On large orbits of supersoluble subgroups of linear groups

H. Meng* A. Ballester-Bolinches ${ }^{\dagger}$ R. Esteban-Romero ${ }^{\ddagger}$

Abstract

We prove that if G is a finite soluble group, V is a finite faithful completely reducible G-module, and H is a supersoluble subgroup of G, then H has at least one regular orbit on $V \oplus V$.

Mathematics Subject Classification (2010): 20C15, 20D10, 20D45 Keywords: finite group, soluble group, linear group, regular orbit, group representation

1 Introduction

Let G be a finite group acting on a finite set Ω. An element ω of Ω is in a regular orbit if $\mathrm{C}_{G}(\omega)=\{g \in G \mid \omega g=\omega\}=1$, i.e., the orbit of ω is as large as possible and it has size $|G|$. Regular orbits of actions of linear groups acting on finite vector spaces arise in a variety of contexts, including the study of soluble groups, representation theory of finite groups and finite permutation groups, and it is a lively area of current research.

One of the most important questions in this context is to determine conditions which force a given subgroup of a finite linear group to have a regular orbit. This problem has been extensively investigated with a lot of results available (see [3, 4, 5, [15, 16]). In [11, Theorem A], a common extension of the main results of these papers has been showed.

[^0]Theorem 1 (11, Theorem A]). If G is a finite soluble group, V is a faithful completely reducible G-module (possibly of mixed characteristic) and H is a subgroup of G such that the semidirect product $V H$ is S_{4}-free, then H has at least two regular orbits on $V \oplus V$. Furthermore, if H is $\Gamma\left(2^{3}\right)$-free and SL(2,3)-free, then H has at least three regular orbits on $V \oplus V$.

Halasi and Maróti also proved in [7] that if V is a finite vector space over a finite field of order $q \geq 5$ and of characteristic p and $G \leqslant \operatorname{GL}(V)$ is a p-soluble completely reducible linear group, then there exists a base for G on V of size at most 2. As a consequence, under this hypothesis G possesses a regular orbit over $V \oplus V$. On the other hand, Wolf [12, Theorem A] showed that a finite supersoluble and completely reducible subgroup G of $\mathrm{GL}(V)$, for a finite vector space $0 \neq V$, has at least one regular orbit on $V \oplus V$.

The results just mentioned suggest that the answer to the question of whether or not Wolf's theorem holds for every supersoluble subgroup of a finite completely reducible soluble subgroup G of $\mathrm{GL}(V)$, even if the supersoluble subgroup is not completely reducible, is a natural next objective.

The main aim of this paper is to give a complete answer to this question.
Theorem A. Let G be a finite soluble group and V be a finite faithful completely reducible G-module (possibly of mixed characteristic). Suppose that H is a supersoluble subgroup of G. Then H has at least one regular orbit on $V \oplus V$.

By [11, Corollary 3], the answer is affirmative if V is of odd order. Therefore it will be enough to prove Theorem A for a module V over a field of characteristic 2 .

The following two examples will show that in Theorem A the subgroup H is not completely reducible on V in general.

Example 1. Let $G=\mathrm{GL}(2,3)$ and $V=\mathrm{GF}(3) \oplus \mathrm{GF}(3)$ the natural faithful module of G over $\operatorname{GF}(3)$. Let $H=\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\right\rangle$. Observe that $H \cong S_{3}$ is supersoluble and V is a non completely reducible H-module. In fact, $V_{1}=\{(0, x) \mid x \in \operatorname{GF}(3)\}$ is an H-submodule of V and no complement of V_{1} in V is H-invariant.

Example 2. Let $K=\mathrm{GL}(2,2)$ and $W=\mathrm{GF}(2) \oplus \mathrm{GF}(2)$ the natural faithful module of K over GF (2). Let $S \cong S_{2}$ be the symmetric group on $\Omega=\{1,2\}$. Write $G=K \ S$ and $V=W^{\Omega}$. Then V is a faithful, irreducible G-module (see Section 2). Set

$$
H=\{(f, \sigma) \in G \mid f \in K, \sigma \in S, f(1)=f(2)\} \cong S_{3} \times C_{2}
$$

Then H is a supersoluble subgroup of G. Let $V_{1}=\left\{v \in V=W^{\Omega} \mid v(1)=\right.$ $v(2)\}$. Then V_{1} is an H-submodule of V. Suppose that there exists an H submodule V_{2} such that $V=V_{1} \oplus V_{2}$ and take $0 \neq u \in V_{2}$. We have that $u(1) \neq u(2)$, and $u(1)+u(2) \neq 0$. Then $u^{(1, \sigma)}+u \in V_{1} \cap V_{2}=0$. This contradiction shows that V is not a completely reducible H-module. Note that G does not have regular orbits on $V \oplus V$ by Wolf's formula, but H does.

We bring the introduction to a close with an application of Theorem A. Denote by \mathfrak{U} the class of all finite supersoluble groups, which is a subgroupclosed saturated formation. Denote by $G^{\mathfrak{U}}$ the \mathfrak{U}-residual of group G, Clearly, $G^{\mathfrak{U}} \subseteq G^{\mathfrak{N}}$, where $G^{\mathfrak{N}}$ denotes the nilpotent residual. The following corollary generalises a result of Keller and Yang [9, Theorem 1.2] by replacing the nilpotent residual by the supersoluble residual.

Corollary 2. Let G be a finite soluble group and V a finite faithful completely reducible G-module, possibly of mixed characteristic. Let M be the largest orbit size in the action of G on V. Then

$$
\left|G: G^{\mathfrak{U}}\right| \leqslant M^{2} .
$$

Proof. Since \mathfrak{U} is a saturated formation, by [8, Theorem 3.9] we can take a subgroup H such that $G^{\mathfrak{y}} H=G$ and $H \in \mathfrak{U}$. Then H is supersoluble. By Theorem A, H has a regular orbit on $V \oplus V$. It implies that $\left|\mathrm{C}_{H}(v)\right| \leqslant|H|^{1 / 2}$ for some $v \in V$. Let M_{H} be the largest orbit size of H on V. Then it follows that $|H| \leqslant\left|H: \mathrm{C}_{H}(v)\right|^{2} \leqslant M_{H}^{2}$. Hence clearly $\left|G / G^{\mathfrak{U}}\right| \leqslant|H| \leqslant M_{H}^{2} \leqslant M^{2}$, as desired.

2 Background results

All groups considered in the sequel will be finite.
The following elementary lemma appears in [11, Lemma 8].
Lemma 3. Suppose that a group G acts on a non-empty finite set Ω. Then:

1. If $|\Omega|-\left|\bigcup_{1 \neq g \in G} \mathrm{C}_{\Omega}(g)\right|>k|G|$ for some non-negative integer k, then G has at least $k+1$ regular orbits on Ω. In particular, if $k=0$, then G has at least one regular orbit on Ω.
2. If G has k regular orbits on Ω, then a subgroup H of G has at least $|G: H| k$ regular orbits on Ω.

The following notation and arguments appear in [11, Section 3]. We summarise them here for the benefit of the reader.

Recall that an irreducible G-module V is called imprimitive if there is a non-trivial decomposition of V as a direct sum of subspaces $V=V_{1} \oplus \cdots \oplus V_{n}$ $(n>1)$ such that G permutes the set $\left\{V_{1}, \ldots V_{n}\right\}$. The irreducible G-module V is primitive if V is not imprimitive. A linear group $G \leqslant \mathrm{GL}\left(d, p^{k}\right), p$ a prime, is said to be primitive if the natural G-module is primitive.

Let G be a group and let V be a faithful G-module. Let $V=\widehat{W}_{1} \oplus \cdots \oplus$ \widehat{W}_{m}, with $m \geqslant 2$, be a decomposition of V as a direct sum of subspaces such that $\widehat{\Omega}=\left\{\widehat{W}_{1}, \ldots, \widehat{W}_{m}\right\}$ is permuted transitively by G. The action of G on $\widehat{\Omega}$ induces a homomorphism $\sigma: G \longrightarrow S_{\Omega}$, where $\Omega=\{1, \ldots, m\}$. Write $W=\widehat{W}_{1}$ and $H=\mathrm{N}_{G}(W) / \mathrm{C}_{G}(W)$ and $S=\sigma(G)$. Let

$$
\widehat{G}=H \imath S=\{(f, \sigma) \mid f: \Omega \longrightarrow H, \sigma \in S\}
$$

with the product $\left(f_{1}, \sigma_{1}\right)\left(f_{2}, \sigma_{2}\right)=\left(g, \sigma_{1} \sigma_{2}\right)$, where $g(\omega)=f_{1}(\omega) f_{2}\left(\omega^{\sigma_{1}}\right)$ for all $\omega \in \Omega$ be the permutational wreath product of K with S (see [8, Kapitel I, Satz 15.3]). Let

$$
\begin{equation*}
W^{\Omega}=\{f \mid f: \Omega \longrightarrow W \text { is a map }\} . \tag{1}
\end{equation*}
$$

If Y is a subgroup of H, we set $Y^{\natural}=\{(f, 1) \in H 乙 S \mid f(w) \in Y$ for all $\omega \in \Omega\}$. In particular, $B=H^{\natural}$ is called the base group of $H \backslash S$. If W is a H-module, then W^{\natural}, considered as a subgroup of $([W] H) \ S$, becomes a $H 乙 S$-module with the action given by $g^{(f, \sigma)}(\omega)=g\left(\omega^{\sigma^{-1}}\right)^{f\left(\omega^{\sigma-1}\right)}$.

