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1 Introduction
Lead is a heavy metal element that is very toxic to pollutants. 

It has a large toxic effect on plants and animals, and has adverse 
effects on plant morphology, growth, and photosynthesis (Cao et al., 
2015). The interaction of lead with biomolecules damages the 
animal’s reproductive, nervous, immune, cardiovascular and 
other systems, affecting growth and development. Similarly, lead 
also causes great harm to human health. After entering the body, 
lead is mainly accumulated in bones, arteries, liver, kidneys, 
pancreas and lungs, and can also enter the brain (Singh et al., 
2003; Mushak, 2003). Lead can replace calcium in bone and 
store in bone. It can cause damage to many organs and systems 
such as the central and peripheral nervous system, blood system, 
kidney, cardiovascular system and reproductive system, and 
can cause cognitive abilities and behaviors. Functional changes, 
genetic material damage, apoptosis induction, etc., and have 
certain mutagenicity and carcinogenicity (Silbergeld et al., 2000; 
Fang et al., 2014). The normal upper limit of urine lead in China 
is 0.08 mg/L. Even if a very low amount of lead is taken daily, it 
will accumulate in the body and cause chronic poisoning and 
even carcinogenesis. Lead is more harmful to children and is 
a strong neurophilic poison that affects children’s intelligence, 

behavior, ability, and normal growth and development. Lead can 
also increase the incidence of infants with congenital defects 
(Simon et al., 2007).

As a country with a large population, agriculture is the 
primary industry. Most people in the country rely on rice as 
the main food (Wei & Yang, 2010). With the development of 
social industrialized economy, the problem of heavy metal 
pollution of crops has become a region of great concern. 
Scholars have done a lot of research on the potential risks of 
heavy metals to human health. However, their research fields 
are mostly concentrated in mining areas (Yan  et  al., 2022; 
Cai et al., 2015), sewage irrigation areas (Wang et al., 2017; 
Zeng et al., 2015), and waste treatment plants (Liu et al., 2021; 
Li et al., 2015) and other places. The research objects focus 
on dust reduction (Luo et al., 2022; Mehr et al., 2016), corn 
(Salam et al., 2022; Yu et al., 2017), Vegetables (Jalali & Meyari, 
2022; Chang et al., 2014), drinking water (Giri & Singh, 2015; 
Pan et al., 2022), rice (Zhang et al., 2022; Lu et al., 2022), and 
so on. These studies have conducted in-depth research on the 
accumulation characteristics, physical and chemical properties, 
occurrence forms of heavy metals, and the physiological and 
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biochemical effects of polluted bodies after pollution, laying a 
foundation for further research on the accumulation of heavy 
metals in crops and their effects on human health. However, 
most of these studies are pot experiments under artificially 
controlled conditions, but not many studies have been conducted 
on the accumulation characteristics of heavy metals in rice 
grown in the natural environment. The concept of risk analysis 
and risk assessment first came to the attention of the people 
of China. The 2015 revision of the Food Safety Law of the 
People’s Republic of China clearly defines the responsibilities 
and personnel related to risk assessment in each department. 
So far, China has collected nearly 300 monitoring indicators 
of food biological, physical and chemical viral hazards in 
30 major categories of food every year, preliminarily designed 
and established a national foodborne viral disease monitoring 
database, and collected relevant data of various food production 
and processing, persistent organic chemical pollutants, fungi 
and viruses, heavy metal pollutants, etc.

In recent years, with the rapid development of economy and 
the acceleration of industrialization and urbanization, the growth 
environment of agricultural products such as agricultural land 
and irrigation water has been seriously polluted. Heavy metal 
pollution incidents occur frequently, affecting environmental 
resources, agricultural development and people’s health. This 
article studies the content of heavy metal lead in soil and rice 
and its harm to human health. The soil and rice in some regions 
of Heilongjiang, the largest grain silo in China, were selected for 
testing to understand the pollution status and content of heavy 
metal lead. People in the five regions of Chahayang, Jiansanjiang, 
Fangzheng and Xiangshui passed the risk assessment of lead 
ingestion of rice in the hope of understanding the specific 
situation of lead pollution and the potential health caused by 
rice consumed by residents influences. Analysis of the pollution 
situation can alert us to sustainable development, not just focusing 
on gross national product, but also focusing on environmental 
protection and human health.

