
Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

16

Reducing Honeypot Log Storage Capacity

Consumption – Cron Job with Perl-Script Approach

Iman Hazwam Abd Halim1*, Nur Muhammad Irfan Abu

Hassan2, Tajul Rosli Razak3, Muhammad Nabil Fikri

Jamaluddin4, Mohammad Hafiz Ismail5

1,2,3,4,5Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA, 02600 Arau, Perlis, MALAYSIA

Corresponding author: *hazwam688@uitm.edu.my

Received Date: 21 August 2019

Accepted Date: 19 September 2019

ABSTRACT

Honeypot is a decoy computer system that is used to attract and

monitor hackers’ activities in the network. The honeypot aims to collect

information from the hackers in order to create a more secure system.

However, the log file generated by honeypot can grow very large when

heavy traffic occurred in the system, such as Distributed Denial of

Services’ (DDoS) attack. The DDoS possesses difficulty when it is

being processed and analyzed by the network administrator as it

required a lot of time and resources. Therefore, in this paper, we

propose an approach to decrease the log size that is by using a Cron

job that will run with a Perl-script. This approach parses the collected

data into the database periodically to decrease the log size. Three

DDoS attack cases were conducted in this study to show the increasing

of the log size by sending a different amount of packet per second for 8

hours in each case. The results have shown that by utilizing the Cron

job with Perl-script, the log size has been significantly reduced, the

disk space used in the system has also decreased. Consequently, this

approach capable of speeding up the process of parsing the log file into

the database and thus, improving the overall system performance. This

study contributes to providing a pathway in reducing honeypot log

storage using the Cron job with Perl-Script.

Keywords: Honeypot, DDoS attack, Cron job.

mailto:hazwam688@uitm.edu.my

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

17

INTRODUCTION

Nowadays, the world is increasingly relying on computer networks.

The use of network resources is increasing followed by many risks

toward security problems. There are many vulnerabilities and threats

that were discovered every day and are affecting users and companies

at critical stages, from privacy issues to financial losses. Recently,

many organization including government agencies have been attacked

and scanned by unknown intruders which resulting in financial and

reputation damages (Popereshnyak, Suprun, Suprun, & Wieckowski,

2018). Monitoring network activity is a must for network

administrators and security analysts to understand these threats and to

develop a secure network environment (Darapareddy & Gummadi,

2012).

Intrusion Detection System (IDS) is one of the solutions that can be

used to monitor network traffic. It is a software application that can

identify any suspicious activities and issue alerts to network

administrator when such activity is identified. To ensure the network

can be secured, honeypot-based intrusion detection system was

introduced to monitor unused Internet Protocol (IP) spaces to learn

about attackers. The advantage of honeypots over other monitoring

solutions is to collect only suspicious activities and obtain information

about the attackers (Kondra, Janardhan Reddy Bharti, Santosh Kumar

Mishra, Sambit Kumar Babu, 2016). Although an IDS does not have

the capability to prevent malware or any type of attacks, the technology

is still relevant to be used in the modern enterprise because of its

functionality that is able to detect an active attack (Place, 2018).

One of the most widely used tools is honeyd for creating honeypots.

Honeyd is an open source of the computer program created by Niels

Provos that allows a user to set up and run multiple virtual hosts on a

computer network (Provos, 2019). It is one of the low-interaction

honeypot which can be used to simulate 65,000 hosts using a single PC.

The IP stack of different OS can be emulated through honeyd. It is

designed to resemble the real system and equipped with the already

known vulnerability so that the attacker will be distracted from the

main system that he will attack and moves to the false honeypot

(Sembiring, 2016). In a network, all normal traffic should be forwarded

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

18

to and from valid servers only. Thus, a network administrator running

honeyd can monitor logs to see if there is any traffic going to the virtual

hosts set up by honeyd. Any traffic going to these virtual servers can be

considered highly suspicious. The network administrator can take

preventative actions, possibly by blocking the suspicious IP address or

by further monitoring the network for suspicious traffic.

