and pose estimation algorithms. Grasping objects differ in terms such as weight,
size, texture, transparency, and fragility factors. To achieve efficient robotic grasping, the
collaboration and integration of mechanical and software modules play a pivotal role, which
also opens several possibilities for enhancing the current state of the art of robotic grasping
technology. For instance, tactile feedback from gripper fingertips can serve as a valid input
for grasping decision makers (Xie et al., 2021) to determine the grasping stability, and visual
servoing can correct the grasping misalignment (Thomas et al., 2014).

This paper provides insights into industries such as manufacturing, logistics, or fast-
moving consumer goods (FMCG) that face challenges after the adoption of pre-programmed
robots. These robots require reprogramming when new applications are needed, thus being
suitable only for limited application scenarios. This results in pre-programmed robots to be
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inadequate for fast-changing processes. Moreover, most of the
solutions are unable to pick or grasp novel unknown objects in a
high-mix and low-volume (HMLV) production line, as shown in
Figure 1. These high-mixed SKUs include various types of products,
for example, heavy, light, flat, large, small, rigid, soft, fragile,
deformable, and translucent.

In general, grasping can be applied to three types of objects:
familiar, known, and unknown (Bohg et al., 2013). Known objects
mean the objects that have been included in the training previously
and the grasping pose has been generated and executed by the robots
for the grasping motion. On the contrary, unknown objects and
familiar objects are never encountered previously, but familiar
objects have a certain similarity with training datasets. Grasping
for known objects has been implemented in the industry for quite
some time as the technology is mature when compared to the other
two categories. The challenge lies in grasping familiar or unknown
objects with minimum training or reconfiguration required. The
research and development focus on transferring the graspingmotion
from known objects to familiar or unknown objects based on the
interpretation and synthetic data (Stansfield, 1991; Saxena et al.,
2008; Fischinger and Vincze, 2012). Based on the grasping
evaluation metric, grasping with the best scores would be selected
among all the grasping candidates, as shown in Figure 2.

Grasping poses can be ranked by similarities in the grasping
database. Moreover, because of its high difficulty, current research is
chiefly focused on developing deep learning (DL) models for grasping
unknown objects, with some prominent ones utilizing deep
convolutional neural networks (DCNNs), 2.5D RGBD images, and
depth images of a scene (Richtsfeld et al., 2012; Choi et al., 2018;
Morrison et al., 2018). These methods are generally successful in
determining the optimal grasp of various objects, but they are often
restricted by logistical issues such as limited data and testing.

The flow chart of a general grasping process, including offline
generation and online grasping, is demonstrated in Figure 3. In the
offline phase, the training was conducted on grasping different
objects. Moreover, the quality is evaluated for each grasping
process. After that, the grasping model is generated based on the
training process and stored in the database. Moreover, in the online
phase, the object is detected through vision and mapped to the
model database. A grasping pose is generated from the learning
database, and those objects that cannot be grasped are discarded.
Finally, the grasping motion is conducted by the robot.

In this paper, we reviewed over 150 papers on the topic of
intelligent grasping. We categorize the literature into six main
categories. To be more specific, 3D object recognition, grasping
configuration, and grasping pose detection are some typical grasping
sequences. Deep learning and deep reinforced learning are also
reviewed as widely used methods for grasping and sensing. As one of
the trending gripping technologies, soft and adaptive grippers with
smart sensing and grasping algorithms are reviewed. Finally, tactile
sensing technologies, which enable smart grasping, are reviewed as
well. The search criteria used were the following:

• Year: 2010 has been selected as the cutoff year such that the
bulk of the papers reflect the last dozen years. A few exceptions
before 2010 were included due to their exceptional relevance.

FIGURE 1
Robotic grasping in the cluttered FMCG scenario.

FIGURE 2
(A)Grasping pose candidates by sampling. (B) Final grasping pose
with the maximum score.

FIGURE 3
Online and offline processes of grasping generation (Bohg et al.,
2013).
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• Keywords: “3D object recognition”, “robotic grasping”,
“learning based”, “grasping configuration”, “deep learning”,
“grasping pose detection”, “deep learning for unknown
grasping”, “soft gripper”, “soft grippers for grasping”,
“tactile sensors”, and “tactile sensors for grasping” were the
keywords used.

• Categories: paper selection requirement included belonging to
one of the following overarching categories:
o Robotic grasping
o Robotic tactile sensors
o Soft gripping
o Learning-based approaches

Results were filtered out based on individual keywords or key
word combinations, using the AND and OR operand between
keywords. Moreover, Google Scholar, IEEE Xplore, and arXiv
were deployed as the main sources of search engine for the
literature in both journals and conference proceedings between
2017 and 2022. In total, excluding duplicates, we found
329 papers close to the unseen object grasping theme, out of
which 157 had the full text available. In Section 2, we conduct a
review on the most significant contributions and developments in
robotic grasping, soft grippers, and tactile sensors for grasping.
Section 3 contains an analysis of the challenges for learning-
based approaches for grasping; Section 4 summarizes our findings.

Figure 4 demonstrates the trend in the number of publications of
learning algorithms for intelligent grasping in recent years. The
graph shows the growth in the number of published works from this
literature review in the field of intelligent grasping with a focus on
the three major approaches, namely, supervised learning,
reinforcement learning, and unsupervised learning. The data
covers the period from 2015 to 2022, demonstrating the
increasing interest and advancements in the development of
intelligent grasping algorithms; in particular, since 2017, there
has been a significant increase in supervised learning,
unsupervised learning, and reinforcement learning. However,
supervised learning is still the most adopted approach for AI-
driven robotic grasping.

2 Methods and recent developments

A. 3D object recognition benchmarks

The first step for the grasping sequence is to identify the
grasping object. 2D learning-based object recognition has
been well developed in computer vision. Thus, in this
section, we will focus on the advances on 3D learning-
based object recognition. Traditionally, the object point
cloud can be segmented from the environment based on
region growing (Vo et al., 2015) and the Point Cloud Library
(PCL) (Zhen et al., 2019). After that, principal component
analysis (PCA) (Abdi and Williams, 2010) can be deployed to
identify the centroid point of the object along the eigenvector
(Katz et al., 2014), which can be used as inputs for robotic
grasping. Next, the Iterative Closest Point (ICP) (Besl and
McKay, 1992; Chitta et al., 2012) is also a popular approach to
registering the available model into the point cloud to locate the
object for grasping. However, the disadvantage is the need for
tuning excessive hyperparameters. Concerning benchmarks such
as ImageNet, ResNet-50, and AlexNet (Dhillon and Verma,
2020), two parallel DCNNs can be deployed to extract
multimodal features from RGB and depth images, respectively
(Kumra and Kanan, 2017). The same theory is applied to other
enhanced 3D approaches, for example, 3D Faster R-CNN (Li
et al., 2019), 3D Mask R-CNN (Gkioxari et al., 2019), and SSD
(Kehl et al., 2017).

With the advances of big data, there are many 3D object
benchmarks emerging where either point clouds were collected
or labeled, such as PointNet (Qi et al., 2017a), PointNet++ with
deep hierarchical feature learning (Qi et al., 2017b), BigBird (Zaheer
et al., 2020), Semantic3D (Hackel et al., 2017), PointCNN (Li et al.,
2018a), SpiderCNN (Xu et al., 2018), Indoor inference NYUD-V2,
and Washington RGB-D Object Dataset (Lai et al., 2011), or 3D
model datasets were gathered with information such as textures,
shapes, hierarchies, weight, and rigidity, for example, ShapeNet
(ChangFunkhouser et al., 2015), PartNet (Mo et al., 2019),
ModelNet (Wu et al., 2015), and YCB (Calli et al., 2015). Other
approaches apply convolution to the voxelization of point clouds
VoxNet (Maturana and Scherer, 2015) and Voxception-ResNet
(Brock et al., 2016). However, high memory and computational
costs are key drawbacks associated with 3D convolutions.
Specifically, a segmentation algorithm can be built upon these
datasets to separate and locate the object in the clustered
environment.

Overall, point cloud-based approaches perform more efficiently
when the raw point cloud input is sparse and noisy (Shi et al., 2019).
Moreover, it can reduce data preprocessing time since raw point
clouds can be used directly as inputs and object identification is
omitted, so efforts for sampling, 3D mesh conversion, and 3D
registration are saved. Most notably, CAD data might not be
available all the time. However, point cloud datasets can lose
information that is critical for grasping, such as textures,
materials, and surface normals. Topology needs to be recovered
in order to improve the representation of the point cloud (Wang
et al., 2019).

B. Grasping configuration sampling benchmarks

FIGURE 4
Number of publications of learning algorithms for intelligent
grasping in recent years.
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Learning for object recognition is not enough for robotic
manipulation. The subsequent step relies on the grasping pose
estimation (Du et al., 2021) based on the gripper configuration.
In particular, grasping perception can be treated as analogous to
traditional CV object detection (Fischinger et al., 2013; Herzog et al.,
2014) with RGBD or point clouds as inputs. First, a grasping region
of interest (ROI) is sampled and identified; next, a large number of
grasping poses can be generated based on big training datasets
without knowing object identification (Kappler et al., 2015). This
approach works well for novel objects; however, the success rate is
not reliable enough to be implemented in the real-world scenarios.
Template matching using the convex hull or bounding box is
another grasping pose detection method (Herzog et al., 2012).

Except for the large-scale data collection and empirical grasp
planning in physical trials directly (Levine et al., 2018), there are
plenty of grasping benchmarks that contain sizable numbers of
grasping datasets, which can be categorized into different groups
based on the grasping technology or gripper configuration.
GraspNet (Fang et al., 2020), SuctionNet (Cao et al., 2021),
DexYCB (Chao et al., 2021), OCRTOC (Liu et al., 2021), the
Columbia Grasp Database (Goldfeder et al., 2009), Cornell
dataset (Jiang et al., 2011), off-policy learning (Quillen et al.,
2018), TransCG (Fang et al., 2022) for transparent objects, and
Dex-net (MahlerLiang et al., 2017; Mahler et al., 2018) are the most
prominent benchmarks. Furthermore, Dex-net 4.0 trained
ambidextrous policies for a parallel jaw and a vacuum-based
suction cup gripper. Though learning-based grasping detection
still needs handcrafted inputs to generalize to unknown objects
(Murali et al., 2018), methods such as multiple convolutional neural
networks (CNNs) (Lenz et al., 2015) in a sliding window detection
pipeline are proposed to address the issues.

