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Summary (English)

In this dissertation, we study several classes of mappings that do or do not
attain their naturally associated norm or numerical radius. In particular,
we will discuss about operators and bilinear mappings between normed

spaces, projective tensors, nuclear operators, and Lipschitz mappings.

The main contents of this document are organized in 5 chapters, where
we cover the contents of the published papers [42, 43, 59, 84] and the
submitted paper [49], and some background notes will be extracted from
the published survey [40]. In this section, we will summarize in English
the contents of each chapter (check the Resumen section from page 39
and the Resum section from page 65 for respective translations of this

summary into Spanish and Valencian).

Summary of Chapter 1

Chapter 1 serves as an introduction. In Section 1.1, we make important
remarks on how one could read this document. In Section 1.2, we establish
the most basic notations and concepts that will be used throughout the
text. In Section 1.3, we include the necessary historical background
to motivate our work. Finally, in Section 1.4, we briefly explain the
structure of the document and the contents of the upcoming chapters.

We provide some historical facts to better motivate the other sections.
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Inspired by the work of James 1957/1963 ([74, 75]), Bishop and Phelps
1961 ([17]), Lindenstrauss 1963 ([93]), Bollobas 1970 ([18]) and many
others (see [2]) about the density of norm-attaining operators, in 2008,
Acosta, Aron, Garcia, and Maestre introduced and studied the Bishop-

Phelps-Bollobas property, defined as follows (see [5]).

Definition 1 ([5]). A pair of Banach spaces (X,Y’) has the Bishop-
Phelps-Bollobds property (abbreviated BPBp) if given ¢ € (0, 1), there
exists n(e) > 0 such that whenever T' € L(X, Y) and x € Sy satisfy
IT| =1and |T(x)| > 1—n(e), there are S € L(X, Y) and y € Sx such
that 5] = |S@)| =1, | —y|l <&, and |S — T <.

Note that if the Banach spaces X and Y satisfy the BPBp, then in
particular NA(X,Y') is dense in £(X,Y), although the converse is known
to fail sometimes. The BPBp has been studied by many authors recently
(see the surveys [3, 40] for a complete exposition of results about the
BPBp up to 2022). Several interesting variations of the BPBp have
also been introduced and studied lately by doing specific changes to
Definition 1, such as the L, , (the BPBp but for each previously fixed T,
you find an n(e, T') depending also on 7', and also S = T).

This wide study of norm-attaining operators has also been extended
to other kinds of mappings and norms. For instance, norm-attaining
multilinear mappings, homogeneous polynomials, holomorphic functions,
compact operators and Lipschitz mappings have been studied for a long
time, and the same goes for operators that attain their numerical radius.
Needless to say, BPBp properties have also been introduced and studied
for these contexts. We refer again to Section 1.3 and to the survey [40]
for more information on these and more properties. This setting is the

starting point for this disertation.
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Summary of Chapter 2

The contents of this chapter have been published in

[42] S. Dantas, M. Jung, and O. Roldan, Norm-attaining operators
which satisfy a Bollobas type theorem, Banach J. Math. Anal.
15(2) (2021), Paper No. 40, 26 pp.

Inspired by the L,, and its many applications, Chapter 2 is devoted
to study a class A, (X,Y) © NA(X,Y) of operators that satisfy some
property like the L, ,, that is, such that whenever they almost attain
their norms at some point x, they attain it at a nearby point zy. The
analogous class for numerical radius is also introduced and studied. The

formal definition of these sets is the following.

Definition 2. Let X, Y be Banach spaces (over K = R or C).

(i) Aj(X,Y) stands for the set of all norm-attaining operators 7" €
L(X,Y) with |T|| = 1 such that if € > 0, then there is n(e,T7) > 0
such that whenever x € Sx satisfies |T'(z)| > 1 —n(e,T), there is
xo € Sx such that |T(zo)| =1 and ||zg — z| < e.

(i) An(X) stands for the set of all numerical radius attaining op-
erators T' € L(X,X) with v(T) = 1 such that if ¢ > 0, then
there is n(e,T) > 0 such that whenever (x,z*) e II(X) satis-
fies [2*(T'(z))| > 1 —n(e,T), there is (xg,zf) € II(X) such that

|25 (T'(20))] = 1, w0 — x| <&, and [af — 2% <e.

In Section 2.2, a selection of results and examples about the classes Ay,
and A,, are presented. For finite-dimensional Banach spaces, using the
compactness of the unit ball and the fact that every operator attains its

norm and numerical radius, we get the following positive characterization.
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Theorem 3. Let X be a finite-dimensional Banach space. Then

(i) A (X,Y) ={T e L(X,Y) : |T| = 1} for any Banach space Y,

(ii) A (X) = {T e L(X,X): v(T) = 1}.

For functionals, we get positive results for a wide class of spaces, but

also negative results for some other spaces. We summarize them.

Theorem 4. Let X be a Banach space over K.

(1) NA(co,K) A S, = Ay (c0,K).
(ii) If X is uniformly convex, then Sx+ = A (X, K).
(ili) There is x* € NA({1,K) n Sy, such that x* ¢ A (¢1,K).

(iv) There is v* € NA(l, K) N Spx such that x* ¢ Ajj (L, K).

About general operators in a Banach space X, note that every isometry
is in Ay (X, X), but this is not always the case for A, (X). In fact,
even in the setting of Hilbert spaces like X = /5, there exist (see
Example 2.2.5) operators in Aj. (X, X) N An, (X), in A (X, X)\Anu(X),
in A, (X)\ A} (X, X), and operators that are not in Ay (X, X)UAp, (X)
despite being in {7 e NA(X, X) nNRA(X): v(T) = |T| = 1}. This all

adds some complexity to our question.

An important class of operators for which we are able to get a positive
result is the class of compact operators. The following result shows that
under some hypothesis on the involved spaces, every compact operator
with norm 1 (and numerical radius 1) is in A (X,Y) (and in Ay, (X)).

Theorem 5. Let X be a reflexive space which satisfies the Kadec-Klee
property. Then,
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(i) Skx,y) < A (X,Y) for every Banach space Y .

(ii) {T e K(X,X): v(T) = |T| =1} € Awu(X) whenever X is Fréchet
differentiable.

In particular, we show that under certain hypothesis on the involved
Banach space X, every compact operator T € K(X, X) with v(T) =
IT| = 1 attains its numerical radius. Note that if X is an infinite-
dimensional Banach space, the inclusion in (ii) must be strict, as the
identity is always in A,,(X), but it is never compact. We also get the

following immediate consequence from the previous result.

Corollary 6. Let X be a reflexive Banach space with the Kadec-Klee
property and let H be a Hilbert space.

(i) If Y has the Schur property, then Ay (X,Y) = Sexy)-

(i) {Te K(H,H): v(T)=|T| =1} € An(H).

If we remove some of the hypothesis on the spaces from Theorem 5, none
of the items holds true in general (see the operators from (2.2.3) and
(2.2.5)). Moreover, Theorem 5 and Corollary 6 are no longer true for

non-compact operators in general, as we will see in Section 2.3.

The proof of the following result (inspired by [1, Example 1.9]) provides us
a wide class of compact operators T € Ay, (H) such that 1 = v(T) < |T
and so, in particular, examples of operators which belong to A,.(H)
but not to Aj.|(H, H) (see the proof of Proposition 2.2.9 for the details).
Note that in this case we get A,, in an uniform sense, where n only

depends on ¢.

Proposition 7. Let H be a separable infinite-dimensional real Hilbert
space. Then, there is T € L(H, H) such that
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(i) T is a compact operator.
(ii) 1 =v(T) < ||T| and T attains its numerical radius.

(iii) given € > 0, there is n(e) > 0 such that whenever xy € Sy satisfies

(KT (o), x0)l > 1 =n(e),

there is x1 € Sy with v(T) = (T(z1),x1) = 1 and ||z; — x| < €.
In particular, T € Ay (H) and T ¢ Ay (H, H).

The operators from (2.2.2), (2.2.3), and (2.2.5) show that in general there
is no relation between the claims 7" e A (X,Y) and T% € A (Y*, X*).
However, if we put some extra assumptions on the spaces X and Y, then

we can obtain the following result.

Proposition 8. Let X,Y be Banach spaces and T € L(X,Y).

(i) Suppose that Y is uniformly smooth. If T € A (X,Y), then
T* € A”.H(Y*, X*)

(ii) Suppose that X is uniformly convex. If T* € A (Y*, X*), then
Te A (X,Y).

(iii) Suppose that X is reflexive. Then, T € An(X) if and only if
T* € Ap(X™).

Note that we cannot remove the uniform smoothness or the uniform
convexity from items (i) and (ii) (see again (2.2.2), (2.2.3), and (2.2.5)).

On ¢y we can prove the following result related to item (iii) above.

Proposition 9. Let T € A,,(co) be such that the range of T* € L({1,¢;)
is in span{el, ... ex} for some N € N. Then, T* € A,,({1).
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In Section 2.3, a complete characterization will be given for all diagonal
operators that belong to A (X, X) (X = ¢y or £y, 1 < p < ©), to
A (X) (X =c¢oor £y, 1 <p < o), to Ap(co, ) (1 <p < o0) and to
Ajj(p, co) (1 < p < o0). We can summarize those results as follows.