Lemma 4 ([11, Lemma 9]). There exists a monomorphism $\tau: G \longrightarrow \widehat{G}$ such that:

1. The actions of G on V and $\tau(G)$ on W^{Ω} are equivalent.
2. $\widehat{G}=H^{\natural} \tau(G)$.
3. Write $W_{i}=\left\{f \in W^{\Omega} \mid f(j)=0, \forall j \neq i\right\}$ for each $i \in \Omega$. Then

$$
\mathrm{N}_{\tau(G)}\left(W_{i}\right) / \mathrm{C}_{\tau(G)}\left(W_{i}\right) \cong H, \forall i \in \Omega .
$$

Therefore if we are interested in regular orbits of the action of G on V and V is not primitive, we may assume, by Lemma 4, that G is a supersoluble subgroup of a wreath product $\widehat{G}=K \imath S$, where K is a group, W is a faithful K-module, and S is a non-trivial primitive permutation group on a finite set Ω such that $\widehat{G}=K^{\natural} G$ and $V=W^{\Omega}$. Since this situation will appear several times in our arguments, we will use some abbreviations to refer to it.

Notation 5. We say that $(\widehat{G}, G, H, S, \Omega)$ satisfies Condition A if

- H is a group;
- S is a primitive group on the finite set Ω;
- $\widehat{G}=H \imath S$;
- G is a supersoluble subgroup of \widehat{G} such that $H^{\natural} G=\widehat{G}$.

Notation 6. We say that $(\widehat{G}, G, H, S, \Omega, V, W)$ satisfies Condition B if

- $(\widehat{G}, G, H, S, \Omega)$ satisfies Condition A;
- W is a faithful H-module over $\operatorname{GF}(2)$;
- $V=W^{\Omega}$ (see Equation (1)), naturally is a faithful \widehat{G}-module;

Write $W_{i}=\{f \in V \mid f(j)=0, \forall j \neq i\}$ for each $i \in \Omega$.

- $\mathrm{N}_{G}\left(W_{i}\right) / \mathrm{C}_{G}\left(W_{i}\right) \cong H$ for each $i \in \Omega$.

As in [11, Section 3], we are interested here in regular orbits of a group G on completely reducible G-modules V over finite fields and so, in looking for regular orbits of G on V, we can assume without loss of generality that the field is a prime field.

In this context, a result of Wolf [13] that provides a formula to count the exact number of regular orbits \widehat{G} on W^{Ω} is extremely useful. Let S be a transitive permutation group on a finite set Ω and denote by $\Pi_{l}(\Omega, S)$ the set of all partitions $\left\{\Delta_{1}, \ldots, \Delta_{l}\right\}$ of length l of Ω having the property that the subgroup $\left\{s \in S \mid \Delta_{i}^{s}=\Delta_{i}\right.$ for all $\left.i\right\}$ of S is trivial.

Theorem 7 (Wolf's formula, [13]). Suppose that ($\widehat{G}, G, H, S, \Omega, V, W)$ satisfies Condition B. Let k be the number of regular orbits of H on W. Then the number of regular orbits of $\widehat{G}($ also $G)$ on $V=W^{\Omega}$ is at least

$$
\frac{1}{|S|} \sum_{2 \leqslant l \leqslant m} P(k, l)\left|\Pi_{l}(\Omega, S)\right|,
$$

where $P(k, l)=k!/(k-l)$! if $k \geqslant l$ and $P(k, l)=0$ otherwise.
The following result is useful to obtain regular orbits in a direct sum of G-modules starting from regular orbits of its terms.

Lemma 8. Let G be a group and V be a faithful G-module such that $V=$ $W_{1} \oplus \cdots \oplus W_{s}$, where W_{i} is a G-module, $1 \leqslant i \leqslant s$. If $G / \mathrm{C}_{G}\left(W_{i}\right)$ has t_{i} regular orbits on $W_{i} \oplus W_{i}$, then G has at least $\prod_{i=1}^{s} t_{i}$ regular orbits on $V \oplus V$.

The following result about supersoluble primitive permutation groups is crucial in our inductive arguments.

Lemma 9. Let S be a supersoluble primitive permutation group on a finite set $\Omega=\{1, \ldots, n\}$ with $n \geqslant 2$. Then $\operatorname{Stab}_{S}(1) \cap \operatorname{Stab}_{S}(2)=1$.

Proof. Since S is supersoluble and primitive, we have that $|\Omega|$ is a prime. Hence S is a transitive permutation group of prime degree. The conclusion follows from [8, Theorem 3.6 (d)].

Lemma 10. Assume that $(\widehat{G}, G, H, S, \Omega)$ satisfies Condition A. Write $N=$ $H^{\natural} \cap G$ and assume that $\mathrm{O}_{p}(N)=1$ for some prime p. If f is a p-element of H^{\natural} such that $(f, 1) \in N$ and $f\left(i_{0}\right)=1$ for some $i_{0} \in \Omega$, then $f=1$.

Proof. Observe that $S \cong \widehat{G} / H^{\natural} \cong G / N$ is supersoluble. Since S is a primitive permutation group, we conclude that S has a unique minimal normal subgroup X such that $|X|=|\Omega|=q$ for some prime q.

Let $P \in \operatorname{Syl}_{p}(N)$ such that $(f, 1) \in P$. By the Frattini Argument, $G=$ $N \mathrm{~N}_{G}(P)$ and, consequently, $\widehat{G}=H^{\natural} \mathrm{N}_{G}(P)$. Let $\rho \in X, \rho \neq 1$. Then $\rho^{q}=1$. Since $\widehat{G}=H^{\natural} \mathrm{N}_{G}(P)$, there exists $u \in H^{\natural}$ such that $(u, \rho) \in \mathrm{N}_{G}(P)$ whose projection onto S is ρ. Assume that $\mathrm{o}((u, \rho))=q^{\alpha} m$ with $\operatorname{gcd}(q, m)=1$ and $\alpha \in \mathbb{N}$. Then there exist $\lambda, \mu \in \mathbb{Z}$ such that $\lambda q+\mu m=1$, and so $(u, \rho)^{1-\lambda q}=(u, \rho)^{\mu m}$ is a q-element of the form $\left(g, \rho^{1-\lambda q}\right)=(g, \rho) \in \mathrm{N}_{G}(P)$. Let $T=P\langle(g, \rho)\rangle$. Note that $T^{\prime} \leqslant P$ is a p-group and observe that $T^{\prime} \leqslant$ $G^{\prime} \leqslant \mathrm{F}(G)$ since G is supersoluble. Thus $T^{\prime} \leqslant \mathrm{O}_{p}(G)$. Then $[(f, 1),(g, \rho)] \in$ $T^{\prime} \cap N \leqslant \mathrm{O}_{p}(G) \cap N=\mathrm{O}_{p}(N)=1$. Thus we have $(f, 1)(g, \rho)=(g, \rho)(f, 1)$, that is, $f(i) g(i)=g(i) f\left(i^{\rho}\right)$ for all $i \in \Omega$. Therefore $f(i)=1$ if and only if $f\left(i^{\rho}\right)=1$.

Recall that X acts transitively on Ω. For each $i \in \Omega$, there exists ρ_{i} (depending on i) in S such that $i_{0}^{\rho_{i}}=i$. Since $f\left(i_{0}\right)=1$, we have that $f(i)=f\left(i_{0}^{\rho_{i}}\right)=1$. Thus $f(i)=1$ for each $i \in \Omega$ and the statement is proved.

3 Lemmas

In order to prove Theorem A , we will argue by induction by decomposing V as a direct sum of subspaces permuted transitively by G. Therefore our first step will be the study of the case in which there is no such a proper decomposition, that is, V is primitive. In attaining this aim, the following two lemmas are crucial. The first one concerns primitive soluble linear groups over a field of characteristic two.

Let V be the Galois field $\operatorname{GF}\left(p^{n}\right)$ for some prime p and integer n. Then V can be regarded as a vector space over $\operatorname{GF}(p)$ of dimension n. Recall that the semi-linear group of V is

$$
\Gamma(V)=\Gamma\left(p^{n}\right)=\left\{x \longmapsto a x^{\tau} \mid a \in \operatorname{GF}\left(p^{n}\right)^{*}, \tau \in \operatorname{Gal}\left(\operatorname{GF}\left(p^{n}\right) / \operatorname{GF}(p)\right)\right\} .
$$

Lemma 11. Let G be a supersoluble group and V be a faithful primitive G module over $\mathrm{GF}(2)$. Then G has at least four regular orbits on $V \oplus V$ unless $G=\Gamma(V)$ and $|V|=2^{n}, 2 \leqslant n \leqslant 4$. In these cases, G has exactly $n-1$ regular orbits on $V \oplus V$.

Proof. Let A be a maximal abelian normal subgroup of G. Clearly $A \leqslant$ $\mathrm{C}_{G}(A) \sharp G$. Suppose that $A<\mathrm{C}_{G}(A)$. Then we can take a chief factor T / A of G such that $T \leqslant \mathrm{C}_{G}(A)$. Since G is supersoluble, T / A is cyclic and $T=\langle A, x\rangle$ for some $x \in \mathrm{C}_{G}(A)$. Then T is an abelian normal subgroup of G, contrary to the choice of A. Thus $A=\mathrm{C}_{G}(A)$. Since V is a primitive G-module, V_{A} is homogeneous by Clifford's theorem [2, Chapter B, Theorem 7.3]. By [10, Lemma 2.2], V_{A} is irreducible. It follows from [10, Theorem 2.1] that $G \leqslant \Gamma(V)$. Write $|V|=2^{n}$ where $n \geqslant 1$ is an integer.

First we assume that $G=\Gamma(V)$. Equivalently, if suffices to consider the regular orbits of $\Gamma\left(2^{n}\right)$ acting on the additive group of the field $\mathrm{GF}\left(2^{n}\right)$. Take the field automorphism $\sigma: \operatorname{GF}\left(2^{n}\right) \longrightarrow \operatorname{GF}\left(2^{n}\right)$ given by $u \longmapsto u^{2}$. The Galois group $C=\operatorname{Gal}\left(\operatorname{GF}\left(2^{n}\right) / \operatorname{GF}(2)\right)=\langle\sigma\rangle$ is of order n.