In contrast, GraspIt (Miller and Allen, 2004) utilizes a simulator
to predict the grasping pose; however, fidelity in a simulation
environment is still far from the real world, as demonstrated in
Figure 5. Domain randomization (Tobin et al., 2017) can be the key
to transfer the learning of simulated data. GraspNet (Fang et al.,
2020) is a popular open project for general object grasping that is
continuously enriched. There are 97,280 3D images in total and each
image is annotated with an accurate 1.1 billion 6D poses for each
object, and 190 cluttered scenes were captured using Kinect A4Z and
RealSense D435. Moreover, Jiang et al. (2011) proposed a method
for the oriented grasping rectangle representation that considers the
seven-dimensional gripper configuration and uses it for fast search
inference in the learning algorithm. The limitation is that the
grasping diversity is affected by the rectangular configuration,
and the grasping area is restrained.

Among the most popular grasping pose sampling benchmarks,
the literature reports a 91.6% prediction accuracy rate and an 87.6%
grasping success rate on selected grasping objects for the Cornell
datasets (Jiang et al., 2011), while GraspNet has been shown to attain
a success rate of 88% on a range of objects with diverse appearances,
scales, and weights that are frequently used in daily life (Mousavian
et al., 2019). Dex-Net 4.0 claims a reliability of over 95% for 25 novel
objects. Previously, the GQ-CNN-based Dex-Net 3.0 showed a
precision of 99% and 97% for the basic and typical objects in the
dataset (Mahler et al., 2018), respectively. PointNet 40-class
classification has 89.2% accuracy rate using the
ModelNet40 compared to 85.9% by VoxNet and 84.7% by 3D
ShapeNets (Qi et al., 2017a). Last but not least, using the same
datasets, SpiderCNN achieves an accuracy of 92.4% on standard
benchmarks while PointNet++ reaches 91.9% (Xu et al., 2018).

C. Grasping pose evaluation (GPE)

Grasping pose evaluation is the selection process to find the
most suitable grasping candidate based on the specific evaluation
metrics after grasping pose sampling. Many non-learning-based
grasping pose evaluation metrics have been developed, such as
SVM ranking model analysis-by-synthesis optimization (AbS)
(Krull et al., 2015), kernel density estimation (Detry et al., 2011),
and robust grasp planning (RGP) (MahlerLiang et al., 2017), as have
other physics-based approaches such as force closure (Nguyen,

FIGURE 5
GraspIt simulator for pose prediction (Miller and Allen, 2004).

FIGURE 6
Ambidextrous grasping policy learning (Mahler et al., 2019).
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1988), caging (Rodriguez et al., 2012), and Grasp Wrench Space
(GWS) analysis (Roa and Suárez, 2015). Only recently, learning-
based approaches have been proposed, such as variational
autoencoders (VAE) for DL (Mousavian et al., 2019; Pelossof
et al., 2004), the cross-entropy method (CEM) for RL (De Boer
et al., 2005), random forest (Asif et al., 2017a), grasp quality
convolutional neural network (GQ-CNN) (Mahler et al., 2018),
deep geometry-aware grasping network (DGGN) (Yan et al.,
2018), grasp success predictor based on deep CNN (DCNN), and
dynamic graph CNN (Wang et al., 2019). Moreover, we have also
seen trends of the fusion of classic approaches with deep learning
(empirical), such as AbS combined with deep learning for reliable
performance on uncontrolled images (Egger et al., 2020), cascaded
architecture of random forests (Asif et al., 2017a), and a supervised
bag-of-visual-words (BOVW) model with SVM (Pelossof et al.,
2004) or AdaBoost (Bekiroglu et al., 2011).

The schematic of the ambidextrous grasping policy-
learning process is shown in Figure 6. Synthetic 3D-object
datasets are generated via computer-aided design (CAD) with
some domain randomization. The generated objects are tested
in the synthetic training environment to evaluate the rewards,
which are computed consistently based on the resistance to
grasping. In terms of policy learning, parallel jaw and suction
grippers are trained by optimizing a deep GQ-CNN to predict
the probability of grasp success from the point cloud of the 3D
CAD model objects. The training dataset contains millions of
synthetic examples from the previous generation
step. Furthermore, for robot execution, the ambidextrous

policy is adopted by a real-world robot to select a gripper
to maximize the grasp success rate using a separate GQ-CNN
for each gripper.

Grasping Pose Detection (GPD) (ten Pas et al., 2017) utilizes a
four-layer CNN-based grasp quality evaluation model. Even though
the heuristic produces diverse grasping candidates, the limitation is
that the GPD might mistake multiple objects as one due to a lack of
object segmentation, and the GPD might have overfitting problems
when the point cloud is sparse.

Similarly, PointNetGPD (Liang et al., 2019) introduces
lightweight network architecture by the point cloud within a
gripping finger that is transformed into a local grasp
representation. The orthogonal approaching and parallel moving
directions are along the ZXY axes, respectively, with the origin lying
at the bottom center of the gripper. The grasping quality is evaluated
by N points that are passed through the network.

Xie et al. (2022) proposed a universal soft gripping method with
a decision maker based on tactile sensor feedback on objects with
varying shapes and textures, which is a further improvement from
the PointNetGPD baseline (Liang et al., 2019). Figure 7 shows the
grasping of enoki mushroom that is unknown to the training
databases.

Table 1 shows the comparison table between various grasping
pose evaluation methods in terms of inputs, grasping type,
specifications, and learning type in the recent literature. If force
(force closure) or wrench (GWS) is taken into consideration, only
grasping hand or finger grippers can be used for this type of
application. However, force closure requires tactile sensor reading
to be more accurate and real time in order to be practical (Saito et al.,
2022). Moreover, parametric GPE such as SVM can be applied if the
grasping shape can be represented or estimated by parameters. SVM,
random forest, and supervised bag-of-visual-words are utilized for
supervised or self-supervised learning applications only. When a
large number of data are presented, data-driven learning-based
methods such as GPD and DGGN are more suitable to make
sense of big data and perform better than other types of GPE
methods. Last but not least, ensemble learning methods, such as
AdaBoost, have gained more attention recently, which combine
multiple learning methods to provide better evaluation results (Yan
et al., 2022).

D. Reinforcement learning (RL) approach

RL does result in flexible and more adaptable robotic grasping
algorithms. Policy gradient methods, model-based methods, and
value-based methods are the three most popular deep reinforcement
learning methods (Arulkumaran et al., 2017). However, value-based
learning such as Q-learning has the limitation of optimization on a
non-convex value function, thus making it difficult for large-scale
RL tasks until scalable RL with stochastic optimization over the critic
was proposed to avoid second maximizer networks (Kalashnikov
et al., 2018). These algorithms can be further divided into two
categories: off-policy learning and tactile feedback. Off-policy
learning (Quillen et al., 2018) is emphasized and generalized to
unseen objects. Common off-policy learning methods include Point
Cloud Library (PCL) (Nachum et al., 2017), deep deterministic
policy gradient (DDPG) methods (LillicrapHunt et al., 2015), deep
Q-learning (MnihKavukcuoglu et al., 2013), Monte Carlo (MC)

FIGURE 7
Data-driven soft gripping on the novel object.
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policy evaluation (Xie and Zhong, 2016a; Arulkumaran et al., 2017),
and more robust-corrected Monte Carlo methods (Betancourt,
2017).

Human-labeled data are intrinsically subjective due to
human bias, which is a problem of increasing concern in
machine learning (Xie et al., 2017; Fonseca et al., 2021).
Researchers have attempted to adopt unsupervised learning
by trial and error for object manipulation learning from
scratch (Boularias et al., 2015) but were restrained by a small
amount of data. Pinto and Gupta (2016) trained CNN using

large-scale datasets and proved that multi-stage training can get
rid of overfitting problems for self-supervised robotic grasping
(Zhu et al., 2020).

Self-supervised learning (Berscheid et al., 2019) that connects
manipulation primitive shifting with prehensile action grasping
based on Markov decision processes (MDPs) can significantly
improve grasping in clustered scenarios. Some other prominent
works, such as Visual Pushing and Grasping (VPG) (Zeng et al.,
2018), utilize two fully convolutional networks trained by self-
supervised Q-learning for inference of pushes and grasps,

TABLE 1 Learning-based grasping pose evaluation.

Grasping pose
evaluation

Metric type Input Grasping
type

Technical specification Learning/
type

Yu et al. (2021a) Support vector
machine (SVM)

Superquadric shape
parameters and grasping
parameters

Hands, grippers,
and suction

Difficult to represent complex shapes
in superquadric parameters and vector
sets as alternatives

Regression and
supervised
learning

Yen-Chen et al. (2021)
and Irshad et al. (2022)

Analysis-by-synthesis
optimization (AbS)

3D textured reconstruction Hands, grippers,
and suction

Complex multi-object scenarios and
learned latent space

Regression

Katyara et al. (2021) Kernel density estimation Object-relative grasp poses Hands, grippers,
and suction

Continuous probability density
functions, non-parametric

Non-parametric
regression

MahlerLiang et al.
(2017) and Zhang et al.
(2021)

Robust grasp planning (RGP) Prior grasps and 3D object
models

Hands, grippers,
and suction

Correlated bandit techniques and
cloud-based object models

Multi-armed
bandit and CNN

Liu et al. (2022a) Force closure Object and gripper pose,
contact, and friction

Hands, grippers,
and soft

Reduces the complexity and universal,
force spiral space, and binary

N/A

de Souza et al. (2021) Grasp wrench space
analysis (GWS)

Contact location, contact
normal, and frictional
coefficients (Weisz and Allen,
2012)

Hands, grippers,
and soft

Epsilon quality and magnitude of the
minimum norm wrench

Deep learning

Wang et al. (2022a) Variational
autoencoder (VAE)

Primitive grasp set with the
generated grasp set and
gripper configuration

Hands, grippers,
and suction

Compressed representation,
Kullback–Leibler (KL) divergence, and
latent space sampling

CNN and
machine learning

HuangNagaraj et al.
(2021)

Random forest Grasp features Hands, grippers,
and suction

Quantified as its Gini impurity-based
importance can be used for deformable
grasping

Supervised
machine learning

Jiang et al. (2022) Grasp quality convolutional
neural network (GQ-CNN)