Theorem 10. Let (X, Y) be (co, ¢o), ({p, £,) (1 < p < 0) or (€, co)
(1 <p< o) LetT : X — Y be the norm one diagonal operator
associated to the bounded sequence of complex numbers {ay}r_,. Then,
T e A (X,Y) if and only if both of the following conditions are satisfied:

1. There exists some ng € N such that |a,,| = 1.
2. If J={neN: |a,| =1}, then either J =N or sup,ey s |an| < 1.

Theorem 11. Given 1 < p < o, let T : ¢g — {, be the norm one

diagonal operator associated to the bounded sequence of complexr numbers
{an}o_i. Then, T € Aj(co,€p) if and only if there is some N € N such
that a,, = 0 for alln > N.

Theorem 12. Let X = ¢y or l,, 1 < p <oo. LetT : X — X be
the numerical radius one diagonal operator associated to the bounded
sequence of complex numbers {c,}>_,. Then, T € A,(X) if and only if
both of the following conditions hold:

1. There exists some ng € N such that |a,,| = 1.

2. If J ={neN: |a,| =1}, then the cardinality of {cv, : n € J} is
finite and sup,en, s || < 1 when J # N.

In particular, if {an}py € R, T € Anu(X) if and only if T € A (X, X).

As a consequence, for the canonical projections on the classical sequence
spaces, Py(x) := (x(1),2(2),...,2(N),0,...), we get the following.
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Corollary 13. Let N € N be given. If X = cy or {,, 1 < p < oo, then
PN S .AH.”(X, X) N .Anu(X).

Given two Banach spaces X; and X3, consider the mappings P, € L(X;®
Xo, X;) such that Py(x1,22) := x;, ¢ = 1,2, and ¢; € L(X;, X7 @ X»)
such that ¢;(z) := xe;, where e; = (1,0) and e; = (0,1). For Banach
spaces W and Z, if we have an operator T' € L(W, Z), then there is a
simple way to define T € LIW®Z,W®Z): consider T:=10ToP,
that is, T'(w, z) = (0,T(w)) for every (w,z) € W @ Z. Conversely, we
can define a pseudo-inverse process as follows: if we have an operator
SeL(W®ZW®Z), then we can consider S € L(W, Z) defined as
S := PyoSou, that is, S(w) = (P 0 S)(w,0) for every w e W. We get
the following results.

Proposition 14. Let W and Z be two Banach spaces, and let T €
Sﬁ(Wz). Then,

() If T € Au(W @, Z), then T € Ay (W, Z), where s =1 or s = .

(ii) Suppose that W and Z are uniformly smooth Banach spaces. If
Te A (W,Z), then Te AW @1 Z).

(iii) Suppose that Z is uniformly convex and W is uniformly smooth.

If T e AH.H(VV, Z), then Te AW @ Z2).

Finally, note that items (ii) and (iii) are no longer true in general for
arbitrary Banach spaces or for p-sums if 1 < p < o0, and there exists
Se LW, Z, W, Z), with W and Z uniformly smooth and uniformly
convex, such that S € A (W @, Z) but S ¢ AW, Z),s=1o0rs=w
(see the remarks after Propositions 2.4.1 and 2.4.4).
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Summary of Chapter 3

The contents of this chapter have been published in

[59] D. Garcia, M. Maestre, M. Martin, and O. Roldan, On the
compact operators case of the Bishop-Phelps-Bollobas property
for numerical radius, Results Math. 76(3) (2021), Paper No.
122, 23 pp.

In 2013, Guirao and Kozhushkina introduced and studied a version of
the BPBp for numerical radius (see [69]). We include the definition as

follows.

Definition 15 (Combining [69, Definition 1.2] and [87, Definition 5]).
A Banach space X has the weak Bishop-Phelps-Bollobas property for
the numerical radius (abbreviated weak BPBp-nu) if given € > 0, there
exists 7(¢) > 0 such that, whenever T' € L(X, X) with v(T) = 1 and
(x,2*) € TI(X) satisfy |*(T(x))] > 1 — n(e), there exist S € L(X, X)
and (y,y*) € II(X) such that

v(8) =1y (SW)l, lz—yl<e [z =y <e, and |T-5]<e,

where II(X) := {(z,z*) € Sx x Sx»: x*(z) = 1}. If, moreover, S can be
chosen so that v(S) = 1, we say that X has the Bishop-Phelps-Bollobés
property for the numerical radius (abbreviated BPBp-nu).

Ever since the work [69], many results have been obtained about the
BPBp-nu by many authors (we refer to [3, Section 6] and [40, Section
2.7] for expositions of the main results that have been obtained in this
direction). In 2018, Dantas, Garcia, Maestre, and Martin, introduced and
studied the BPBp adapted to the setting of compact operators (see [39]).
The BPBp-nu and the BPBp for compact operators motivated us to
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introduce and study the BPBp-nu for compact operators (by considering
Definition 15 with 7" € (X, X) and S € K(X, X)). By exploring the
existing proofs on the BPBp-nu and making small adaptations, we get a
first list of spaces satisfying the BPBp-nu for compact operators. This is

the aim of Section 3.2.

Examples 16. The following spaces have the BPBp-nu for compact
operators: finite-dimensional spaces ([87, Proposition 2]), ¢y(I") and ¢, (T")
for every index set I' ([69, Corollaries 3.3 and 4.2]), and L;(u) for every
measure 4 ([7, Corollary 2.1] and [87, Theorem 9]).

Next, by adapting the notions of numerical index and second numerical
index to the setting of compact operators, nx and n/;, respectively, and
adapting the results from [87] and [89], we show that if a Banach space
X is uniformly convex and uniformly smooth, then it has the weak
BPBp-nu for compact operators, and if ng(X) > 0 or n(X) > 0, then
the weak BPBp-nu for compact operators is equivalent to the BPBp-nu
for compact operators. In particular, we show that for every measure

and every 1 < p < o0, L,(4) has the BPBp-nu for compact operators.

In [34, Proposition 4.3] it was shown that if a Banach space X has the
BPBp-nu for compact operators, then every absolute summand of X of
type 1 or oo also has this property, and with the same mapping 1. This
allows us to carry the property from some spaces to some projections of
those spaces. Now, it is natural to wonder if something can be said in
the opposite direction. In [39, Lemma 2.1] a tool was presented that, in
particular, allows us to carry the BPBp for compact operators from some
projections of a space to the space itself. In order to get a somewhat
similar result for the numerical radius, one needs to control things both
in the space and in its dual. The most general result we obtained in this

direction is the following lemma.
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Lemma 17. Let X be a Banach space satisfying that ng(X) > 0.
Suppose that there is a mapping n: (0,1) — (0,1) such that given 6 > 0,
xi, ...,k e Bxs and x4, ..., xy € Bx, we can find norm one operators
P: X — P(X), i: P(X) — X such that for P :=ioP: X — X,

the following conditions are satisfied:
(i) |P*(z}) — 23| <6, forj=1,...,n.
(ii) |P(xj) —z;]| <6, forj=1,...,¢.
(iii) Poi=Tdpy,.
(iv) ﬁ(X) satisfies the Bishop-Phelps-Bollobas property for numerical
radius for compact operators with the mapping n.

(v) Either P is an absolute projection and i is the natural inclusion,
or ng(P(X)) = ng(X) = 1.

Then, X satisfies the BPBp-nu for compact operators.

Throughout Section 3.3, Lemma 17 is used to show that if a Banach
space X with ng(X) > 0 can be suitably projected into some net of
spaces that have the BPBp-nu for compact operators with a common
mapping 7, then sometimes it is possible to show that X also has that
property (see Proposition 3.3.2). This is used to show the following two

results.

Corollary 18. Let X be a Banach space with ng(X) > 0. Then, the

following statements are equivalent.

(i) The space co(X) has the BPBp-nu for compact operators.

(ii) There is a function n : (0,1) — (0,1) such that all the spaces
0 (X), with n € N, have the BPBp-nu for compact operators with
the function 0.
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Moreover, if X is finite-dimensional, these properties hold whenever
co(X) or L (X) have the BPBp-nu.

Corollary 19. Let X be a Banach space such that X* is isometrically
isomorphic to ¢1. Then X has the BPBp-nu for compact operators.

In Section 3.4, we present a series of topological tools that allow to
conveniently cover a locally compact Hausdorff space L with smaller sets
and find a suitable partition of the unit subordinated to those sets. This
allows us to project the space Cy(L) into some (£ space (p € N) in such
a way that we can use Lemma 17. This strong approximation property

we get on Cy(L) and its dual is summarized in the following result.
Theorem 20. Let L be a locally compact space. Given {fi,..., fi} <
Co(L) such that ||f;| < 1 for j = 1,...,¢, and given {u1,...,pun} <
Co(L)* with || <1 forj=1,...,n, for each e > 0 there exists a norm
one projection P: Cy(L) —> Cy(L) satisfying:

(]) HP*(MJ) _/’L]'” <E, fOT’j = 17"'7”7
(2) ”P(f]) _fJH <§g, fOT'j = 1?"'767

(3) P(Co(L)) is isometrically isomorphic to (&, for some p € N.