For each prime p dividing $n,\left\langle\sigma^{n / p}\right\rangle$ is the unique subgroup of C with order p since C is cyclic. Then we have that

$$
\mathrm{C}_{\mathrm{GF}\left(2^{n}\right)}\left(\sigma^{n / p}\right)=\left\{u \in \mathrm{GF}\left(2^{n}\right) \mid u^{2^{n / p}}=u\right\}
$$

is a subfield of $\operatorname{GF}\left(2^{n}\right)$ isomorphic to $\mathrm{GF}\left(2^{n / p}\right)$. Thus $\left|\mathrm{C}_{\mathrm{GF}\left(2^{n}\right)}\left(\sigma^{n / p}\right)\right|=2^{n / p}$.
In order to prove that C has at least four regular orbits on $\operatorname{GF}\left(2^{n}\right)$ when $n \geqslant 5$, by Lemma 3, it suffices to show that

$$
2^{n}-\sum_{p \mid n} 2^{n / p}>3 n
$$

holds for $n \geqslant 5$. Observe that $\sum_{p \mid n} 2^{n / p} \leqslant \log _{2} n \cdot 2^{n / 2}$. It is not difficult to check that $2^{n}-\sum_{p \mid n} 2^{n / p} \geqslant 2^{n}-\log _{2} n \cdot 2^{n / 2}>3 n$ for $n \geqslant 8$ and it is easy to find that the inequality also holds for $n=5,6,7$.

Thus we have proved that $G \leqslant \Gamma(V)$ has at least four regular orbits on $V \oplus V$ when $n \geqslant 5$.

Assume that $n=1$. Then $|V|=2$ and $G=1$. Hence G has exactly four regular orbits on $V \oplus V$.

Assume that $n=2$. Then $|V|=2^{2}$ and $G \leqslant \Gamma(V) \cong S_{3}$. If $G<\Gamma(V)$, then G has a regular orbit on V. In this case, G has at least $|V|=4$ regular orbits on $V \oplus V$. If $G=\Gamma(V)$, we can check that G has exactly one regular orbit on $V \oplus V$.

Assume that $n=3$. Then $|V|=2^{3}$ and $G \leqslant \Gamma(V) \cong\left[C_{7}\right] C_{3}$. If $G=\Gamma(V)$, then G has exactly two regular orbits on $V \oplus V$. Thus, if $G<\Gamma(V), G$ has at least four regular orbits on $V \oplus V$.

Assume that $n=4$. Then $|V|=2^{4}$ and $G \leqslant \Gamma(V) \cong\left[C_{15}\right] C_{4}$. If $G=\Gamma(V)$, then G has exactly three regular orbits on $V \oplus V$. Thus, if $G<\Gamma(V), G$ has at least six regular orbits on $V \oplus V$.

Thus the lemma is completely proved.
Lemma 12. Let G be a soluble primitive group of $\mathrm{GL}(d, 2)$, and let V be the natural G-module. Assume that H is a supersoluble subgroup of G. Then H has at least three regular orbits on $V \oplus V$ unless one of the following two cases occurs:

1. $d=2$ and $H=\Gamma(V) \cong S_{3}$, then H has just one regular orbit on $V \oplus V$.
2. $d=3$ and $H=\Gamma(V) \cong \Gamma\left(2^{3}\right)$, then H has just two regular orbits on $V \oplus V$.

Furthermore if H is of odd order, then H has four regular orbits on $V \oplus V$ unless the case 2 occurs.

Proof. Assume first that $H=G$. Then G is supersoluble. It follows from Lemma 11 that the hypothesis of the lemma is satisfied. Now we may assume that $H<G$. By [3, Theorem 3.4], H has at least four regular orbits on $V \oplus V$ provided that G is not isomorphic to $\mathrm{GL}(2,2), 3^{1+2}$. $\mathrm{SL}(2,3)$ or 3^{1+2}. GL(2,3).

If H is a proper subgroup of $G=\mathrm{GL}(2,2) \cong S_{3}$, then H is of prime order and there exists $v \in V$ such that $\mathrm{C}_{H}(v)=1$. Hence H has at least $|V|=4$ regular orbits on $V \oplus V$.

Suppose that G is isomorphic to $3^{1+2} \cdot \mathrm{SL}(2,3)$ or $3^{1+2} . \mathrm{GL}(2,3)$ (as a subgroup of GL $(6,2)$). In this case, one checks with GAP [6] that H has at least three (four if $|H|$ is odd) regular orbits on $V \oplus V$.

The next definitions reflect what happens in the exceptional cases of Lemma 12

Definition 13. Let G be a group and let V be a faithful G-module. We say that the G-module V satisfies Property I if the following conditions hold:

1. G is an odd order group and $\mathrm{O}_{3}(G)=1$.
2. There exists $0 \neq x \in V$ such that $\mathrm{C}_{G}(x)$ has at least four different orbits on V with representatives $y_{1}, y_{2}, z_{1}, z_{2}$ satisfying that $\mathrm{C}_{G}(x) \cap \mathrm{C}_{G}\left(y_{i}\right)=$ 1 and $\mathrm{C}_{G}(x) \cap \mathrm{C}_{G}\left(z_{i}\right)$ is a 3-group for each i.

Definition 14. Let G be a group and let V be a faithful G-module. We say that the G-module V satisfies Property II if the following conditions hold:

1. G is an even order group with $\mathrm{O}_{2}(G)=1$.
2. There exists $0 \neq x \in V$ such that $\mathrm{C}_{G}(x)$ at least three different orbits on V with representatives y, z_{1}, z_{2} satisfying that $\mathrm{C}_{G}(x) \cap \mathrm{C}_{G}(y)=1$ and $\mathrm{C}_{G}(x) \cap \mathrm{C}_{G}\left(z_{i}\right)$ is a 2-group for each $1 \leqslant i \leqslant 2$.

Note that if the faithful G-module V satisfies either Property I or Property II, then G has at least one regular orbit on $V \oplus V$. Our strategy will consist in showing by induction that G has at least three regular orbits on $V \oplus V$ or G satisfies either Property I or Property II. As we will see in Lemmas 15 and 16 below, the existence of regular orbits on $V \oplus V$ in the situation of Condition \mathbf{B} will depend on the existence of some special orbits of H on $W_{1} \oplus W_{1}$ allowing us to apply Lemma 10. This situation is guaranteed when Property I or Property II holds.

Let G be a group and Ω be a transitive G-set. Recall that a subset $\Delta \subseteq \Omega$ is said to be a block if for every $g \in G$, either $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\varnothing$. Clearly every transitive G-set Ω has a block Δ such that $1 \leqslant|\Delta|<|\Omega|$ if $|\Omega| \geqslant 2$. If we take such a block Δ of maximal size, then $\operatorname{Stab}_{G}(\Delta)$ is maximal in G. (see [1, Definition 1.1.1 and Proposition 1.1.2]).

Lemma 15. Assume that $(\widehat{G}, G, H, S, \Omega, V, W)$ satisfies Condition B.

1. If $\mathrm{O}_{p}(H)=1$ for some prime p and write $N=H^{\natural} \cap G$, then $\mathrm{O}_{p}(N)=1$.

Let $x \in W$. Suppose that $v \in V=W^{\Omega}$ is defined by $v(\omega)=x$ for all $\omega \in \Omega$.
2. If $(f, \sigma) \in \mathrm{C}_{G}(v)$, then $f(\omega) \in \mathrm{C}_{H}(x)$ for all $\omega \in \Omega$.
3. Assume that $\left\{\Delta_{1}, \ldots, \Delta_{s}\right\}$ is a partition of Ω such that $\bigcap_{i} \operatorname{Stab}_{S}\left(\Delta_{i}\right)=$ 1. Assume also that $\mathrm{C}_{H}(x)$ has different orbits on W with representatives y_{1}, \ldots, y_{s} such that $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{i}\right)$ is a p-group for $1 \leqslant i \leqslant s$. Construct the elements $v \in V=W^{\Omega}$ as $v(\omega)=x$ for $\omega \in \Omega$ and $u \in V=W^{\Omega}$ by $u(\omega)=y_{i}$ if $\omega \in \Delta_{i}$, where $1 \leqslant i \leqslant s$, for $\omega \in \Omega$. Then $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}(u)$ is a p-group. Furthermore, if $\mathrm{O}_{p}(H)=1$ and $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{k}\right)=1$ for some $1 \leqslant k \leqslant s$, then $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}(u)=1$, in particular, (v, u) generates a regular orbit in $V \oplus V$.
4. If $\Omega=\{1,2,3\}, y, z \in W$ belong to different orbits of $\mathrm{C}_{H}(x)$ on W, $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}(y)=1, \mathrm{C}_{H}(x) \cap \mathrm{C}_{H}(z)$ is a 2-group, and $u \in V$ is defined by $u(1)=u(2)=y, u(3)=z$, then $\mathrm{C}_{G}(u) \cap \mathrm{C}_{G}(v)$ is a 2-group.
5. If $\Omega=\{1,2\}, y \in W$ satisfies that $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}(y)=1$, and $u \in V$ is defined by $u(1)=u(2)=y$, then $\mathrm{C}_{G}(u) \cap \mathrm{C}_{G}(v)$ is a 2-group.

Assume that $\Omega=\{1,2\}$ and $0 \neq x \in W$. Suppose that $\mathrm{O}_{2}(H)=1$ and that $v^{\prime} \in V=W^{\Omega}$ is defined by $v^{\prime}(1)=0, v^{\prime}(2)=x$.
6. If $\mathrm{O}_{2}(G) \neq 1, y_{1}$ and y_{2} lie in different orbits of $\mathrm{C}_{H}(x)$ on $W, \mathrm{C}_{H}(x) \cap$ $\mathrm{C}_{H}\left(y_{2}\right)=1$ and $u \in V=W^{\Omega}$ is defined by $u(1)=y_{1}, u(2)=y_{2}$, then $\mathrm{C}_{G}\left(v^{\prime}\right) \cap \mathrm{C}_{G}(u)=1$.

