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Abstract

Braces were introduced by Rump in 2007 as a useful tool in the
study of the set-theoretic solutions of the Yang-Baxter equation. In
fact, several aspects of the theory of finite left braces and their applica-
tions in the context of the Yang-Baxter equation have been extensively
investigated recently.

The main aim of this paper is to introduce and study two finite
brace theoretical properties associated to nilpotency, and analyse their
impact in the finite solutions of the Yang-Baxter equation.
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1 Introduction
The quantum Yang-Baxter Equation (YBE), first appearing in the paper by
Yang [11], is an important equation in mathematical physics that lays the
foundations of some interesting mathematical theories. One of the funda-
mental open problems is to find all the solutions of the YBE. A subclass
of solutions, the involutive and non-degenerate ones, has received a lot of
attention in last years. This type of solutions is of interest not only for the
applications of the YBE to physics but also for its connections with some
mathematical topics of recent interest such as radical rings [7], trifactorised
groups [10] and Hopf algebras [6].
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Let X be a non-empty set. A map r : X×X −→ X×X is a set-theoretic
solution of the Yang-Baxter Equation if

r12r23r12 = r23r12r23,

where the maps r12, r23 : X ×X ×X −→ X ×X ×X are defined as r12 =
r × idX , r23 = idX × r. For all x, y ∈ X, we define two maps fx : X −→ X
and gy : X −→ X by setting r(x, y) = (fx(y), gy(x)).

We say that the solution (X, r) is called involutive if r2 = idX2 , where
X2 = X ×X; (X, r) is non-degenerate if fx, gy are bijective maps for all x,
y ∈ X.

By a solution of the YBE we mean a non-degenerate involutive set-
theoretic solution of the Yang-Baxter equation, as in [3, 2].

The solutions of the YBE can be studied using group theory by consider-
ing two fundamental groups: the structure group and the permutation group
(see [4]).

Let (X, r) be a solution of the YBE and assume that X is finite. The
structure group of (X, r) is the group G(X, r) with the presentation

〈X | xy = fx(y)gy(x) for all x, y ∈ X〉.

The permutation group of (X, r) is the subgroup G(X, r) of Sym(X) gen-
erated by the bijections fx for all x ∈ X, that is,

G(X, r) = 〈fx | x ∈ X〉 6 Sym(X).

On the other hand, Rump [7] introduced a new algebraic structure as
a generalisation of radical rings that turns out to be an important tool to
study the solutions of the YBE. This structure is called left brace and it is
defined as a set B with two binary operations, + and ·, such that (B,+) is
an abelian group, (B, ·) is a group and

a · (b+ c) = a · b+ a · c− a for all a, b, c ∈ B. (1)

The class of Jacobson radical rings coincides with the class of all two-sided
braces, that is, left braces in which the symmetric version of condition (1)
holds.

Let (X, r) be a solution of the YBE. Then G(X, r) and G(X, r) are left
braces (see [3, Section 3]). Moreover, the results of [1] show that every finite
left brace is isomorphic to the left brace G(X, r) for some finite solution of
the YBE, and allow us to conclude that the problem of constructing all the
finite solutions of the YBE is reduced to describing all the finite left braces.
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The main goal of this paper is to introduce and analyse two brace theoret-
ical properties that are natural extension of the well-known brace properties
of left and right nilpotency, and apply them to the study of the solutions
of the YBE. Our first main result (Theorem 14) can be regarded as an im-
provement of a recent result of Smoktunowicz [9, Theorem 1] characterising
nilpotency of finite braces by means of the nilpotency of its multiplicative
group. It also provides an alternative shorter proof of this result that con-
firms the important role played by the abstract group theory in the study
of braces. The study of a local right nilpotency in Section 5 allows us to
determine a large class of groups whose associated finite solutions of the
YBE are multipermutation ones, and it can be considered as a significant
improvement of one of the main results of [3].

Throughout the paper, the word “brace” always means “left brace”.

2 Basic results on braces
We shall lead up to proofs of our main results through a series of elementary
lemmas. Some of them are surely well-known, but include short proofs for
completeness.

Let (B,+, ·) be a brace. It is rather easy to check that the identity 0
of the additive group (B,+) and the identity 1 of the multiplicative group
(B, ·) are equal.

As usual, we denote by −a, a−1 the inverse element of a in (B,+), (B, ·),
respectively.

We say a subset B0 of B is a sub-brace of B if (B0,+) is subgroup of
(B,+) and (B0, ·) is a subgroup of (B, ·).

