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Abstract. We describe the left brace structure of the structure group and the permutation
group associated to an involutive, non-degenerate set-theoretic solution of the quantum Yang-
Baxter equation by using the Cayley graph of its permutation group with respect to its
natural generating system. We use our descriptions of the additions in both braces to obtain
new properties of the structure and the permutation groups and to recover some known
properties of these groups in a more transparent way.
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1. Introduction
The quantum Yang-Baxter equation (YBE) is a consistence equation of mathematical physics
that plays a major role in the study of integrable systems in some scattering situations happening
in statistical mechanics. It appeared for the first time in the paper of Yang [13]. One of the
fundamental open problems related to this equation is to find all the solutions of the YBE.
During the last years the non-degenerate involutive set-theoretic solutions of the YBE have
received a lot of attention.

Given a non-empty set X, a map r : X ×X −→ X ×X is called a set-theoretic solution of
the YBE if

r12r23r12 = r23r12r23, (1)
where the maps r12, r23 : X ×X ×X −→ X ×X ×X are defined as r12 = r × 1X , r23 = 1X × r.
For all x, y ∈ X, we denote by fx : X −→ X and gy : X −→ X the maps obtained by setting
r(x, y) = (fx(y), gy(x)) for all x, y ∈ X.

The solution (X, r) is called involutive if r2 = 1X×X and non-degenerate if fx, gy are
bijective maps for all x, y ∈ X. By a solution of the YBE we mean a non-degenerate involutive
set-theoretic solution, as in [4, 6].

We can use techniques from group theory to study the solutions of the YBE by consider-
ing two fundamental groups associated to a solution (X, r) (see [8]): the structure group, with
presentation

G(X, r) = 〈X | xy = fx(y)gy(x), x, y ∈ X〉,
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and the permutation group,

G(X, r) = 〈fx | x ∈ X〉 ≤ Sym(X).

On the other hand, Rump introduced in [12] a new algebraic structure, called left brace, to
study the solutions of the YBE. A left brace (B,+, ·) is composed of a set B with two binary
operations, + and ·, for which (B,+) is an abelian group and (B, ·) is a group satisfying the
distributivity-like condition

a · (b+ c) + a = a · b+ a · c for all a, b, c ∈ B.

In [6, Section 3], it is proved that, if (X, r) is a solution of the YBE, then it is possible to define
additions in G(X, r) and G(X, r) in such a way they become left braces. This construction was
already devised in [5, 8, 9, 10, 11]. The paper [3] contains an interesting survey on left braces
and properties of the structure group associated to a solution of the YBE.

The aim of this paper is to describe the left brace structures of G(X, r) andG(X, r) by means
of the Cayley graph of (G(X, r), ·) with respect to the natural generating set {fx | x ∈ X}. We
denote in this paper the composition of maps with · or simply with a juxtaposition. Recall that
the Cayley graph Γ(G,S) of a group G with respect to its generating set S has as vertices the
elements of G and edges of the form x

s−→ xs, labelled with s, for x ∈ G and s ∈ S. For simplicity,
in the Cayley graph of G(X, r) with respect to the natural generating set {fx | x ∈ X}, the edge
α

fx−→ αfx for x ∈ X and α ∈ G(X, r) will be represented as α x−→ αfx, with label x instead of
fx. We warn the reader that different values of x ∈ X might induce the same permutation fx,
that is, parallel edges are permitted; this happens in the so-called retractable solutions.

Our first main result gives a description of the left brace structure of the permutation group
G(X, r).

Theorem A. If in the Cayley graph of (G(X, r), ·) we replace the label of the edge α x−→ αfx,
x ∈ X, α ∈ G(X, r), by α(x), then the labelled graph obtained in this way is the Cayley graph of
an abelian group. Furthermore, if + denotes the operation of this group, then (G(X, r),+, ·) is a
left brace.

This result says that the addition in G(X, r) is defined as α + fα(x) = αfx for x ∈ X,
α ∈ G(X, r), that is, α + fz = αfα−1(z) for z ∈ X, α ∈ G(X, r). The proof of this theorem will
be given in Section 2.

Our second main result is a description of the structure group G(X, r) of a solution (X, r)
of the YBE in terms of the Cayley graph of the permutation group.

Theorem B. Let (X, r) be a solution of the YBE. Let eα,x denote the edge α x−→ αfα−1(x) in the
Cayley graph of (G(X, r),+) constructed in Theorem A. Let E be the set of edges of this Cayley
graph, then (G(X, r), ·) acts on E via g ∗ eα,x = egα,g(x), g ∈ G(X, r), x ∈ X, and this action can
be extended to an action of (G(X, r), ·) on the free Z-module W with basis E. The Z-submodule

K = 〈eα,y − eβ,y | y ∈ X, α, β ∈ G(X, r)〉
is invariant under the action of (G(X, r), ·) and so (G(X, r), ·) acts on W/K, which is a free
Z-module with basis {x̄ | x ∈ X}, where x̄ = e1,x + K, x ∈ X. Let H be the subgroup of the
semidirect product [W/K]G(X, r) with respect to this action generated by {(x̄, fx) | x ∈ X}. Then:
1. H is isomorphic to the structure group G(X, r).
2. H = {(

∑
x∈X axx̄,

∑
x∈X axfx) | ax ∈ Z, x ∈ X}.
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3. The product of H has the form(∑
x∈X

axx̄, α

)
·

(∑
x∈X

bxx̄, β

)
=

(∑
x∈X

(ax + bα−1(x))x̄, αβ

)
,

where α =
∑
x∈X axfx, β =

∑
x∈X bxfx.

It is also possible to define an addition in the group of Theorem B such that (H,+, ·) is a
left brace.

Theorem C. Let (X, r) be a solution of the YBE and let H be like in Theorem B. If we define in
H an operation + by means of(∑

x∈X
axx̄, α

)
+

(∑
x∈X

bxx̄, β

)
=

(∑
x∈X

(ax + bx)x̄, α+ β

)
,

where α =
∑
x∈X axfx, β =

∑
x∈X bxfx, then (H,+, ·) is a left brace and the map π : H −→

G(X, r) given by

π

(∑
x∈X

axx̄, α

)
= α

is a left brace homomorphism.

The proofs of Theorems B and C will be presented in Section 3. A geometrical interpretation
of the group H of Theorem B and an example will be given in Section 4. Our results provide
a different approach to the results of [6] and [8]. In fact, we compare our results with theirs on
Section 5 We expect that these descriptions can shed light on the structure of the permutation
and structure groups of a solution of the YBE. Section 6 contain some applications of them.

2. The permutation group as a left brace
Let (X, r) be a non-degenerate, involutive solution of the YBE. Write

r(x, y) = (fx(y), gy(x))

for x, y ∈ X. Let G(X, r) = 〈fx | x ∈ X〉 be the corresponding permutation group.
The following two results are well-known. The first one comes from the fact that the solution

is involutive and non-degenerate.