Proof. 1. Write $W_{i}=\{f \in V \mid f(j)=0, \forall j \neq i\}$ for each $i \in \Omega$ and note that $N=\bigcap_{j} \mathrm{~N}_{G}\left(W_{j}\right) \unlhd G$. Consequently, N is a normal subgroup of $\mathrm{N}_{G}\left(W_{j}\right)$ for each j. $N /\left(N \cap \mathrm{C}_{G}\left(W_{j}\right)\right) \cong N \mathrm{C}_{G}\left(W_{j}\right) / \mathrm{C}_{G}\left(W_{j}\right) \Downarrow$ $\mathrm{N}_{G}\left(W_{j}\right) / \mathrm{C}_{G}\left(W_{j}\right)$, which is isomorphic to H. Since $\mathrm{O}_{p}(H)=1$, we conclude that $\mathrm{O}_{p}(N) \leqslant \mathrm{C}_{G}\left(W_{j}\right)$ for each j. Therefore

$$
\mathrm{O}_{p}(N) \leqslant \bigcap_{j} \mathrm{C}_{G}\left(W_{j}\right)=\mathrm{C}_{G}(V)=1,
$$

because G acts faithfully on V.
2. Suppose that $(f, \sigma) \in \mathrm{C}_{G}(v)$. Given $\omega \in \Omega, v(\omega)^{f(\omega)}=v\left(\omega^{\sigma}\right)$, which implies that $x^{f(\omega)}=x$ and so $f(\omega) \in \mathrm{C}_{H}(x)$ for all $\omega \in \Omega$.
3. Let $(f, \sigma) \in \mathrm{C}_{G}(v) \cap \mathrm{C}_{G}(u)$. Given $\omega \in \Omega, v(\omega)^{f(\omega)}=v\left(\omega^{\sigma}\right)$, which implies that $x^{f(\omega)}=x$ and so $f(\omega) \in \mathrm{C}_{H}(x)$ for $\omega \in \Omega$. Moreover, $u(\omega)^{f(\omega)}=u\left(\omega^{\sigma}\right)$ for $\omega \in \Omega$. If $\omega \in \Delta_{i}$, since the y_{i} belong to different orbits under the action of $\mathrm{C}_{H}(x)$, we conclude that $\omega^{\sigma} \in \Delta_{i}$. It follows that $\sigma \in \bigcap_{i} \operatorname{Stab}_{S}\left(\Delta_{i}\right)=1$ and, if $\omega \in \Delta_{i}, y_{i}^{f(\omega)}=y_{i}$, that is, $f(\omega) \in$ $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{i}\right)$, which is a p-group for all i. Therefore $(f, \sigma)=(f, 1)$ is a p-element. It follows that $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}(u)$ is a p-group.
Suppose that, in addition, $\mathrm{O}_{p}(H)=1$ and that $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{1}\right)=1$. In this case, for $\omega \in \Delta_{1}$, we obtain that $y_{1}^{f(\omega)}=y_{1}$, and hence $f(\omega) \in$ $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{1}\right)=1$. Consequently $f(\omega)=1$ for $\omega \in \Delta_{1}$. Furthermore, $(f, \sigma)=(f, 1) \in H^{\natural} \cap G=N$ is a p-element and $f(\omega)=1$ for $\omega \in \Delta_{1}$. Since $\mathrm{O}_{p}(H)=1$, we obtain that $\mathrm{O}_{p}(N)=1$ by the statement 1 . By Lemma 10, we conclude that $f=1$.
4. Let $(f, \sigma) \in \mathrm{C}_{G}(v) \cap \mathrm{C}_{G}(u)$. Then $v(i)^{f(i)}=v\left(i^{\sigma}\right)$. It follows that $x^{f(i)}=x$, that is, $f(i) \in \mathrm{C}_{H}(x)$ for all $i \in \Omega$. Moreover, $u(i)^{f(i)}=u\left(i^{\sigma}\right)$. Since y and z belong to different orbits of $\mathrm{C}_{G}(x)$ in W_{1}, we conclude that $\sigma \in\langle(12)\rangle$. Moreover, $u(i)^{f(i)}=u\left(i^{\sigma}\right)$ for $i \in\{1,2\}$ implies that $y^{f(i)}=y$, that is, $f(1), f(2) \in \mathrm{C}_{H}(x) \cap \mathrm{C}_{H}(y)=1$, and $u(3)^{f(3)}=$ $u\left(3^{\sigma}\right)=u(3)$ implies that $z^{f(3)}=z$, that is, $f(3) \in \mathrm{C}_{H}(x) \cap \mathrm{C}_{H}(z)$, a 2 -group. Therefore (f, σ) is a 2 -element.
5. The proof of this statement is similar to the proof of the previous statement.
6. Since $\mathrm{O}_{2}(H)=1$, we have that $\mathrm{O}_{2}(N)=1$ by Statement 1. Since $G / N \cong S \cong S_{2}$, we have that N is a maximal subgroup of G. Moreover, $N \cap \mathrm{O}_{2}(G) \leqslant \mathrm{O}_{2}(N)=1$. As $\mathrm{O}_{2}(G) \neq 1$, consequently, $G=N \mathrm{O}_{2}(G)=$ $H^{\natural} \mathrm{O}_{2}(G)$ and $\left[N, \mathrm{O}_{2}(G)\right]=1$.
Let $(f, \sigma) \in \mathrm{C}_{G}\left(v^{\prime}\right) \cap \mathrm{C}_{G}(u)$, with $f \in H^{\natural}, \sigma \in S$. Since $v^{\prime}\left(2^{\sigma}\right)=$ $v^{\prime}(2)^{f(2)}=x^{f(2)} \neq 0$, we conclude that $\sigma=1$. Furthermore, $u(2)=$ $u(2)^{f(2)}$, which implies that $f(2) \in \mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{2}\right)=1$. Note that $(f, \sigma)=(f, 1) \in H^{\natural} \cap G=N$.

Let $\rho=(12) \in S$. Since $G=H^{\natural} \mathrm{O}_{2}(G)$, there exists $g \in H^{\natural}$ such that $(g, \rho) \in \mathrm{O}_{2}(G)$. Since $\left[N, \mathrm{O}_{2}(G)\right]=1,(f, 1)(g, \rho)=(g, \rho)(f, 1)$. It follows that $f(1)=f\left(2^{\rho}\right)=f(2)^{g(2)}=1$, and so $f(1)=1$. Consequently, $(f, \sigma)=(1,1)$. We conclude that $\mathrm{C}_{G}\left(v^{\prime}\right) \cap \mathrm{C}_{G}(u)=1$.

The arguments needed for the induction step are collected in the following lemma.

Lemma 16. Let G be a supersoluble group and V be a faithful G-module over GF(2). Assume that there is a decomposition $V=V_{1} \oplus \cdots \oplus V_{m}(m \geqslant$ 1) as a direct sum of subspaces which are permuted transitively by G. Let $K=\mathrm{N}_{G}\left(V_{1}\right) / \mathrm{C}_{G}\left(V_{1}\right)$, then V_{1} can be regarded as a faithful K-module. Then we have:

1. If K has at least four regular orbits on $V_{1} \oplus V_{1}$, then G has at least four regular orbits on $V \oplus V$.
2. If K is of even order and K has at least three regular orbits on $V_{1} \oplus V_{1}$, then G has at least three regular orbits on $V \oplus V$.
3. If the K-module V_{1} satisfies Property I and G is of odd order, then G has at least four regular orbits on $V \oplus V$ or the G-module V satisfies Property I.
4. If the K-module V_{1} satisfies Property II, then either G has three regular orbits on $V \oplus V$ or the G-module V satisfies Property II.
5. If the K-module V_{1} satisfies Property I, then either G has three regular orbits on $V \oplus V$ or the G-module V satisfies Property I or Property II.

Proof. We argue by induction on m. Clearly Statements 15 hold when $m=$ 1. Now we assume that $m \geqslant 2$. Since G acts transitively on $\left\{V_{1}, \ldots, V_{m}\right\}$, we can take a block Δ of $\left\{V_{1}, \ldots, V_{m}\right\}$ such that $\operatorname{Stab}_{G}(\Delta)$ is maximal in G. Without loss of generality, we may assume that $\Delta=\left\{V_{1}, \ldots, V_{s}\right\}$ with $s \geqslant 1$.

Let $W=\sum_{i=1}^{s} V_{i}$ and $L=\mathrm{N}_{G}(W)$. Then $L=\operatorname{Stab}_{G}(\Delta)$ is maximal in G. Assume that $\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$, where $g_{1}=1$, is a right transversal of L in G with $t=|G: L| \geqslant 2$. Note that $V=W g_{1} \oplus \cdots \oplus W g_{t}$ and the action of G on $\left\{W g_{1}, \ldots, W g_{t}\right\}$ induces a homomorphism $\sigma: G \longrightarrow S_{\Omega}$ such that $W g_{i} g=W g_{i^{\sigma(g)}}$, where $\Omega=\{1, \ldots, m\}$. Write $S=\sigma(G)$ and S acts faithfully and primitively on Ω.