Let A, B be two braces. A map f : A −→ B is a homomorphism of braces
if f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ A. The kernel
of f is defined as the set Ker(f) = {a ∈ A | f(a) = 1}. If f is bijective, f is
called isomorphism.

We say that A and B are isomorphic (A ∼= B) if there is an isomorphism
between A and B.

Let ∗ be the binary operation on B defined by setting

a ∗ b = a · b− a− b,

for a, b ∈ B.
We begin with some essential properties of the operation ∗.

Lemma 1. Let (B,+, ·) be a brace. Then for every a, b, c ∈ B, we have:

1. a ∗ (b+ c) = a ∗ b+ a ∗ c.
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2. a ∗ 0 = 0 ∗ a = 0.

3. a ∗ (−b) = −(a ∗ b).

4. (a · b) ∗ c = a ∗ (b ∗ c) + a ∗ c+ b ∗ c.

Proof. Only Statement 4 is in doubt.

(a · b) ∗ c = (a · b) · c− (a · b)− c
= a · (b · c)− (a · b)− c
= a · (b ∗ c+ b+ c)− (a · b)− c
= a · (b ∗ c) + a · b+ a · c− 2a− (a · b)− c
= a ∗ (b ∗ c) + a+ b ∗ c− 2a− c+ a · c
= a ∗ (b ∗ c) + a ∗ c+ b ∗ c.

We shall say that a non-empty subset I of B is said to be a left (right)
ideal of B if (I,+) is a subgroup of (B,+) and b ∗ a ∈ I (a ∗ b ∈ I) for every
a ∈ I and b ∈ B; I is an ideal of B if I is both left and right ideal of B.

Let I be an ideal of the brace A, we have that a + I = aI for all a ∈ A.
We may define A/I = {a+ I | a ∈ A} with the operations:

(a+ I) + (b+ I) = (a+ b) + I, (a+ I) · (b+ I) = (ab) + I,

Then (A/I,+, ·) is a brace called the quotient brace of A modulo I.
It is clear that if f : A −→ B is a homomorphism of braces, then Ker(f)

is an ideal of A and f(A) is a sub-brace of B. Moreover, we have:

Lemma 2. A/Ker(f) ∼= f(A).

Lemma 3. Let B be a brace and I, J be ideals of B such that I ⊆ J . Then

(B/I)/(J/I) ∼= B/J.

In [3, Definition 3], an alternative notion of ideal in terms of some useful
automorphisms of (B,+) is given. For a ∈ B, let

λa : B −→ B; b 7−→ a · b− a, b ∈ B.

According to [3, Lemma 1], λa is an automorphism of (B,+), and the
map

λ : (B, ·) −→ Aut((B,+)); a 7−→ λa,

is a group homomorphism. Thus we have a natural group action of (B, ·) on
(B,+) via the homomorphism λ.

The next lemma shows that in fact the two definitions are equivalent.
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Lemma 4. Let (B,+, ·) be a brace and let I be a non-empty subset of B.

1. I is a left ideal of B if and only if (I,+) is a subgroup of (B,+) and
λa(i) ∈ I for every a ∈ B, i ∈ I.

2. I is an ideal of B if and only if (I, ·) is a normal subgroup of (B, ·) and
λa(i) ∈ I for every a ∈ B, i ∈ I.

Proof. 1. Note that for every a ∈ B, i ∈ I,

a ∗ i ∈ I ⇐⇒ λa(i) = a · i− a = a ∗ i+ i ∈ I.

2. If I is an ideal of B, then I is a left ideal of B. Then λa(i) ∈ I for
every a ∈ B, i ∈ I. We prove that (I, ·) is a normal subgroup of (B, ·).
Let a ∈ B, i ∈ I,

a−1 · i · a = a−1(i ∗ a+ i+ a)− a−1 + a−1

= λa−1(i ∗ a) + λa−1(i) + λa−1(a) + a−1

= λa−1(i ∗ a) + λa−1(i) ∈ I,

Conversely, assume that (I, ·) is a normal subgroup of (B, ·) and λa(i) ∈
I for all a ∈ B, i ∈ I. Then i ∗a = i ·a− i−a = a · (a−1 · i ·a)−a− i =
λa(a

−1 · i · a)− i ∈ I. Let i, j ∈ I. Then

i− j = j · (j−1 · i)− j = λj(j
−1 · i) ∈ I for all i, j ∈ I.

Therefore (I,+) is a subgroup of (B,+).