The problem is that the logs generated by honeyd can grow very large

when heavy traffic occurred in the system such as Distributed Denial of

Services (DDoS) attack, which can consume a lot of disk space (Fahd

& Saleh, 2012; Joshi & Kakkar, 2017). A large amount of log size

contains difficulties when they are processed and analysed by network

administrator or security analysts as they required a lot of time and

resources (Singh & Joshi, 2011).

Therefore, this paper has put forward an approach to address these

issues by introducing the ‘cron job’ with perl-script approach to

periodically transfers parsed log data into database. The approach is

efficiently reduced usage of disk storage and system resources.

The rest of this paper is organised as follows.Section

Backgroundreviews the background of the intrusion detection system

(IDS), distributed denial of services attack (DDoS Attack) and Cron

job. This is followed by Section Proposed Approach that introduces the

Cran jobwith perl-script as an approach, which consist of four key

steps. Section Experiment and Resultdiscusses the experimental works

and results of the proposed approach. Finally, Section Conclusion

presents the conclusion and future works.

Background

i. Intrusion Detection System (IDS)

Honeypot can be divided in two categories which is low interaction and

high interaction. Both have its own strengths and weaknesses.

Low interaction honeypots simulate services in such a way that they

cannot be exploited to gain complete access. In these types of

honeypots, there is no operating system for the attackers to interact

with. The deployment and maintenance process of low interaction

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

19

honeypots is simple than high interaction honeypots. Low interaction

honeypots can minimize risk but their functionality is limited. Honeyd

and specter is an example of low interaction honeypot (Fahd & Saleh,

2012).

High interaction honeypots are considered the most advanced type of

honeypots in general. It has its own operating system which allows the

user to have no restrictions to perform whatever tasks and actions that

are desired. Highest level of risk is associated with them as they are

using an actual operating system. Designing the high interaction

honeypots is a time consuming and the process can be difficult.

However, it can collect a large amount of data as the attackers have

most of the resources available to them, while all their actions and

activities are logged on the honeypot (Eldad, 2018).

ii. Distributed Denial of Services Attack (DDoS Attack)

The rapid development and popularization of internet had resulted in

the increase of online attacks. When the attacker uses a single machine

to interrupt the services, it is identified as Denial of Services (DoS)

attack. The extended attack from DoS is DDoS which initiates the

attack from multiple controlled devices. According to(Bhosale,

Nenova, & Iliev, 2017), DDoS attack has arisen to be the most

powerful and harmful attack. A malicious software called 'Bots' is

injected into multiple computers to gain control to perform specific and

automated function. Bots constructed in large number are also called as

‘Botnet’ have caused major crimes such as, Click-fraud, widespread

delivery of Spam emails, spyware installation, worm and virus

dissemination. Such attacks were able to gain access into the networks

bandwidth and also resources of victims, thus increased the success rate

of denial of access to legitimate users. The basic form of a DDoS attack

is an online attack in which an attacker sends a large amount of traffic

to a website or network. The purpose of DDoS attack is to overwhelm

the server and network services until it crashes and fails to respond on

incoming requests from legitimate users (Jessica, 2018).

iii. Cron Job

Cron is a job scheduler program that enables Unix user to execute

commands or shell scripts automatically at a fixed times, dates or

intervals. When the jobs run, the user may not be present, and they are

executed through a long-running daemon process belonging to the root

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

20

user and then later will be transferred to the real user for further

analysis (Dale, 2003).

PROPOSED APPROACH

The proposed approach will be explained based on the model

architecture as shown in Fig. 1. The model has been divided into four

steps process which will include the installation and configuration

procedure until the honeypot storage truncation process.

Fig. 1: Stepwise process in the proposed approach

i. Step 1

The first step is to install and configure honeyd tool under Ubuntu

12.04 operating system platform. This device with honeyd will work as

a honeypot which will capture all the network activity that has gone

through the device. The LAMP (Linux, Apache, MySQL, PHP) web

server are also required in creating the database to store all the network

information captured from honeypot to another backup device or any

cloud storage.