Finally, as a consequence, we get the following result.

Theorem 21. If L is a locally compact Hausdorff space, then Co(L) has
the BPBp-nu for compact operators.

In particular, every C'(K) space (K compact Hausdorff) and every Lo, (1)
space (p any measure) has the BPBp-nu for compact operators. Note
that it remains an open problem whether all the C'(K) spaces have the
BPBp-nu, and only particular cases have been solved in the real case so
far (see [13]), but for compact operators we get a definitive answer for

these spaces.
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Summary of Chapter 4

The contents of this chapter have been published in

[43] S. Dantas, M. Jung, O. Roldan, and A. Rueda Zoca, Norm-
attaining tensors and nuclear operators, Mediterr. J. Math.
19(1) (2022), Paper No. 38, 27 pp.

In Chapter 4, norm-attainment notions are introduced and studied
for projective tensors in X®,Y and nuclear operators in N(X,Y), for
Banach spaces X and Y. In order to motivate why such questions
may be interesting, recall that two of the main historical questions on

norm-attaining operators are the following:

1. Is K(X,Y) c NA(X,Y) in general?

2. Is F(X,Y) « NA(X,Y) in general?

The first question was answered in the negative by Miguel Martin in
2014 (see [97]). The second question remains open, and is currently
considered by many as the main open question in the theory of norm-
attaining operators. Note that nuclear operators are in between finite-
rank operators and compact operators, and projective tensors are closely
related to them and have many applications to several fields within
Functional Analysis. Another important factor to motivate this study
is the fact that if it were true that for every finite-dimensional Banach
space X every nuclear operator in N (X,Y) attains its nuclear norm,
then we would get an definitive affirmative answer to the second question
above. Nevertheless, the assumption turned out to be false, as we will

see later.

In this chapter, the isometric identifications (X®,Y)* = L(X,Y*) =
LY, X*) = B(X x Y,K) are used implicitly. Note also that if X* or
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Y has the approximation property, then X*®,Y = N (X,Y) (see, for
instance, [107, Corollary 4.8]). We introduce now norm-attainment

notions for projective tensors and nuclear operators.

Definition 22. Let X,Y be Banach spaces. We say that

(i) z € X®,Y attains its projective norm if there is a bounded sequence
(0 ) © X X Y with S, [l [yl < o0 with 2 = X7, 2, @y
and | z]lx = >, |@al|ynl. In this case, we say that z is a norm-
attaining tensor, or z € NAL(X®,Y).

(i) T € N(X,Y) attains its nuclear norm if there is a bounded se-
quence (z%,y,) < X* x Y with Y7, |z|l|y.| < < such that
T =37  2:®y, and that [Ty = X", [2*]|yn]. In this case, we
say that T'is a norm-attaining nuclear operator, or T' € NA (X, Y).

In Section 4.2, the first norm-attainment results in this setting are
obtained. We start by finding two technical characterizations that allow
us to claim that a tensor or nuclear operator attains its respective norm
provided that there are many bilinear forms that attain their norms at
many points in a specific way (see Theorems 4.2.1 and 4.2.2). With
these results in mind and the fact that finite-dimensional spaces, ¢, ¢4,
and Hilbert spaces all have the approximation property, we get our first

collection of positive results, which we summarize as follows.

Proposition 23. Every projective tensor in X*®.Y and every nuclear
operator in N'(X,Y) attain their respective norms if X and Y are finite-

dimensional, if X =Y is a complex Hilbert space, or if X = cy.

It is interesting to compare the last example from above with the
classical theory of norm-attaining operators: if NA(X,Y) = £(X,Y)

for every Banach space Y, then in particular X must be reflexive by
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James’ theorem. The previous proposition motivates us to wonder if
NAL(X®,Y) = X®,Y and NA,(X,Y) = N(X,Y) hold in general for
any Banach spaces X and Y. However, this is not the case, as the

following results show.

Lemma 24. Let X,Y be Banach spaces. If B € B(XxY,K) = (X®,Y)*
attains its functional norm at an element of NAL(X®,Y), then B €
NAp(X x Y,K).

Proposition 25. Let X,Y be Banach spaces. If NAL(X®,Y) = X®,Y,
then NAg(X x Y,K) '® = B(X x Y,K) (and NA(X,Y*) | = £(X,Y*)).

There are several known examples of Banach spaces X and Y for which

not attain their projective norm. Using the approximation property,

# L(X,Y™*), and so, there exist projective tensors that do

we also get nuclear operators that do not attain their nuclear norm.
The following example is of particular interest, as it shows that not
every projective tensor or nuclear operator attains their respective norms
if only one of the Banach spaces is assumed to be finite-dimensional,
providing a negative answer to one of the factors we used to motivate
this study.

Example 26. Let X = L;(T), where the unit circle T is equipped with
the Haar measure m, and let Y be the two-dimensional Hilbert space.
It is shown in [65, Remark 5.7.(2)] that there is T'e B(X x Y, K) which
attains its norm as a linear functional on X®,Y but not as an operator
from X into Y* (nor the more as a bilinear form on X xY’). By Lemma 24,
it follows that NA(X®,Y) # X®,Y, and so, NAx (Y, X) # N (Y, X).

Since not every projective tensor or nuclear operator attains its norm,
it is natural to wonder now if we have density results. In Section 4.3,

we provide some positive density results. In order to get them, two



30 Summary

approaches are used. First, note that by the first two characterizations,
in order to get many norm-attaining projective tensors and nuclear
operators, we want to have many norm-attaining bilinear forms that
attain their norms at many points. The L, , ensures the existence of
many norm-attaining operators that attain their norms at many points,

and it can be adapted to bilinear mappings as follows.

Definition 27. We say that (X x Y, Z) satisfies the L,,, for bilinear
mappings (or just L,,z) if given ¢ > 0 and B € B(X x Y, Z) with
|B|s = 1, there exists n(e, B) > 0 such that whenever (z,y) € Sx x Sy
satisfies |B(z,y)| > 1 —n(e, B), there is (xq,yo) € Sx x Sy such that
|B(@o, yo)| = 1, |z — zo| <&, and [y — yo| <e.

We get the following positive result.

Proposition 28. Let X,Y be Banach spaces. If (X* x Y,K) has the
Loos, then, NAn(X,Y) ™ = M(X,Y). If (X x Y,K) has the Loz,
then, NAL(X®.Y) " = X&,Y.

In particular, note that the following relations are known, and so, we
get some positive results for density.
Examples 29 ([48]). Let X,Y be Banach spaces.

(i) If dim(X),dim(Y) < oo, then (X x Y, Z) has the L,, 5 for every
Banach space Z.

(ii) If Y is uniformly convex, then (X x Y, K) has the L, , 5 if and only
if (X,Y™) has the L,,.

(iii) If 1 < p,q < oo, then (¢, x £;,K) has the L, , g if and only if p > ¢'.

However, note that the L,, s for bilinear forms is a very restrictive

property, as it asks for both spaces to be reflexive to start with, and
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there are also pairs of reflexive spaces without the property, as we just
saw. Therefore, we need a different approach to get more positive results.
To use what we know about the finite-dimensional scenario, it would be
convenient to have good subspaces of our spaces. Projective norms do not
respect subspaces in general, but they behave well with 1-complemented
subspaces, and so, we are interested to have a property that ensures the
existence of many suitable 1-complemented subspaces of our spaces. We

consider therefore the metric w-property.

Definition 30. Let X be a Banach space. We say that X has the
metric m-property if given € > 0 and {z1,...,x,} < Sx a finite collection
in the sphere, then we can find a finite dimensional 1-complemented
subspace M < X such that for each i € {1,...,n} there exists x, € M

with ||x; — x}|| < e.

The previous concept is actually equivalent to the metric 7 approximation
property (an approximation property where the approximating operators
are all projections of norm 1), and this allows us to find many more
examples of spaces for which we have density (we refer to [23], [76], and

[94] for more information on the m-property). The following properties
hold.

Theorem 31. Let Y be a uniformly convexr space or a space with the

metric w-property. If X (respectively X* ) has the metric w-property, then
X®.Y = m\\-llw (respectively, N(X,Y) = W”'HN}

Example 32. The following spaces have the metric m-property.

(i) Banach spaces with a finite dimensional decomposition with the
decomposition constant 1 (consequently, every Banach space with

Schauder basis can be renormed to have the metric m-property),

(i) Ly(p) (1 < p < o0, 1 any measure) and isometric preduals of Ly,
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(iii) X @, Y, whenever XY satisfy the metric m-property and | - |, is

an absolute norm,

(iv) X = [Den Xul,, o [Den Xn]e,,> for 1 < p < oo, whenever X,

has the metric w-property, for all n,

(v) X®,Y and X®.Y whenever X,Y satisfy the metric 7-property.

This shows that in many spaces, the density holds. We refer to the
recent work [41, Section 4] for more positive density results involving the
RNP, dual spaces, and the metric m-property (for instance, if X* and Y*

u_H
s

RNP and one has approximation property, then NA,(X*®,Y*) = =
X*®.Y*, and if Z is any dual space, then NAW(C()@ﬂ-Z) e _ c0®ﬂZ).