An interesting and useful application of Lemma 4 is the following.

Lemma 5. Let (B,+, ·) be a finite brace. Then mB = {mb | b ∈ B} is a
left ideal of B for all m ∈ N. In particular, every Hall subgroup of (B,+) is
a left ideal of B.

Proof. Note that (mB,+) is a characteristic subgroup of (B,+). Thus
(mB,+) is invariant under the action of (B, ·) via λ. Consequently, mB
is a left ideal of B by Lemma 4.

Let X, Y be subsets of the brace B. Define

X + Y = {x+ y | x ∈ X, y ∈ Y };
X ∗ Y = 〈x ∗ y | x ∈ X, y ∈ Y 〉+,

where 〈S〉+ denotes the subgroup generated by the set S ⊆ B in (B,+).
Note that if (Y,+) is a subgroup of (B,+), it follows from Lemma 1 (3) that

X ∗ Y = {
m∑
i=1

xi ∗ yi | xi ∈ X, yi ∈ Y }.
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Lemma 6. Let B be a brace. Suppose that L is a left ideal of B and I is an
ideal of B. Then I ∗L is a left ideal of B. Moreover, I ∗B is an ideal of B.

Proof. Let x =
∑n

i=1 ai ∗ bi ∈ I ∗ L, where ai ∈ I, bi ∈ L. If y ∈ B, then
λy(x) = λy(

∑n
i=1 ai ∗ bi) =

∑n
i=1 λy(ai ∗ bi). Therefore, by Lemma 4 (1), it is

enough to prove that λy(a ∗ b) ∈ I ∗ L for each a ∈ I, b ∈ L.

λy(a ∗ b) = λy(λa(b)− b) = (λy ◦ λa)(b)− λy(b)
= λya(b)− λy(b) = λ(yay−1)y(b)− λy(b)
= λyay−1(λy(b))− λy(b)
= (yay−1) ∗ λy(b).

Since I is an ideal of B, (I, ·) E (B, ·). Hence yay−1 ∈ I. Since L is a left
ideal of B, we have that λy(b) ∈ L. Thus λy(a ∗ b) ∈ I ∗ L, as desired.

We prove now that I ∗B is an ideal of B. By Lemma 4 (2), it is enough
to show that (I ∗B, ·) E (B, ·). Let x ∈ I ∗B and y ∈ B. Then

y−1xy = y−1(xy)− y−1 + y−1 = λy−1(xy) + y−1

= λy−1(x ∗ y + x+ y) + y−1

= λy−1(x ∗ y) + λy−1(x) + λy−1(y) + y−1

= λy−1(x ∗ y) + λy−1(x),

Note that x ∈ I since I is an ideal of B. Since I ∗ B is a left ideal of B, we
have that λy−1(x ∗ y), λy−1(x) ∈ I ∗B. Thus y−1xy ∈ I ∗B.

We define inductively:

L0(X, Y ) = Y ; Ln(X, Y ) = X ∗ Ln−1(X, Y ) (n ≥ 1);

R0(X, Y ) = X; Rn(X, Y ) = Rn−1(X, Y ) ∗ Y (n ≥ 1).

Observe that if x, y ∈ B, then Ln({x}, {y}) coincides with {en(x, y)}, with
en(x, y) defined as in [8, Section 2]. Note that if Y and Z are subgroups of
(B,+), we have that X ∗ (Y + Z) = (X ∗ Y ) + (X ∗ Z) by Lemma 1 (1).
Hence:

Proposition 7. Let (B,+, ·) be a brace. Assume that Y and Z are subgroups
of (B,+). Then

Ln(X, Y + Z) = Ln(X, Y ) + Ln(X,Z)

for all n ∈ N.
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Proof. We argue by induction on n. If n = 0, then the result is clear. We
may assume that n ≥ 1 and Ln−1(X, Y + Z) = Ln−1(X, Y ) + Ln−1(X,Z)
holds. Then

Ln(X, Y + Z) = X ∗ Ln−1(X, Y + Z)

= X ∗ (Ln−1(X, Y ) + Ln−1(X,Z))

= X ∗ Ln−1(X, Y ) +X ∗ Ln−1(X,Z)

= Ln(X, Y ) + Ln(X,Z).

The following description of the sets Ln(X, Y ) in terms of commutators
of the semidirect product G = (B,+) o (B, ·) with respect to the action of
(B, ·) on (B,+) via λ turns out to be crucial in our approach.

Let a ∈ (B,+) and b ∈ (B, ·). Then

[a, b−1] = −a+ λb(a) = −a+ b · a− b = b ∗ a.