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

21

ii. Step 2

The next step of this approach; honeyd will done its job by capturing all

the incoming data traffic from the clients. Honeyd will continuously

monitor the unused IP space and whenever an attacker attempts to

establish a connection and it acts as a victim. The captured network

data then will be logged in the form of text file. This text files will be

stored in the honeypot server.

iii. Step 3

By time, the honeypot server storage will become stuffed with the log

file of the incoming data traffic especially when it encounters an

unwanted network traffic situation such as DDOS attack. Thus, in order

to sustain the operation of the honeypot, the honeyd log files need to be

transferred periodically to other secondary database storage. In this

case, this model has used MySQL as its database. Perl-script is used

along with the cron job in order to parse the logged files into the

database hourly.

iv. Step 4

After each of the log file transferring process completed, the log file in

the honeypot storage will be truncated. During this process, capturing

will halt for a while allowing data transfers to the database. The

truncation is done in order to avoid a too large log file storage size

usage in the honeypot that will affect the performance of the honeypot

itself.

EXPERIMENT AND RESULT

Several tests were done by using one client to perform DDoS attack in

three different cases. Each attack was performed in the duration of 8

hours. Low Orbit Ion Canon (LOIC) tool was used to send a different

number of TCP packet to the honeypot for each case in order to create

DDOS attack.

i. Case 1

In the first case, the amount of 10 threads has produced the size of

85MB log file. The log file has consumed 1% of disk space in the

system storage. It takes a total of 35 minutes to transfer content of log

file into database. After using cron-job technique, it managed to shrink

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

22

the file by 87% from 85MB into 11MB and reduced disk space used by

1%. This was achieved by deleting the old content of the log file after

parsing process was done at every hour. When the log file capacity

became less, the time taken to transfers data into database was reduced

by 89% from 35 minutes to 4 minutes as it only required to transfers

less amount of data.

ii. Case 2

For the second case, it sent 50 threads per second which produced the

size of 446MB log file. The log file consumed 6% of disk space in the

system. In transferring the data from log file into database, it takes 3

hours and 10 minutes. After using cron-job technique, it managed to

shrink the file into 56MB by 87% and reduced disk space used by 6%.

This is achieved by deleting the old data in the log file after parsing

process was done at every hour. As the log capacity was reduced, it

only takes 23 minutes of transferring data into database. The time taken

to parse the log file is reduced by 88% due to the less amount of data.

iii. Case 3

In the third case, it sent 90 threads per second which produced the size

of 844MB log file. The log file consumed 9% of disk space which lead

to a total of 100% disk space usage in the system. At this point, the

system performance started to drop down in terms of availability,

response time, and the processing speed due to the full capacity in the

system storage. It takes 5 hours and 20 minutes to transfer the data

from log file into database which is time consuming and wasting

system resources. After using cron-job technique, it managed to shrink

the file into 118MB by 86% and reduced disk space used by 9%. This

is achieved by deleting the old data in the log file after parsing process

was done at every hour. The process of transferring data into database

was reduced by 88% from 5 hours and 20 minutes to 40 minutes as less

data is required to transfer.

iv. Cron Job vs. Non-Cron Job

This section explains the comparison of the log file before and after

using the Cran job in term of size, disk space and time, that discussed

earlier. Hence, Table 1 presents all the findings that were obtained from

testing and experiment in Cases 1, 2, and 3.

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

23

Table 1: Overall comparison before and after using Cron job

Case Size (MB) Disk Space

Used (%)

Time

(minutes)

Cron-Job

1 85 95 35 x

 11 94 4 √

2 446 91 190 x

 56 85 23 √

3 884 100 320 x

 118 91 40 √

In Fig. 2, the trend shows that the size of the log file was significantly

decreased after using the Cron job from Case 1 to Case 3. The

tremendous reduction can be seen in Case 3.

Fig. 2: Comparing size (MB) before and after using Cron job

Likewise, in the case of disk space of log file, the same pattern is

observed that also shown the decrease after using the Cron job as

shown in Fig. 3. However, this time, the reduction of disk space is

small after using the Cron job.

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

24

Fig. 3: Comparing disk space (%) before and after using Cron job

In the case of time taken to parse in the database, the significant

reduction is recorded again after using the Cron job from Case 1 to

Case 3. Also, a huge reduction can be viewed in Case 3.