Point clouds, grasps, and
analytic grasp metrics
MahlerLiang et al. (2017)

Hands, grippers,
and suction

Grasp features represented as the angle,
planar position, and depth of a gripper
relative to an RGB-D camera

CNN

Wang et al. (2022b) Deep geometry-aware
grasping network (DGGN)
Yan et al. (2018)

Point cloud, shape, location,
and orientation

Parallel jaw
grippers

Shape generation network and
grasping outcome prediction network

Deep Learning
and 3D CNN

Mi et al. (2021) and
Liang and Boularias
(2022)

Dynamic graph CNN Segmented depth and color
image

Hands, grippers,
and suction

Generalizes to new objects with
different geometries and textures

CNN

Yu et al. (2021b) Cascaded architecture of
random forests Asif et al.
(2017a) and Asif et al. (2017b)

RGB-D point clouds Hands, grippers,
and suction

Object-class and grasp-pose
probabilities are computed, separated,
and fused for unknown objects

CNN

Ayoobi et al. (2022) Supervised bag-of-visual-
words

Scene data Hands, grippers,
and suction

Uses local feature descriptors to match
database Ergene and Durdu (2017)

Supervised
learning

Miften et al. (2021) AdaBoost Object shape, grasp
information, tactile
information, and gripper
configuration

Hands, grippers,
and suction

Probabilistic learning framework,
capable of inferring based on tactile
measurement

Ensemble
learning

Jiang et al. (2021) Grasping pose
detection (GDP)

Point cloud and gripper
configuration

Hands, grippers,
and suction

Directly on the point cloud w/o
estimating grasping pose, can be used
in the clustered environment

Deep learning
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respectively, based on the sampling of end effector orientation and
position. The limitation is that only simple push and grasping
motions are considered among all the non-prehensile
manipulation primitives, and the grasping objects demonstrated
are regular shapes. Finally, motion primitives are pre-defined, and
alternative parameterizations are needed to improve the motion
expressiveness. Multi-functional grasping (Deng et al., 2019) with a
deep Q-Network (DQN) can improve the successful grasping rate
from the clustered environment by tagging the performance of
suction gripping.

Our review involved comparing data-driven approaches with
deep reinforcement learning (DRL) approaches (Kalashnikov et al.,
2018), and it revealed that the limitations of DRL such as being data-
intensive, complex, and collision-prone, preventing itself from being
industry ready.

E. Chronological map

Figure 8 presents the development of key learning algorithms for
intelligent grasping from 2015 to 2022. The data show the popularity
of three main categories of algorithms, namely, supervised learning,
reinforced learning, and unsupervised learning. The size of each
bubble represents the number of research papers published in each
category, while the x-axis indicates the year of publication. Some
popular algorithms include PointNet, PointNet++, and 3D
ShapeNets. The figure indicates that supervised learning is still

the major algorithm used for intelligent grasping. Reinforced
learning and unsupervised learning are also obtaining more
attention in recent years.

F. Soft gripping technology

As an alternative to traditional rigid grippers, soft grippers have
been researched and developed in the last decade (Rus and Tolley,
2015; Hughes et al., 2016; Shintake et al., 2018; Whitesides, 2018).
Due to the intrinsic softness and compliance of gripper materials
and actuation mechanisms, the control complexity is greatly
reduced for handling delicate objects and irregular-shaped
objects. The early studies on soft grippers mainly focused on soft
materials, structure design optimization, and actuating mechanisms.
In recent years, control strategies and smart grasping are becoming
more essential in soft gripper research. Learning algorithms are
adopted in soft grippers to enable intelligent grasping. The objective
of using learning algorithms mainly falls into two domains: object
detection/classification during grasping and increasing grasping
success rates.

To enable object detection/classification when grasping using
soft grippers, the sensors are usually integrated on the soft fingers to
perceive the grasping mode. To detect the deformation of each
finger, strain sensors are implemented into the soft grippers
(Elgeneidy et al., 2018; Jiao et al., 2020; Souri et al., 2020; Zuo
et al., 2021). These sensors can detect the deformation of bending

FIGURE 8
Key learning algorithms for intelligent grasping.
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actuators so that the grasping pose of different fingers can be
estimated. Long short-term memory (LSTM) (Xie and Zhong,
2016b) is typically utilized to process the data and classify the
objects from the SoftMax function (Zuo et al., 2021). However,
since the strain sensors are normally made for one axis detection,
they are usually insufficient for detection and need to be used
together with other sensors such as tactile (Zuo et al., 2021) and
vision (Jiao et al., 2020) sensors. Tactile sensors are widely used for
detecting objects (Jiao et al., 2020; She et al., 2020; YangHan et al.,
2020; Subad et al., 2021; Zuo et al., 2021; Deng et al., 2022). They can
be built and fabricated on a small scale and embedded into soft
grippers. Tactile sensors can be made from capacitance sensing (Jiao
et al., 2020; Zuo et al., 2021), optical fiber-based sensing (YangHan
et al., 2020), microfluidics, (Deng et al., 2022), or even vision-based
tactile sensors (She et al., 2020). Since the grasping motion
dynamically changes with time, LSTM is usually adopted to
process the data and classify the objects. Other kinds of sensors,
such as IMU (Della Santina et al., 2019; Bednarek et al., 2021), can be
used to detect the motion of the soft gripper to estimate the grasping
process. LSTM is used for IMU sensors (Bednarek et al., 2021), but
CNN-based methods, such as YOLO v2, are applied if vision is used
together with IMU (Della Santina et al., 2019).

Vision-based learning algorithms are widely used to train the
graspingmode and increase the grasping success rate. De Barrie et al.
(2021) proposed a study on using CNN to capture the deformation
of an adaptive gripper so that the stress on the gripper can be
estimated to detect the grasping motion. Yang et al. (2020) used a
fully convolution neural network (FCNN) to detect whether the
grasping was successful, and the grasping data were based on the
soft–rigid, rigid–soft, and soft–soft interaction. Liu et al.( 2022b)
used double deep Q-learning (DDQN)-based deep reinforced
learning to train a multimodal soft gripper for employing
different grasping modes (grasping or vacuum suction) for
different objects. Wan et al. (2020) used CNN to detect the
objects and benchmark the effectiveness of using different finger
structures (three or four fingers; circular or parallel) for object
grasping. Zimmer et al. (2019) integrated accelerometer,
magnetometer, gyroscope, and pressure data on the soft gripper
and used RealSense to detect the objects. Different learning
algorithms, including support vector machine (SVM), Spatio-
Temporal Hierarchical Matching Pursuit (ST-HMP), FFNN, and
LSTM, were compared in this study based on their sensor structures.

To conclude this, the combination of soft grippers with
learning algorithms is still a new research field, and the papers
have mainly been published in the past 4 years. The compliant
properties of the soft gripper eases the concerns regarding
grasping delicate objects, while object detection/classification
and grasping mode optimization is the key research field.
LSTM-based learning algorithms are widely used for object
detection/classification during grasping, and CNN-based
algorithms are used for vision-based learning for increasing
grasping success rates.

G. Tactile sensors for robotic grasping

Tactile feedback is an alternative area for off-policy learning.Wu
et al. (2019) achieved grasps by coarse initial positioning of the
multi-fingered robot hand.

The maximum entropy (MaxEnt) RL policy is optimized
through Proximal Policy Optimization (PPO) with a clipped
surrogate objective to learn exploitation and exploration (E/E)
strategies. The robot can decide the grasping recovery and
whether to proceed with a re-grasp motion based on the
proprioceptive information.

Tactile sensing technology has been rapidly developing in the
past few years with strong interest from the research community.
Tactile sensors are classified according to their physical
properties and how they acquire data: capacitive, resistive,
piezoelectric, triboelectric, ultrasonic, optical, inductive, and
magnetic (Wang et al., 2019), (Baldini et al., 2022), (Dahiya
and Valle, 2008). Traditionally used in the medical and
biomedical industry for prosthetic rehabilitation or robotic
surgery applications (Al-Handarish et al., 2020), tactile
technology is now common in robotics. Grasping and
manipulation tasks exploit tactile sensors for contact point
estimation, surface normals, slip detections, and edge or
curvature measurements (Kuppuswamy et al., 2020), (Dahiya
and Valle, 2008), while recent applications for physical HRI
are proposed by Grella et al. (2021). These sensors can provide
dense and detailed contact information, especially in occluded
spaces where vision is unreliable. However, these sensing
capabilities can be worsened by external object compliance
(Kuppuswamy et al., 2020).

Traditional low-cost off-the-shelf force-sensitive resistor tactile
sensors (Tekscan, 2014) are still used as tactile sensors to provide
end-of-arm tools (EOAT) with force sensing capabilities. Current
research studies, however, show different trends and design
principles when developing new tactile technologies. These can
be summarized as follows:

• Minimal and resilient design (Subad et al., 2021),
(Kuppuswamy et al., 2020): low power, simple wiring,
minimal dimensions, single layers, durable, and resistant to
stress (mechanical and shear).

• Distributed (Jiao et al., 2020), (Cannata et al., 2008),
(Kuppuswamy et al., 2020): expandable, flexible,
conformable, and spatially calibrated.

• Information dense (Elgeneidy et al., 2018; Xie and Zhong,
2016b; Yuan et al., 2017; Jeremy et al., 2013): high resolution,
multimodal sensing, and multi-dimensional contact
information.

These design principles are extracted from the current state-of-
the-art tactile sensing technology. Novel and established tactile
sensors are summarized in Table 2, which highlights each
sensor’s technological features and their use in machine learning
for grasping.