At this point, it is natural to wonder now if we always have density of

norm-attaining projective tensors or nuclear operators. However, despite
our wide collection of positive results, in Section 4.4, we get the following

result for tensors.

Theorem 33. Let R be Read’s space. There exist subspaces X of cgy
and Y of R such that the set of tensors in X®,Y* which attain their

projective norms is not dense in XQ,Y*.

It is worth noting that the analogous question for nuclear operators

remains open.

Finally, note that although it is not known whether every finite-rank op-
erator can be approximated by norm-attaining operators, the analogous

claim for tensors does not hold in general.

Proposition 34. There are tensors of finite-rank which cannot be ap-

proximated by norm-attaining tensors.
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Summary of Chapter 5

The first half of this chapter has appeared in the published work

[84] V. Kadets and O. Roldan, Closed linear spaces consisting of
strongly norm attaining Lipschitz mappings, Rev. R. Acad.
Cienc. Ezxactas Fis. Nat. Ser. A Mat. RACSAM 116 (2022),
Paper No. 162, 12 pp.

and the second half, in the submitted work

[49] S. Dantas, R. Medina, A. Quilis, and 0. Roldén, On isometric
embeddings into the set of strongly norm-attaining Lipschitz
functions. Preprint available at arXiv:2208.02916.

In 2001, Godefroy asked if for every infinite-dimensional Banach space
X, the set of norm-attaining functionals NA(X, K) always contains
2-dimensional linear spaces (see [64, Problem III]). This question was
answered in the negative by Rmoutil in 2017: if R is the Read’s renorming
of ¢y from [103], then NA(R,K) does not contain 2-dimensional linear
spaces. In Chapter 5, we study the analogous spaciability question for

the set of strongly norm-attaining (real) Lipschitz functions.

Let M be a pointed metric space, that is, a metric space with a distin-
guished point 0. Lipy(M) is the Banach space of Lipschitz functions
f: M — R such that f(0) = 0 endowed with the Lipschitz norm

|f(y) = f(z)]
d(z,y)

A Lipschitz function f € Lipy(M) is said to attain its norm strongly

if there exist z,y € M, x # y, such that ||f| = %. The set of

strongly norm-attaining Lipschitz mappings on M is denoted SNA(M).

7] = sup{ : x,yeM,méy}.


https://arxiv.org/abs/2208.02916

34 Summary

Strong norm-attainment of Lipschitz mappings, as well as other weaker
norm-attainments, have been extensively studied for the last few years,
ever since the first works on the topic ([66, 83]). It is known that strong
norm-attainment is actually a very strict kind of norm-attainment (for
instance, by [83, Lemma 2.2], if a mapping attains its norm strongly
at a pair (z,y), it must attain it through the whole segment [z, y] and
be affine whenever defined). For this reason, in many metric spaces M,
SNA(M) happens to not be dense in Lip, (M), although positive results

have also been obtained for some other metric spaces.

It is clear that if M has cardinal n € N, then SNA(M) = Lip,(M), and
it is a Banach space. In Chapter 5 we tackle the following question: if
M is infinite, does SNA (M) always contain linear spaces of dimension
bigger than 17 By how strict this norm-attainment is, and keeping in
mind Rmoutil’s work for functionals, one may think that the answer to
this question could be negative. However, we will see that this is far
from being true. In order to do so, we rely on several techniques such
as McShane’s extension theorem (which allows us to extend Lipschitz
mappings from a metric space M; to a larger metric space M, preserving
its norm), Lipschitz-free spaces, and some other tools. In this chapter, we
implicitly assume all metric spaces to be pointed, and all vector spaces

to be real.

It is not true in general that if a Banach space X is in SNA(M) for some
metric space M, then we can extend it with McShane and find the same
space X in SNA(My) for every larger metric space Ms. However, with

the | - |1 norm, we get the following result.

Lemma 35. Let M be a pointed metric space such that for some subspace
K of M, SNA(K) contains a linear subspace isometrically isomorphic
to 07 for some n € N. Then, SNA(M) also contains a linear subspace

isometrically isomorphic to (7.
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Using this and some more tools, we are able to provide a definitive

answer to our main question.

Theorem 36. Let n > 1 be a natural number, and let M be a pointed
metric space with at least 2™ distinct points. Then, there exists a linear

subspace of SNA(M) which is isometrically isomorphic to (7.

Corollary 37. If M is an infinite pointed metric space, then for all

neN, SNA(M) contains an n-dimensional subspace isometric to (7.

So if M is infinite, not only SNA(M) contains linear spaces of dimension

at least 2, it actually contains all the ¢} spaces isometrically for n e N.

It is not hard to see that SNA([0, 1]) contains a copy of ¢y. This motivates
to ask what other Banach spaces can be formed. The answer, surprisingly,

is that all of them, with right choices of the involved metric spaces.

Proposition 38. The Banach space Y is a subspace of SNA(Byx).

It is also interesting to wonder the inverse question: given a Banach
space Y, how “small” can a metric space M be so that Y is a subspace
of SNA(M)? From the previous proposition, if Y has separable dual, M
can be chosen to be separable, but what if not? The following result

shows that this is actually a characterization.

Theorem 39. For a Banach space Y, the following assertions are

equivalent.

(1) There is a separable metric space M and a closed linear subspace
Z < Lipy(M) such that Z is isometric toY and Z < SNA(M).

(2) There is a separable Banach space X and a closed linear subspace
Zy < X* such that Zy is isometric to 'Y and Z; < NA(X,R).

(3) Y* is separable.
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Therefore, for separable metric spaces such as M = [0, 1], SNA(M)
cannot contain spaces like ¢; with non-separable dual. This adds some
restriction to separable metric spaces. In fact, other restrictions appear
for some small metric spaces, such as o-precompact spaces, which include
precompact spaces and all the R™ spaces (note that o-precompact spaces

are always separable).

Theorem 40. If M is o-precompact, then all Banach spaces isometrically

contained in SNA(M) are separable and isomorphic to polyhedral spaces.

As for positive results, we have mentioned that SNA([0, 1]) contains ¢
isometrically. In fact, this can be extended to a wide class of metric

spaces that includes all normed spaces.

Proposition 41. If M is a metric space containing [0, 1] isometrically,

then SNA(M) contains co isometrically.

Actually, it is possible to see that for all metric spaces M with an infinite
amount of non-isolated points, SNA (M) contains ¢y isometrically. But
even in all the spaces M without this property that we were able to
study, it seemed always possible to find ¢y in SNA(M) isomorphically.
This motivated us to ask if this was always the case (see [84, Questions
1 and 2]), that is: if M is infinite, does SNA(M) always contain ¢
isomorphically? Recently, Avilés, Martinez-Cervantes, Rueda Zoca, and
Tradacete answered this question in the positive by means of an elegant

case distinction and with the help of Ramsey’s theorem.
Theorem 42 ([15, Main Theorem]|). Let M be an infinite complete

pointed metric space. Then SNA(M) contains ¢y isomorphically.

As for the isometric embedding of ¢q in SNA (M), the authors showed

in [15, Lemma 3.1] that if the involved metric space satisfies a certain
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geometrical property (this is satisfied, for instance, for metric spaces with
an infinite amount of non-isolated points, and for discrete metric spaces
that are not uniformly discrete), then SNA(M) contains ¢, isometrically.
For the rest of metric spaces, they left the following as an open ques-
tion (see [15, Remark 3.6]): if M is infinite, does SNA(M) contain cq
isometrically? In [49], we provide a definitive answer to this question.
To do so, we first find the following result, which slightly improves the

conditions from [15, Lemma 3.1].

Lemma 43. Let I' be a nonempty index set. Let M be a pointed metric
space such that there exist two sets {x~}yer, {Yy}yer © M with x, # y.,
To # x5 forv,a, e, a# B. If d(za,28) = d(xa,ya) + d(xs,ys) for
every o # 3 € I', then there is a linear subspace of SNA(M) isometric
to co(T).

With the help of this result and some other technical lemmas, we are
able to solve the question from [15, Remark 3.6] in the negative. We
provide two different counterexamples with different behaviours. Given
a point x € M, we define its separation radius as the quantity R(x) :=
inf{d(z,y): ye M\{z}}, and we say that x attains its separation radius

if that infimum is actually a minimum. We summarize our results.

Theorem 44. There exist infinite metric spaces My and My such that
SNA(M;) and SNA(M,) do not contain ¢y isometrically and such that
My is bounded with no points attaining their separation radii and M is

proper unbounded with all of its points attaining their separation radii.

Interestingly enough, there also exist infinite uniformly discrete complete
pointed metric spaces M with ¢, isometrically contained in SNA (M)
in such a way that no point attains its separation radius, or that every
point attains its separation radius. As for metric spaces which are not

uniformly discrete, SNA(M) always contains ¢, isometrically.



38 Summary

Theorem 45. Let M be an infinite non uniformly discrete metric space.

Then, the set SNA(M) contains an isometric copy of cy.