If Y is a subgroup of (B,+) and X is a subgroup of (B, ·), then

[Y,X] = 〈[y, x−1] | x ∈ X, y ∈ Y 〉+ = 〈x ∗ y | x ∈ X, y ∈ Y 〉+ = X ∗ Y ;

furthermore,

Ln(X, Y ) = [. . . [Y,X], X], . . . , X] = [Y,X, . . . , X] (X appears n times).

It easily follows from Lemma 6 that Ln(B,B) = Bn+1 ([7]), is a left ideal
of B, also a normal subgroup of G contained in (B,+) for all n.

Assume now that B has order pn for some prime p, n ≥ 1. Then G is
a p-group and so it is nilpotent. Applying [5, 5.1.6 (iii)], we obtain that if
Li(B,B) 6= 0, then (Li+1(B,B),+) is a proper subgroup of (Li(B,B),+).
Therefore we have:

Lemma 8 ([7, Corollary]). Let B be a finite brace such that |B| = pn for
some prime p and n ≥ 0. Then Ln(B,B) = 0.

Let B be a brace. Rump [7] defined the socle series of the brace B by
setting Soc0(B) = 0, Soc(B) = Soc1(B), and

Socn+1(B) := {x ∈ B | x ∗ a ∈ Socn(B), for all a ∈ B},

for all n ≥ 1.
Note that if s ∈ Soc(B), then sx = s + x for all x ∈ B. Therefore, by

Lemma 4, Socn(B) is an ideal of B for all n.
The following proposition is elementary.

Proposition 9. Let B be a brace and X be a non-empty subset of B. Assume
that m, n ≥ 0. Then Rn(X,B) ⊆ Socm(B) if and only if X ⊆ Socm+n(B).
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3 Braces and solutions of the Yang-Baxter equa-
tion

Let (X, r), (Y, s) be two solutions of the YBE. Following [3, Section 3], we
say that a homomorphism from (X, r) to (Y, s) is a map ϕ : X −→ Y such
that

s(ϕ(xi), ϕ(xj)) = (ϕ(xk), ϕ(xl)),

if xi, xj, xk, xl ∈ X satisfy r(xi, xj) = (xk, xl).
In this case, (ϕ(X), s|ϕ(X)2) is also a solution of the YBE. The solution

(X, r) is said to be embedded in (Y, s) if ϕ is injective. If ϕ is bijective, then
we say that (X, r) and (Y, s) are isomorphic.

If B is a brace, then the map r : B ×B −→ B ×B defined by

r(x, y) = (λx(y), λ−1λx(y)(x))

provides a solution of the YBE called the solution of the YBE associated to
the brace B (see [3, Lemma 2]). Clearly, if the braces A and B are isomorphic,
then the solutions of the YBE associated to A and B are isomorphic.

Let (X, r) be the solution of the YBE. Denote by ZX the additive free
abelian group with basis X. Note that Sym(X) induces a group of auto-
morphisms of ZX by

σ

(∑
x∈X

axx

)
=
∑
x∈X

axσ(x), σ ∈ Sym(X), ax ∈ Z, x ∈ X.

Write the group MX = {(a, σ) | a ∈ ZX , σ ∈ Sym(X)} with the product
defined by:

(a, σ)(b, τ) = (a+ σ(b), στ) for all a, b ∈ ZX , σ, τ ∈ Sym(X).

By [4, Propositions 2.4 and 2.5], G(X, r) is isomorphic to a subgroup of MX

of the form
H = {(a, φ(a)) | a ∈ ZX},

for some function φ : ZX −→ Sym(X) such that φ(x) = fx. We can define a
sum in H by setting

(a, φ(a)) + (b, φ(b)) = (a+ b, φ(a+ b)) for all a, b ∈ ZX .

Then (H,+, ·) is an (infinite) left brace (see [3, Section 3]). In [3, Theorem 1]
it is stated that the solution (X, r) of the YBE can be embedded in the
solution of the YBE associated to H. The following result can be considered
as a slight extension of that theorem.
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Proposition 10. With the above notation, assume that (H, s) is the solution
of the YBE associated to the brace H. Then there exists an G(H, s)-invariant
subset Y ⊆ H such that (Y, s|Y 2) is isomorphic to (X, r).

Proof. Let ψ : X −→ H be the map defined by ψ(x) = (x, fx) = (x, φ(x))
and set Y = ψ(X).