Let $H=L / \mathrm{C}_{G}(W), \widehat{G}=H \imath S$. By Lemma 4, there exists a monomorph$\operatorname{ism} \tau: G \longrightarrow \widehat{G}$ such that:

1. The actions of G on V and $\tau(G)$ on W^{Ω} are equivalent.
2. $\widehat{G}=H^{\natural} \tau(G)$.
3. Write $W_{i}=\left\{f \in W^{\Omega} \mid f(j)=0, \forall j \neq i\right\}$ for each $i \in \Omega$. Then

$$
\mathrm{N}_{\tau(G)}\left(W_{i}\right) / \mathrm{C}_{\tau(G)}\left(W_{i}\right) \cong H, \forall i \in \Omega .
$$

It is easy to check that $\left(\widehat{G}, \tau(G), H, S, \Omega, W^{\Omega}, W\right)$ satisfies Condition B. Since the action of G on V and the action of $\tau(G)$ on W^{Ω} are equivalent, without loss of generality, we may assume that $G=\tau(G), V=W^{\Omega}$ and $(\widehat{G}, G, H, S, \Omega, V, W)$ satisfies Condition B.

Write $N=H^{\natural} \cap G$ and $W_{i}=\{f \in V \mid f(j)=0, \forall j \neq i\}$ for each $i \in \Omega$. It is easy to see that $N=\bigcap_{i} \mathrm{~N}_{G}\left(W_{i}\right)$, moreover, $S \cong \widehat{G} / H^{\natural} \cong G / N$ is supersoluble. Thus t is a prime.

Recall that $W=V_{1} \oplus \cdots \oplus V_{s}$ is a faithful H-module and $\Delta=\left\{V_{1}, \ldots, V_{s}\right\}$ is a block of the action of G on $\left\{V_{1}, \ldots, V_{m}\right\}$. It follows from [1, Theorem 1.13] that L (and also H) acts transitively on $\Delta=\left\{V_{1}, \ldots, V_{s}\right\}$. Write $J=$ $\mathrm{N}_{H}\left(V_{1}\right) / \mathrm{C}_{H}\left(V_{1}\right)$ and $J_{0}=\mathrm{N}_{L}\left(V_{1}\right) \mathrm{C}_{G}\left(V_{1}\right) / \mathrm{C}_{G}\left(V_{1}\right) \leqslant K$. It is not difficult to see that the action of J on V_{1} is equivalent to the action of J_{0} on V_{1}.

Now we will prove Statements 115. Our strategy is first to apply induction on $\left(W, H, V_{1}, J\right)$ and then to calculate the number of regular orbits by Theorem 7 .

1. By hypothesis, $J_{0} \leqslant K$ has at least four regular orbits on $V_{1} \oplus V_{1}$. Thus J has at least four regular orbits on $V_{1} \oplus V_{1}$. Since $s=m / t<m$, by induction, H has at least four regular orbits on $W \oplus W$.
Suppose that S has a regular orbit on the power set of Ω. Then $\left|\Pi_{2}(\Omega, S)\right| \geqslant|S| / 2$. Consequently, in this case, $\widehat{G}=H \imath S$ has at least four regular orbits on $V \oplus V$ by Theorem 7 and so does G. Therefore we may assume that S has no regular orbit on $\mathcal{P}(\Omega)$ and so S is one of the exceptional cases of [10, Theorem 5.6] and $3 \leqslant t \leqslant 9$. By [13, Theorem 3.1 (iii)], we have that $\left|\Pi_{3}(\Omega, S)\right| \geqslant|S|$ for $5 \leqslant t \leqslant 9$, which implies that $G \leqslant H 2 S$ has at least four regular orbits on $V \oplus V$ by Theorem 7. Thus we may assume that $t=3$ since t is a prime. In this case, $S \cong S_{3}$. It is not difficult to calculate that $\left|\Pi_{2}(\Omega, S)\right|=0$ and $\left|\Pi_{3}(\Omega, S)\right|=1$. Thus G, as a subgroup of \widehat{G}, has at least four regular orbits on $V \oplus V$. Thus Statement 1 is proved.
2. If J is of odd order, then so is J_{0}. Since K is of even order, $\left|K: J_{0}\right| \geqslant 2$. Thus J_{0} (and also J) has at least six regular orbits on $V_{1} \oplus V_{1}$. Applying Statement 11 on $\left(W, H, V_{1}, J\right)$, we conclude that H has at least four regular orbits on $W_{1} \oplus W_{1}$. Applying Statement 1 on (V, G, W, H) again, we obtain that G has at least four regular orbits on $V \oplus V$, as desired.

Now we assume that J is of even order. By induction, H has at least three regular orbits on $W \oplus W$. By [14, Proposition 3.2 (2)] and Theorem 7. we may assume that $t \leqslant 4$ and S has no regular orbit on $\mathcal{P}(\Omega)$. Note that t is a prime. Thus, by [10, Theorem 5.6], we conclude that $|\Omega|=3$ and $S \cong S_{3}$. In this case, $\left|\Pi_{2}(\Omega, S)\right|=0$ and $\left|\Pi_{3}(\Omega, S)\right|=1$. In particular, \widehat{G} has at least one regular orbit on $V \oplus V$.
Observe that H is of even order since J is of even order. Then \widehat{G} has a subgroup isomorphic to C_{2} 乙 S_{3} and so \widehat{G} is not supersoluble. Thus we have that G is a proper subgroup of \widehat{G}. Suppose that $|\widehat{G}: G|=2$. Then $G \triangleleft \widehat{G}$ and $B=H^{\natural}$ is not contained in G. Recall that $N=B \cap G$. Then N is normal in \widehat{G} and $|B: N|=2$. In particular, there exists a direct factor $H_{1} \cong H$ of B which is not contained in N. Then $B=H_{1} N$ and $\left|H_{1}: H_{1} \cap N\right|=2$. Note that $C=\left(H_{1} \cap N\right)^{\natural}$ is a normal subgroup of \widehat{G} contained in B such that $\widehat{G} / C \cong C_{2} 乙 S_{3}$. Thus there exists a normal subgroup X of \widehat{G} contained in B such that $\widehat{G} / X \cong S_{4}$ and clearly $|B: X|=2^{2}$. If $X \leqslant G$, we have that $X \leqslant N$ and $|N: X|=2$. It implies that N / X is a normal subgroup with order 2 of $G / X \cong S_{4}$, which is impossible. Therefore $\widehat{G}=X G$ and $G / G \cap X \cong \widehat{G} / X \cong S_{4}$,
contrary to assumption. Consequently, $|\widehat{G}: G| \geqslant 3$ and so G has at least three regular orbits on $V \oplus V$. Thus the conclusion 2 is proved.
3. Since the K-module V_{1} satisfies Property I, K has at least two regular orbits on $V_{1} \oplus V_{1}$. If J_{0} is a proper subgroup of K, then J_{0} has at least four regular orbits on $V_{1} \oplus V_{1}$ and so does J. Applying Statement 1 twice, we obtain that G has at least four regular orbits on $V \oplus V$.

Then we may assume $J_{0}=K$. Consequently the J_{0}-module V_{1} (and also V_{1} as a J-module) satisfies Property I. By induction, H has at least four regular orbits on $W \oplus W$ or the H-module W satisfies Property I. If H has at least four regular orbits on $W \oplus W$, then, by Statement 1, G has at least four regular orbits on $V \oplus V$, as desired.
Now we assume that the H-module W satisfies Property I. By hypothesis, we have that $\mathrm{O}_{3}(H)=1$. Moreover, there exists $0 \neq x \in W$ such that $\mathrm{C}_{H}(x)$ has at least four different orbits on W with representatives $y_{1}, y_{2}, z_{1}, z_{2}$ satisfying that $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{i}\right)=1$ and $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(z_{i}\right)$ is a 3 -group for each i.
Since G is of odd order, we have that S is of odd order. Consequently t is an odd prime and $t \geqslant 3$. By [10, Theorem 5.6], S has a strongly regular orbit on $\mathcal{P}(\Omega)$. We may assume that $\Delta \subseteq \Omega$ satisfies that $\operatorname{Stab}_{S}(\Delta)=1$ and $|\Delta| \neq|\Omega \backslash \Delta|$. Take $v \in V=W_{1}^{\Omega}$ such that $v(i)=x$ for each $i \in \Omega$ and define $u_{j}, 1 \leqslant j \leqslant 4$, as follows:

$$
\begin{array}{lll}
u_{1}(i)=y_{1}, & i \in \Delta ; & u_{1}(i)=y_{2}, \\
u_{2}(i)=y_{2}, & i \in \Delta ; & u_{2}(i)=y_{1}, \\
u_{3}, & i \in \Omega \backslash \Delta ; \\
u_{3}(i)=y_{1}, & i \in \Delta ; & u_{3}(i)=z_{1}, \\
u_{4}(i)=y_{2}, & i \in \Delta ; & u_{4}(i)=z_{2},
\end{array} \quad i \in \Omega \backslash \Delta ; .
$$

It is not difficult to find that $u_{j}, 1 \leqslant j \leqslant 4$, lie in different orbits of $\mathrm{C}_{G}(v)$ on V. By Lemma $15(3),\left(v, u_{j}\right), 1 \leqslant j \leqslant 4$, generate four different regular orbits of G on $V \oplus V$. Thus the conclusion 3 is proved.
4. Since the K-module V_{1} satisfies Property II, we may assume that
(a) K is an even order group with $\mathrm{O}_{2}(K)=1$, and
(b) there exist $0 \neq x^{\prime} \in V_{1}$ and three different $\mathrm{C}_{K}\left(x^{\prime}\right)$-orbits with representatives $y^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}$ satisfying that $\mathrm{C}_{K}\left(x^{\prime}\right) \cap \mathrm{C}_{K}\left(y^{\prime}\right)=1$ and $\mathrm{C}_{K}\left(x^{\prime}\right) \cap \mathrm{C}_{K}\left(z_{i}^{\prime}\right)$ is a 2-group for each i.