Lemma 1. Given x, y ∈ X, we have that ffx(y)(gy(x)) = x, ggy(x)(fx(y)) = y. In particular, for
every x, y ∈ X, gy(x) = f−1

fx(y)(x), fx(y) = g−1
gy(x)(y).

The second one is an immediate consequence of Equation (1).

Lemma 2. If x, y ∈ X, then fxfy = ffx(y)fgy(x) and gxgy = ggx(y)gfy(x).

In order to define an addition in G(X, r) with Cayley graph as in Theorem A, we start by
defining the addition of elements of G(X, r) and its generators fx, x ∈ X, or their opposites.
Given α ∈ G(X, r) and x ∈ X, we write

α+ fx = αfα−1(x), α+ f−1

g−1
x (x)

= αf−1

g−1

α−1(x)
(α−1(x))

.
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Let us note that f−1

g−1
x (x)

+ fx = 1X = fx + f−1

g−1
x (x)

. In light of these equalities, we will write εfx,

for x ∈ X, to denote fx if ε = 1 and −fx = f−1

g−1
x

(x) if ε = −1. The following result gathers the
information about this addition needed for our purposes.

Lemma 3. The following properties hold:

1. If α ∈ G(X, r) and x, y ∈ X, then (α+ fx) + fy = (α+ fy) + fx.
2. If α ∈ G(X, r) and x ∈ X, then (α+ fx)− fx = (α− fx) + fx = α.
3. If α ∈ G(X, r) and x, y ∈ X, then (α+ fx)− fy = (α− fy) + fx.
4. If α ∈ G(X, r) and x, y ∈ X, then (α− fx)− fy = (α− fy)− fx.
5. Let σ be a permutation of {1, . . . ,m}, εj ∈ {−1, 1}, xj ∈ X, 1 ≤ j ≤ m. Then

(· · · ((ε1fx1
+ ε2fx2

) + ε3fx3
) + · · · ) + εmfxm = (· · · ((εσ(1)fxσ(1)

+ εσ(2)fxσ(2)) + εσ(3)fxσ(3)) + · · · ) + εσ(m)fxσ(m).

6. If (· · · (ε1fx1 + ε2fx2) + · · · ) + εmfxm = (· · · (µ1fz1 +µ2fz2) + · · · ) +µtfzt and (· · · (η1fy1 +
η2fy2) + · · · ) + ηsfys = (· · · (ν1fw1 + ν2fw2) + · · · ) + νufwu , with εi ∈ {−1, 1}, xi ∈ X,
1 ≤ i ≤ m; µj ∈ {−1, 1}, zj ∈ X, 1 ≤ j ≤ t; ηk ∈ {−1, 1}, yk ∈ X, 1 ≤ k ≤ s;
νh ∈ {−1, 1}, wh ∈ X, 1 ≤ h ≤ u, then

(· · · (((( · · · (ε1fx1
+ ε2fx2

) + · · · ) + εmfxm)

+ η1fy1) + η2fy2) + · · · ) + ηsfys

= (· · · ((((· · · (µ1fz1 + µ2fz2) + · · · )
+ µtfzt) + ν1fw1

) + ν2fw2
) + · · · ) + νufwu .

7. If x ∈ X, then f−1
x = −ff−1

x (x).
8. If α ∈ G(X, r) and x ∈ X, then αf−1

x = α− fα(f−1
x (x)) and αfx = α+ fα(x).

9. If α ∈ G(X, r), then α = 1X or there exist t ∈ N, xi ∈ X and εi ∈ {−1, 1}, 1 ≤ i ≤ t, such
that

α =

t∑
i=1

εifxi = (· · · (ε1fx1
+ ε2fx2

) + · · · ) + εtfxt .

Proof. 1. We have that

(α+ fx) + fy = αfα−1(x)ff−1

α−1(x)
(α−1(y))

= αffα−1(x)(f
−1

α−1(x)
(α−1(y)))fgf−1

α−1(x)
(α−1(y))

(α−1(x)) (by Lemma 2)

= αfα−1(y)ff−1

f
α−1(x)

(f
−1

α−1(x)
(α−1(y)))

(α−1(x)) (by Lemma 1)

= αfα−1(y)ff−1

α−1(y)
(α−1(x))

= (α+ fy) + fx.
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2. Let us call u = α−1(x). By Lemma 1, gf−1
u (u) = f−1

u (u) and so

(α+ fx)− fx = αfα−1(x)f
−1

g−1

f
−1

α−1(x)
(α−1(x))

(f−1

α−1(x)
(α−1(x)))

= αfuf
−1

g−1

f
−1
u (u)

(f−1
u (u))

= αfuf
−1

g−1

f
−1
u (u)

(g
f
−1
u (u)

(u))

= αfuf
−1
u = α.

Again by Lemma 1, fg−1
u (u)(u) = g−1

u (u) and so

(α− fx) + fx = αf−1

g−1

α−1(x)
(α−1(x))

ff
g
−1

α−1(x)
(α−1(x))

(α−1(x))

= αf−1

g−1
u (u)

ff
g
−1
u (u)

(u)

= αf−1

g−1
u (u)

fg−1
u (u) = α.

3. We have that

(α+ fx)− fy = (((α− fy) + fy) + fx)− fy (by Statement 2)
= (((α− fy) + fx) + fy)− fy (by Statement 1)
= (α− fy) + fx (by Statement 2).

4. We also apply Statements 2 and 3.

(α− fx)− fy = (((α− fx)− fy) + fx)− fx
= (((α− fx) + fx)− fy)− fx
= (α− fy)− fx.

5. This follows as a consequence the previous statements, the facts that 1 + ε1fx1
= ε1fx1

and
1 + εσ(1)fxσ(1) = εσ(1)fxσ(1) and the fact that the symmetric group of degree m is generated
by the transpositions (i, i+ 1), 1 ≤ i ≤ m− 1.