Recall that s : H × H −→ H × H is the map defined by s(h, g) =
(λh(g), λ−1λh(g)(h)). Thus G(H, s) = 〈λh | h ∈ H〉 = 〈λ(a,φ(a)) | a ∈ ZX〉.
For every h = (a, φ(a)) ∈ H and y = ψ(x) ∈ Y , where a ∈ ZX and x ∈ X,
we have

λh(y) = (a, φ(a))(x, φ(x))− (a, φ(a))

= (a+ φ(a)(x), φ(a)φ(x))− (a, φ(a))

= (a+ φ(a)(x), φ(a+ φ(a)(x)))− (a, φ(a))

= (φ(a)(x), φ(φ(a)(x))),

Note that φ(a)(x) ∈ X and so λh(y) = ψ(φ(a)(x)) ∈ Y . Thus Y is G(H, s)-
invariant. Moreover, ψ(fx(y)) = λψ(x)(ψ(y)) for all x, y ∈ X. This implies
that ϕ is an embedding of (X, r) in (H, s) and so (Y, s|Y 2) is a solution of
the YBE that is isomorphic to (X, r).

We bring this section to a close with the notions of retraction of a solution
and multipermutation solution introduced in [4]. Let (X, r) be a solution
of the YBE and assume that r(x, y) = (fx(y), gy(x)) for all x, y ∈ X. The
retraction relation ∼ on X with respect to r is an equivalence relation defined
by x ∼ y if fx = fy.

If [x] denotes the ∼-class of x ∈ X, then a natural induced solution
Ret(X, r) = (X/∼, r̃) called the retraction of (X, r), where r̃ is defined by

r̃([x], [y]) = ([fx(y)], [gy(x)]) for all [x], [y] ∈ X/∼,

emerges.
Define

Ret0(X, r) = (X, r),Ret1(X, r) = Ret(X, r)

and
Retm(X, r) = Ret(Retm−1(X, r)),m ≥ 2.

Then a solution (X, r) is said to be a multipermutation solution of level m if
m is the smallest non-negative m such that Retm(X, r) has cardinality 1.

The following lemma is an easy application of [3, Lemmas 3 and 4].
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Lemma 11. Let B be a brace and let (B, r) be the solution of the YBE
associated to B. Then Retm(B, r) is isomorphic to the solution of the YBE
associated to the brace B/Socm(B).

Proof. We argue by induction on m. By [3, Lemma 3], the result is true
for m = 1. Now suppose that Retm−1(B, r) is isomorphic to the solution of
the YBE associated with the brace B = B/Socm−1(B). By [3, Lemma 4],
Retm(B, r) is isomorphic to the solution of the YBE associated to B/Soc(B).
By Lemma 3, B/Soc(B) is isomorphic to B/Socm(B). Thus Retm(B, r) is
isomorphic to the solution of the YBE associated with B/Socm(B).

4 Left p-nilpotent braces
A brace B is called left nilpotent if Ln(B,B) = 0 for some n ∈ N. Smok-
tunowicz [9, Theorem 1] characterised nilpotency of finite braces by means
of the nilpotency of its multiplicative group.

Our main result of this section shows that this result is not accidental
and can be obtained as owing to a local completeness property of the finite
braces.

Recall that a property of groups is said to be local if it is generalised in a
form referring to a prime. An interesting property in this context is to find
out whether the original property can be described as the conjunction of all
the local properties for all primes. If we consider the property of finite groups
of being nilpotent, a local version is that of being p-nilpotent, p a prime. A
finite group G is said to be p-nilpotent if G has a normal Hall p′-subgroup.

It is clear that every finite nilpotent group is p-nilpotent and a finite p-
nilpotent group for all primes p is nilpotent. Therefore the following definition
turns out to be natural in this context.

Definition 12. Let B be a finite brace and let p be a prime. B is called
left p-nilpotent if Ln(B,Bp) = 0 for some positive integer n, where Bp is the
Sylow p-subgroup of the additive group of B.

Our next result shows that left nilpotency of finite braces is a local prop-
erty. It can also be deduced from [8, Theorem 12].

Lemma 13. Let B be a finite brace. Then B is left nilpotent if and only if
B is left p-nilpotent for all primes p.

Proof. Denote by π(B) the set of all the primes dividing the order of B. It
is easy to see that the lemma holds when B = {0}. Thus we may assume
that B 6= {0}.