If J_{0} is of odd order, then J_{0} is proper in K. Then J_{0} has at least two regular orbits on $V \oplus V$ and $\mathrm{C}_{J_{0}}\left(x^{\prime}\right) \cap \mathrm{C}_{J_{0}}\left(z_{i}^{\prime}\right)$ is a 2-group for each i,
which implies that J_{0} has at least four regular orbits on $V_{1} \oplus V_{1}$ and so does J. Applying Statement 1 twice, we see that G has at least four regular orbits on $V \oplus V$.
Thus we may assume that J_{0} is of even order. Suppose that $\left|K: J_{0}\right| \geqslant$ 3. Then J_{0} (also J) has at least three regular orbits on $V_{1} \oplus V_{1}$. It follows from Statement 2 that H has at least three regular orbits on $W \oplus W$. Observe that $|H|$ is even since $|J|$ is even. Applying Statement 2 again, we conclude that G has at least three regular orbits on $V \oplus V$.

Now we may assume that $\left|K: J_{0}\right| \leqslant 2$. Consequently $J_{0} \triangleleft K$ and $\mathrm{O}_{2}\left(J_{0}\right) \leqslant \mathrm{O}_{2}(K)=1$. Then V_{1}, as a J-module (and so as a J_{0}-module), satisfies Property II.
By induction, H has at least three regular orbits on $W \oplus W$ or the H-module W satisfies Property II. Suppose that H has at least three regular orbits on $W \oplus W$. Since $|H|$ is even, G has at least three regular orbits on $V \oplus V$ by Statement 2 , as desired.

Now we assume that the H-module W satisfies Property II, that is:
(a) H is an even order group with $\mathrm{O}_{2}(H)=1$.
(b) There exist $0 \neq x \in W$ and three different $\mathrm{C}_{H}(x)$-orbits with representatives y, z_{1}, z_{2} satisfying that $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}(y)=1$ and $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(z_{i}\right)$ is a 2-group for each i.

First we consider the case $|\Omega|=t \geqslant 5$. By Lemma 9, $\operatorname{Stab}_{S}(1) \cap$ $\operatorname{Stab}_{S}(2)=1$. Let us take $v \in V=W^{\Omega}$ such that $v(i)=x$ for each $i \in \Omega$. Consider the elements $u_{j} \in V$, with $1 \leqslant j \leqslant 3$, defined by

$$
\begin{array}{llll}
u_{1}(1)=y ; & u_{1}(2)=z_{2} ; & u_{1}(i)=z_{1}, & i \in \Omega \backslash\{1,2\} ; \\
u_{2}(1)=z_{1} ; & u_{2}(2)=y ; & u_{2}(i)=z_{2}, & i \in \Omega \backslash\{1,2\} ; \\
u_{3}(1)=z_{2} ; & u_{3}(2)=z_{1} ; & u_{3}(i)=y, & i \in \Omega \backslash\{1,2\} .
\end{array}
$$

Since y, z_{1}, z_{2} lie in different orbits of $\mathrm{C}_{H}(x)$ on W_{1}, it is not difficult to conclude that u_{1}, u_{2} and u_{3} lie in different orbits of $\mathrm{C}_{G}(v)$ on V. By Lemma 15 (3), we have that $\left(v, u_{j}\right), 1 \leqslant j \leqslant 3$, generate three different regular orbits of G on $V \oplus V$, as desired.
Recall that $|\Omega|=t$ is a prime. Thus we only have to consider the cases $t=2$ or $t=3$.

Assume that $t=3$. In this case, $S=S_{3}$ or $S=\langle(123)\rangle$. Take $v \in V=W^{\Omega}$ such that $v(i)=x$ for each $i \in \Omega$. Consider the elements
$u_{j} \in V$, where $1 \leqslant j \leqslant 3$, defined by

$$
\begin{array}{lll}
u_{1}(1)=y, & u_{1}(2)=z_{1}, & u_{1}(3)=z_{2} ; \\
u_{2}(1)=y, & u_{2}(2)=y, & u_{2}(3)=z_{1} ; \\
u_{3}(1)=y, & u_{3}(2)=y, & u_{3}(3)=z_{2} .
\end{array}
$$

It is clear that u_{1}, u_{2} and u_{3} belong to different orbits of $\mathrm{C}_{G}(v)$ on V. By Lemma 15 (3), $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{1}\right)=1$. By Lemma 15 (4), we have that $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{j}\right)$ is 2-group for $j \in\{2,3\}$.
As $\mathrm{O}_{2}(H)=1$, by Lemma 151 , $\mathrm{O}_{p}(N)=1$. Observe that $\mathrm{O}_{2}(G / N) \cong$ $\mathrm{O}_{2}(S)=1$ and consequently $\mathrm{O}_{2}(G) \leqslant \mathrm{O}_{2}(N)=1$. Furthermore, G is of even order since H is of even order. Thus the G-module V satisfies Property II, as desired.
Finally we assume that $|\Omega|=2$ and $S \cong S_{2}$. Take $v \in V$ such that $v(i)=x$ for each $i \in \Omega$ and consider the elements $u_{1}, u_{2}, u_{3} \in V$ defined by

$$
\begin{array}{ll}
u_{1}(1)=z_{1}, & u_{1}(2)=y ; \\
u_{2}(1)=z_{2}, & u_{2}(2)=y ; \\
u_{3}(1)=z_{1}, & u_{3}(2)=z_{2} .
\end{array}
$$

We have that u_{1}, u_{2} and u_{3} belong to different orbits of $\mathrm{C}_{G}(v)$ on V and, by Lemma 15(3), $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{j}\right)=1$ for $j \in\{1,2\}$ and $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{3}\right)$ is 2 -group.
Assume first that $\mathrm{O}_{2}(G)=1$. Then, since G is of even order, we can conclude that the G-module V satisfies Property II, as desired. Now we assume that $\mathrm{O}_{2}(G) \neq 1$. By Lemma (15) (6), if we take $v^{\prime} \in V$ such that $v^{\prime}(1)=0$ and $v^{\prime}(2)=x$, then $\mathrm{C}_{G}\left(v^{\prime}\right) \cap \mathrm{C}_{G}\left(u_{1}\right)=1$. We observe that $\left(v, u_{1}\right),\left(v, u_{2}\right)$ and $\left(v^{\prime}, u_{1}\right)$ lie in different regular orbits of G on $V \oplus V$, as desired. Thus the conclusion 4 is completely proved.
5. Since the K-module V_{1} satisfies Property I, K has at least two regular orbits on $V_{1} \oplus V_{1}$. If J_{0} is proper in K, then J_{0} has at least four regular orbits on $V_{1} \oplus V_{1}$ and so does J. By Statement 1, H has at least four regular orbits on $W_{1} \oplus W_{1}$. Applying Statement 1 again, we obtain that G has at least four regular orbits on $V \oplus V$. Thus we may assume $J_{0}=K$. Consequently V_{1} as a J-module, and so as a J_{0}-module, satisfies Property I.
When H is of even order, by induction, H has at least three regular orbits on $W \oplus W$ or the H-module W_{1} satisfies Property I or Property II. Since H is of even order, clearly the H-module W does not
satisfy Property I. If H has at least three regular orbits on $W \oplus W$, then it follows from Statement 2 that G has at least three regular orbits on $V \oplus V$, as desired. If the H-module W satisfies Property II, then we can conclude by Statement 4 that G has at least three regular orbits on $V \oplus V$ or the G-module V satisfies Property II, as desired. When H is of odd order, applying Statement 3 on $\left(W, H, V_{1}, J\right)$, we can conclude that the H-module W satisfies Property I or H has at least four regular orbits on $W \oplus W$. If the latter case holds, then it follows from Statement 1 that G has at least four regular orbits on $V \oplus V$, as desired.

Thus we can suppose that the H-module W satisfies Property I. Then we have:
(a) H is an odd order group and $\mathrm{O}_{3}(H)=1$.
(b) There exist $0 \neq x \in W$ and four different $\mathrm{C}_{H}(x)$-orbits with representatives $y_{1}, y_{2}, z_{1}, z_{2}$ satisfying that $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(y_{i}\right)=1$ and $\mathrm{C}_{H}(x) \cap \mathrm{C}_{H}\left(z_{i}\right)$ is a 3 -group for each i.

First we consider the case $|\Omega|=t \geqslant 3$. By Lemma 9, $\operatorname{Stab}_{S}(1) \cap$ $\operatorname{Stab}_{S}(2)=1$.
Take $v \in V=W^{\Omega}$ such that $v(i)=x$ for each $i \in \Omega$. Consider the elements $u_{j} \in V$, where $1 \leqslant j \leqslant 3$, defined by

$$
\begin{array}{llll}
u_{1}(1)=y_{1} ; & u_{1}(2)=y_{2} ; & u_{1}(i)=z_{1}, & i \in \Omega \backslash\{1,2\} ; \\
u_{2}(1)=y_{1} ; & u_{2}(2)=y_{2} ; & u_{2}(i)=z_{2}, & i \in \Omega \backslash\{1,2\} ; \\
u_{3}(1)=y_{1} ; & u_{3}(2)=z_{1} ; & u_{3}(i)=z_{2}, & i \in \Omega \backslash\{1,2\} .
\end{array}
$$

Since y_{1}, y_{2}, z_{1} and z_{2} lie in different orbits of $\mathrm{C}_{H}(x)$ on W, it follows that u_{1}, u_{2} and u_{3} lie in different orbits of $\mathrm{C}_{G}(v)$ on V. By Lemma 15 (3), we have that $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{j}\right)=1$ for $1 \leqslant j \leqslant 3$. Thus G has at least three regular orbits on $V \oplus V$, as desired.
Now we assume that $|\Omega|=2$ and $S \cong S_{2}$. Let $v \in V$ such that $v(i)=x$ for each $i \in \Omega$ and consider the elements $u_{1}, u_{2}, u_{3} \in V$ defined by

$$
\begin{array}{ll}
u_{1}(1)=y_{1}, & u_{1}(2)=y_{2} ; \\
u_{2}(1)=y_{1}, & u_{2}(2)=y_{1} ; \\
u_{3}(1)=y_{2}, & u_{3}(2)=y_{2} .
\end{array}
$$

Clearly $u_{j}, 1 \leqslant j \leqslant 3$ lie in different orbits of $\mathrm{C}_{G}(v)$ on V. By Lemma 15 (3), $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{1}\right)=1$. By Lemma 15 (5), $\mathrm{C}_{G}(v) \cap \mathrm{C}_{G}\left(u_{j}\right)$ are 2-groups for $j \in\{2,3\}$.