2 Research method
2.1 Overview of the study area

Heilongjiang Province is located in the rice-growing 
area with the northernmost latitude. It has large temperature 
difference between day and night, fertile soil, excellent water 
quality and low pollution. It is conducive to the development of 
rice production. Heilongjiang rice production is now entering 
a new era of high quality, high efficiency and professionalism. 
Due to stable production, excellent rice quality and high 
commodity rate, Heilongjiang rice has become an important 
high-quality glutinous rice production base in China, and its 
products are shipped to all parts of the country. In 2015, rice 
planting area in Heilongjiang Province accounted for 17.0% 
of the country’s rice planting area, and represented 69.25% 
of the rice planting area in the three northeastern provinces. 
Rice production in Heilongjiang accounts for 16.3% of the 
national rice production, and 67.6% of the rice production in 
the three northeastern provinces, playing an important role 
in the rice market.

2.2 Sample source

The rice and corresponding soil samples used in this study 
were from the rice producing areas in Heilongjiang province, 
including 22 from Chahayang region, 22 from Wuchang region, 
22 from Fangzheng region, 22 from Xiangshui region, and 
22 from Jiansanjiang region.

2.3 Sample testing

The determination of the content of Pb in rice samples 
was carried out according to the method specified in Chinese 
National Standard GB 5009.286-2016 “Determination of Multi-
Elements in Foods”.

2.4 Risk assessment of heavy metal pollution in rice grains

The limit of Pb in rice grains was based on the limits of 
8 elements including lead, chromium, cadmium, mercury, 
selenium, arsenic, copper and zinc in grain (including cereals, 
beans and potatoes) and products (NY861-2004). The single 
factor pollution index method and the Nemero comprehensive 
pollution index method were used to evaluate the heavy metal 
content in crops (Baker et al., 1994).

Single factor pollution index:

Pb

Pb

CPb
S

P
= 	 (1)

In the formula, PPbis the comprehensive pollution index of heavy 
metals in crop grains; CPb is the average value of single metal 
pollution index of heavy metals, and SPb is the maximum value 
of one-way pollution index of heavy metal Pb.

Nemero Integrated Pollution Index:

2 2
max

2
Pb PbP P

P
+

= 	 (2)

In the formula, P is the comprehensive pollution index of heavy 
metals in crop grains; P is the average value of single metal 
pollution index of heavy metals, and PbmaxP  is the maximum 
value of one-way pollution index of heavy metal Pb.

2.5 Rice health risk assessment

In order to evaluate the health risks of rice in the diet of adults 
and children in the study area, the US Environmental Protection 
Agency (USEPA) recommended health risk assessment model 
was used (Means, 1989). The model used in this study was the 
carcinogenic risk model.

Average daily intake of pollutants through crops (ADD) 
(Formula 3):

* * *
*

Pb I EF EDC
ADD

BW AT
= 	 (3)

where ADD is the average daily intake of pollutants in crops 
[mg·(kg·d)-1]; CPb is the content of heavy metal Pb in crops 
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(mg·kg-1); I  is the daily human body intake of crops (kg·d-1); EF  
is the frequency of exposure (d·a-1); ED is the exposure time (a); 
BW  is the recipient body weight (kg); AT  is the life expectancy (d). 
The names and values of various parameters are shown in Table 1.

Non-carcinogenic risk assessment.

f
ADDHQ
R D

= 	 (4)

In the Formula 4, HQ is the health risk index of heavy metal 
Pb; fR D is the reference measurement of heavy metal exposure 
[mg·(kg·d)-1].When 1HQ ≤ , heavy metal pollutants will not cause 
health risks to the human body; when HQ >1, it means that heavy 
metal pollutants will cause health risks to the human body; the 
greater the HQ, the higher the health risks.