Finally, for the non-separable setting, using Lemma 43 and a result
inspired by [71, Proposition 3], we are able to get the following positive
result. Recall that for a metric space M, M’ denotes the set of cluster
points of M, and dens(M) denotes the density character of M.

Theorem 46. Let M be a pointed metric space such that dens(M') =T
for some infinite cardinal I'. Then there is a linear subspace of SNA(M)

that is isometrically isomorphic to cy(T).

We conclude the present dissertation with a Conclusions chapter (see
page 277), which includes some remarks and open questions. At the end
of the document, there is an extensive list of references (see page 287),

followed by a glossary of concepts and notations.



Resumen (Castellano)

En esta disertacion, estudiamos varias clases de aplicaciones que alcan-
zan 0 no su norma o su radio numérico naturalmente asociado. En
particular, hablaremos sobre operadores y aplicaciones bilineales entre es-
pacios normados, tensores proyectivos, operadores nucleares y funciones

Lipschitz.

El contenido principal de este documento estd organizado en 5 capitulos,
donde cubrimos el contenido de los trabajos publicados [42, 43, 59, 84]
y el trabajo enviado [49], y se extraeran algunas notas de antecedentes
del estudio publicado [40]. En esta seccién, resumiremos en castellano el
contenido de cada capitulo (consulte la seccién Summary de la pagina
15 y la seccién Resum de la pagina 65 para las respectivas traducciones

de este resumen al inglés y al valenciano).

Resumen del Capitulo 1

El Capitulo 1 sirve como introduccién. En la Secciéon 1.1, hacemos
un comentario importante sobre como se puede leer este documento.
En la Seccion 1.2, establecemos notacién y conceptos basicos que se
usaran a lo largo del texto. En la Seccién 1.3, incluimos los antecedentes
historicos necesarios para motivar el trabajo. Finalmente, en la Seccion

1.4, explicamos brevemente la estructura del documento y los contenidos
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de los proximos capitulos. Comentemos algunos hechos historicos para

motivar mejor las otras secciones.

Inspirados por el trabajo de James 1957/1963 ([74, 75]), Bishop y Phelps
1961 ([17]), Lindenstrauss 1963 ([93]), Bollobas 1970 ([18]) y muchos
otros (véase [2]) sobre la densidad de operadores que alcanzan su norma,

en 2008, Acosta, Aron, Garcia y Maestre introdujeron y estudiaron la
propiedad de Bishop-Phelps-Bollobés (véase [5]).

Definicién 1 ([5]). Un par de espacios de Banach (X,Y) tiene la
propiedad de Bishop-Phelps-Bollobds (abreviada BPBp) si dado ¢ € (0, 1),
existe n(e) > 0 tal que si T' e L(X,Y) y x € Sx satisfacen |T|| =1y
IT(z)| > 1—n(e), existe S € L(X, Y)yye Sy tal que |S| = |S(y)| =1,
|z —yl <ey|S-T| <e.

Notemos que si los espacios de Banach X y Y satisfacen la BPBp, en-
tonces, en particular, NA(X,Y') es denso en £(X,Y"), aunque el reciproco
no siempre es cierto. La BPBp ha sido estudiada por muchos autores
recientemente (véanse los estudios [3, 40] para una exposicién completa
de resultados sobre la BPBp hasta 2022). Varias variaciones interesantes
de la BPBp también se han introducido y estudiado tltimamente a base
de hacer cambios especificos a la definicién 1, como la L, , (la BPBp pero
para cada T fijado previamente, se encuentra un 7(e,7T") dependiendo
también de T, y ademas S = T)).

Este amplio estudio de los operadores que alcanzan sus normas también
se ha extendido a otros tipos de aplicaciones y normas. Por ejemplo, las
aplicaciones multilineales, polinomios homogéneos, funciones holomorfas,
operadores compactos y aplicaciones Lipschitz que alcanzan sus normas
se han estudiado durante mucho tiempo, y lo mismo ocurre con los
operadores que alcanzan su radio numérico. Naturalmente, propiedades
tipo BPBp también se han introducido y estudiado para estos contextos.

Nos referimos nuevamente a la Secciéon 1.3 y al estudio [40] para mas
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informacién sobre estas y mas propiedades. Este escenario es el punto

de partida de esta disertacion.

Resumen del Capitulo 2

Los contenidos de este capitulo han sido publicados en

[42] S. Dantas, M. Jung, and O. Rolddn, Norm-attaining operators
which satisfy a Bollobas type theorem, Banach J. Math. Anal.
15(2) (2021), Paper No. 40, 26 pp.

Inspirados por la L,, y sus muchas aplicaciones, el Capitulo 2 esta
dedicado a estudiar una clase A (X,Y) © NA(X,Y) de operadores que
cumplen una propiedad como la L, ,, esto es, tales que si casi alcanzan
su norma en x, la alcanzan en un punto cercano zy. La clase andloga
para el radio numérico también se introduce y estudia. La definicion

formal de estos conjuntos es la siguiente.

Definicién 2. Sean X,Y espacios de Banach sobre K =R o C.

(i) Aj(X,Y) representa el conjunto de todos los operadores norma-
alcanzantes T € L(X,Y) con |T|| = 1 tales que si € > 0, existe
n(e,T) > 0 de forma que siempre que = € Sx cumpla |T(x)| >
1 —n(e,T), existe xg € Sx tal que |T'(zo)| =1y |z0 — 2| <e.

(ii) Anu(X) representa el conjunto de operadores que alcanzan su ra-
dio numérico, T' € L(X,X) con v(T) = 1 tales que si ¢ > 0,
existe n(e,T) > 0 tal que siempre que (z,2*) € II(X) cumpla
que |[z*(T(x))| > 1 —n(e,T), existe (zg,xy) € II(X) tal que
53T (wo))| = 1, a0 — 2l <&, v g — 2] <=.
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En la Seccién 2.2, se presenta una seleccion de resultados y ejemplos
sobre las clases Aj.| y An,. Para espacios de Banach de dimension finita,
utilizando la compacidad de la bola unidad y el hecho de que cada
operador alcanza su norma y radio numérico, obtenemos la siguiente

caracterizacion positiva.
Teorema 3. Sea X un espacio de Banach de dimension finita.
(i) A (X,Y) ={T e L(X,Y) : |T| = 1} para cualquier espacio de
Banach' Y,
(i) Aw(X) ={T e L(X,X) :v(T) =1}.
Para funcionales, obtenemos resultados positivos para una clase extensa
de espacios, pero también negativos para otros.

Teorema 4. Sea X un espacio de Banach sobre K.

(i) NA(co,K) 'Sy, = Aj(co, K).
(ii) St X es uniformemente convexo, entonces Sxx = Ay (X, K).
(iii) Ewiste x* € NA(€1,K) n Sy, tal que x* ¢ A (61, K).

(iv) Eziste z* € NA(ly, K) 0 Spx tal que v ¢ A (Lo, K).

En cuanto a operadores generales sobre un espacio de Banach X, notemos
que toda isometria estd en A (X, X), pero este no es siempre el caso
para A,,(X). De hecho, incluso en el contexto de los espacios de
Hilbert como X = /5, existen (véase Ejemplo 2.2.5) operadores en
A (X, X) 0 Anu (X)), en A (X, X)\Awa (X)), en Anu (XA (X, X)), y
operadores que no estan en Aj. (X, X) U A, (X) a pesar de estar en
{T e NA(X,X) n NRA(X): v(T) = |T| = 1}. Todo esto agrega algo

de complejidad a nuestra pregunta.
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Una clase importante de operadores para los que podemos obtener un
resultado positivo son los operadores compactos. El siguiente resultado
muestra que bajo algunas hipotesis sobre los espacios involucrados, todo

operador compacto con norma 1 (y radio numérico 1) estd en A (X,Y)

(y en Au(X)).

Teorema 5. Sea X un espacio reflexivo con la propiedad de Kadec-Klee.

(i) Skx,yy < A (X,Y) para todo espacio de Banach'Y .

(i) {Te K(X,X): v(T) =|T| =1} € Aw(X) si X es diferenciable
Fréchet.

En particular, mostramos que bajo ciertas hipotesis sobre el espacio de
Banach X, todo operador compacto T' € K(X, X) con v(T) = |T|| =1
alcanza su radio numérico. Notemos que si X es un espacio de Banach
de dimensién infinita, la inclusién en (ii) debe ser estricta, ya que la
identidad siempre estd en A,,(X), pero no es compacta. También

obtenemos la siguiente consecuencia inmediata del resultado anterior.
Corolario 6. Sea X un espacio de Banach reflexivo con la propiedad de
Kadec-Klee y sea H un espacio de Hilbert.
(i) SiY tiene la propiedad de Schur, entonces Ay (X,Y) = Sex,y)-
(i) {TeK(H,H): v(T)=|T|| =1} < Aw(H).
Si eliminamos algunas de las hipodtesis sobre los espacios en el Teorema 5,
ambos enunciados dejan de ser ciertos en general (véanse los operadores

de (2.2.3) y (2.2.5)). Ademas, el Teorema 5 y el Corolario 6 fallan en el

contexto no compacto, como veremos en la Seccion 2.3.