Assume first that $\mathrm{O}_{2}(G)=1$. Then, since $G / N \cong S_{2}, G$ has even order and we conclude that the G-module V satisfies Property II, as desired.

Now we assume that $\mathrm{O}_{2}(G) \neq 1$. By Lemma $15(6)$, if we take $v^{\prime} \in V$ such that $v^{\prime}(1)=x$ and $v^{\prime}(2)=0$ and define $u_{j}^{\prime} \in V, 1 \leqslant j \leqslant 2$ as follows:

$$
\begin{array}{ll}
u_{1}^{\prime}(1)=y_{1}, & u_{1}^{\prime}(2)=z_{1} \\
u_{2}^{\prime}(1)=y_{1}, & u_{2}^{\prime}(2)=z_{2} .
\end{array}
$$

We have that $\mathrm{C}_{G}\left(v^{\prime}\right) \cap \mathrm{C}_{G}\left(u_{j}^{\prime}\right)=1,1 \leqslant j \leqslant 2$. We also observe that $\left(v, u_{1}\right),\left(v^{\prime}, u_{1}^{\prime}\right)$ and $\left(v^{\prime}, u_{2}^{\prime}\right)$ lie in different regular orbits of G on $V \oplus V$, as desired. Thus the conclusion 5 is completely proved.

4 Proof of the main theorems

Theorem 17. Let G be a soluble group and let V be an irreducible and faithful G-module over GF(2). If H is an odd order supersoluble subgroup of G, then H has at least four regular orbits on $V \oplus V$ or the H-module V satisfies Property I.

Proof. We argue by induction on $|G|$. By Lemma 12 , if V is primitive, then H has four regular orbits on $V \oplus V$ or $|V|=2^{3}, H=\Gamma(V) \cong\left[C_{7}\right] C_{3}$. In the latter case, Property I holds, as desired. Now we may assume that V is an imprimitive G-module. Assume that $V=V_{1} \oplus \cdots \oplus V_{m}(m \geqslant 2)$ is a direct sum of subspaces which are permuted transitively by G. If we do this so that m is as small as possible, then we can assume that $L=\mathrm{N}_{G}\left(V_{1}\right)$ is maximal in G, and we observe also that L acts irreducibly on V_{1}. Write $U=L / \mathrm{C}_{G}\left(V_{1}\right)$ and V_{1} is a faithful and irreducible U-module.

Assume that $\Omega_{1}, \ldots, \Omega_{s}(s \geqslant 1)$ are all the H-orbits in $\left\{V_{1}, \ldots, V_{m}\right\}$. Set $W_{j}=\sum_{W \in \Omega_{j}} W$. First we claim that $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least four regular orbits on $W_{j} \oplus W_{j}$ or the $H / \mathrm{C}_{H}\left(W_{j}\right)$-module W_{j} satisfies Property I for each j.

We can assume without loss of generality $j=1$ and $\Omega_{1}=\left\{V_{1}, \ldots, V_{t}\right\}$, where $t=|H: L \cap H|$. Write $W=W_{1}, K=H / \mathrm{C}_{H}\left(W_{1}\right)$ and $J=$ $\mathrm{N}_{K}\left(V_{1}\right) / \mathrm{C}_{K}\left(V_{1}\right)$.

Now we claim that K has at least four regular orbits on $W \oplus W$ or the K-module W satisfies Property I. Observe that the action of J on V_{1} is equivalent to the action of $A:=(L \cap H) \mathrm{C}_{G}\left(V_{1}\right) / \mathrm{C}_{G}\left(V_{1}\right) \leqslant U$ on V_{1}. Then the triple $\left(U, A, V_{1}\right)$ satisfies the hypotheses of the theorem. By induction, A
(and so J) has at least four regular orbits on $V_{1} \oplus V_{1}$ or the A-module V_{1} (and so the J-module V_{1}) satisfies Property I. If J has at least four regular orbits on $V_{1} \oplus V_{1}$, then it follows from Lemma 16(1) that K has at least four regular orbits on $W \oplus W$, as claimed. If the J-module V_{1} satisfies Property I, since $|H|$ is odd, then it follows from Lemma $16 \sqrt{3}$) that K has at least four regular orbits on $W \oplus W$ or the K-module W satisfies Property I, as claimed.

Thus $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least two regular orbits on $W_{j} \oplus W_{j}$ for each $1 \leqslant j \leqslant s$. If $s \geqslant 2$, then H has at least four regular orbits on $V \oplus V$ by Lemma 8, as desired. Now we may assume that $s=1$, that is, H acts transitively on $\left\{V_{1}, \ldots, V_{m}\right\}$. Thus $H=K$ and $W=V$, and consequently H has at least four regular orbits on $V \oplus V$ or the H-module V satisfies Property I. The theorem is proved.

Theorem 18. Let G be a soluble group and V be an irreducible and faithful G-module over $\mathrm{GF}(2)$. If H is a supersoluble subgroup of G, then either H has at least three regular orbits on $V \oplus V$ or V, as an H-module, satisfies Property I or Property II.

Proof. Work by induction on $|G V|$. If V is a primitive G-module, it follows from Lemma 11 that either H has at least three regular orbits on $V \oplus V$ or the H-module V satisfies:

1. $|V|=2^{2}$ and $H=\Gamma(V) \cong S_{3}$, or
2. $|V|=2^{3}$ and $H=\Gamma(V) \cong\left[C_{7}\right] C_{3}$.

It is not difficult to find that, in the first case, V satisfies Property II and in the second case, V satisfies Property I, as desired. Consequently, we assume that V is an imprimitive G-module. Then there $V=V_{1} \oplus \cdots \oplus V_{m}$ $(m \geqslant 2)$ is a direct sum of subspaces which are permuted transitively by G. If we do this so that m is as small as possible, then we can assume that $L=\mathrm{N}_{G}\left(V_{1}\right)$ is maximal in G, and we observe also that L acts irreducibly on V_{1}. Write $U=L / \mathrm{C}_{G}\left(V_{1}\right)$ and V_{1} is a faithful, irreducible U-module.

Assume that $\Omega_{1}, \ldots, \Omega_{s}(s \geqslant 1)$ are all the H-orbits in $\left\{V_{1}, \ldots, V_{m}\right\}$. Set $W_{j}=\sum_{W \in \Omega_{j}} W$.

First we claim that $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least three regular orbits on $W_{j} \oplus W_{j}$ or the $H / \mathrm{C}_{H}\left(W_{j}\right)$-module W_{j} satisfies Property I or Property II for each j.

Without loss of generality, we may suppose $j=1$ and $\Omega_{1}=\left\{V_{1}, \ldots, V_{t}\right\}$, where $t=|H: L \cap H|$. Write $W=W_{1}, K=H / \mathrm{C}_{H}\left(W_{1}\right)$ and $J=$ $\mathrm{N}_{K}\left(V_{1}\right) / \mathrm{C}_{K}\left(V_{1}\right)$. Then W is a faithful H-module. Observe that the action of J on V_{1} is equivalent to the action of $A:=(L \cap H) \mathrm{C}_{G}\left(V_{1}\right) / \mathrm{C}_{G}\left(V_{1}\right) \leqslant U$ on V_{1}. Then the triple $\left(U, A, V_{1}\right)$ satisfies the hypotheses of the theorem. By
induction, either A (and also J) has at least three regular orbits on $V_{1} \oplus V_{1}$ or V_{1} regarded as an A-module (and also as a J-module) satisfies Property I or Property II.

If the J-module V_{1} satisfies Property I, then our claim follows from Lemma 16 (5). If the J-module V_{1} satisfies Property II, then our claim follows from Lemma 16 (4). Now we assume that J has at least three regular orbits on $V_{1} \oplus V_{1}$. If J is of even order, then K has at least three regular orbits on $W \oplus W$ by Lemma 16 (2). If J is of odd order, then A is of odd order and the triple $\left(U, A, V_{1}\right)$ satisfies the hypotheses of Theorem 17. Thus A (and also J) has at least four regular orbits on $V_{1} \oplus V_{1}$ or V_{1}, regarded as an A-module (also as a J-module) satisfies Property I. If J has at least four regular orbits on $V_{1} \oplus V_{1}$, then K has at least four regular orbits on $W \oplus W$ by Lemma $16(1)$, as claimed. If the J-module V_{1} satisfies Property I, then, by Lemma 16 (5) again, our claim holds.

Now we have proven that $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least three regular orbits on $W_{j} \oplus W_{j}$ or the $H / \mathrm{C}_{H}\left(W_{j}\right)$-module W_{j} satisfies Property I or Property II for each $1 \leqslant j \leqslant s$. In particular, $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least one regular orbit on $W_{j} \oplus W_{j}$ for each $1 \leqslant j \leqslant s$. If there exists some $j \in\{1, \ldots, s\}$ such that $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least three regular orbits on $W_{j} \oplus W_{j}$, then we can conclude that H has at least three regular orbits on $V \oplus V$ by Lemma 8, as desired.

Now we can assume that the $H / \mathrm{C}_{H}\left(W_{j}\right)$-module W_{j} satisfies Property I or Property II for each $1 \leqslant j \leqslant s$. Thus if $s=1$, then V, as an H-module, satisfies Property I or Property II, as desired. Consequently, we can assume $s \geqslant 2$.