6. We use Statement 5:

(· · · ((((· · ·(ε1fx1
+ ε2fx2

) + · · · ) + εmfxm)

+ η1fy1) + η2fy2) + · · · ) + ηsfys

= (· · · ((((· · · (µ1fz1 + µ2fz2) + · · · ) + µtfzt)

+ η1fy1) + η2fy2) + · · · ) + ηsfys

= (· · · ((((· · · (η1fy1 + η2fy2) + · · · ) + ηsfys)

+ µ1fz1) + µ2fz2) + · · · ) + µtfzt

= (· · · ((((· · · (ν1fw1 + ν2fw2) + · · · ) + νufwu)

+ µ1fz1) + µ2fz2) + · · · ) + µtfzt

= (· · · ((((· · · (µ1fz1 + µ2fz2) + · · · ) + µtfzt)

+ ν1fw1
) + ν2fw2

) + · · · ) + νufwu
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7. Note that −ff−1
x (x) = f−1

g−1

f
−1
x (x)

(f−1
x (x))

. It suffices to check that

g−1

f−1
x (x)

(f−1
x (x)) = x,

that is, fx(gf−1
x (x)(x)) = x. But by Lemma 1,

fx(gf−1
x (x)(x)) = fx(f−1

fx(f−1
x (x))

(x)) = fx(f−1
x (x)) = x

and so the equality holds.
8. Now consider

α− fα(f−1
x (x)) = αf−1

g−1

α−1(α(f
−1
x (x)))

(α−1(α(f−1
x (x))))

= αf−1

g−1

f
−1
x (x)

(f−1
x (x))

= αf−1
x

by the argument of Statement 7. Since α+ fα(x) = αfα−1(α(x)) = αfx, the second equality
is clear.

9. This last statement is immediate by Statement 8, because every element of G(X, r) can be
expressed as a finite product of elements of the form fx or f−1

x , with x ∈ X. �

Theorem A appears as a consequence of the next result, in which the previous addition is
extended to all elements of G(X, r).

Theorem 4. Given

α = (· · · (ε1fx1
+ ε2fx2

) + · · · ) + εmfxm ∈ G(X, r),

β = (· · · (η1fy1 + η2fy2) + · · · ) + ηsfys ∈ G(X, r),

with εi ∈ {−1, 1}, xi ∈ X, 1 ≤ i ≤ m; ηj ∈ {−1, 1}, yj ∈ X, 1 ≤ j ≤ s, the assignment

α+ β = (· · · ((((· · · (ε1fx1 + ε2fx2) + · · · ) + εmfxm)

+ η1fy1) + η2fy2) + · · · ) + ηsfys ,

α+1 = 1+α = α, 1+1 = 1 defines an internal binary operation in G(X, r) such that (G(X, r),+, ·)
is a left brace.

Proof. By Lemma 3 (9), we have that all elements of G(X, r) different from 1 can be expressed
as a sum of generators of G(X, r) or their opposites, and by Lemma 3 (6), we have that + is
an internal binary operation. An immediate consequence of Lemma 3 (5) is the commutativity
of +. By definition, 1 is the neutral element of +.

Next we prove that + is associative. Note first that if f = fx or f = −fx for x ∈ X, then
α+ (β+ f) = (α+β) + f . We must prove that (α+β) +γ = α+ (β+γ) when α, β, γ ∈ G(X, r).
If γ = 1, the result is clear. If γ 6= 1, then there exist t ∈ N, xi ∈ X and εi ∈ {−1, 1}, 1 ≤ i ≤ t,
such that γ =

∑t
i=1 εifxi . We argue by induction and assume that (α + β) + δ = α + (β + δ)

when δ can be expressed as a sum of t − 1 terms εifxi (when t = 1, this sum is understood to
be 1). We express γ = δ+ εtfxt , where δ =

∑t−1
i=1 εifxi is a sum of t− 1 terms. By the induction
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hypothesis, (α+ β) + δ = α+ (β + δ). Then

(α+ β) + γ = (α+ β) + (δ + εtfxt)

= ((α+ β) + δ) + εtfxt (by the previous remark)
= (α+ (β + δ)) + εtfxt (by the inductive hypothesis)
= α+ ((β + δ) + εtfxt) (by the previous remark)
= α+ (β + (δ + εtfxt)) (by the previous remark)
= α+ (β + γ).

Hence the addition is associative.
By Lemma 3 (2), the commutativity, and the associativity, we have that if α =

∑t
i=1 εifxi ,

with εi ∈ {−1, 1} and xi ∈ X, 1 ≤ i ≤ t, and γ =
∑t
i=1(−εj)fxi , then α+ γ = γ + α = 1 and γ

becomes the symmetric element of α.
We conclude that (G(X, r),+) is an abelian group. To conclude the proof, we must show

that if α, β, γ ∈ G(X, r), then α(β + γ) + α = αβ + αγ. The result is clear when γ = 1, because
α(β + 1) + α = αβ + α1.

We prove now the result when γ = fx, x ∈ X.

α(β + fx) + α = α(βfβ−1(x)) + α

= (αβ)fβ−1(x) + α

= (αβ + fα(β(β−1(x)))) + α

= αβ + (fα(β(β−1(x))) + α)

= αβ + (fα(x) + α)

= αβ + (α+ fα(x))

= αβ + αfα−1(α(x))

= αβ + αfx.

Now we prove the result for γ = −fx, x ∈ X.

α(β − fx) + a = α(βf−1

g−1

β−1(x)
(β−1(x))

) + α

= (αβ)f−1

g−1

β−1(x)
(β−1(x))

+ α

= (αβ − fα(x)) + α

= αβ + (−fα(x) + α)

= αβ + (α− fα(x))

= αβ + αf−1

g−1

α−1(α(x))
(α−1(α(x)))

= αβ + αf−1

g−1
x (x)

= αβ + α(−fx).

Now we suppose that γ =
∑t
i=1 εifxi with t ∈ N, εi ∈ {−1, 1}, xi ∈ X, 1 ≤ i ≤ t. We argue by

induction on t and we may suppose that α · (β + δ) + α = α · β + α · δ for δ =
∑t−1
i=1 εifxi (when
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t− 1 = 0, we agree that δ = 1). Let φ = εtfxt . Then

α(β + γ) + α = α(β + (δ + φ)) + a

= α((β + δ) + φ) + a

= α(β + δ) + αφ

= αβ + αδ − α+ αφ

= αβ + (αδ + αφ)− α
= αβ + α(δ + φ)

= αβ + αγ.

This shows that (G(X, r),+, ·) is a left brace. �

3. The structure group as a left brace

The following construction can be regarded as an analogue of the one described in [2]. Consider
now the Cayley graph of (G(X, r),+) with edge set E. Let W be the free Z-module with basis

E. The group (G(X, r), ·) acts on the left on E as follows: if g ∈ G(X, r) and (α
α(x)−−−→ αfx) ∈ E,

then

g ∗
(
α

α(x)−−−→ αfx

)
=

(
gα

gα(x)−−−→ gαfx

)
∈ E

and we can extend the action to W : if
∑
e∈Emee ∈W , with me ∈ Z for e ∈ E, then

g ∗

(∑
e∈E

mee

)
=
∑
e∈E

me(g ∗ e) ∈W for all g ∈ G(X, r).

Therefore, we can construct the semidirect product [W ]G(X, r). Now we identify all edges in
(G(X, r),+) with the same label. This is equivalent to taking the quotient modulo

K = 〈eα,y − eβ,y | y ∈ X, α, β ∈ G(X, r)〉 ,

where eα,y denotes the edge α y−→ αfα−1(y).