10



Assume that B is left nilpotent. Then Ln(B,B) = 0 for some integer
n ≥ 1. For every prime p dividing the order of B, we have that Ln(B,Bp) ⊆
Ln(B,B) = 0, where Bp is the Sylow p-subgroup of the additive group of B.
Hence B is left p-nilpotent.

Conversely, assume that Ln(p)(B,Bp) = 0 for every prime p ∈ π(B), where
Bp is the Sylow p-subgroup of the additive group of B and n(p) is an positive
integer (depending on p). Let m = max{n(p) | p ∈ π(B)}. Then

Lm(B,Bp) = 0, for all p ∈ π(B).

Observe that B =
∑

p∈π(B)Bp. It follows from Proposition 7 that

Lm(B,B) = Lm(B,
∑

p∈π(B)

Bp) =
∑

p∈π(B)

Lm(B,Bp) = 0.

Hence B is left nilpotent.

Our main result of this section characterises left p-nilpotent finite braces.
It is an extension of [9, Theorem 1] and also provides an alternative shorter
proof of that result.

Theorem 14. Let (B,+, ·) be a finite brace and let p be a prime. Assume that
Bp′ , Bp are the Hall p′-subgroup and Sylow p-subgroup of the group (B,+),
respectively. Then the following statements are pairwise equivalent:

1. B is a left p-nilpotent brace.

2. Bp′ ∗Bp = 0.

3. Bp′ ∗ Ω((Bp,+)) = 0, where Ω((Bp,+)) is the group generated by all
element of order p in (Bp,+).

4. The multiplicative group (B, ·) is p-nilpotent.

Proof. 1 implies 2. If B is p-nilpotent, then Ln(B,Bp) = 0 for some positive
integer n. In particular, Ln(Bp′ , Bp) = 0. Considering the action of (Bp′ , ·)
on (Bp,+), we have that [Bp, Bp′ , . . . , Bp′ ] = Ln(Bp′ , Bp) = 0. It follows from
[5, 8.2.7 (b)] that [Bp, Bp′ ] = 0. Hence Bp′ ∗Bp = 0.

It is clear that 2 implies 3.
3 implies 4. Considering the action of (Bp′ , ·) on (Bp,+), we have that

[Ω((Bp,+)), Bp′ ] = Bp′ ∗ Ω((Bp,+)) = 0.

It implies that Bp′ acts trivially on Ω((Bp,+)). Then it follows from [5,
8.4.3] that Bp′ acts trivially on (Bp,+), so that Bp′ ∗Bp = 0. Hence we have
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Bp′ ∗B = Bp′ ∗ (Bp +Bp′) = Bp′ ∗Bp′ ⊆ Bp′ . We have by Lemma 5 that Bp′

is an ideal of B and so (Bp′ , ·) is a normal subgroup of (B, ·) by Lemma 4.
Hence (B, ·) is p-nilpotent.

4 implies 1. Since (B, ·) is p-nilpotent, we have (Bp′ , ·) is a normal sub-
group of (B, ·). By Lemma 5, Bp′ is a left ideal of B. Hence we can apply
Lemma 4 to conclude that Bp′ is an ideal of B. Consequently, Bp′ ∗ Bp ⊆
Bp′ ∩Bp = 0 since Bp is a left ideal of B by Lemma 5. Now we claim that

Ln(B,Bp) = Ln(Bp, Bp) for all n ≥ 1.

It suffices to prove that Ln(B,Bp) ⊆ Ln(Bp, Bp) for all n ≥ 1. We argue by
induction on n. Assume that n = 1 and let x = ab ∈ B and y ∈ Bp, where
a ∈ Bp, b ∈ Bp′ . Then, by Lemma 1,

x ∗ y = (ab) ∗ y = a ∗ (b ∗ y) + a ∗ y + b ∗ y = a ∗ y ∈ Bp ∗Bp

since b ∗ y = 0. Thus we have L1(B,Bp) = B ∗ Bp ⊆ Bp ∗ Bp = L1(Bp, Bp).
Now we may assume that the result holds for n − 1, that is, Ln−1(B,Bp) ⊆
Ln−1(Bp, Bp). Arguing as above, we obtain that B ∗ Ln−1(Bp, Bp) ⊆ Bp ∗
Ln−1(Bp, Bp). Therefore

Ln(B,Bp) = B ∗ Ln−1(B,Bp) ⊆ B ∗ Ln−1(Bp, Bp) ⊆ Bp ∗ Ln(Bp, Bp).

Since Lm(Bp, Bp) = 0 for some m by Lemma 8, we have that Lm(B,Bp) =
Lm(Bp, Bp) = 0. Consequently, B is a left p-nilpotent brace and the circle of
implications is complete.