3 Results and analysis
3.1 Lead in soil and rice in Heilongjiang region

The lead content in the 110 soil samples collected was 
between 19.409 and 33.292 mg/kg, with an average value of 
24.287 mg/kg and a coefficient of variation of 0.085% <11%. 
Within the range of coefficient of variation allowed by GB/T 
27404-2008 “Specification for laboratory quality control - 
physical and chemical testing of food”, according to GB 15618-
2018 “Soil Environmental Quality - Standard for Soil Pollution 
Risk Control of Agricultural Land (Trial)”. Comparison of the 
content of lead in the soil in the five regions did not exceed the 
prescribed limit, and the risk of lead pollution from agricultural 
land in the study area was low. The content of lead in the soil 
is arranged in descending order: Xiangshui> Chahayang> 
Jiansanjiang> Wuchang> Fangzheng. The content of lead in 
brown rice and polished rice in 110 rice samples collected was 
between 0.002~0.107 mg/kg and 1.8716×10-5~0.0721 mg/kg, with 
average values of 0.023 mg/kg and 0.0085 mg/kg, respectively. 
The coefficients of variation are 0.690% and 1.260%, which are 
within the range of coefficients of variation allowed by GB/T 
27404-2008, and are determined based on the limit standard 
for lead in rice in GB 2762-2017 “National standard for food 
safety - limit of pollutants in food” not more than 0.2 mg/kg. 
The 110 rice samples tested did not exceed this limit, that is, the 
pass rate was 100%. The content of lead in brown rice is arranged 
in descending order: Wuchang> Jiansanjiang> Xiangshui> 
Chahayang> Fangzheng. The content of lead in polished rice is 
the same as that in brown rice except Chahayang and Jiansanjiang 
Consistent, far lower than the lead content in rice in Zhejiang 

(Zhao  et  al., 2009). Because the rice produced in the study 
area is China’s national geographical protection mark rice, the 
production area is located in the Songnen Plain and Sanjiang 
Plain of Northeast China, and is less affected by urban human 
activities and mining metallurgy activities. The content does 
not exceed the standard compliance rate of 100%.

The average content of lead in the soil in this experiment 
was 24.287 mg/kg, which did not exceed the limit set in the 
soil environmental quality in China, which was higher than 
the lead content of 22.00 mg/kg in Heilongjiang soil reported 
in 2012 (Xia  et  al., 2014), the content of lead in the soil of 
Wuchang area was 23.603, which was lower than (Wang et al., 
2011) the content of lead in the soil of Harbin area reported in 
2011 was 24.6 mg/kg, and The lead content is higher than the 
other four regions, but the lead content in the soil is not much 
different. Some studies have shown that the absorption and 
accumulation of heavy metals by rice are greatly affected by 
genetic background, variety types, and heavy metal interactions 
(Srivastava et al., 2014); Some scholars have found that cadmium 
in the soil will affect rice plants and limit the absorption of lead 
(Zeng et al., 2008); the single rice variety (rice flower fragrance) 
and soil background in Wuchang area are the main factors that 
cause Wuchang and other areas to differ greatly. In the process 
of absorption and accumulation of heavy metals, rice is not 
only affected by the heavy metal content in the soil, but also 
by other factors, such as rice varieties, soil microbial content, 
precipitation, and air quality (Tables 2, 3 and 4).

Significant analysis of differences between different regions. 
The SPSS stastistics 12.0 was used to analyze the variance of 
polished rice, brown rice and soil in five regions. The results 
are shown in the figure below.

From Figure  1, it can be seen that the contents of lead 
elements in the soil of Chahayang, Wuchang, and Fangzheng 
are significantly different; the contents of lead elements in the 
soil of Wuchang and Xiangshui are significantly different. There 
was no significant difference in the content of lead elements in 
the soils of Chahayang, Xiangshui, and Jiansanjiang; there was 
no significant difference between Wuchang, Fangzheng and 
Jiansanjiang.

It can be seen from Figure  2 that there is a significant 
difference in lead content in brown rice between Wuchang and 
Fangzheng. There was no significant difference in lead content 
in brown rice between Chahayang, Wuchang, Xiangshui, and 
Jiansanjiang; there was no significant difference in lead content 

Table 1. Parameters of cereal crop health risk assessment model.

Model parameter Parameter name
Reference

Literature
Adult Child

I/kg·d-1 Intake 0.5 0.177 Duan et al. (2015)
EF/d·a-1 Exposure frequency 365 365 U.S. Environmental Protection Agency (1986)

ED/a Exposure time 30 10 Means (1989)
BW/kg Receptor weight 70 16 U.S. Environmental Protection Agency (1986)
AT/d Life expectation 10950 3650 U.S. Environmental Protection Agency (1986)

RfD/mg·(kg·d)-1 Reference dose 0.0035 Lead and compounds (inorganic); CASRN 7439-92-1
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in brown rice between Fangzheng and Chahayang, Xiangshui 
and Jiansanjiang.