H. Deep learning via tactile technology

Deep learning and neural networks have successfully
attempted to use tactile data as input and feedback in grasping
and manipulation stability evaluation. Sensors such as GelSight
(Yuan et al., 2017) or DIGIT (Lambeta et al., 2020) are already
supported by open-source software packages to simulate, test, and
train grasping and manipulation. TACTO (Wang et al., 2022c) is a
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PyBullet-based open-source simulator that is able to reproduce
and render tactile contacts, learn manipulation tasks, and
reproduce them in the real world. PyTouch (Lambeta et al.,
2021) is a machine learning library to process tactile contacts
and provides built-in solutions such as contact detection. Tactile
sensors and modern machine learning techniques are used to solve
grasp stability, control, contact detection, and grasp correction.
Contact models, grasp stability, and slip detections are learnable
outputs that can be generalized to novel objects for dexterous
grasping (Kopicki et al., 2014). Schill et al. (2012) and Cockbum
et al. (2017) used tactile sensors mounted on a robotic hand for bin
picking which were able to generate a tactile image that is fed to

SVM algorithms, achieving between 70% and 80% grasping
stability in both papers. Wan et al. (2016) had a similar set-up
and used another SVM prediction from tactile contact to classify
grasp outcomes. Li et al. (2018b) mounted pressure sensors on a
three-finger gripper and used an SVM for stability prediction;
despite the 90% accuracy, the limited performance of SVMs is
acknowledged in the previous papers, and the authors encourage
the use of more complex algorithms. Grella et al. (2021) used a
tactile skin for an industrial pHRI application gripper by human
detection via a simple DNN called HandsNet. Wan et al. (2016)
proposed various LSTM-based DNNs and Pixel Motion to predict
contact detection from tactile images generated from the

TABLE 2 Learning-based tactile sensing.

Sensor Sensor type Sensing
capability

Size/
hardware

Technical
specification

Learning/type Advantage Limitation

Digit (Lambeta
et al. 2020), 2020

Optical Tactile images 22 × 27 × 18 mm,
camera, elastomer
gel, and RGB
LEDs

60 fps, 1.15 mm FoV,
300 mm DoF, and USB

ResNet-18, 3D
Conv Lambeta et al.
(2021)

Cheap, fast,
adaptable to
multiple
applications

Bulky rigid case,
no force sensing,
and limited
surface

HEX-O-SKIN
(Mittendorfer and
Cheng (2011),
2011

Thermal, MEMS
accelerometer,
and Optical

Pressure,
proximity,
vibration,
orientation,
temperature,
Thermal flow

3.6 mm thickness
and 5.1 cm2 area
hard hexagonal
patches

2g, 1kHz, distributed,
and UART

N/A Multiple sensing
capabilities,
customizable, and
distributed

Bulky and
proprietary

CySkin (Cannata
et al. (2008), 2008

Capacitive Digital
capacitance

25 cm2 area,
flexible PCB, and
capacitive taxels

5–10Hz, distributed
CAN BUS, SPI,
and USB

HandsNet, CNN
(Lambeta et al.
(2021)

Customizable
surface cover, high
resolution,
distributed, and
flexible

Expensive,
requires spatial
and pressure
calibration, and
proprietary

Punyo
(Kuppuswamy
et al. (2020), 2020

Optical, depth 3D contact point
cloud and contact
shape

86 × 88 ×
172.5 mm,
camera, ToF
sensors, and soft
compliant dotted
latex membrane

10 k points, 1 Hz N/A High resolution,
2D and 3D
information, open
source, and
compliant surface

Bulky and
requires special
adaptors

GelSight (Yuan
et al. (2017), 2017

Optical Tactile images, 3D
Surface Shape,
and force

Variable
dimensions,
camera, elastomer
gel surface, and
RGB LEDs

1–100 µm spatial
resolution, and USB

DNN (LSTM +
CNN) (Li et al.
(2018b)

Force sensing and
high resolution

Bulky and
limited surface

BioTac (Jeremy
et al. (2013);
Reinecke et al.
(2014), 2006

Impedance
sensing, and
thermal

Impedance, AC/
DC pressure,
micro vibrations,
temperature,
thermal f low, and
force

Rigid core,
conductive fluid,
elastometric skin,
electrodes,
thermistor

3.2 mV, 36.5 Pa,
0.37 Pa, 0.1 °C, 0.001°C/
s resolution, withstand
up to 50N, UDP,
PCAN-PCI, and
SPI USB

Tactile GCN, CNN,
and LSTM
(Garcia-Garcia
et al. (2019); Mi
et al. (2021)

Multiple sensing
capabilities

Complex
installation
procedure and
limited surface

FlexiForce
(Tekscan (2014)

Piezoresistive Force .02 mm thickness
and variable area

3% accuracy, −40 °C–60
°C, up to 30kN,
and USB

N/A Flexible,
distributed, and
force sensing

Commercial

(Kim et al. (2020),
2020

Air pressure Pressure array Silicone base and
air pressure
sensing module

1Pa resolution,
distributed, I2C, and
CAN BUS

CNN Distributed Complex
installation
procedure

(Tenzer et al.
(2014)), 2014

Barometric Pressure array 5 × 3 × 1.2 mm
and MEMS
transducer
covered by rubber

50–115 kPa range,
0.01 N sensitivity,
distributed, I2C,
and USB

SVM (Wan et al.
(2016)

Distributed High precision
and force
saturation

FingerVision
(Zhang et al.
(2018), 2018

Optical Tactile image Fish-eye camera
and elastomer gel
with markers

15 FPS ConvLSTM, LSTM
(Zhang et al. (2018);
Zhang et al. (2020)

High resolution
and deformable

Bulky and
limited surface
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FingerVision sensor, achieving 98.5% accuracy. Kim et al. (2020)
used a simple DNN to linearize tactile information, which was then
used to optimize the proposed torque control scheme. Calandra
et al. (2018) compared tactile only and vision + tactile information
to improve grasping; tactile and visual images were fed to ResNet,
and multi-layer perceptron evaluated grasp success stability. Li
et al. (2018b) proposed a similar architecture with the GelSight
tactile sensor + vision on pre-trained networks with LSTM and an
FC layer to detect slip during grasping, showing how multimodal
inputs can, in general, improve grasp stability and avoid slippage.
A graph convolutional network acquiring tactile data from the
BioTac was proposed in both Garcia-Garcia et al. (2019) and Mi
et al. (2021) to predict grasp stability; this method can, in general,
outperform LSTM and SVM, but both papers show that the higher
the graph connectivity, the lower the accuracy.

3 Trends and challenges

In this section, we discuss the trends and challenges on grasping
benchmarks, tactile sensors, and learning-based soft gripping.

A. Learning-based grasping pose generation

Several 3D grasping sampling benchmarks emerged with the help
of learning-based 3D segmentation benchmarks. The current
development of learning-based grasping pose generation provides
advantages of adaptability to novel objects and various gripper
configurations. However, the success rate is still not reliable
enough to be implemented in the real world, and manual feature
engineering is still needed to generalize to unknown objects. We can
see trends of the fusion of traditional approaches with an empirical
approach to address the grasping quality evaluation. Grasping from
the clustered environment remains a challenge as non-prehensile
primitive actions (Zeng et al., 2018) are involved to decouple the
occluded objects. Moreover, multimodal perception data (Saito et al.,
2021) have been used besides vision to provide broader coverage
regarding the grasping stability. However, grasping tagged on
reinforcement learning demonstrates the tendency to become
computationally lightweight, free from overfitting, simplified, and
more collision aware. Last but not least, how to enrich training
datasets using synthetic simulation data still remains a research
challenge.

B. Tactile sensors and grasping

The literature shows that tactile sensors are being developed
with Minimal, Resilient, Distributed and Information Dense Design
as guiding principles (Cannata et al., 2008; Mittendorfer and Cheng,
2011; Zimmer et al., 2019; Wan et al., 2020). This is to improve the
hardware and software implementation and provide meaningful
information regarding the contact. The main limitations of these
sensors are bulky designs, complex integration, and costs. The main
advantage is in providing rich multimodal information in an
occluded situation or when the visual input is not sufficient.
Vision-based tactile sensors are becoming increasingly popular as
tactile images are a rich kind of information that can be successfully
used in machine learning.

Grasping is intrinsically variable due to variations in the
target pose and position, the grasping hardware and software,
and the external environment (Wan et al., 2016). Adopting
successful grasping policies is the challenge that tactile
machine learning is successfully attempting to solve. SVM is a
typical approach that has been successfully implemented to
predict grasping stability (Schill et al., 2012; Wan et al., 2016;
Cockbum et al., 2017; Li et al., 2018b) with acceptable accuracy
but limited generalizability. Traditional CNNs have been
proposed in Li et al. (2018b), Calandra et al. (2018), and
Lambeta et al. (2021) for various applications, such as tactile
image classification, which can be useful in various scenarios.
Novel and efficient use of GCN is shown in Zhang et al. (2018)
and Zhang et al. (2020) despite limited generalizability and a
trade-off in size and accuracy. LSTM networks have been
successfully proposed for grasp detection, stability, and slip
detection (Schill et al., 2012; Li et al., 2018b; Zhang et al.,
2018; Zhang et al., 2020) in various scenarios and
applications. CNNs have also been used together with LSTM
for grasping stability (Garcia-Garcia et al., 2019). Overall, the
review shows that LSTM is the most promising class of DNNs for
tactile sensors, as sequences of tactile images provide more
insightful and usable data. There is a little known work on
contact wrenches and torsional and tangential force
interpretation (Zhang et al., 2020) with either DNNs or
traditional algorithms. This has a high potential to improve
grasping stability and force-closure estimation.

Overall, machine learning and tactile technologies are still being
heavily researched; however, tactile sensors are becoming cheaper
and more readily available, and a few valid design principles and
trends have been identified such as Minimal and Resilient Design,
Distributed, and Information Dense. On the other hand, ML
applications with tactile technology are still at an exploratory
stage, with no clear dominant market trend or approach. This
shows that the technology is still not yet industry ready and is
quite immature, which leaves room for further research and
improvement toward more reliable and accurate solutions.

C. Learning-based soft gripping

Deep learning and deep reinforced learning have dominated
the recent research to train the soft grippers for successful grasp
and object detection. However, the soft grippers used for
training are usually not state-of-the-art design architectures.
Cable-driven underactuated soft grippers and adaptive soft
grippers are still the trends in this field. In the future, a more
functional soft gripper with versatile grasping capabilities
should be used for smart grasping operations. Furthermore,
most of the research employed very mature algorithms,
such as LSTM, for tactile-based sensing and CNN for vision-
based sensing. The development of more specific algorithms for
soft grippers is necessary to fully utilize the advantages of the
soft grippers. Moreover, to extend the sensing capabilities and
enable more precise grasping, various sensors, such as force
sensors, strain sensors, and vision systems, need to be further
developed and integrated into the soft grippers. With more
features from the sensors, object detection can have higher
accuracy.