We will draw a series of conclusions from Theorem 14.

Corollary 15. [9, Theorem 1] Let (B,+, ·) be a finite brace. Then B is left
nilpotent if and only if the multiplicative group (B, ·) is nilpotent.

Another application of left p-nilpotent finite braces is the following non-
simplicity criterion.

Corollary 16. Let (B,+, ·) be a finite brace and p be the smallest prime
dividing the order of B. If the Sylow p-subgroups of (B, ·) are cyclic, then B
is left p-nilpotent. In particular, B is not simple if |B| 6= p.

Proof. Applying [5, 7.2.2], we have that (B, ·) is p-nilpotent. By Theorem 14
and its proof, B is left p-nilpotent and then Bp′ is an ideal of B, where Bp′ is
the Hall p′-subgroup of the additive subgroup of B. If |B| 6= p, then Bp′ 6= 1.
Hence B is not simple.
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5 Right p-nilpotent braces
Recall that a brace B is said to be right nilpotent if Rn(B,B) = 0 for some
n ≥ 0. Applying Proposition 9, we conclude that B is right nilpotent if and
only if Socn(B) = B for some n ≥ 0.

Right nilpotency has a strong impact on the solutions of the YBE. In fact,
as it is proved in [2, Proposition 6], a brace B is right nilpotent if and only
if the solution of the YBE associated to B is a multipermutation solution.

The aim of this section is to introduce right p-nilpotent braces and prove a
characterisation theorem that includes an extension of [2, Proposition 6] and
can be used to show a significant improvement of [3, Theorem 3] concerning
finite solutions of YBE whose associated permutation group is abelian.

Definition 17. Let B be a finite brace and p be a prime. B is called right
p-nilpotent if Rn(Bp, B) = 0 for some positive integer n, where Bp is the
Sylow p-subgroup of the additive group of B.

Our first result in this section gives a criterion for a finite brace B to be
right p-nilpotent, and confirms that right p-nilpotency and left p-nilpotency
are very different brace theoretical properties.

Theorem 18. Let B be a finite brace. Assume that the multiplicative group
of B has an abelian normal Sylow p-subgroup for some prime p. Then B is
right p-nilpotent.

Proof. Assume the theorem is false and choose for B a counterexample of
least order. Let Bp be the Sylow p-subgroup of (B,+). Then Bp is a left
ideal of B by Lemma 5. In particular, Bp is closed under taking products.
Therefore (Bp, ·) is also a Sylow p-subgroup of (B, ·) and so (Bp, ·) is abelian
and normal in (B, ·). By Lemma 4, Bp is an ideal of B.

Let Bp′ be the Hall p′-subgroup of (B,+). Since Bp′ is a left ideal of B by
Lemma 5, it follows that Bp ∗Bp′ ⊆ Bp∩Bp′ = 0. Thus, by Proposition 7, we
have Soc(Bp) ∗B = Soc(Bp) ∗ (Bp +Bp′) = Soc(Bp) ∗Bp + Soc(Bp) ∗Bp′ = 0.
Since Bp is abelian, we have that

Soc(Bp) = {a ∈ Bp | a ∗ b = 0 for all b ∈ Bp}
= {a ∈ Bp | b ∗ a = 0 for all b ∈ Bp}
= {a ∈ Bp | λb(a) = a for all b ∈ Bp}.

Now, considering the action of (Bp, ·) on (Bp,+), we have that Soc(Bp) =
C(Bp,+)((Bp, ·)). It follows from [5, 8.1.4 (a)] that 0 6= Soc(Bp) ⊆ Bp∩Soc(B).
Denote I = Bp ∩ Soc(B) and observe that I is an ideal of B since Bp and
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Soc(B) are both ideals of B. Considering the quotient brace of B modulo
I, we have that (B/I, ·) ∼= (B, ·)/(I, ·). Hence B/I satisfies the hypothesis
of the theorem. The minimal choice of B implies B/I is right p-nilpotent.
Then Rn(Bp/I,B/I) = 0 for some n ≥ 0. Thus Rn(Bp, B) ⊆ I ⊆ Soc(B) so
that Rn+1(Bp, B) = Rn(Bp, B) ∗ B ⊆ Soc(B) ∗ B = 0 and then B is right
p-nilpotent, contrary to assumption.