Lemma 5. K ∼= K × 1E [W ]G(X, r)

Proof. For each generator eα,y − eβ,y of K, we have that

g ∗ (eα,y − eβ,y) = g ∗ eα,y − g ∗ eβ,y = egα,g(y) − egβ,g(y),

which is also one of the generators of K. Thus, K is invariant for the action of (G(X, r), ·).
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Next, let us see that K E [W ]G(X, r). Let eα,y − eβ,y be a generator of K and let(∑
e∈Emee, g

)
be an element of [W ]G(X, r). Then(∑

e∈E
mee, g

)−1

(eα,y − eβ,y, 1)

(∑
e∈E

mee, g

)

=

(∑
e∈E

(−me)(g
−1 ∗ e), g−1

)(
eα,y − eβ,y + 1 ∗

(∑
e∈E

mee

)
, 1 · g

)

=

(∑
e∈E

(−me)(g
−1 ∗ e) + g−1 ∗

(
eα,y − eβ,y +

∑
e∈E

mee

)
, g−1 · g

)

=

(∑
e∈E

(−me)(g
−1 ∗ e) +

(
eg−1α,g−1(y) − eg−1β,g−1(y)

)
+
∑
e∈E

me(g
−1 ∗ e), 1

)
=
(
eg−1α,g−1(y) − eg−1β,g−1(y), 1

)
∈ K. �

With this, we can construct the quotient group

[W ]G(X, r)/K ∼= [W/K]G(X, r)

and take the subgroup

H = 〈(e1,x +K, fx) | x ∈ X〉 ≤ [W/K]G(X, r).

Our next goal is to prove that this groupH we have just constructed by means of the Cayley graph
of (G(X, r),+) is isomorphic to the structure group G(X, r) = 〈X | xy = fx(y)gy(x), x, y ∈ X〉.
To simplify the notation, as we have identified all the edges with the same label by taking
quotients modulo K, we can regard the group H as

H = 〈(x̄, fx) | x ∈ X〉 ≤ [Z(X)]G(X, r),

where x̄ = e1,x + K and W/K ∼= Z(X) is a free abelian group with basis X and the action of
G(X, r) over W becomes the following action of G(X, r) over Z(X):

σ ∗

(∑
x∈X

axx̄

)
=
∑
x∈X

axσ(x), σ ∈ G(X, r).

From now on, we will omit the bars in the elements ofW/K ∼= Z(X) to simplify the notation.

Proof of Theorem B. Note that, by the definition of the semidirect product, if (
∑
x∈X axx, α),

(
∑
x∈X bxx, β) ∈ H, with ax, bx ∈ Z for each x ∈ X, their product is(∑

x∈X
axx, α

)(∑
x∈X

bxx, β

)
=

(∑
x∈X

axx+
∑
x∈X

bxα(x), αβ

)

=

(∑
x∈X

axx+
∑
x∈X

bα−1(x)x, αβ

)

=

(∑
x∈X

(ax + bα−1(x))x, αβ

)
. (2)
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Let x ∈ X and let (x, fx) be a generator of H. Note that (x, fx)−1 = (−f−1
x (x), f−1

x ),
because, clearly,

(x, fx)(−f−1
x (x), f−1

x ) = (x− fx(f−1
x (x)), fxf

−1
x ) = (0, 1)

and
(−f−1

x (x), f−1
x )(x, fx) = (−f−1

x (x) + f−1
x (x), f−1

x fx) = (0, 1).

Let F be the free group on the set of generators X. Then there exists an epimorphism
β : F −→ G(X, r) sending each generator of F to the corresponding generator of G(X, r). Note
that the kernel of β is the normal closure of 〈y−1x−1fx(y)gy(x) | x, y ∈ X〉 in F . Moreover, as H
is also an X-generated group, there exists an epimorphism γ : F −→ H given by γ(x) = (x, fx).
Call V = Ker γ, N = Kerβ. We will prove now that N ≤ V . It is enough to check that
y−1x−1fx(y)gy(x) ∈ V for x, y ∈ X.

γ(y−1x−1fx(y)gy(x))

= (−f−1
y (y), f−1

y )(−f−1
x (x), f−1

x )(fx(y), ffx(y))(gy(x), fgy(x))

= (−f−1
y (y)− f−1

y f−1
x (x) + f−1

y f−1
x fx(y) + f−1

y f−1
x ffx(y)(gy(x)),

f−1
y f−1

x ffx(y)fgy(x)).

We have that fxfy = ffx(y)fgy(x) by Lemma 2 and then f−1
y f−1

x ffx(y)fgy(x) = 1. For the first
component, it is clear that −f−1

y (y)+f−1
y f−1

x fx(y) = 0, and ffx(y)(gy(x)) = x by Lemma 1. Thus,
we obtain that y−1x−1fx(y)gy(x) ∈ V . It follows that there exists an epimorphism η : G(X, r) −→
H such that η · β = γ, that is, the following diagram is commutative.

F
β //

γ
##

G(X, r)

η

��
H

We will prove now that N = V . Let w = xε11 · · ·xεnn ∈ V with xi ∈ X, εi ∈ {−1, 1},
1 ≤ i ≤ n. We prove by induction on n that w ∈ N . If w = 1, that is, w has no letters, then it is
clear that w ∈ N . Suppose that if a word with less than n letters or their inverses belongs to V ,
then it belongs to N .

Since the positive exponents contribute as positive coefficients in the free abelian group
generated by X and the negative exponents contribute as negative coefficients, we have that the
number of positive exponents coincides with the number of negative exponents and n is even,
n = 2m, say. Since r is non-degenerate, given x, z ∈ X there exists y ∈ X such that z = fx(y)
and so y = f−1

x (z). Therefore nx,z = (f−1
x (z))−1x−1zgf−1

x (z)(x) ∈ N . It follows that if

w = xε11 · · ·x
εi−1

i−1 x
−1zx

εi+2

i+2 · · ·x
εr
r

and
u = xε11 · · ·x

εi−1

i−1 f
−1
x (z)(gf−1

x (z)(x))−1x
εi+2

i+2 · · ·x
εr
r ,

then u−1w = n

(
g
f
−1
x (z)

(x)
)−1

x
εi+2
i+2 ···x

εr
r

x,z ∈ N , so w ∈ N if, and only if, u ∈ N . Note also that
f−1
x (z) and gf−1

x (z)(x) are two elements of X. Therefore, in order to prove that all words in V
which are products of 2m elements, m of them in X and m of them inverses of elements of X,
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belong to N , it is enough to do it for all words of the form w0 = x1 · · ·xmy−1
m · · · y−1

1 ∈ V , with
xj , yj ∈ X, 1 ≤ j ≤ m.