Frontiers in Robotics and AI frontiersin.org10

Xie et al. 10.3389/frobt.2023.1038658

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2023.1038658


4 Conclusion

In this study, we first conducted a literature survey on data-
driven 3-day benchmarks and grasping pose sampling algorithms.
After that, grasping evaluation metrics and deep learning-based
grasping pose detection were discussed. The comparison results
showed that the learning-based approach performs quite well in
terms of grasping unknown objects. In terms of the success rate of
grasping, the current learning-based methods fail to achieve a
reliable percentage for real-world-ready products and are not yet
ready for production line deployment. Finally, we did see trends in
the development of tactile sensors and soft gripping technology to
improve grasping stability. Some recent work has been carried out
on learning-based grasping with tactile feedback, and we could see
that more compatible robotic sensors have emerged. A clear finding
is that a successful and effective solution is the combination of the
right problem statement with suitable hardware and the proper AI-
enabled algorithm. With the findings regarding the current
technologies and research trends, the current challenges of
learning-based grasping pose generation, tactile sensing, and soft
gripping are proposed. We expect future works will focus on
multimodal deep learning with various supplementary grasping
proprioceptive and exteroceptive information.

Author contributions

ZX contributed to most parts of the paper; CR contributed to the
study on the tactile sensors and learning for tactile sensors; and XL
contributed to the reviews of soft gripping and learning methods.

Funding

This research was supported by the Advanced Remanufacturing
and Technology Center under Project No. C22-05-ARTC for AI-
Enabled Versatile Grasping and Robotic HTPO Seed Fund (Award
C211518007).

Acknowledgments

The authors thank their colleagues and ARTC industry
members who provided insight and expertise that greatly assisted
the research.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdi, H., and Williams, L. J. (2010). Principal component analysis. Wiley
Interdiscip. Rev. Comput. Stat. 2 (4), 433–459. doi:10.1002/wics.101

Brock, A., Lim, T., and Ritchie, J. M. (2016). Generative and discriminative voxel
modeling with convolutional neural networks. eprint arXiv:1608.04236.

Al-Handarish, Y., Omishore, O., and Igbe, T. (2020). A survey of tactile-sensing
systems and their applications in biomedical engineering. Adv. Mater. Sci. Eng. 2020.
doi:10.1155/2020/4047937

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep
reinforcement learning: A brief survey. IEEE Signal Process. Mag. 34 (6), 26–38. doi:10.
1109/msp.2017.2743240

Asif, U., Bennamoun, M., and Sohel, F. A. (2017). RGB-D object recognition and
grasp detection using hierarchical cascaded forests. IEEE Trans. Robotics 33 (3),
547–564. doi:10.1109/tro.2016.2638453

Asif, U., Bennamoun, M., and Sohel, F. A. (2017). RGB-D object recognition and
grasp detection using hierarchical cascaded forests. IEEE Trans. Robot. 33 (3), 547–564.
doi:10.1109/tro.2016.2638453

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., et al. (2015).
ShapeNet: An information-rich 3d model repository. arXiv preprint.

Ayoobi, H., Kasaei, H., Cao, M., Verbrugge, R., Verheij, B. J. R., and Systems, A.
(2022). Local-HDP: Interactive open-ended 3D object category recognition in real-
time robotic scenarios. Rob. Auton. Syst. 147, 103911. doi:10.1016/j.robot.2021.
103911

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2018).”
Learning synergies between pushing and grasping with self-supervised deep
reinforcement learning," in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, October 1-5, 2018, 4238–4245.

Baldini, G., Albini, A., Maiolino, P., and Cannata, G. (2022). An atlas for the inkjet
printing of large-area tactile sensors. Sensors 22 (6), 2332. doi:10.3390/s22062332

Bednarek, M., Kicki, P., Bednarek, J., and Walas, K. J. E. (2021). Gaining a sense of
touch object stiffness estimation using a soft gripper and neural networks. Electronics 10
(1), 96. doi:10.3390/electronics10010096

Bekiroglu, Y., Laaksonen, J., Jorgensen, J. A., Kyrki, V., and Kragic, D. J. (2011).
Assessing grasp stability based on learning and haptic data. Assess. grasp Stab. based
Learn. haptic data 27 (3), 616–629. doi:10.1109/tro.2011.2132870

Berscheid, L., Meißner, P., and Kröger, T. (2019). “Robot learning of shifting objects
for grasping in cluttered environments,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Macau, SAR, China, November 3-8, 2019,
612–618.

Besl, P. J., and McKay, N. D. (1992). Method for registration of 3-D shapes. Sens.
fusion IV control paradigms data Struct. 1611, 586–606.

Bohg, J., Morales, A., Asfour, T., and Kragic, D. (2013). Data-driven grasp
synthesis—A survey. IEEE Trans. Robotics 30 (2), 289–309. doi:10.1109/tro.2013.
2289018

Boularias, A., Bagnell, J. A., and Stentz, A. (2015). “Learning to manipulate unknown
objects in clutter by reinforcement,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence, Hyatt Regency Austin, Texas, USA, January 25–30, 2015.

Wu, B., Akinola, I., Varley, J., and Allen, P. (2019). Mat: Multi-fingered adaptive
tactile grasping via deep reinforcement learning. arXiv preprint.

Calandra, R., Owens, A., Jayaraman, D., Lin, J., Yuan, W., Malik, J., et al. (2018). More
than a feeling: Learning to grasp and regrasp using vision and touch. IEEE Robot.
Autom. Lett. 3 (4), 3300–3307. doi:10.1109/lra.2018.2852779

Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., and Dollar, A. M. (2015).
“The ycb object and model set: Towards common benchmarks for manipulation
research,” in 2015 international conference on advanced robotics (ICAR), Istanbul,
Turkey, July 27-31, 2015, 510–517.

Cannata, G., Maggiali, M., Metta, G., and Sandini, G. (2008). “An embedded artificial
skin for humanoid robots,” in 2008 IEEE International conference on multisensor
fusion and integration for intelligent systems, Seoul, Korea, August 20-22, 2008,
434–438.

Cao, H., Fang, H.-S., Liu, W., and Lu, C. (2021). Suctionnet-1billion: A large-scale
benchmark for suction grasping. IEEE Robtics Automation Lett. 6 (4), 8718–8725.
doi:10.1109/lra.2021.3115406

Frontiers in Robotics and AI frontiersin.org11

Xie et al. 10.3389/frobt.2023.1038658

https://doi.org/10.1002/wics.101
https://doi.org/10.1155/2020/4047937
https://doi.org/10.1109/msp.2017.2743240
https://doi.org/10.1109/msp.2017.2743240
https://doi.org/10.1109/tro.2016.2638453
https://doi.org/10.1109/tro.2016.2638453
https://doi.org/10.1016/j.robot.2021.103911
https://doi.org/10.1016/j.robot.2021.103911
https://doi.org/10.3390/s22062332
https://doi.org/10.3390/electronics10010096
https://doi.org/10.1109/tro.2011.2132870
https://doi.org/10.1109/tro.2013.2289018
https://doi.org/10.1109/tro.2013.2289018
https://doi.org/10.1109/lra.2018.2852779
https://doi.org/10.1109/lra.2021.3115406
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2023.1038658


Goldfeder, C., Ciocarlie, M., Dang, H., and Allen, P. K. (2009)”. The columbia grasp
database,” in 2009 IEEE international conference on robotics and automation, Kobe,
Japan, May 12 - 17, 2009, 1710–1716.

Chao, Y.-W., Yang, W., Xiang, Y., Molchanov, P., Handa, A., Wyk, K. V., et al. (2021).
“DexYCB: A benchmark for capturing hand grasping of objects,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19-25 June 2021,
9044–9053.

Chitta, S., Jones, E. G., Ciocarlie, M., and Hsiao, K. (2012). Mobile manipulation in
unstructured environments: Perception, planning, and execution. IEEE Robtics
Automation Mag. Special Issue Mob. Manip. 19 (2), 58–71. doi:10.1109/mra.2012.
2191995

Choi, C., Schwarting, W., DelPreto, J., and Rus, D. (2018). Learning object grasping
for soft robot hands. IEEE Robotics Automation Lett. 3 (3), 2370–2377. doi:10.1109/lra.
2018.2810544

Cockbum, D., Roberge, J.-P., Maslyczyk, A., and Duchaine, V. (2017). “Grasp stability
assessment through unsupervised feature learning of tactile images,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), Singapore, May 29 -
June 3, 2017, 2238–2244.

Dahiya, R. S., and Valle, M. (2008). “Tactile sensing for robotic applications,” in
Sensors: Focus on tactile, force and stress sensors (London, UK: IntechOpen), 298–304.

De Barrie, D., Pandya, M., Pandya, H., Hanheide, M., and Elgeneidy, K. (2021). A
deep learning method for vision based force prediction of a soft fin ray gripper using
simulation data. Front. Robotics AI 104, 631371. doi:10.3389/frobt.2021.631371

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. (2005). A tutorial on the
cross-entropy method. Ann. Operations Res. 134 (1), 19–67. doi:10.1007/s10479-005-
5724-z

de Souza, J. P. C., Rocha, L. F., Oliveira, P. M., Moreira, A. P., Boaventura-Cunha,
J. J. R., andManufacturing, C.-I. (2021). Robotic grasping: Fromwrench space heuristics
to deep learning policies. Robot. Comput. Integr. Manuf. 71, 102176. doi:10.1016/j.rcim.
2021.102176

Della Santina, C., Arapi, V., Averta, G., Damiani, F., Fiore, G., Settimi, A., et al. (2019).
Learning from humans how to grasp: A data-driven architecture for autonomous
grasping with anthropomorphic soft hands. IEEE Robot. Autom. Lett. 4 (2), 1533–1540.
doi:10.1109/lra.2019.2896485

Deng, L., Shen, Y., Fan, G., He, X., Li, Z., and Yuan, Y. (2022). Design of a soft gripper
with improved microfluidic tactile sensors for classification of deformable objects. IEEE
Robot. Autom. Lett. 7 (2), 5607–5614. doi:10.1109/lra.2022.3158440

Deng, Y., Guo, X.,Wei, Y., Lu, K., Fang, B., Guo, D., et al. (2019). “Deep reinforcement
learning for robotic pushing and picking in cluttered environment,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Macau, SAR,
China, November 3-8, 2019, 619–626.