It can be seen from Figure  3 that there is a significant 
difference in lead content in polished rice between Wuchang, 
Fangzheng and Jiansanjiang. There was no significant difference 
in lead content in polished rice between Chahayang, Wuchang 
and Xiangshui, there was no significant difference in lead 
content in polished rice between Fangzheng and Jiansanjiang, 
Chahayang and Xiangshui.

In summary, the differences in the content of lead in the 
soil, brown rice, and polished rice in the study area are not 
consistent. The variety of rice has an effect on the effect of 
rice on the absorption and accumulation of lead from the 
soil (Lee,  et  al., 2016), In addition, some artificial factors 
such as pesticides, fertilization, and irrigation will greatly 
affect the absorption of lead by rice. Natural conditions such 
as precipitation and CO2 concentration will also affect the 
absorption and accumulation of lead in rice.

3.2 Pb element migration model in soil-rice system

The absorption and accumulation of heavy metals in rice is 
not only affected by the total metal content in the soil, but also 
by the physical, chemical, and biological characteristics of the 
soil. Many researchers have studied the factors that affect the 
absorption of metal elements by rice, including soil pH (Reddy 
& Patrick, 1977; Dutta et al., 1989), organic matter (Haldar & 
Mandal, 1979; Kashem & Singh, 2001), redox potential (Sajwan 
& Lindsay, 1986), salinity (McLaughlin et al., 1996), phosphorus 
content (Haldar & Mandal, 1981). Studies have found that soil 
pH is an important factor controlling the absorption of heavy 
metals (Jung & Thornton, 1997; Basta et al., 2005). Table 5 shows 
the soil physical and chemical properties in the study area.

Table 2. Soil Pb content in different areas (mg kg-1).

Study area
Pb

Mean ± SD Range C·V/%
Chahayang 24.960 ± 1.547 22.250-26.964 0.162
Wuchang 23.603 ± 1.663 20.728-27.241 0.151

Fangzheng 23.096 ± 1.782 19.409-27.531 0.111
Xiangshui 25.102 ± 2.811 21.335-33.292 0.143

Jiansanjiang 24.675 ± 1.677 20.909-28.545 0.080
Total 24.287 ± 2.066 19.409-33.292 0.085

Note: C·V is the coefficient of variation.

Table 3. Pb content in milled rice in different areas (mg kg-1).

Study area
Pb

Mean ± SD Range C·V/%
Chahayang 0.020 ± 0.009 0.009-0.049 0.434
Wuchang 0.030 ± 0.018 0.013-0.094 0.599

Fangzheng 0.017 ± 0.024 0.002-0.107 1.420
Xiangshui 0.023 ± 0.010 0.011-0.047 0.432

Jiansanjiang 0.024 ± 0.011 0.011-0.055 0.464
Total 0.023 ± 0.016 0.002-0.107 0.690

Table 4. Pb content of refined rice in different regions (mg kg-1).

Study area
Pb

Mean±SD Range C·V/%
Chahayang 0.0080 ± 0.0087 0.0001-0.0334 1.0957
Wuchang 0.0139 ± 0.1037 0.0001-0.0413 0.7456

Fangzheng 0.0061 ± 0.0155 1.87×10-5-0.0721 2.5331
Xiangshui 0.0079 ± 0.0103 0.0001-0.0355 1.3112

Jiansanjiang 0.0067 ± 0.0059 0.0001-0.0227 0.8905
Total 0.0085 ± 0.0107 1.8716×10-5-0.0721 1.2596

Figure 1. Difference analysis of lead content in soil. Note: In which 
C is Chahayang, W is Wuchang, F is Fangzheng, X is Xiangshui, J is 
Jiansanjiang. The same below. Lowercase letters a~c indicate significant 
differences, the same letters indicate insignificant differences, and 
different letters indicate significant differences, the same below.