Fig. 4: Comparing time taken to parse log file into a database (%),

before and after using Cron job

Overall, the Cron job approach managed to reduce the log file and disk

space used, speed up the process of transferring data into the database,

and able to mitigates flood attack. Obviously, other methods are

available that also can be used; nevertheless, based on the current

evidence, the Cron job approach shows promising toward improving

overall system performance.

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

25

CONCLUSION

Honeypot was usedto log and store data into the log file. In term of log

size, the maximum size that was achieved is 844MB. There is still a

possibility that the log size can be increase beyond the maximum size.

However, the log file has stopped to grow due to the limited storage

capacity of the system. If the system has more storage available, it

canproduce a larger log size, thus the results obtained from the finding

could be more accurate.

Currently, this approach only focuses on reducing the log size through

parsing the data from the log file into the database. For the next step,

other researchers may use different methods such as packet filtering.

This method can be used to obtain only desired information during

logging and able to overcome data redundancy, thus can also reduce the

log size.Besides using cron job scheduling, it may also possibly be

replaced by using log rotations approach where the old files will be

archived, and the new log file is created.

REFERENCES

Bhosale, K. S., Nenova, M., & Iliev, G. (2017). The distributed denial of

service attacks (DDoS) prevention mechanisms on application layer.

2017 13th International Conference on Advanced Technologies, Systems

and Services in Telecommunications (TELSIKS), 136–139.

https://doi.org/10.1109/TELSKS.2017.8246247

Dale, M. (2003). Mcron User Requirements. Retrieved August 20, 2019, from

https://www.gnu.org/software/mcron/design.html

Darapareddy, B., & Gummadi, V. (2012). An Advanced Honeypot System for

Efficient Capture and Analysis of Network Attack Traffic. International

Journal of Engineering Trends and Technology.

Eldad. (2018). What are the levels of interactions in honeypots? - InfoSec

Addicts.

Fahd, M., & Saleh, K. U. (2012). Honeypots : A Force Multiplier in

Educational Domain.

Jessica, P. (2018). Types of DoS and DDoS Attacks - Cybrary. Retrieved

August 19, 2019, from https://www.cybrary.it/2018/07/types-of-dos-

and-ddos-attacks/

Joshi, V., & Kakkar, P. (2017). Honeypot Based Intrusion Detection System

with Snooping agents and Hash Tags. International Journal of Computer

Science and Information Technologies, 8(2), 237–242. Retrieved from

www.ijcsit.com

Journal of Computing Research & Innovation (JCRINN) Vol 4, No 1 (2019)
eISSN 2600-8793

26

Kondra, Janardhan Reddy Bharti, Santosh Kumar Mishra, Sambit Kumar

Babu, K. S. (2016). Honeypot-based intrusion detection system: A

performance analysis. 2016 3rd International Conference on Computing

for Sustainable Global Development (INDIACom), 2347–2351. IEEE.

Place, T. C. (2018). What is an intrusion detection system (IDS)? A valued

capability with serious management challenges.

Popereshnyak, S., Suprun, O., Suprun, O., & Wieckowski, T. (2018). Intrusion

detection method based on the sensory traps system. 2018 XIV-Th

International Conference on Perspective Technologies and Methods in

MEMS Design (MEMSTECH), 122–126.

https://doi.org/10.1109/MEMSTECH.2018.8365716

Provos, N. (2019). Developments of the Honeyd Virtual Honeypot.

Sembiring, I. (2016). Implementation of honeypot to detect and prevent

distributed denial of service attack. 2016 3rd International Conference

on Information Technology, Computer, and Electrical Engineering

(ICITACEE), 345–350.

https://doi.org/10.1109/ICITACEE.2016.7892469

Singh, A. N., & Joshi, R. C. (2011). A honeypot system for efficient capture

and analysis of network attack traffic. 2011 International Conference on

Signal Processing, Communication, Computing and Networking

Technologies, 514–519. https://doi.org/10.1109/ICSCCN.2011.6024606