Detry, R., Kraft, D., Kroemer, O., Bodenhagen, L., Peters, J., Kruger, N., et al. (2011).
Learning grasp affordance densities. Paladyn, J. Behav. Robotics 2 (1), 1–17. doi:10.2478/
s13230-011-0012-x

Dhillon, A., and Verma, G. K. J. P. i. A. I. (2020). Convolutional neural network: A
review of models, methodologies and applications to object detection. Prog. Artif. Intell.
9 (2), 85–112. doi:10.1007/s13748-019-00203-0

Maturana, D., and Scherer, S. (2015). “VoxNet: A 3d convolutional neural network for
real-time object recognition,” in 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), Hamburg, Germany, 28 September - 3 October 2015.
922–928.

Morrison, D., Corke, P., and Leitner, J. (2018). Closing the loop for robotic grasping:
A real-time, generative grasp synthesis approach. arXiv preprint.

Du, G., Wang, K., Lian, S., and Zhao, K. J. A. I. R. (2021). Vision-based robotic
grasping from object localization, object pose estimation to grasp estimation for parallel
grippers: A review. Artif. Intell. Rev. 54 (3), 1677–1734. doi:10.1007/s10462-020-
09888-5

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., et al.
(2020). 3d morphable face models—Past, present, and future. ACM Trans. Graph. 39
(5), 1–38. doi:10.1145/3395208

Elgeneidy, K., Neumann, G., Jackson, M., and Lohse, N. (2018). Directly printable
flexible strain sensors for bending and contact feedback of soft actuators. Front. Robotics
AI 2, 2. doi:10.3389/frobt.2018.00002

Ergene, M. C., and Durdu, A. (2017). “Robotic hand grasping of objects classified by
using support vector machine and bag of visual words,” in 2017 International Artificial
Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16-
17 September 2017, 1–5.

Fang, H.-S., Wang, C., Gou, M., and Lu, C. (2020). “Graspnet-1billion: A large-scale
benchmark for general object grasping,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, Seattle, WA, USA, June 13 2020 to June
19 2020, 11444–11453.

Fischinger, D., and Vincze, M. (2012). “Empty the basket-a shape based learning
approach for grasping piles of unknown objects,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, October
7-12, 2012, 2051–2057.

Fischinger, D., Vincze, M., and Jiang, Y. (2013). “Learning grasps for unknown objects
in cluttered scenes,” in 2013 IEEE international conference on robotics and automation,
Karlsruhe, Germany, Held 6-10 May 2013, 609–616.

Jeremy, F., Gary, L., Gerald, L., and Peter, B. (2013). Biotac product manual. Available:
https://www.syntouchinc.com/wp-content/uploads/2018/08/BioTac-Manual-V.21.pdf.

Liu, F., Fang, B., Sun, F., Li, X., Sun, S., and Liu, H. (2022). Hybrid robotic grasping
with a soft multimodal gripper and a deep multistage learning scheme. arXiv preprint.

Fonseca, E., Favory, X., Pons, J., Font, F., and Serra, X. (2021). FSD50k: An open
dataset of human-labeled sound events. IEEE/ACM Trans. Audio, Speech, Lang. Process.
30, 829–852. doi:10.1109/taslp.2021.3133208

Garcia-Garcia, A., Zapata-Impata, B. S., Orts-Escolano, S., Gil, P., and Garcia-
Rodriguez, J. (2019). “TactileGCN: A graph convolutional network for predicting
grasp stability with tactile sensors,” in 2019 International Joint Conference on
Neural Networks (IJCNN), Budapest. Submission Deadline, Dec 15, 2018, 1–8.

Gkioxari, G., Malik, J., and Johnson, J. (2019). “Mesh R-CNN,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, Oct. 27 2019 to
Nov. 2 2019, 9785–9795.

Grella, F., Baldini, G., Canale, R., Sagar, K., Wang, S. A., Albani, A., et al. (2021). “A
tactile sensor-based architecture for collaborative assembly tasks with heavy-duty
robots,” in 2021 20th International Conference on Advanced Robotics (ICAR),
Ljubljana, Slovenia, 06-10 December 2021, 1030–1035.

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., and Schaal, S.
(2012). “Template-based learning of grasp selection,” in 2012 IEEE international
conference on robotics and automation, St Paul, Minnesota, USA, 14-18 May 2012,
2379–2384.

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., et al. (2014).
Learning of grasp selection based on shape-templates. Auton. Robots 36 (1), 51–65.
doi:10.1007/s10514-013-9366-8

Fang, H., Fang, H.-S., Xu, S., and Lu, C. (2022). TransCG: A large-scale real-world
dataset for transparent object depth completion and grasping. ArXiv preprint.

Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A., and Iida, F. (2016). Soft
manipulators and grippers: A review. Front. Robotics AI 3, 69. doi:10.3389/frobt.2016.
00069

Huang, I., Nagaraj, Y., Eppner, C., and Sundarlingam, B. (2021). Defgraspsim:
Simulation-based grasping of 3d deformable objects.arXiv.

Irshad, M. Z., Zakharov, S., Ambrus, R., Kollar, T., Kira, Z., and Gaidon, A. (2022).
“ShAPO: Implicit representations for multi-object shape, appearance, and pose
optimization,” in Computer vision – eccv 2022 (Cham: Springer Nature Switzerland),
275–292.

Jiang, D., Li, G., Sun, Y., Hu, J., Yun, J., and Liu, Y. (2021). Manipulator grabbing
position detection with information fusion of color image and depth image using deep
learning. J. Ambient. Intell. Humaniz. Comput. 12 (12), 10809–10822. doi:10.1007/
s12652-020-02843-w

Jiang, P., Oaki, J., Ishihara, Y., Ooga, J., Han, H., Sugahara, A., et al. (2022).
Learning suction graspability considering grasp quality and robot reachability for
bin-picking. Orig. Res. 16. doi:10.3389/fnbot.2022.806898

Jiang, Y., Moseson, S., and Saxena, A. (2011). “Efficient grasping from RGB-D images:
Learning using a new rectangle representation,” in 2011 IEEE International conference
on robotics and automation, Shanghai, China, 9-13 May 2011, 3304–3311.

Jiao, C., Lian, B., Wang, Z., Song, Y., and Sun, T. (2020). Visual–tactile object
recognition of a soft gripper based on faster Region-based Convolutional Neural
Network and machining learning algorithm. Int. J. Adv. Robotic Syst. 17 (5),
172988142094872. doi:10.1177/1729881420948727

Liang, J., and Boularias, A. J. (2022). Learning category-level manipulation tasks from
point clouds with dynamic graph CNNs. arXiv.

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., et al. (2017). Dex-net 2.0:
Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. arXiv preprint.

Reinecke, J., Dietrich, A., Schmidt, F., and Chalon, M. (2014).” Experimental
comparison of slip detection strategies by tactile sensing with the BioTac® on the
DLR hand arm system,” in 2014 IEEE international Conference on Robotics and
Automation (ICRA), Hong Kong, China, 31 May - 7 June 2014, 2742

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., et al. (2018).
“Scalable deep reinforcement learning for vision-based robotic manipulation,” in
Conference on Robot Learning, New Zealand, December 14 to 18, 2022, 651–673.

Kappler, D., Bohg, J., and Schaal, S. (2015). “Leveraging big data for grasp planning,”
in 2015 IEEE international conference on robotics and automation (ICRA), Seattle,
Washington, USA, 26-30 May 2015, 4304–4311.

Katyara, S., Deshpande, N., Ficuciello, F., Chen, F., Siciliano, B., and Caldwell, D. G.
(2021). Fusing visuo-tactile perception into kernelized synergies for robust grasping and
fine manipulation of non-rigid objects. Comput. Sci. Eng. - Sci. Top. 2021.

Katz, D., Venkatraman, A., Kazemi, M., Bagnell, J. A., and Stentz, A. J. A. R. (2014).
Perceiving, learning, and exploiting object affordances for autonomous pile
manipulation. Auton. Robots 37 (4), 369–382. doi:10.1007/s10514-014-9407-y

Frontiers in Robotics and AI frontiersin.org12

Xie et al. 10.3389/frobt.2023.1038658

https://doi.org/10.1109/mra.2012.2191995
https://doi.org/10.1109/mra.2012.2191995
https://doi.org/10.1109/lra.2018.2810544
https://doi.org/10.1109/lra.2018.2810544
https://doi.org/10.3389/frobt.2021.631371
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1016/j.rcim.2021.102176
https://doi.org/10.1016/j.rcim.2021.102176
https://doi.org/10.1109/lra.2019.2896485
https://doi.org/10.1109/lra.2022.3158440
https://doi.org/10.2478/s13230-011-0012-x
https://doi.org/10.2478/s13230-011-0012-x
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1007/s10462-020-09888-5
https://doi.org/10.1007/s10462-020-09888-5
https://doi.org/10.1145/3395208
https://doi.org/10.3389/frobt.2018.00002
https://www.syntouchinc.com/wp-content/uploads/2018/08/BioTac-Manual-V.21.pdf
https://doi.org/10.1109/taslp.2021.3133208
https://doi.org/10.1007/s10514-013-9366-8
https://doi.org/10.3389/frobt.2016.00069
https://doi.org/10.3389/frobt.2016.00069
https://doi.org/10.1007/s12652-020-02843-w
https://doi.org/10.1007/s12652-020-02843-w
https://doi.org/10.3389/fnbot.2022.806898
https://doi.org/10.1177/1729881420948727
https://doi.org/10.1007/s10514-014-9407-y
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2023.1038658


Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N. (2017). “SSD-6d: Making
RGB-based 3d detection and 6d pose estimation great again,” in Proceedings of the IEEE
international conference on computer vision, Venice, Italy, 22-29 October 2017,
1521–1529.

Kim, D., Lee, J., Chung, W.-Y., and Lee, J. J. S. (2020). Artificial intelligence-based
optimal grasping control. Sensors (Basel). 20 (21), 6390. doi:10.3390/s20216390

Kopicki, M., Detry, R., Schmidt, F., Borst, C., Stolkin, R., and Wyatt, J. L. (2014).
“Learning dexterous grasps that generalise to novel objects by combining hand and
contact models,” in 2014 IEEE international conference on robotics and automation
(ICRA), Hong Kong, China, Held 31 May - 7 June 2014, 5358–5365.

Krull, A., Brachmann, E., Michel, F., Yang, M. Y., Gumhold, S., and Rother, C. (2015).
“Learning analysis-by-synthesis for 6D pose estimation in RGB-D images,” in
Proceedings of the IEEE international conference on computer vision, Santiago,
Chile, Held 7-13 December 2015, 954–962.