Call Fi,t = fxi · · · fxt−1
(xt) for 1 ≤ i < t, with Ft,t = xt, andGs = fx1

· · · fxmf−1
ym · · · f

−1
ys (ys)

for 1 ≤ s ≤ m. Then

γ(w0) = (F1,1 + F1,2 + F1,3 + · · ·+ F1,m −Gm −Gm−1 − · · · −G1,

fx1 · · · fxmf−1
ym · · · f

−1
y1 )

= (0, 1).

We conclude that fx1 · · · fxmf−1
ym · · · f

−1
y1 = 1 and so G1 = y1. Since all F1,j for 1 ≤ j ≤ m and

Gk for 1 ≤ k ≤ m are elements of X, there exists a t with 1 ≤ t ≤ m such that y1 = F1,t. Note
that for 1 ≤ k ≤ t− 1, nk = Fk,tgFk+1,t

(xk)F−1
k+1,tx

−1
k ∈ N . Call

wk = x−1
k wk−1nkxk

for 1 ≤ k ≤ t− 1. Then wk ∈ V for 1 ≤ k ≤ t− 1 and wk ∈ N if and only if wk−1 ∈ N . We check
by induction on k that

wk = xk+1 · · ·xmy−1
m · · · y−1

2 gF2,t
(x1) · · · gFk+1,t

(xk)F−1
k+1,t

for 1 ≤ k ≤ t. For k = 1, since y1 = F1,t, we have that

w1 = x−1
1 w0(F1,tgF2,t

(x1)F−1
2,t x

−1
1 )x1 = x2 · · ·xmy−1

m · · · y−1
2 gF2,t

(x1)F−1
2,t .

Suppose that wk−1 = xk · · ·xmy−1
m · · · y−1

2 gF2,t
(x1) · · · gFk,t(xk−1)F−1

k,t . Then

wk = x−1
k wk−1(Fk,tgFk+1,t

(xk)F−1
k+1,tx

−1
k )xk

= xk+1 · · ·xmy−1
m · · · y−1

2 gF2,t
(x1) · · · gFk+1,t

(xk)F−1
k+1,t.

We conclude that

wt−1 = xt · · ·xmy−1
m · · · y−1

2 gF2,t(x1) · · · gFt,t(xt−1)F−1
t,t .

Since Ft,t = xt, we have that

x−1
t wt−1xt = xt+1 · · ·xmy−1

m · · · y−1
2 gF2,t

(x1) · · · gFt,t(xt−1),

so that wt−1 ∈ V and wt−1 ∈ N if and only if x−1
t wt−1xt ∈ N . We conclude that w0 ∈ N if and

only if x−1
t wt−1xt ∈ N . But x−1

t wt−1xt can be expressed as a word with 2m− 2 elements of X
or their inverses. By induction, x−1

t wt−1xt ∈ N . We conclude that V = N .
Then we have proved that the homomorphism η : G(X, r) −→ H is in fact an isomorphism.

This proves the first statement.
In order to prove the second statement, first we note that, due to the associativity and the

commutativity of the additions in G(X, r) and in Z(X), it is enough to show that

H =

{(
r∑
i=1

εixi,

r∑
i=1

εifxi

) ∣∣∣∣∣ r ∈ N ∪ {0}, εi ∈ {−1, 1}, xi ∈ X, 1 ≤ i ≤ r

}
, (3)

where the element corresponding to r = 0 is the neutral element (0, 1). Let us call K the right
hand side of Equation (3).

We prove first that H ⊆ K by induction on the number r of factors in T ∪ T−1, where
T = {(x, fx) | x ∈ X} is the natural generating set for H, appearing in an element of H. Clearly,
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the generators (x, fx) and their inverses (x, fx)−1 = (−f−1
x (x), f−1

x ) = (−f−1
x (x),−ff−1

x (x))

belong to K for each x ∈ X. Suppose that (w,α) =
∏

(xi, fxi)
εi ∈ K. Then

(w,α)(x, fx) = (w + α(x), αfx) = (w + α(x), α+ fα(x)) ∈ K

and

(w,α)(x, fx)−1 = (w,α)(−f−1
x (x), f−1

x )

= (w − αf−1
x (x), αf−1

x ) = (w − αf−1
x (x), α− fαf−1

x (x)) ∈ K.

We conclude that H ⊆ K.
We prove now that K ⊆ H. We argue by induction on the number r of terms in (v, β) =

(
∑r
i=1 εixi,

∑r
i=1 εifxi) ∈ H. Let

(v0, β0) =

(
r−1∑
i=1

εixi,

r−1∑
i=1

εifxi

)
∈ K.

By the inductive hypothesis, (v0, β0) ∈ H. Assume that εr = 1, then

(v0, β0)(β−1
0 (xr), fβ−1

0 (xr)) = (v0 + xr, β0fβ−1
0 (xr))

= (v0 + xr, β0 + fxr ) = (v, β) ∈ H.

Assume now that εr = −1. Then

(v, β)(β−1(xr), fβ−1(xr)) = (v + xr, βfβ−1(xr)) = (v + xr, β + fxr ) = (v0, β0),

which implies that (v, β) = (v0, β0)(β−1(xr), fβ−1(xr))
−1 ∈ H. This completes the proof of State-

ment 2.
Statement 3 follows from Statement 2 and Equation 2. �

Proof of Theorem C. Since the additions in G(X, r) and Z(X) make them abelian groups, only the
distributivity-like condition is in doubt. Consider three elements

(∑
x∈X axx, α

)
,
(∑

x∈X bxx, β
)
,(∑

x∈X cxx, γ
)
of H. Then, bearing in mind that (G(X, r),+, ·) is a left brace and Theorem B (3),

we obtain: (∑
x∈X

axx, α

)((∑
x∈X

bxx, β

)
+

(∑
x∈X

cxx, γ

))
+

(∑
x∈X

axx, α

)

=

(∑
x∈X

axx, α

)(∑
x∈X

(bx + cx)x, β + γ

)
+

(∑
x∈X

axx, α

)

=

(∑
x∈X

(ax + bα−1(x) + cα−1(x))x, α(β + γ)

)
+

(∑
x∈X

axx, α

)

=

(∑
x∈X

(ax + bα−1(x) + cα−1(x) + ax)x, α(β + γ) + α

)

=

(∑
x∈X

(ax + bα−1(x) + ax + cα−1(x))x, αβ + αγ

)
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=

(∑
x∈X

(ax + bα−1(x))x, αβ

)
+

(∑
x∈X

(ax + cα−1(x))x, αγ

)

=

(∑
x∈X

axx, α

)(∑
x∈X

bxx, β

)
+

(∑
x∈X

axx, α

)(∑
x∈X

cxx, γ

)
.

It follows that (H,+, ·) is a left brace. The fact that π is a left brace epimorphism is clear. �

Therefore, given a finite involutive non-degenerate set-theoretic solution (X, r) of the YBE,
we can construct its structure group G(X, r) using the Cayley graph of the group (G(X, r),+).