Figure 2. Analysis of Differences in lead Content in Brown Rice.
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Based on previous studies, the factors affecting lead absorption 
in the “soil-rice system” were studied, and a best-fit model for 
predicting lead content in rice was proposed. Multivariate 
regression analysis of lead content in rice was performed using 
soil pH and organic matter, and a multiple regression model 
for lead content in rice was established. The multiple regression 
equation is shown in Table 6. The content of lead in Chahayang 
rice was significantly negatively correlated with the concentration 
of lead in soil (P<0.05); The content of lead in Fangzheng rice 
showed a significant positive correlation with soil pH (P<0.05), 
and a significant positive correlation with the concentration of 
lead in soil (P<0.05); The content of lead in Xiangshui rice was 
significantly positively correlated with soil pH (P<0.05); The 
content of lead in Jiansanjiang rice had a significant positive 
correlation with soil pH (P<0.05). Comparing the content of 
lead in rice, the concentration of lead in soil, and pH by R2 can 
well predict the content of lead in rice in Chahayang, Fangzheng, 
Xiangshui and Jiansanjiang areas. However, in the established 
regression model, lead content in rice and lead content in 
soil and pH and organic matter values in Wuchang area are 
not significantly correlated, so the prediction model in this 
area remains to be studied. Dudka et al. (1996) reported that 
the relationship between rice and heavy metals in soil can be 
described by three models: linear model (constant distribution 
model), plateau model (saturation model), and Langmuir model. 
The adsorption model may also appear in the range of lower 
metal concentration in the soil. In this study, through comparing 
and comparing the three models, it is found that the linear 
model is the best fit model, so the linear model is used for fitting 
modeling in this paper. The R2 value of the fitted model is between 
0.256 and 0.468 (Table 5), and the D-W indices are close to 2. 
The autocorrelation of the independent variables is not obvious. 
However, in previous studies, higher fitting coefficients have been 

reported Dudka et al., (1996) reported that the R2 values of the 
correlation between Cd and Zn content in barley grains and Cd 
and Zn content in soil were 0.94 and 0.92, respectively. McBride 
(2002) found similar correlation coefficients. The correlation 
coefficient of this study is lower than the correlation coefficient 
of previous studies (<0.9). The above-mentioned studies were 
carried out under the conditions of pot experiments or small test 
fields, so the soil properties changed little during the modeling 
process. Within the controllable range, the model established 
under this condition is less affected by factors and has a higher 
degree of fit. This experiment was conducted under natural 
conditions. There is no artificial controllable factor. Paddy soil 
is a complex system. In addition to the total soil metal content 
and pH value, other soil properties may play a role in affecting 
the availability of heavy metals effect. This weakens the ability 
of the soil metal and pH models to fit.

3.3 Evaluation of lead pollution characteristics in rice grains 
and health risk assessment of intake

According to the Formulas 1 and 2, the evaluation results of 
heavy metal pollution in the study area are obtained (Tables 7 and 8). 
From the single-factor pollution index evaluation results (Table 7), 
the individual health risks of Pb in the five areas studied The 
indexes are all less than 1, indicating that these five regions are 

Table 5. Physical and chemical properties of soil (mean ± SD).

Study area pH(range) Organic matter 
content(%)

Chahayang 5.06-8.33 4.02 ± 0.60
Wuchang 5.37-7.90 3.07 ± 1.22

Fangzheng 5.33-6.99 3.01 ± 0.93
Xiangshui 5.57-7.42 3.09 ± 0.93

Jiansanjiang 5.12-6.68 3.75 ± 0.83

Table 6. Correlation models for heavy metals in paddy soil rice system in Heilongjiang province.

Study area Model R2
Partial correlation coefficient

Metal in soil Soil pH

Chahayang Pbrice=0.003PbpH-0.002Pbsoil-0.002PbOM+0.029 0.239 -0.269* 0.301

Wuchang Pbrice=0.010PbpH+0.002Pbsoil+0.003PbOM-0.116 0.328 0.251 0.753

Fangzheng Pbrice=0.013PbpH0.004Pbsoil-0.004PbOM-0.145 0.419 0.006* 0.002*

Xiangshui Pbrice=0.01PbpH-0.001PbOM-0.039 0.311 -0.076 0.608*

Jiansanjiang Pbrice=0.001Pbsoil-0.007PbpH-0.002PbOM+0.040 0.224 0.201 -0.416*

*Significant at the 0.05 level.

Figure 3. Analysis of the difference of lead content in polished rice.
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not polluted by Pb, and the proportion of pollution-free in each 
region is 100%.From the evaluation results of the comprehensive 
pollution index (Table 8), the comprehensive pollution index of 
rice in the study area is 0.275, which is a level of pollution-free; 
the comprehensive pollution index of each region is sequentially 
ranked as Fangzheng> Wuchang> Jiansanjiang> Chahayang> 
Xiangshui, pollution The index is between 0.132 and 0.272. 
Due to the different geographical locations of different regions, 
and the level of economic development and the distribution 
of industrial structures also vary, the Pb content in rice varies 
from region to region. The results are similar to the results of 
non-carcinogenic risk assessment in Zhejiang(Zhao et al., 2009). 
According to the research results (Tables 7 and 8), the pollution 
levels of heavy metals in the study area are all pollution-free.