Kumra, S., and Kanan, C. (2017). “Robotic grasp detection using deep convolutional
neural networks,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, September 24 - 1, 2017, 769–776.

Lai, K., Bo, L., Ren, X., and Fox, D. (2011). “A large-scale hierarchical multi-view
RGB-D object dataset,” in 2011 IEEE international conference on robotics and
automation, Shangai, China, May 9, 2011- May 13, 2011, 1817–1824.

Lambeta, M., Chou, P. W., Tian, S., Yang, B., Maloon, B., Most, V. R., et al. (2020).
Digit: A novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation. IEEE Robot. Autom. Lett. 5 (3), 3838–3845.
doi:10.1109/lra.2020.2977257

Lambeta, M., Xu, H., Xu, J., Chou, P.W.,Wang, S., Darrell, T., et al. (2021). “PyTouch:
A machine learning library for touch processing,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May 2021 -
05 June 2021, 13208–13214.

Lenz, I., Lee, H., and Saxena, A. (2015). Deep learning for detecting robotic grasps. Int.
J. Robotics Res. 34 (4-5), 705–724. doi:10.1177/0278364914549607

Levine, S., Pastor, P., Krizhevsky, A., and Ibarz, J. (2018). Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
Sage J. 37 (4-5), 421–436. doi:10.1177/0278364917710318

Li, J., Dong, S., and Adelson, E. (2018). “Slip detection with combined tactile and
visual information,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia, 21-25 May 2018, 7772–7777.

Li, P., Chen, X., and Shen, S. (2019). “Stereo R-CNN based 3d object detection for
autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, June 15 2019 to June
20 2019, 7644–7652.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B. (2018). PointCNN: Convolution
on x-transformed points. Adv. Neural Inf. Process. Syst. 31.

Liang, H., Ma, X., Li, S., Gorner, M., Tang, S., Fang, B., et al. (2019). “Pointnetgpd:
Detecting grasp configurations from point sets,” in 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20-24May 2019, 3629–3635.

Liu, Y., Jiang, D., Tao, B., Qi, J., Jiang, G., Yun, J., et al. (2022). Grasping posture of
humanoid manipulator based on target shape analysis and force closure. Alexandria
Eng. J. 61 (5), 3959–3969. doi:10.1016/j.aej.2021.09.017

Liu, Z., Liu, W., Qin, Y., Xiang, F., Gou, M., Xin, S., et al. (2021). Ocrtoc: A cloud-
based competition and benchmark for robotic grasping and manipulation. IEEE Robtics
Automation Lett. 7 (1), 486–493. doi:10.1109/lra.2021.3129136

Yang, L., Han, X., Guo, W., and Zhang, Z. (2020). Design of an optoelectronically
innervated gripper for rigid-soft interactive grasping. arXiv.

Mahler, J., Malt, M., Satish, V., Danielczuk, M., Derose, B., Mckinely, S., et al. (2019).
Learning ambidextrous robot grasping policies. Sci. Robotics 4 (26), eaau4984. doi:10.
1126/scirobotics.aau4984

Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., and Goldberg, K. (2018). “Dex-net 3.0:
Computing robust vacuum suction grasp targets in point clouds using a new analytic
model and deep learning,” in 2018 IEEE International Conference on robotics and
automation (ICRA), Brisbane, Australia, Held 21-25 May 2018, 5620–5627.

Betancourt, M. (2017). A conceptual introduction to HamiltonianMonte Carlo. arXiv
preprint no. 02434.

Mi, T., Que, D., Fang, S., Zhou, Z., Ye, C., Liu, C., et al. (2021). “Tactile grasp stability
classification based on graph convolutional networks,” in 2021 IEEE International
Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15-19 July
2021, 875–880.

Miften, F. S., Diykh, M., Abdulla, S., Siuly, S., Green, J. H., and Deo, R. C. (2021). A
new framework for classification of multi-category hand grasps using EMG signals.
Artif. Intell. Med. (2017). 112, 102005. doi:10.1016/j.artmed.2020.102005

Miller, A. T., and Allen, P. K. (2004). GraspIt!. IEEE Robtics Automation Mag. 11 (4),
110–122. doi:10.1109/mra.2004.1371616

Mittendorfer, P., and Cheng, G. (2011). Humanoid multimodal tactile-sensing
modules. IEEE Trans. Robotics 27 (3), 401–410. doi:10.1109/tro.2011.2106330

Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., et al. (2019). “Partnet: A
large-scale benchmark for fine-grained and hierarchical part-level 3d object
understanding,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, Long Beach, CA, USA, June 15 2019 to June 20 2019, 909–918.

Mousavian, A., Eppner, C., and Fox, D. (2019). “6-dof graspnet: Variational grasp
generation for object manipulation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Korea, Oct. 27 2019 to Nov. 2 2019, 2901–2910.

Murali, A., Li, Y., Gandhi, D., and Gupta, A. (2018). “Learning to grasp without
seeing,” in International symposium on experimental robotics (Germany: Springer),
375–386.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017). Bridging the gap
between value and policy based reinforcement learning. Adv. Neural Inf. Process.
Syst. 30.

Nguyen, V.-D. (1988). Constructing force- closure grasps. Int. J. Robotics Res. 7 (3),
3–16. doi:10.1177/027836498800700301

Kuppuswamy, N., Alspach, A., Uttamchandani, A., Creasey, S., Ikeda, T., and
Tedrake, R. (2020).” Soft-bubble grippers for robust and perceptive manipulation,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 24 October 2020- 24 January 2021, 9917–9924.

Pelossof, R., Miller, A., Allen, P., and Jebara, T. (2004). “An SVM learning approach to
robotic grasping,” in IEEE International Conference on Robotics and Automation,
2004, New Orleans, LA, USA, April 26 - May 1, 2004, 3512–3518.

Pinto, L., and Gupta, A. (2016). Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours,” in 2016 IEEE international conference on robotics and
automation (ICRA), Stockholm, Sweden, May 16 - 21, 2016, 3406–3413.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). “PointNet: Deep learning on point
sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Honolulu, HI, USA, July 21 2017 to July
26 2017, 652–660.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). PointNet++: Deep hierarchical feature
learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30.

Quillen, D., Jang, E., Nachum, O., Finn, C., Ibarz, J., and Levine, S. (2018). “Deep
reinforcement learning for vision-based robotic grasping: A simulated comparative
evaluation of off-policy methods,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, Australia, Held 21-25 May 2018, 6284–6291.

Richtsfeld, A., Mörwald, T., Prankl, J., Zillich, M., and Vincze, M. (2012).
“Segmentation of unknown objects in indoor environments,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vilamoura, Algarve,
Portugal, October 7-12, 2012, 4791–4796.

Roa, M. A., and Suárez, R. (2015). Grasp quality measures: Review and performance.
Aut. Robots 38 (1), 65–88. doi:10.1007/s10514-014-9402-3

Rodriguez, A., Mason, M. T., and Ferry, S. (2012). From caging to grasping. Int.
J. Robotics Res. 31 (7), 886–900. doi:10.1177/0278364912442972

Rus, D., and Tolley, M. T. (2015). Design, fabrication and control of soft robots.
Nature 521 (7553), 467. doi:10.1038/nature14543

Saito, D., Sasabuchi, K., Wake, N., Takamatsu, J., Koike, H., and Ikeuchi, K. J. (2022).
“Task-grasping from human demonstration,” in 2022 IEEE-RAS 21st International
Conference on Humanoid Robots (Humanoids), Ginowan, Japan, 28-30 November
2022.

Saito, N., Ogata, T., Funabashi, S., Mori, H., Sugano, S. J. I. R., and Letters, A. (2021).
How to select and use tools? Act. Percept. target objects using multimodal deep Learn. 6
(2), 2517–2524. doi:10.1109/lra.2021.3062004

Saxena, A., Driemeyer, J., and Ng, A. Y. (2008). Robotic grasping of novel objects
using vision. Int. J. Robotics Res. 27 (2), 157–173. doi:10.1177/0278364907087172

Schill, J., Laaksonen, J., Przybylski, M., Kyrki, V., Asfour, T., and Dillmann, R. (2012).
“Learning continuous grasp stability for a humanoid robot hand based on tactile
sensing,” in 2012 4th IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics (BioRob), Rome, Italy, 24 - 27 June 2012, 1901–1906.

She, Y., Liu, S. Q., Yu, P., and Adelson, E. (2020). “Exoskeleton-covered soft finger
with vision-based proprioception and tactile sensing,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), Paris, France, May 31 - August 31,
2020, 10075–10081.

Shi, S., Wang, X., and Li, H. (2019). “PointRCNN: 3d object proposal generation and
detection from point cloud,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, Long Beach, CA, USA, June 15 2019 to June 20 2019,
770–779.

Shintake, J., Cacucciolo, V., Floreano, D., and Shea, H. (2018). Soft robotic grippers.
Adv. Mater. 30 (29), 1707035. doi:10.1002/adma.201707035

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., et al. (2020).
Wearable and stretchable strain sensors: Materials, sensing mechanisms, and
applications. Adv. Intell. Syst. 2 (8), 2000039. doi:10.1002/aisy.202000039

Stansfield, S. A. (1991). Robotic grasping of unknown objects: A knowledge-based
approach. Int. J. Robotics Res. 10 (4), 314–326. doi:10.1177/027836499101000402

Frontiers in Robotics and AI frontiersin.org13

Xie et al. 10.3389/frobt.2023.1038658

https://doi.org/10.3390/s20216390
https://doi.org/10.1109/lra.2020.2977257
https://doi.org/10.1177/0278364914549607
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1016/j.aej.2021.09.017
https://doi.org/10.1109/lra.2021.3129136
https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.1016/j.artmed.2020.102005
https://doi.org/10.1109/mra.2004.1371616
https://doi.org/10.1109/tro.2011.2106330
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1177/0278364912442972
https://doi.org/10.1038/nature14543
https://doi.org/10.1109/lra.2021.3062004
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1002/adma.201707035
https://doi.org/10.1002/aisy.202000039
https://doi.org/10.1177/027836499101000402
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2023.1038658


Subad, R. A. S. I., Cross, L. B., and Park, K. J. A. M. (2021). Soft Robotic Hands Tactile
Sensors Underw. Robotics 2 (2), 356–382.