Take

$$
\mathcal{C}=\left\{1 \leqslant j \leqslant s \mid \text { the } H / \mathrm{C}_{H}\left(W_{j}\right) \text {-module } W_{j} \text { satisfies Property II }\right\} .
$$

First we assume that $\mathcal{C}=\varnothing$. Then the $H / \mathrm{C}_{H}\left(W_{j}\right)$-module W_{j} satisfies Property I for each $1 \leqslant j \leqslant s$. It implies that $H / \mathrm{C}_{H}\left(W_{j}\right)$ has at least two regular orbits on $W_{j} \oplus W_{j}$. Since $s \geqslant 2$, then we can conclude that H has at least four regular orbits on $V \oplus V$ by Lemma 8, as desired.

Now we assume that $\mathcal{C} \neq \varnothing$, then, without loss of generality, we may assume that $\mathcal{C}=\{1, \ldots, l\}$ for some $1 \leqslant l \leqslant s$.

Write $K_{j}=H / \mathrm{C}_{H}\left(W_{j}\right)$. For $j=1$, we have

1. K_{1} is an even order group and $\mathrm{O}_{2}\left(K_{1}\right)=1$.
2. There exists $0 \neq x_{1} \in W_{1}$ such that $\mathrm{C}_{K_{1}}\left(x_{1}\right)$ has three different orbits on V_{1} with representatives y_{1}, z_{1}, z_{2} such that $\mathrm{C}_{K_{1}}\left(x_{1}\right) \cap \mathrm{C}_{K_{1}}\left(y_{1}\right)=1$ and $\mathrm{C}_{K_{1}}\left(x_{1}\right) \cap \mathrm{C}_{K_{1}}\left(z_{i}\right)$ is a 2-group for $i=1,2$.

Recall that K_{j} has at least one regular orbit on $V_{j} \oplus V_{j}$ for each $2 \leqslant j \leqslant s$. We can assume that $\mathrm{C}_{K_{j}}\left(x_{j}\right) \cap \mathrm{C}_{K_{j}}\left(y_{j}\right)=1$ for some $x_{j}, y_{j} \in V_{j}$.

Thus we can conclude that $\mathrm{C}_{H}\left(x_{j}\right) \cap \mathrm{C}_{H}\left(y_{j}\right) \subseteq \mathrm{C}_{H}\left(W_{j}\right)$ for each $1 \leqslant j \leqslant s$ and $X_{i} / \mathrm{C}_{H}\left(W_{1}\right)$ is a 2-group, where $X_{i}=\mathrm{C}_{H}\left(x_{1}\right) \cap \mathrm{C}_{H}\left(z_{i}\right)$ for $i=1,2$.

Write $v=\sum_{i=1}^{s} x_{i}, u=\sum_{i=1}^{s} y_{i}, w_{1}=z_{1}+\sum_{i=2}^{s} y_{i}$ and $w_{2}=z_{1}+\sum_{i=2}^{s} y_{i}$. It is not difficult to find that u, w_{1}, w_{2} lie in different orbits of $\mathrm{C}_{H}(v)$ on V. Moreover, we have

$$
\mathrm{C}_{H}(v) \cap \mathrm{C}_{H}(u)=\bigcap_{j=1}^{s}\left(\mathrm{C}_{H}\left(x_{j}\right) \cap \mathrm{C}_{H}\left(y_{j}\right)\right) \subseteq \bigcap_{j=1}^{s} \mathrm{C}_{H}\left(W_{j}\right)=1
$$

and

$$
\mathrm{C}_{H}(v) \cap \mathrm{C}_{H}\left(w_{i}\right) \subseteq X_{i} \cap \bigcap_{j=2}^{s} \mathrm{C}_{H}\left(W_{j}\right) \cong\left(X_{i} \cap \bigcap_{j=2}^{s} \mathrm{C}_{H}\left(W_{j}\right)\right) \mathrm{C}_{H}\left(W_{1}\right) / \mathrm{C}_{H}\left(W_{1}\right)
$$

is a 2-group for $i=1,2$.
On the other hand, H is of even order since $H / \mathrm{C}_{H}\left(W_{j}\right)$ is of even order. Moreover, for each $j \in \mathcal{C}$, we have that $H / \mathrm{C}_{H}\left(W_{j}\right)$ is an even order group and $\mathrm{O}_{2}\left(H / \mathrm{C}_{H}\left(W_{j}\right)\right)=1$, and for each $j \in\{1, \ldots, s\} \backslash \mathcal{C}$, we have that $H / \mathrm{C}_{H}\left(W_{j}\right)$ is an odd order group. Thus $\mathrm{O}_{2}(H) \leqslant \bigcap_{i=1}^{s} \mathrm{C}_{H}\left(W_{j}\right)=1$. Hence the H-module V satisfies Property II, as desired. Thus the theorem is completely proved.

Proof of Theorem A. Assume that the theorem is false and let (G, H, V) be the counterexample such that $|G|+|H|+|V|$ minimal. First we claim that V is an irreducible G-module. Assume that this is false. Let $V=V_{1} \oplus V_{2}$, where $0 \neq V_{i}$ is a G-module for $i \in\{1,2\}$. Then V_{i} is a faithful, completely reducible $G / \mathrm{C}_{G}\left(V_{i}\right)$-module for $i \in\{1,2\}$. Observe that $H \mathrm{C}_{G}\left(V_{i}\right) / \mathrm{C}_{G}\left(V_{i}\right)$ satisfies the hypotheses for $i \in\{1,2\}$. Hence, by the choice of (G, H, V), $H \mathrm{C}_{G}\left(V_{i}\right) / \mathrm{C}_{G}\left(V_{i}\right)$ has at least one regular orbit on $V_{i} \oplus V_{i}$ for $i \in\{1,2\}$. Thus H has at least one regular orbit on $V \oplus V$, against the choice of (G, H, V). This contradiction shows that V is an irreducible G-module over a field of characteristic p for some prime p. Then V is a completely reducible G-module over the field $\operatorname{GF}(p)$ of p elements.

Arguing as in the previous paragraph, we may assume that V is an irreducible, faithful G-module over $\mathrm{GF}(p)$. If p is odd, then it follows from Lemma [11, Corollary 3] that H has at least two regular orbits on $V \oplus V$. Thus we may assume that $p=2$. It follows from Theorem 18 that H has at least three regular orbits on $V \oplus V$, or the H-module V satisfies Property I or Property II. In all these cases, we can conclude that H has at least one regular orbit on $V \oplus V$ and the main theorem is completely proved.

Acknowledgements

The research of this paper has been supported by the grant MTM2014-$54707-\mathrm{C} 3-1-\mathrm{P}$ from the Ministerio de Economía y Competitividad, Spain, and FEDER, European Union, by the grant PGC2018-095140-B-I00 from the Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, Spain, and FEDER, European Union, and by the grant PROMETEO/2017/057 from the Generalitat, Valencian Community, Spain. The first author is supported by the predoctoral grant 201606890006 from the China Scholarship Council.

References

[1] A. Ballester-Bolinches and L. M. Ezquerro. Classes of Finite Groups, volume 584 of Mathematics and Its Applications. Springer, Dordrecht, 2006.
[2] K. Doerk and T. Hawkes. Finite soluble groups, volume 4 of De Gruyter Expositions in Mathematics. Walter de Gruyter \& Co., Berlin, 1992.
[3] S. Dolfi. Large orbits in coprime actions of solvable groups. Trans. Amer. Math. Soc., 360(1):135-152, 2008.
[4] S. Dolfi and E. Jabara. Large character degrees of solvable groups with abelian Sylow 2-subgroups. J. Algebra, 313(2):687-694, 2007.
[5] A. Espuelas. Large character degrees of groups of odd order. Illinois J. Math., 35(3):499-505, 1991.
[6] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.9.1, 2018. http://www.gap-system.org.
[7] Z. Halasi and A. Maróti. The minimal base size for a p-solvable linear group. Proc. Amer. Math. Soc., 144(8):3231-3242, 2016.
[8] B. Huppert. Endliche Gruppen I, volume 134 of Grund. Math. Wiss. Springer Verlag, Berlin, Heidelberg, New York, 1967.
[9] T. M. Keller and Y. Yang. Abelian quotients and orbit sizes of solvable linear groups. Israel J. Math., 211:23-44, 2016.
[10] O. Manz and T.R. Wolf. Representations of Solvable Groups, volume 185 of Mathematical Society Lecture Note Series. Cambridge University Press, London, 1993.
[11] H. Meng, A. Ballester-Bolinches, and R. Esteban-Romero. On large orbits of subgroups of linear groups. Trans. Amer. Math. Soc., 372(4):2589-2612, 2019.
[12] T. R. Wolf. Large orbits of supersolvable linear groups. J. Algebra, 215:235-247, 1999.
[13] T. R. Wolf. Regular orbits of induced modules of finite groups. In C. Y. Ho, P. Sin, P. H. Tiep, and A. Turull, editors, Finite Groups 2003. Proceedings of the Gainesville conference on finite groups. March 6-12, 2003. In honour of John Thompson to this 70th birthday, pages 389-399, Berlin, 2004. Walter de Gruyter.
[14] Y. Yang. Orbits of the actions of finite solvable groups. J. Algebra, 321:2012-2021, 2009.
[15] Y. Yang. Large character degrees of solvable 3 '-groups. Proc. Amer. Math. Soc., 139(9):3171-3173, 2011.
[16] Y. Yang. Large orbits of subgroups of solvable linear groups. Israel J. Math., 199(1):345-362, 2014.

[^0]: *Department of Mathematics, Shanghai University, Shanghai 200444, People's Republic of China; Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València, Spain, email: hangyangmenges@gmail.com
 ${ }^{\dagger}$ Department of Mathematics, Guangdong University of Education, 510310, Guangzhou, People's Republic of China; Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València, Spain, email: Adolfo.Ballester@uv.es
 ${ }^{\ddagger}$ Departament de Matemàtiques, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain, email: Ramon.Esteban@uv.es; permanent address: Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain, email: resteban@mat.upv.es