4. A geometrical interpretation of the structure group in terms of the Cayley
graph of the permutation group

In this section we present a geometrical interpretation of Theorem B in the line of [2]. Let G
be a group with a generating set S and let F be the free group on S. There exists a unique
epimorphism β : F −→ G that sends the generators of F to the corresponding generators of G.
Let w ∈ F , then w is a word on S ∪ S−1, w = sε11 . . . sεrr with r ≥ 0, εi ∈ {−1, 1}, si ∈ S,
1 ≤ i ≤ r, say. If we have the Cayley graph of G with respect to S, we can consider a path of
length r starting from 1 and following the edges labelled si, in the same sense if εi = 1 and in
the opposite sense if εi = −1, for 1 ≤ i ≤ r. The other end of this path is β(w).

According to Theorem A, if we draw the Cayley graph of the permutation group (G(X, r), ·)
with respect to the natural generating set S = {fx | x ∈ X} and we replace in each edge of the
form α

x−→ αfx, x ∈ X, α ∈ G(X, r) the label x by α(x), then we obtain the Cayley graph of
(G(X, r),+) with respect to the same generating set. We can use these Cayley graphs to obtain
the images of elements of the free group on S in (G(X, r), ·) and (G(X, r),+).

Suppose now that we want to obtain an element of (G(X, r),+). We can identify G(X, r)
with the subgroup H of Theorem B with the generating set T = {(x, fx) | x ∈ X} identified in
the obvious way with X. We can follow in the Cayley graph of (G(X, r),+) a path labelled with
the terms as before. The last end of the path corresponds to the second component. If we take
into account the number of signed traversals of edges labelled by each element of X in the Cayley
graph of (G(X, r),+), we also obtain the coefficients ax ∈ Z of the first component

∑
x∈X axx̄ of

the sum.
Finally, suppose that we want to obtain an element of (G(X, r), ·), identified again with H

with generating set T as in the previous paragraph. If we follow the path in the Cayley graph
of (G(X, r), ·) starting from 1 with edges labelled with the corresponding elements of X, the last
end corresponds to the second component of the product. In order to find the first component
of the product, we can follow the same path in the Cayley graph of (G(X, r),+), with the new
assignments of labels, and take into account the number of signed traversals of edges labelled
with x ∈ X to obtain the coefficient bx ∈ Z of the first component

∑
x∈X bxx̄ of the product.

Example 6. Let (X, r) be the solution of the YBE with X = {1, 2, 3, 4, 5} and f1 = f2 = f3 = 1,
f4 = (1, 2)(4, 5), and f5 = (1, 3)(4, 5). The left hand side of Figure 1 shows the Cayley graph
of (G(X, r), ·), in which we have drawn with just one loop the three loops, corresponding to the
edges labelled 1, 2, and 3, around each vertex. The right hand side of Figure 1 shows the Cayley
graph of (G(X, r),+).
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1

(1, 2)(4, 5) (1, 3, 2)

(2, 3)(4, 5)

(1, 2, 3)(1, 3)(4, 5)

1,2,3

1,2,3 1,2,3

1,2,3

1,2,31,2,3

4

4

4

4

4

4

5

5

5

5

5

5

1

(1, 2)(4, 5) (1, 3, 2)

(2, 3)(4, 5)

(1, 2, 3)(1, 3)(4, 5)

4

4

4

4

4

4

5

5

5

5

5

5

1,2,3

1,2,3 1,2,3

1,2,3

1,2,31,2,3

Figure 1. Cayley graphs of (G(X, r), ·) and (G(X, r),+) (Example 6)

Consider now the free group F with basis X and the word w = 445−1 ∈ F . Its image
in (G(X, r),+) will be f4 + f4 − f5. This can be obtained by following in the Cayley graph of
(G(X, r),+) the path starting from 1 and with edges labelled 4, 4, and 5 (the last one reversed).
The path is drawn in Figure 2.

1

(1, 2)(4, 5) (1, 3, 2)

(2, 3)(4, 5)

(1, 2, 3)(1, 3)(4, 5)

4

4

5

Figure 2. Path in the Cayley graph of (G(X, r),+) (Example 6)

We obtain that f4 + f4 − f5 = (2, 3)(4, 5). We see that this path contains two arcs labelled
4 and an arc labelled 5 traversed in the opposite direction. This means that w maps to (4̄, f4) +
(4̄, f4)− (5̄, f5) = (2 · 4̄ + (−1) · 5̄, (2, 3)(4, 5)) in (G(X, r),+).

Now we compute the image of the same word w = 445−1 ∈ F in the multiplicative group
(G(X, r), ·), that is, (4̄, f4) · (4̄, f4) · (5̄, f5)−1. This can be obtained by following in the Cayley
graph of (G(X, r), ·) the path starting from 1 and with edges labelled 4, 4, and 5 (the last one
reversed). The path is drawn on the left hand side of Figure 3.

We see that f4 · f4 · f−1
5 = (1, 3)(4, 5). Now we can consider the same path in the Cayley

graph of (G(X, r),+), with the labels changed according to Theorem B. The new labels for these
edges are now 4, 5, 4, respectively, the first two ones traversed in the direction of the edges
and last one reversed. The path appears on the right hand side of Figure 3. The edges labelled
4 cancel because there is one traversed positively and another one traversed negatively, and
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1

(1, 2)(4, 5) (1, 3, 2)

(2, 3)(4, 5)

(1, 2, 3)(1, 3)(4, 5)

4
4

5

1

(1, 2)(4, 5) (1, 3, 2)

(2, 3)(4, 5)

(1, 2, 3)(1, 3)(4, 5)

4

4

5

Figure 3. Paths in the Cayley graphs of (G(X, r), ·) and (G(X, r),+) (Example 6)

there is an edge labelled 5 traversed positively. Consequently, the image of w in (G(X, r), ·) is
(4̄, f4) · (4̄, f4) · (5̄, f5)−1 = (0 · 4̄ + 1 · 5̄, (1, 3)(4, 5)).

5. A comparison with other definitions of the addition

Bachiller, Cedó, and Jespers defined in [1] an addition in the structure group of a solution of the
YBE which induces an addition in the permutation group such that both groups acquire brace
structures. The aim of this section is to prove that both additions coincide, respectively, with
our additions in the structure group and in the permutation group.

The definitions of the additions in [1] depend strongly on the isomorphism between the
structure group and the subgroup of the semidirect product of the free abelian group ZX with
basis X and the symmetric group on X given by Etingof, Schedler, and Soloviev in [8]. For the
reader’s convenience, we summarise the arguments of [8] and we adapt their notation to the left
actions we are considering here.