La demostracion del siguiente resultado (inspirado en [1, Ejemplo 1.9])

nos proporciona una amplia clase de operadores compactos 1" € A, (H)
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tales que 1 = v(T) < ||T| y, por tanto, ejemplos de operadores que
pertenecen a A,,(H) pero no a Ay (H, H) (véase la demostracién de la
Proposicién 2.2.9 para méas detalles). En este caso obtenemos A,, en un

sentido uniforme, donde 7 solo depende de .

Proposicién 7. Sea H un espacio de Hilbert separable real de dimension
infinita. Entonces existe T'e L(H, H) tal que

(i) T es un operador compacto.
(ii) 1 =v(T) < ||T| y T alcanza su radio numérico.

(iii) Dado € > 0, existe n(e) > 0 tal que si xg € Sy cumple que

(KT (@0), wo)| > 1 = nle),
existe x1 € Sy tal que v(T) = (T'(x1),x1) =1 y |x1 — x| < €.
En particular, T € An(H) y T ¢ A (H, H).

Los operadores de (2.2.2), (2.2.3), y (2.2.5) muestran que, en general,
no hay relacién entre que 7' € Ay (X,Y) y T € Aj(Y*, X*). Sin
embargo, si afladimos condiciones extra a los espacios X e Y, obtenemos

el siguiente resultado.

Proposicién 8. Sean X,Y espacios de Banach yT € L(X,Y).

(i) Si Y es uniformemente suave, si T € A (X,Y), entonces T* €
A (Y™, X*).

(ii) S7 X es uniformemente convexo, si T* € Ay (Y™, X*), entonces
T e .AH.H(X, Y)

(iii) Supongamos que X es reflexivo. Entonces, T € An(X) siy sélo si
T* € Anu(X#).
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Notemos que no podemos eliminar la suavidad y convexidad uniformes en
(i) y (ii) (véanse de nuevo (2.2.2), (2.2.3), y (2.2.5)). En ¢y, obtenemos

el siguiente resultado relacionado con (iii).

Proposicién 9. Sea T € A,,,(co) tal que el rango de T* € L({1, (1) estd

en span{el, ... ex} para algin N € N. Entonces, T* € Au.(¢1).

En la Seccién 2.3, se darda una caracterizaciéon completa de todos los
operadores diagonales que pertenecen a A (X, X) (X = ¢y 0 (), 1 <
p <o), aAn(X) (X =coly 1 <p<n) adlcl) (1<p<w0)
y a Aj(p,co) (1 < p < o). Podemos resumir esos resultados como

sigue.

Teorema 10. Sea (X, Y) igual a (co, co), (bp, £p) (1 < p <) o0 (€, co)
(1<p<w). SeaT:X —Y el operador diagonal de norma 1 asociado
a la sucesion acotada de complejos {on}y_,. Entonces, T € A j(X,Y)

sty solo si se dan las dos condiciones siquientes:

1. Eziste ng € N tal que |ap,| = 1.
2. SiJ={neN: |a,| =1}, entonces J =N 0 sup,cy s |an| < 1.

Teorema 11. Dado 1 < p < o0, sea T : c¢g — £, el operador diagonal de
norma 1 asociado a la sucesion acotada de complejos {c,}_,. Entonces,
T € Ajy(co, £p) siy solo si existe N € N tal que ov, = 0 para todon > N.

Teorema 12. Sea X =cy 0/lp, 1 <p<oo. SeaT : X — X el operador
diagonal de radio numérico 1 asociado a la sucesion acotada de complejos
{an}e . Entonces, T € A, (X) siy solo si se dan las dos condiciones

siquientes:

1. Eziste ng € N tal que |ay,| = 1.

2. 51 J={neN: |a,| =1}, entonces el cardinal de {cv, : n € J} es

finito y sup,en g |an| < 1 cuando J # N.
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En particular, si {o,}y; < R, T € Ap(X) siy solo si T e A (X, X).

Como consecuencia, para las proyecciones candnicas sobre los espacios
de sucesiones clasicos, Py(x) := (xz(1),2(2),...,2(N),0,...), obtenemos

lo siguiente.

Corolario 13. Sea N € N dado. 51 X = ¢y 0¥, 1 <p < 0, entonces
Py € .AH.”(X, X) N A (X).

Finalmente, en la Seccién 2.4, estudiamos la relacion entre A (W, Z) y
A (W@Z) para algunas sumas directas de los espacios de Banach Wy Z.
Dados dos espacios de Banach X; y X5, consideremos las aplicaciones P; €
L(X1® Xy, X;) tales que Py(x1,x2) = x;, 1 = 1,2,y 1 € L(X;, X1 D X))
tales que ¢;(x) := xe;, donde e; = (1,0) y ex = (0,1). Para los espacios
de Banach W'y Z, si tenemos un operador T € L(W, Z), entonces existe
una forma sencilla de definir T e L(W®Z): consideremos T :=150ToP,
es decir, T'(w, z) = (0, T(w)) para cada (w,z) € W@ Z. Por el contrario,
podemos definir un proceso pseudo-inverso de la siguiente manera: si
tenemos un operador S € LIW@Z, W®Z), entonces podemos considerar
S e L£(W, Z) definido como S := PyoSou;, es decir, §(w) = (P208)(w,0)

para cada w € W. Obtenemos los siguientes resultados.

Proposicion 14. Sean W y Z dos espacios de Banach, y sea T € Sy, z).

Entonces,

(i) Si T € Aw(W @, Z), entonces T € A (W, Z), donde s =1 o

S = 0.

(ii) Supongamos que W y Z son uniformemente suaves. Si T €
A (W, Z), entonces Te AW @1 Z).

(iii) Supongamos que Z es uniformemente convexo y W es uniforme-
mente suave. SiT € Ay (W, Z), entonces T e Aw(W @y 2).
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Finalmente, notemos que (ii) y (iii) ya no se cumplen en general para
espacios de Banach arbitrarios o para p-sumas si 1 < p < o0, y existe S €
LW @s Z, WD Z), con Wy Z uniformemente suaves y uniformemente
convexos, tal que S € A, (W @, Z) pero con S ¢ A (W, Z),s=10

s = oo (véanse los comentarios tras las Proposiciones 2.4.1 y 2.4.4).

Resumen del Capitulo 3

Los contenidos de este capitulo han sido publicados en

[59] D. Garcia, M. Maestre, M. Martin, and O. Roldén, On the
compact operators case of the Bishop-Phelps-Bollobas property
for numerical radius, Results Math. 76(3) (2021), Paper No.
122, 23 pp.

En 2013, Guirao y Kozhushkina introdujeron y estudiaron en [69] una

versién de la BPBp para el radio numérico. La definimos como sigue.

Definicién 15 (Combinando [69, Definition 1.2] y [87, Definition 5]). Un
espacio de Banach X tiene la propiedad débil de Bishop-Phelps-Bollobas
para el radio numérico (abreviada weak BPBp-nu) si dado & > 0, existe
n(e) > 0tal quesi T e L(X,X) conv(T) =1y (x,2*) € [I(X) cumplen
que |z*(T(z))| > 1 —n(e), existen S € L(X, X) vy (y,y*) € II(X) tales

que
v(S) =y (SW)l, le—yl<e |a" -y <e v |T-95<e

Si, ademas, S se puede elegir siempre con v(S) = 1, decimos que X
tiene la propiedad de Bishop-Phelps-Bollobas para el radio numérico
(abreviada BPBp-nu).
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Desde ese trabajo ([69]), muchos autores han obtenido multiples resul-
tados sobre la BPBp-nu (véanse [3, Section 6] y [40, Section 2.7] para
exposiciones de los principales resultados obtenidos sobre en esta di-
reccién). En 2018, Dantas, Garcia, Maestre y Martin, introdujeron y
estudiaron la BPBp adaptada a los operadores compactos (véase [39]). La
BPBp-nu y la BPBp para operadores compactos motivaron a introducir
y profundizar sobre la BPBp-nu para operadores compactos (considérese
la Definicién 15, pero con 7' € K(X,X) y S € K(X, X)). Al explorar
las pruebas existentes sobre BPBp-nu y hacer pequenas adaptaciones,
obtenemos una primera lista de espacios que satisfacen la BPBp-nu para

operadores compactos. Este es el objetivo de la Seccién 3.2

Ejemplos 16. Los siguientes espacios tienen la BPBp-nu para operadores
compactos: espacios de dimensién finita ([87, Proposition 2]), ¢o(I") v
¢,(T") para cualquier conjunto indice I" ([69, Corollaries 3.3 and 4.2]), y
Ly (p) para cualquier medida p ([7, Corollary 2.1] y [87, Theorem 9]).

Ahora, adaptando las nociones de indice numérico y segundo indice
numérico al contexto de los operadores compactos, ngx y n’, respecti-
vamente, y adaptando los resultados de [87] y [89], mostramos que si
un espacio de Banach X es uniformemente convexo y uniformemente
suave, entonces tiene la weak BPBp-nu para operadores compactos, y si
nk(X) >0 o n(X) > 0, entonces la weak BPBp-nu para operadores
compactos es equivalente a la BPBp-nu para operadores compactos. En
particular, mostramos que para cada medida py cada 1 < p < o0, L,(u)

tiene la BPBp-nu para operadores compactos.