Theorem 19. Let B be a finite brace and let (B, r) the solution of the YBE
associated to B. Assume that p is a prime and Bp is the Sylow p-subgroup
of (B,+). Then the following statements are pairwise equivalent:

1. B is right p-nilpotent.

2. Bp ⊆ Socn(B) for some n ≥ 0.

3. There exists some n ≥ 0 such that the cardinality of Retn(B, r) is a
p′-number.

Proof. 1 implies 2. Let n ≥ 0 such that Rn(Bp, B) = 0 = Soc0(B). Applying
Proposition 9, we conclude that Bp ⊆ Socn(B).

2 implies 3. By Lemma 11, Retn(B, r) is isomorphic to the solution of
the YBE associated with the left brace B/Socn(B). Since Bp ⊆ Socn(B), we
have B/Socn(B) is of order p′-number. Hence the cardinality of Retn(B, r)
is a p′-number.

3 implies 1. By Lemma 11, we have that B/Socn(B) is of order a p′-
number and then Bp ⊆ Socn(B) for some n ≥ 0. Applying Lemma 9, we
conclude that Rn(Bp, B) = 0.

We now derive some consequences of the characterisation theorem. The
first one confirms that right p-nilpotency, like left p-nilpotency, is a local
property.

Proposition 20. Let B be a finite brace. Then B is right nilpotent if and
only if B is right p-nilpotent for all primes p.

Proof. Let Bp be the Sylow p-subgroup of (B,+) for each prime p. If B is
right nilpotent, then Bp ⊆ B = Socn(B) for some n ≥ 0 and all primes p by
Proposition 9. Therefore B is p-right nilpotent of all primes p.

Assume that B is right p-nilpotent for all primes p. It follows from The-
orem 19 that Bp ⊆ Socn(p)(B) for some n(p) ≥ 0 (depending on p). Let m =
max {n(p) | p ∈ π(B)}. Hence B =

∑
pBp ⊆ Socm(B). Hence B is right

nilpotent.
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Recall a finite group is called A-group if its all Sylow subgroups are
abelian. Let � be a total order relation on the set P of all primes. Re-
call that a finite group G is said to satisfy the Sylow tower property with
respect to � if G has a normal Hall πp-subgroup for each prime p, where
πp = {q | p � q}.

Corollary 21. Let B be a finite brace. Assume that (B, ·) an A-group with
the Sylow tower property. Then B is right nilpotent.

Proof. We argue by induction on the order of B. Assume that (B, ·) satisfies
the Sylow tower property with respect to the total relation � on P. Write
π(B) = {p1, . . . , ps} and assume that p1 � p2 � · · · � ps. Let Bps be
the Sylow ps-subgroup of (B,+). By Theorem 18, B is right ps-nilpotent.
Consequently, by Theorem 19, Bps ⊆ Socm(B) for some m ≥ 0. Then the
quotient brace B of B modulo Bps satisfies the hypothesis of the theorem. By
induction, B is right nilpotent. Hence Rn(B,B) = 0 for some n ≥ 0 and so
Rn(B,B) ⊆ Bps ⊆ Socm(B). By Proposition 9, B ⊆ Socm+n(B). Therefore,
B is right nilpotent.

The following corollary is a significant improvement of [3, Theorem 3].

Corollary 22. Let (X, r) be a finite solution of the YBE. Assume that
G(X, r) is an A-group with the Sylow tower property. Then (X, r) is a mul-
tipermutation solution.

Proof. Set H = G(X, r) and (H, s) the solution of the YBE associated with
the brace H. By Proposition 10, we can find a G(H, s)-subset Y ⊆ H such
that (Y, s|Y 2) is isomorphic to (X, r). If (H, s) is a multipermutation solution,
it follows from [3, Lemma 5] that (Y, s|Y 2) is a multipermutation solution.
Then we can conclude that (X, r) is a multipermutation solution. Thus it
suffices to prove that (H, s) is a multipermutation solution. According to [2,
Proposition 6], it is enough to show that H is right nilpotent.

Observe that G(X, r) 6 Sym(X) is a finite brace sinceX is a finite set. By
Corollary 21, G(X, r) is right nilpotent. It is well known (see, for instance, the
comments before [3, Lemma 2]) that H/Soc(H) and G(X, r) are isomorphic
as braces. Hence H/Soc(H) is right nilpotent. Hence

Rn(H/Soc(H), H/Soc(H)) = 0

for some n ≥ 0. Then Rn(H,H) ⊆ Soc(H). By Proposition 9, H ⊆
Socn+1(H) and H is right nilpotent.

The proof of the corollary is complete.
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