Tekscan (2014). Force sensors. Available: https://tekscan.com/force-sensors.

ten Pas, A., Gualtieri, M., Saenko, K., and Platt, R. (2017). Grasp pose detection in
point clouds. Int. J. Robotics Res. 36 (13-14), 1455–1473. doi:10.1177/
0278364917735594

Tenzer, Y., Jentoft, L. P., Howe, R. D. J. I. R., and Magazine, A. (2014). The feel of
MEMS barometers: Inexpensive and easily customized tactile array sensors. IEEE Robot.
Autom. Mag. 21 (3), 89–95. doi:10.1109/mra.2014.2310152

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., and Pollefeys, M.
(2017). Semantic3d.Net: A new large-scale point cloud classification benchmark. ArXiv
preprint.

Thomas, J., Loianno, G., Sreenath, K., and Kumar, V. (2014). “Toward image based
visual servoing for aerial grasping and perching,” in 2014 IEEE international conference
on robotics and automation (ICRA), Hong Kong, China, 31 May - 7 June 2014,
2113–2118.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017).
“Domain randomization for transferring deep neural networks from simulation to the
real world,” in 2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS), Vancouver, BC, Canada, September 24 - 1, 2017, 23–30.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., and Heess, N. (2015). Continuous control with
deep reinforcement learning. arXiv preprint no. 02971.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al.
(2013). Playing atari with deep reinforcement learning. arXiv preprint.

Vo, A.-V., Truong-Hong, L., Laefer, D. F., and Bertolotto, M. (2015). Octree-based
region growing for point cloud segmentation. ISPRS J. Photogrammetry Remote Sens.
104, 88–100. doi:10.1016/j.isprsjprs.2015.01.011

Wan, F., Wang, H., Wu, J., Liu, Y., Ge, S., Song, C., et al. (2020). A reconfigurable
design for omni-adaptive grasp learning. IEEE Robotics Automation Lett. 5 (3),
4210–4217. doi:10.1109/LRA.2020.2982059

Wan, Q., Adams, R. P., and Howe, R. D. (2016). “Variability and predictability in
tactile sensing during grasping,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden, May 16 - 21, 2016, 158–164.

Wang, L., Meng, X., Xiang, Y., Fox, D. J. I. R., and Letters, A. (2022). Hierarchical
policies for cluttered-scene grasping with latent plans. IEEE Robot. Autom. Lett. 7 (2),
2883–2890. doi:10.1109/lra.2022.3143198

Wang, S., Lambeta, M., Chou, P.-W., and Calandra, R. (2022). Tacto: A fast, flexible,
and open-source simulator for high-resolution vision-based tactile sensors. IEEE
Robtics Automation Lett. 7 (2), 3930–3937. doi:10.1109/lra.2022.3146945

Wang, X., Kang, H., Zhou, H., Au, W., Chen, C. J. C., and Agriculture, E. i. (2022).
Geometry-aware fruit grasping estimation for robotic harvesting in apple orchards.
Comput. Electron. Agric. 193, 106716. doi:10.1016/j.compag.2022.106716

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019).
Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38 (5), 1–12.
doi:10.1145/3326362

Weisz, J., and Allen, P. K. (2012). “Pose error robust grasping from contact wrench
space metrics,” in 2012 IEEE international conference on robotics and automation, St
Paul, Minnesota, USA, Held 14-18 May 2012, 557–562.

Whitesides, G. M. (2018). Soft robotics. J. Angew. Chem. Int. Ed. 57 (16), 4258–4273.
doi:10.1002/anie.201800907

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., et al. (2015). “3d shapenets: A
deep representation for volumetric shapes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Boston, Massachusetts, USA, Held 7-12 June
2015, 1912–1920.

Xie, Z., Aneeka, S., Lee, Y., and Zhong, Z. (2017). Study on building efficient airspace
through implementation of free route concept in the Manila FIR. Int. J. Adv. Appl. Sci. 4
(12), 10–15. doi:10.21833/ijaas.2017.012.003

Xie, Z., Seng, J. C. Y., and Lim, G. (2022). “AI-enabled soft versatile grasping for high-
mixed-low-volume applications with tactile feedbacks,” in 2022 27th International
Conference on Automation and Computing (ICAC), Bristol, United Kingdom,
September 1-3, 2022, 1–6.

Xie, Z., Somani, N., Tan, Y. J. S., and Seng, J. C. Y. (2021). “Automatic toolpath pattern
recommendation for various industrial applications based on deep learning,” in

2021 IEEE/SICE International Symposium on System Integration, Iwaki, Japan,
January 11-14, 2021, 60–65.

Xie, Z., and Zhong, Z. W. (2016). Changi airport passenger Volume forecasting based
on an artificial neural network. Far East J. Electron. Commun., 2016 163–170. doi:10.
17654/ecsv216163

Xie, Z., and Zhong, Z. W. (2016). Unmanned vehicle path optimization based on
Markov chain Monte Carlo methods. Appl. Mech. Mater. 829, 133–136. doi:10.4028/
www.scientific.net/amm.829.133

Xu, Y., Fan, T., Xu, M., Zeng, L., and Qiao, Y. (2018). “SpideRCNN: Deep learning on
point sets with parameterized convolutional filters,” in Proceedings of the European
Conference on Computer Vision (ECCV), Tel Aviv, Israel, October 23-27, 2022,
87–102.

Yan, G., Schmitz, A., Funabshi, S., Somlor, S., Tomo, T. P., Sugano, S., et al. (2022). A
robotic grasping state perception framework with multi-phase tactile information and
ensemble learning. IEEE Robotics Automation Lett. 7, 6822. doi:10.1109/LRA.2022.
3151260

Yan, X., Hsu, J., Khansari, M., Bai, Y., Patak, A., Gupta, A., et al. (2018). “Learning 6-
dof grasping interaction via deep geometry-aware 3d representations,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
Held 21-25 May 2018, 3766–3773.

Yang, L., Wan, F., Wang, H., Liu, X., Liu, Y., Pan, J., et al. (2020). Rigid-soft interactive
learning for robust grasping. IEEE Robot. Autom. Lett. 5 (2), 1720–1727. doi:10.1109/lra.
2020.2969932

Yen-Chen, L., Florence, P., Barron, J. T., Rodriguez, A., Isola, P., and Lin, T.-Y. (2021).
“inerf: Inverting neural radiance fields for pose estimation,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech
Republic, September 27 - Oct. 1, 2021, 1323–1330.

Yu, B., Chen, C., Wang, X., Yu, Z., Ma, A., and Liu, B. J. E. S. (2021). Prediction of
protein–protein interactions based on elastic net and deep forest. Expert Syst. Appl. 176,
114876. doi:10.1016/j.eswa.2021.114876

Yu, S.-H., Chang, J.-S., and Tsai, C.-H. D. J. S. (2021). Grasp to see—Object
classification using flexion glove with support vector machine. Sensors (Basel). 21
(4), 1461. doi:10.3390/s21041461

Yuan, W., Dong, S., and Adelson, E. H. J. S. (2017). Gelsight: High-resolution robot
tactile sensors for estimating geometry and force. Sensors (Basel). 17 (12), 2762. doi:10.
3390/s17122762

Zhang, Y., Kan, Z., Tse, Y. A., Yang, Y., and Wang, M. Y. (2018). Fingervision tactile
sensor design and slip detection using convolutional lstm network. arXiv preprint.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., et al.
(2020). Big bird: Transformers for longer sequences. Adv. Neural Inf. Process. Syst. 33,
17283–17297.

Zhang, H., Peeters, J., Demeester, E., Kellens, K. J. J. o. I., and Systems, R. (2021). A
CNN-based grasp planning method for random picking of unknown objects with a
vacuum gripper. J. Intell. Robot. Syst. 103 (4), 64–19. doi:10.1007/s10846-021-
01518-8

Zhang, Y., Yuan, W., Kan, Z., and Wang, M. Y. (2020). “Towards learning to detect
and predict contact events on vision-based tactile sensors,” in Conference on Robot
Learning, Nov 14, 2020- Nov 16, 2020, 1395–1404.

Zhen, X., Seng, J. C. Y., and Somani, N. (2019). “Adaptive automatic robot tool path
generation based on point cloud projection algorithm,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza,
Spain, September 10-13, 2019, 341–347.

Zhu, H., Li, Y., and Lin, W. (2020). “Grasping detection network with uncertainty
estimation for confidence-driven semi-supervised domain adaptation,” in 2020 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 24 October 2020- 24 January 2021, 9608–9613.

Zimmer, J., Hellebrekers, T., Asfour, T., Majidi, C., and Kroemer, O. (2019).
“Predicting grasp success with a soft sensing skin and shape-memory actuated
gripper,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Macau, SAR, China, November 3-8, 2019, 7120–7127.

Zuo, R., Zhou, Z., Ying, B., and Liu, X. (2021). “A soft robotic gripper with anti-
freezing ionic hydrogel-based sensors for learning-based object recognition,” in
2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China, May 30 - June 5, 2021, 12164–12169.

Frontiers in Robotics and AI frontiersin.org14

Xie et al. 10.3389/frobt.2023.1038658

https://tekscan.com/force-sensors
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1109/mra.2014.2310152
https://doi.org/10.1016/j.isprsjprs.2015.01.011
https://doi.org/10.1109/LRA.2020.2982059
https://doi.org/10.1109/lra.2022.3143198
https://doi.org/10.1109/lra.2022.3146945
https://doi.org/10.1016/j.compag.2022.106716
https://doi.org/10.1145/3326362
https://doi.org/10.1002/anie.201800907
https://doi.org/10.21833/ijaas.2017.012.003
https://doi.org/10.17654/ecsv216163
https://doi.org/10.17654/ecsv216163
https://doi.org/10.4028/www.scientific.net/amm.829.133
https://doi.org/10.4028/www.scientific.net/amm.829.133
https://doi.org/10.1109/LRA.2022.3151260
https://doi.org/10.1109/LRA.2022.3151260
https://doi.org/10.1109/lra.2020.2969932
https://doi.org/10.1109/lra.2020.2969932
https://doi.org/10.1016/j.eswa.2021.114876
https://doi.org/10.3390/s21041461
https://doi.org/10.3390/s17122762
https://doi.org/10.3390/s17122762
https://doi.org/10.1007/s10846-021-01518-8
https://doi.org/10.1007/s10846-021-01518-8
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2023.1038658

	Learning-based robotic grasping: A review
	1 Introduction
	2 Methods and recent developments
	3 Trends and challenges
	4 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