In [8], their authors prove that G(X, r) is isomorphic to a subgroup of the semidirect product
MX = [ZX ]Sym(X) associated with the natural action of Sym(X) on X, extended by linearity
to ZX . The product in MX is defined by

(a, σ)(b, τ) = (a+ σ(b), στ), for all a, b ∈ ZX , σ, τ ∈ Sym(X).

They define a group homomorphism ψ : G(X, r) −→ MX by means of ψ(x) = (x, fx) ∈ MX for
each x ∈ X. Write ψ(g) = (π(g), φ(g)) ∈ MX for each g ∈ G. Then φ : G(X, r) −→ Sym(X) is
a group homomorphism with image G(X, r) and π : G(X, r) −→ ZX is a derivation or 1-cocycle
with respect to the action of G(X, r) on ZX given by g •

∑
x∈X axx =

∑
x∈X axφ(g)(x), that is,

π(g1g2) = π(g1) + φ(g1)(π(g2)) for g1, g2 ∈ G(X, r).
They prove that π is bijective by showing that it possesses an inverse h : ZX −→ G(X, r).

Call ZXk the set of elements of ZX that can be expressed as a sum of at most k terms of the form
x or −x with x ∈ X, in such a way ZX =

⋃
k≥1 ZXk . The inverse h of π is defined for elements of

ZX1 as h(0) = 1, h(x) = x and h(−x) = (g−1
x (x))−1 for x ∈ X. If h has been already defined for

elements of ZXk−1 and η ∈ ZXk , then η = a+ ξ for a ∈ ZXk−1, ξ ∈ {x,−x} for some x ∈ X. In this
case, we consider the right action of G(X, r) on ZX defined by a?x = f−1

x (a) for a ∈ ZX , x ∈ X,



16 A. Ballester-Bolinches, R. Esteban-Romero, N. Fuster-Corral and H. Meng

and define h(η) = h(a)h(ξ ? h(a)). In this case, h(x ? h(a)) = h(φ(h(a))−1(x)) = φ(h(a))−1(x)
and h((−x) ? h(a)) = h(φ(h(a))−1(−x)) = h(−φ(h(a))−1(x)) = (gφ(h(a))−1(x)(φ(h(a))−1(x)))−1.

This construction is used by Bachiller, Cedó, and Jespers in [1] to define additions in G(X, r)
and G(X, r). The addition in G(X, r) is defined by means of

g1 + g2 = h(π(g1) + π(g2)) for g1, g2 ∈ G(X, r).

Given g ∈ G(X, r) and x ∈ X, we obtain that

g + x = h(π(g) + π(x)) = h(π(g) + x) = h(π(g))h(x ? h(π(g)))

= gh(x ? g) = gφ(g)−1(x),

and so

ψ(g + x) = (π(g) + x, φ(gφ(g)−1(x))) = (π(g) + x, φ(g)φ(φ(g)−1(x)))

= (π(g) + x, φ(g)fφ(g)−1(x)),

while

g − x = h(π(g)− π(x)) = h(π(g)− x) = h(π(g))h((−x) ? h(π(g)))

= gh((−x) ? g) = g(gφ(g)−1(x)(φ(g)−1(x)))−1

and so

ψ(g − x) = (π(g)− x, φ(g(gφ(g)−1(x)(φ(g)−1(x)))−1))

= (π(g)− x, φ(g)f−1
gφ(g)−1(x)(φ(g)−1(x))).

The addition in G(X, r), that coincides with the image of φ, is defined by φ(g1) + φ(g2) =
φ(g1 + g2), where g1, g2 ∈ G(X, r). Let α ∈ G(X, r) and x ∈ X. Then α = φ(g) for a certain
g ∈ G(X, r) and fx = φ(x). Then α + fx = φ(g) + φ(x) = φ(g + x) = φ(g)fφ(g)−1(x) = αfα−1(x)

and α− fx = φ(g)−φ(x) = φ(g−x) = φ(g)f−1
gφ(g)−1(x)(φ(g)−1(x)) = αf−1

gα−1(x)(α
−1(x)). We conclude

that the additions obtained with the arguments of [8] and [1] coincide with our additions.

6. Some applications
In this section we present some applications of our main theorems.

The fixed points of the natural action of r on X × X are immediately identified in the
Cayley graph. They were called frozen pairs in [7].

Proposition 7. Let x ∈ X. Consider in the Cayley graph of the additive group of G(X, r) the
path of length two starting at 1 with both edges labelled with x and consider the corresponding
edges on the Cayley graph of the multiplicative group of G(X, r), with labels x, y, respectively.
Then r(x, y) = (x, y). Moreover, (x, y) is the unique pair of the form (x, z) with z ∈ X such that
r(x, z) = (x, z).

Proof. We have that fx · fy = fx + ffx(y) = fx + fx and x = fx(y). Hence y = f−1
x (x). Now

r(x, y) = (fx(y), f−1
fx(y)(x)) = (x, f−1

x (x)) = (x, y).
Moreover, if r(x, z) = (x, z), then fx(z) = x and so z = f−1

x (x) = y, hence the unicity
holds. �
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We see that the relations explicitly mentioned in the definition of the structure group and
the trivial ones of the form xy = xy are the unique relations that can be found in this group
involving equalities of products of two generators. The proof is already implicit in the proof of
Theorem B, but it becomes more evident from our description of the structure group.

Theorem 8. Let x, y, z, t ∈ X be regarded as elements of the structure group G(X, r). Then
xy = zt if and only if x = z and y = t or r(x, y) = (z, t).

Proof. The element xy corresponds to a path of length 2 in the Cayley graph of G(X, r) starting
at 1 and with labels x and y, and the element zt corresponds to a path of length 2 in the Cayley
graph of G(X, r) starting at 1 and with labels z and t. They correspond to paths in the Cayley
graph of the additive group of G(X, r) starting at 1 and with labels x, fx(y) for the first one, and
z, fz(t) for the second one. Hence {x, fx(y)} = {z, fz(t)}. If x = z, then fx(y) = fz(t) = fx(t)
and, since fx is bijective, y = t and we are in the first case. Now suppose that x = fz(t),
z = fx(y). Then r(x, y) = (fx(y), f−1

fx(y)(x)) = (z, f−1
z (x)) = (z, t) and we are in the second case.

The converse is clear. �

Recall that if G is a permutation group acting on Ω, a block of this action is a subset B ⊆ Ω
such that for each g ∈ G, gB = B or gB ∩ B = ∅. Note that we are not requiring the action to
be transitive. Suppose that (X, r) is a solution of the YBE. The retract relation ∼ on X given
by x ∼ y if and only if fx = fy, where, as usual, r(x, y) = (fx(y), gy(x)), x, y ∈ X, defines an
equivalence relation on X. We see that the equivalence classes for ∼ form a block system for the
action of G(X, r) on X.