En [34, Proposition 4.3] se mostrd que si un espacio de Banach X tiene la
BPBp-nu para operadores compactos, entonces todo sumando absoluto
de X de tipo 1 e oo también tiene esta propiedad, y con la misma funcion
1. Esto nos permite llevar la propiedad de algunos espacios a algunas

proyecciones de esos espacios. Es natural preguntarse si se puede decir
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algo en sentido opuesto. En [39, Lemma 2.1] se presenté una herramienta
que, en particular, nos permite llevar la BPBp para operadores compactos
desde unas proyecciones de un espacio al propio espacio. Para obtener
un resultado analogo para el radio numérico, es necesario controlar todo
tanto en el espacio como en su dual. El resultado més general obtenido

esta direccion es el siguiente lema.

Lema 17. Sea X un espacio de Banach con ng(X) > 0. Supongamos
que hay una funciénn: (0,1) — (0, 1) tal que dados § > 0, a3, ..., z* €
Bxs y xy1, ..., xy € Bx, podemos encontrar operadores de norma 1
P: X — P(X), i: P(X) — X tales que para P :=i0oP: X — X,

se cumplen estas condiciones:
(i) ||P*(x;‘) —x;‘H <d,paraj=1,..., n.
(ii) |P(z;) — =zl <9, para j =1, ..., L.
(iii) Poi=Tdpy,.
(iv) ]B(X) tiene BPBp-nu para operadores compactos con la funcion 1.
(v) O bien P es una proyeccion absoluta e i es la inclusion natural, o
nk(P(X)) =ng(X) = 1.

Entonces, X tiene la BPBp-nu para operadores compactos.

A lo largo de la Seccion 3.3, el Lema 17 se usa para mostrar que si un
espacio de Banach X con ng(X) > 0 puede ser adecuadamente proyec-
tado en alguna red de espacios que tienen la BPBp-nu para operadores
compactos con una funciéon comin 7, entonces a veces es posible mostrar
que X también tiene esa propiedad (véase Proposicién 3.3.2). Esto se

utiliza para obtener los siguientes dos resultados.
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Corolario 18. Sea X un espacio de Banach con ng(X) > 0. Entonces

las siguientes afirmaciones equivalen.

(i) El espacio co(X) tiene la BPBp-nu para opeadores compactos.

(ii) Hay una funcion n: (0,1) — (0, 1) tal que todos los (2 (X), con

n € N, tienen la BPBp-nu para operadores compactos con 1.

Ademas, si X es de dimension finita, estas propiedades se dan cuando
co(X) 0 €y (X) tienen la BPBp-nu.

Corolario 19. Sea X un espacio de Banach tal que X™* es isométri-
camente isomorfo a {1. Entonces X tiene la BPBp-nu para operadores

compactos.

En la Seccion 3.4, presentamos una serie de herramientas topoldgicas
que permiten cubrir convenientemente un espacio Hausdorff localmente
compacto L con conjuntos mas pequeinos y encontrar una particion de
la unidad adecuada subordinada a esos conjuntos. Esto nos posibilita
proyectar el espacio Cy(L) en algun espacio /£, (p € N) de tal manera
que nos permite usar Lemma 17. Esta propiedad de aproximacién fuerte

que obtenemos en Cy(L) y su dual se resume en el siguiente resultado.

Teorema 20. Sea L un espacio localmente compacto Hausdorff. Dados
{fl,"'aff} - CO(L) con ||fjH <1 pamj = 17"')67 ) {/‘Lla"')un} <

Co(L)* con ||puj| < 1 para j = 1,...,n, para cada € > 0 existe una
proyeccion de norma 1 P: Cy(L) — Co(L) tal que:
(1) |P*(ps) = pill <&, paraj=1,....n,

(2) |P(f;) = fil <&, paraj=1,....¢,

(3) P(Co(L)) es isométricamente isomorfo a (£, para algin p € N.
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Finalmente, como consecuencia, obtenemos lo siguiente.

Teorema 21. Si L es un espacio localmente compacto Hausdorff, en-

tonces Cy(L) tiene la BPBp-nu para operadores compactos.

En particular, todo espacio C'(K) (K compacto Hausdorff) y todo espacio
Lo () (p cualquier medida) tiene la BPBp-nu para operadores compactos.
Notemos que a dia de hoy sigue siendo un problema abierto si todos los
espacios C(K) tienen la BPBp-nu, y hasta ahora solo se han resuelto
casos particulares en el caso real (véase [13]), pero para operadores

compactos obtenemos una respuesta definitiva para estos espacios.

Resumen del Capitulo 4

Los contenidos de este capitulo han sido publicados en

[43] S. Dantas, M. Jung, O. Roldéan, and A. Rueda Zoca, Norm-
attaining tensors and nuclear operators, Mediterr. J. Math.
19(1) (2022), Paper No. 38, 27 pp.

En el Capitulo 4, se introducen y estudian las nociones de alcanzamiento
de normas para tensores proyectivos en X®,Y y operadores nucleares en
N(X,Y), para espacios de Banach X y Y. Para motivar por qué tales
preguntas pueden ser interesantes, recordemos que dos de las principales
preguntas historicas sobre los operadores norma-alcanzantes son las

siguientes:

1. jEs K(X,Y) c NA(X,Y) en general?

2. (Es F(X,Y) c NA(X,Y) en general?
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La primera pregunta fue respondida negativamente por Miguel Martin
en 2014 (véase [97]). La segunda pregunta permanece abierta, y muchos
la consideran actualmente como la principal pregunta abierta en la teoria
de los operadores que alcanzan normas. Notemos que los operadores nu-
cleares se encuentran entre los operadores de rango finito y los operadores
compactos, y los tensores proyectivos estan estrechamente relacionados
con ellos y tienen muchas aplicaciones en miltiples campos dentro del
analisis funcional. Otro factor importante para motivar este estudio
es el hecho de que si fuera cierto que para todo espacio de Banach de
dimensi6n finita X todo operador nuclear en N'(X,Y") alcanza su norma
nuclear, entonces obtendriamos una respuesta afirmativa a la segunda
pregunta de antes. Sin embargo, la suposicion resulta ser falsa, como

veremos mas adelante.

En este capitulo, las identificaciones isométricas (X®,Y)* = L(X,Y*) =
L(Y,X*) = B(X x Y,K) se usaran implicitamente. Notemos también
que si X* oY tiene la propiedad de aproximacién, entonces X*®,Y =
N(X,Y) (véase, por ejemplo, [107, Corollary 4.8]). Introducimos a

continuacion las nociones de alcanzamiento de norma en estos contextos.

Definicién 22. Sean X, Y dos espacios de Banach. Decimos que

(i) z € X®.Y alcanza su norma proyectiva si existe una sucesion
acotada (z,,y,) = X x Y con 2,7 |z,][yn]| < o tal que z =
S T ®Un Y [2]r = 20 lzn]|yn]- En este caso, decimos que

z es un tensor que alcanza su norma, o z € NA(X®,Y).

(i) T e N(X,Y) alcanza su norma nuclear si existe una sucesién
acotada (z¥,y,) = X* x Y con Y, |z¥||yn| < oo tal que T =
Yo wE @y v ITIv = X0 122]lyn]. En este caso, decimos que

T es operador nuclear que alcanza su norma, o T' € NAy (X, Y).
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En la Seccién 4.2, se obtienen los primeros resultados de alcanzamiento de
norma en este contexto. Empezamos encontrando dos caracterizaciones
técnicas que nos permitan afirmar que un tensor u operador nuclear
alcanza su respectiva norma siempre que existan muchas formas bilineales
que alcanzan sus normas en muchos puntos de una manera especifica
(véanse Teoremas 4.2.1 y 4.2.2). Con estos resultados en mente y el
hecho de que los espacios de dimension finita, ¢y, ¢1 y los espacios de
Hilbert tienen la propiedad de aproximacion, obtenemos nuestra primera

coleccion de resultados positivos.

Proposicién 23. Todo tensor proyectivo de X*®,Y y todo operador nu-
clear de N(X,Y") alcanza su norma respectiva si X e Y tienen dimension

finita, si X =Y es un espacio de Hilbert complejo, o si X = c¢q.

Es interesante comparar el tltimo ejemplo de arriba con la teoria clasica
de los operadores que alcanzan normas: si NA(X,Y) = £(X,Y) para
cada espacio de Banach Y, entonces en particular X debe ser reflexivo por
el Teorema de James. La proposicion anterior nos motiva a preguntarnos
si NAL(X®.Y) = X®,Y v NAy(X,Y) = N(X,Y) se cumplen en
general para cualesquiera espacios de Banach X y Y. Sin embargo, este

no es el caso, como muestran los siguientes resultados.

Lema 24. Sean X.Y espacios de Banach. Si B € B(X x Y,K) =
(X®,Y)* alcanza su norma como funcional en un elemento del espacio
NA,(X®,Y), entonces B € NAg(X x Y,K).

Proposicién 25. Sean X,Y espacios de Banach. Si NAL(X®,Y) =
X®,Y, entonces NAg(X x Y, K)”.”B = B(X x Y,K) (y por tanto, tam-
bién se obtiene que NA(X, Y*)H'” = L(X,Y™)).