According to the results of the non-carcinogenic risk 
assessment (Table 9), the average intake of Pb (ADD) of adults 
and children is lower than the reference exposure dose (RfD), 
and the individual health risk index is less than 1, indicating 
that the daily exposure of Pb As for the amount of Pb, Pb has 
not caused any health risks to the human body. For each region, 
the health risks of adults and children caused by rice intake are 
ranked as Wuchang> Chahayang> Jiansanjiang> Fangzheng> 
Xianshui. Comparing the results of individual rice pollution 
evaluation in the study area, the pollution index in the Xiangshui 
area of rice in each region was the smallest, and the area was 
least affected by Pb pollution. Lead is an accumulative harmful 
element, which has relatively obvious toxic effects on the human 
nervous system and reproductive system, and is a heavy metal 
element with a high risk of carcinogenesis.

Due to the international nature of this experimental index 
parameter and the regionality of the study area, as well as the 

differences in the quality of the human body in different living 
environments, the results of this study have certain limitations and 
one-sidedness. In addition, since the impact of rice varieties was not 
considered in the research process of this article, in the subsequent 
research, the migration in the “soil-plant-human” system should be 
established on the basis of comprehensive consideration of various 
current impact factors Experimental research on transformation, 
transformation and bioavailability, with a view to providing data 
reference for agricultural land soil protection and food security.

4 Conclusion
This paper objectively evaluated the lead content of rice in 

five major production areas of Heilongjiang Province, which has 
certain reference value and practical significance. The research 
results show that the lead content in rice and soil in the study 
area exceeds the limit of China’s national food hygiene standard, 
which is also determined by the different economic industries in 
different regions and the situation of cultivated land and other 
factors. The average lead content of brown rice in the study area 
was Chahayang 0.02 mg/kg, Wuchang 0.03 mg/kg, Fangzheng 
0.017 mg/kg, Xiangshui 0.023 mg/kg and Jiansanjiang 0.024 mg/
kg, the lead content in the five regions did not exceed the lead 
content stipulated in China’s national food hygiene standards, and 
the differences in lead content in brown rice, polished rice, and soil 
in the five regions studied were inconsistent. The prediction model 
developed in this study, including total soil heavy metals and pH, 
can significantly describe the transfer of lead in the soil-rice system 
of Chahayang, Fangzheng, Xiangshui, and Jiansanjiang paddy fields. 
In the meantime, the Wuchang area model remains to be studied.

The pollution index of the entire study area is less than 1. 
The comprehensive pollution index is 0.275> 1, which belongs to 
the non-pollution category; the comprehensive pollution index 
of each region is sequentially ranked as Fangzheng> Wuchang> 
Jiansanjiang> Chahayang> Xiangshui. The comprehensive 
pollution index is between 0.132 and 0.272, which is non-Category 
of pollution. The average daily intake (ADD) of lead for adults 
and children is lower than the reference dose (RfD), and the 
health risk index of heavy metal Pb for adults and children is 
lower than the maximum acceptable risk level recommended 
by USEPA, which will not cause health risk to human body.
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Table 8. Single factor and comprehensive pollution index and 
comprehensive pollution grade in the area.

Study area
Single factor 

pollution index
Comprehensive 
factor pollution 

index
Pollution index

Pb
Chahayang 0.104 0.135 No pollution
Wuchang 0.151 0.247 No pollution

Fangzheng 0.085 0.272 No pollution
Xiangshui 0.117 0.132 No pollution

Jiansanjiang 0.120 0.150 No pollution
Total 0.115 0.275 No pollution

Table 9. Heavy metal Pb intake and non-carcinogenic risk in rice pathway.

Crowd
ADD HQ

Adult Child Adult Child
Chahayang 5.724×10-5 8.865×10-5 0.004 0.006
Wuchang 9.943×10-5 1.539×10-4 0.007 0.010

Fangzheng 4.181×10-5 6.475×10-5 0.002 0.004
Xiangshui 5.644×10-5 8.741×10-5 0.001 0.006

Jiansanjiang 4.806×10-5 7.444×10-5 0.003 0.005
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