Proposition 9. Let (X, r) be a solution of the YBE. The equivalence classes for the retract relation
∼ on X are blocks for the natural action of G(X, r) on X.

Proof. Suppose that x ∼ x̄, that is, fx = fx̄. Then, given α ∈ G(X, r), αfx = αfx̄, that is,
α+ fα(x) = α+ fα(x̄), which implies that fα(x) = fα(x̄). �

Proposition 9 gives an immediate justification for the construction of the solution associated
to the retraction.

Proposition 10 ([8, Section 3.2], see also [6]). If (X, r) is a solution of the YBE, then r̃ : (X/∼)×
(X/∼) given by r̃([x], [y]) = ([fx(y)], [gy(x)]) is a map such that (X/∼, r̃) is a solution of the
YBE and the natural surjection ϕ : X −→ X/∼ induces a homomorphism of solutions of the
YBE.

Recall that the socle of a brace (B,+, ·) is

Soc(B) = {a ∈ B | for all b ∈ B, a+ b = ab}
= {a ∈ B | for all b ∈ B, ab− a = b}.

Then λa : B −→ B given by λa(b) = ab−a defines an automorphism of (B,+). In order to prove
that λa(b) = b for all b ∈ B, it is enough to check the condition for the elements of a generating
set of (B,+). Assume now that B = G(X, r). We obtain that

Soc(G(X, r)) = {α ∈ G(X, r) | for all x ∈ X, α+ fx = αfx}.
Since αfx = α+ fα(x), we have that

Soc(G(X, r)) = {α ∈ G(X, r) | for all x ∈ X, α+ fx = α+ fα(x)}
= {α ∈ G(X, r) | for all x ∈ X, fx = fα(x)}.
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Hence
Soc(G(X, r)) = {α ∈ G(X, r) | for all x ∈ X, x ∼ α(x)}.

We conclude the following result.

Proposition 11. If (X, r) is a solution of the YBE, then

Soc(G(X, r)) = {α ∈ G(X, r) | α induces the identity on X/∼}.

The permutation group G(X/∼, r̃) of the retraction (X/∼, r̃) of (X, r) is

G(X/∼, r̃) = 〈f̃[x] | x ∈ X〉,

where f̃[x] : X/∼ −→ X/∼ is given by f̃[x]([y]) = [fx(y)]. It is clear that all relations of G(X, r)

are satisfied by G(X/∼, r̃), since if a product of elements of the form fx or f−1
x acts trivially

on X, then it acts trivially on the blocks of X/∼. By von Dyck’s theorem, there exists a group
epimorphism η : G(X, r) −→ G(X/∼, r̃) such that η(fx) = f̃[x]. Then

Ker η = {α ∈ G(X, r) | α induces the identity on X/∼} = Soc(G(X, r))

by Proposition 11. Therefore we have the following result, that can be compared with [12, Pro-
position 7]:

Proposition 12. If (X, r) is a solution of the YBE and (X/∼, r̃) is its retraction, then

G(X, r)/Soc(G(X, r)) ∼= G(X/∼, r̃).

We can use Proposition 12 to obtain the Cayley graph of the permutation group associated
to the retraction of a solution of the YBE. We identify in X the elements related with respect
to the retract relation. The arcs in the Cayley graph corresponding to the same retraction class
will be identified and the vertices will be replaced by the permutation that this vertex induces
on X/∼. The elements of Soc(G(X, r)) will be mapped to 1X/∼. We identify all vertices with the
same labels, that will correspond to the same element of G(X, r)/Soc(G(X, r)). This new graph
will be the Cayley graph of G(X/∼, r̃) ∼= G(X, r)/Soc(G(X, r)).

Example 13. Let X = {1, 2, 3, 4, 5} and let r be the solution of the YBE given by f1 = f2 = f3 =
1X , f4 = (1, 2)(4, 5), f5 = (1, 3)(4, 5). The Cayley graph of (G(X, r), ·) is given in Figure 4, where
each loop in the figure represents three loops with labels 1, 2, and 3, respectively. The retraction
classes are {1, 2, 3}, {4}, and {5}. We identify the arcs corresponding in each retraction class and
we replace the vertices by the result of the action of G(X, r) on the blocks of X/∼. The result is
shown on Figure 5. We see that the vertices corresponding in Figure 4 to 1, (1, 3, 2), and (1, 2, 3)
are replaced by 1 in Figure 5, because they are the elements of Soc(G(X, r)). Now the vertices
with the same labels must be identified. This gives the graph with two vertices corresponding to
G(X/∼, r̃) = {1, ([4], [5])} that is drawn on Figure 6.
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(1, 2)(4, 5) (1, 3, 2)

(2, 3)(4, 5)

(1, 2, 3)(1, 3)(4, 5)
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1,2,3 1,2,3

1,2,3

1,2,31,2,3

4

4

4

4

4

4

5

5

5

5

5

5

Figure 4. Cayley graph of the multiplicative group of G(X, r) in Example 13

1

([4], [5]) 1

([4], [5])

1([4], [5])

[1]

[1] [1]

[1]

[1][1]

[4]

[4]

[4]

[4]

[4]

[4]

[5]

[5]

[5]

[5]

[5]

[5]

Figure 5. Identification in the Cayley graph of G(X, r) of the arcs in the same
retraction class and substitution of the vertices by the result of the action on
the blocks in Example 13

1 ([4], [5])

[1] [1][4]

[4]

[5]

[5]

Figure 6. Identification of equal vertices in the retraction in Example 13

We can also repeat the process to find that (X, r) is a multipermutation solution with
multipermutation level 3. If we call X1 = X/∼ = {[1] = {1, 2, 3}, [4] = {4}, [5] = {5}}, or
X1 = {1, 4, 5} for shorter, and r1 = r̃, its retraction is X2 = X1/∼ = {[1] = {1}, [4] = {4, 5}}
and Figure 7 shows the Cayley graph of G(X2, r2 = r̃1). Finally, the retraction of X2 = {1, 4} is
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X3 = {[1] = {1, 4}} which has only one element. Then, (X, r) has multipermutation level 3. The
Cayley graph of G(X3, r3 = r̃2) is drawn in Figure 8.

1 1

[1] [1]
[4]

[4]

1

[1] [4]

Figure 7. Cayley graph of G(X1/∼, r̃1) in Example 13

1

[1]

Figure 8. Cayley graph of G(X2/∼, r̃2) in Example 13

A brace is trivial whenever it coincides with its socle. Proposition 11 can be used to give a
characterisation of when the permutation group of a solution of the YBE is a trivial brace.

Proposition 14. The following statements are equivalent for a solution (X, r) of the YBE.

1. The permutation group G(X, r) is a trivial brace.
2. For every x, y ∈ X, if there exists α ∈ G(X, r) such that α(x) = y, then fx = fy (in other

words, x and y are related by the retract relation).
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