Hay muchos ejemplos conocidos de espacios de Banach X y Y que

no cumplen que NA(X, Y*)H'H = L(X,Y™), por lo que existen tensores
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proyectivos que no alcanzan su norma proyectiva. Usando la propiedad de
aproximaciéon, también obtenemos operadores nucleares que no alcanzan
su norma nuclear. El siguiente ejemplo es de particular interés, ya que
muestra que no todos los tensores proyectivos u operadores nucleares
alcanzan sus respectivas normas si se asume que sélo uno de los espacios
de Banach es de dimension finita, resolviendo negativamente uno de los

factores que usamos para motivar este estudio.

Ejemplo 26. Sea X = L;(T), donde la circunferencia unidad T esta
equipada con la medida de Haar m, y sea Y el espacio de Hilbert
de dimensién 2. Se muestra en [65, Remark 5.7.(2)] que existe T €
B(X x Y,K) que alcanza su norma como funcional en X®,Y pero no
como operador de X en Y* (y por tanto, tampoco como forma bilineal
en X x Y). Por el Lema 24, obtenemos que NA(X®,Y) # X®,Y, vy
por tanto, NAx (Y, X) # N(Y, X).

Dado que no todos los tensores proyectivos u operadores nucleares
alcanzan su norma, es natural preguntarse ahora si tenemos resultados
de densidad. En la Seccion 4.3, proporcionamos algunos resultados de
densidad positivos. Para conseguirlos, se utilizan dos enfoques. Primero,
notemos que por las dos primeras caracterizaciones, para obtener muchos
tensores proyectivos y operadores nucleares que alcancen sus normas,
queremos tener muchas formas bilineales que alcancen sus normas en
muchos puntos. La L, , asegura la existencia de muchos operadores que
alcanzan sus normas en muchos puntos, y se puede adaptar a aplicaciones

bilineales de la siguiente manera.

Definicién 27. Decimos que (X x Y, Z) tiene la L, , para aplicaciones
bilineales (o simplemente, L,,5) si dados ¢ > 0y B € B(X x Y, Z2)
con |B|s = 1, existe n(e, B) > 0 tal que siempre que (x,y) € Sx x Sy
cumple que |B(z,y)| > 1 — n(e, B), existe (zg,yy) € Sx x Sy tal que
B0, 90)l = 1, | — w0l <&, Iy — 9ol <=
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Obtenemos el siguiente resultado.

Proposicién 28. Sean X,Y espacios de Banach. Si (X* x Y,K) tiene
la Ly, p, entonces, NAn (X, Y)”'HN = N(X,Y). Si (X x Y,K) tiene la
Lo, entonces, NA,,(X@TY)‘.HW = X®,Y.

En particular, notemos que las siguientes relaciones son conocidas, pro-

porcionando resultados positivos de densidad.

Ejemplos 29 ([48]). Sean X,Y espacios de Banach.

(i) Sidim(X),dim(Y) < o0, entonces (X x Y, Z7) tiene la L, , 5 para
todo espacio de Banach Z.

(ii) SiY es uniformemente convexo, entonces (X x Y, K) tiene la L, , 5
si y solo si (X, Y™) tiene la L,,.

(iii) Si 1 < p,q < o, entonces (¢, x ¢,,K) tiene la L,, 5 si y sélo si

p>dq.

Sin embargo, la L,,s para formas bilineales es una propiedad muy
restrictiva, ya que requiere que ambos espacios sean reflexivos para
empezar, v también hay pares de espacios reflexivos sin la propiedad,
como acabamos de ver. Por lo tanto, necesitamos un enfoque diferente
para obtener méas resultados positivos. Para usar lo que sabemos sobre el
escenario de dimension finita, seria conveniente tener buenos subespacios
de nuestros espacios. Las normas proyectivas no respetan los subespacios
en general, pero se comportan bien con los subespacios 1-complementados,
por lo que nos interesa tener una propiedad que asegure la existencia de
muchos subespacios 1-complementados adecuados de nuestros espacios.

Por tanto, consideramos la propiedad 7 métrica.

Definicién 30. Sea X un espacio de Banach. Decimos que X tiene la

propiedad m métrica si dados € > 0y {x1,...,x,} < Sy una coleccién



56 Resumen

finita en la esfera, podemos encontrar un subespacio 1-complementado de
dimensién finita M < X tal que para cada i € {1,...,n} existe z, € M

con |z; — | < e.

El concepto anterior es en realidad equivalente a la propiedad de aproxi-
macion 7 métrica (una propiedad de aproximacion donde los operadores
aproximantes son todos proyecciones de norma 1), y esto nos permite
encontrar muchos mas ejemplos de espacios para los que tenemos densi-
dad (véanse (23], [76] y [94] para méas informacién sobre la propiedad 7).

Se cumplen las siguientes propiedades.

Teorema 31. Sea Y un espacio uniformemente convero o un espa-

cio con la propiedad m métrica. Si X (respectivamente, X*) tiene la
. s . ~ ~ H”W .

propiedad ™ métrica, entonces X®,Y = NA(X®,Y) (respectiva-

mente, N(X,Y) = NAy(X, Y)H'HN).
Ejemplo 32. Los siguientes espacios tienen la propiedad m métrica.
(i) Espacios de Banach con una descomposicién finito dimensional con

constante 1 (consecuentemente, todo espacio de Banach con base

de Schauder se puede renormar para tener la propiedad 7 métrica),

(i) Ly(p) (1 < p < 00, pu cualquier medida) y duales isométricos de
L17

(iii) X@®, Y, si X,Y tienen la propiedad m métrica y ||, es una norma

absoluta,

(iv) X = [Den Xul,, 0 [Dren Xn]gp, para 1 < p < o, si X,, tiene la

propiedad 7 métrica para todo n,

(v) X®,Y y X®.Y cuando X,Y tienen la propiedad m métrica.
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Esto muestra que en muchos espacios la densidad se cumple. Remitimos
al trabajo reciente [41, Section 4] para més resultados de densidad
positivos relacionados con la RNP, espacios duales y la propiedad m
métrica (por ejemplo, si X* y Y* tienen la RNP y uno tiene la propiedad
— X*®,Y*, v si Z es

Il

cualquier espacio dual, entonces NA(co®,Z) = ¢o®:Z). En este

H.H
[ s

de aproximacién, entonces NA,(X*®,Y*)

punto, es natural preguntarse ahora si siempre tenemos densidad de
tensores proyectivos u operadores nucleares que alcanzan normas. Sin
embargo, a pesar de nuestra amplia coleccion de resultados positivos,
en la Seccion 4.4, obtenemos el siguiente resultado negativo para los

tensores.

Teorema 33. Sea R el espacio de Read. Fxisten subespacios X de ¢y y
Y de R tales que el conjunto de tensores de X®,Y* que alcanzan sus

normas proyectivas no es denso en X®,Y*.

Cabe senalar que la pregunta analoga para los operadores nucleares

permanece abierta.

Finalmente, notemos que aunque no se sabe si todo operador de rango
finito puede aproximarse por operadores que alcanzan su norma, la

afirmacion andloga para los tensores no se cumple en general.

Proposicion 34. FEzxisten tensores de rango finito que no se pueden

aproximar por tensores que alcanzan su norma proyectiva.

Resumen del Capitulo 5

El Capitulo 5 tiene dos mitades bien diferenciadas.

La primera mitad de este capitulo ha sido publicada en
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[84] V. Kadets and O. Roldan, Closed linear spaces consisting of
strongly norm attaining Lipschitz mappings, Rev. R. Acad.
Cienc. Ezxactas Fis. Nat. Ser. A Mat. RACSAM 116 (2022),
Paper No. 162, 12 pp.

y la segunda mitad ha aparecido en el trabajo enviado

[49] S. Dantas, R. Medina, A. Quilis, and O. Roldan, On isometric
embeddings into the set of strongly norm-attaining Lipschitz
functions. Preprint available at arXiv:2208.02916.

En 2001, Godefroy pregunto si para cada espacio de Banach de dimension
infinita X, el conjunto de funcionales que alcanzan sus normas NA (X, K)
siempre contiene espacios lineales de dimensién 2 (véase [64, Problem
I11]). Esta pregunta fue respondida negativamente por Rmoutil en 2017:
si R es el renormamiento de ¢g de Read ([103]), entonces NA(R,K) no
contiene espacios lineales de dimensiéon 2. En el Capitulo 5, estudiamos
la cuestién de la espacialidad analoga para el conjunto de funciones

Lipschitz (reales) que alcanzan su norma fuertemente.

Sea M un espacio métrico “pointed”, es decir, un espacio métrico con un
punto distinguido 0. Lipy(M) es el espacio de Banach de las funciones
Lipschitz f : M — R tales que f(0) = 0 dotado de la norma Lipschitz

|f(y) — f(z)]
d(z,y)

Se dice que una funcién Lipschitz f € Lip,(M) alcanza su norma fuerte-

| (y)—f ()]
d(z,y)
de funciones Lipschitz que alcanzan su norma fuertemente en M se

denota SNA(M).

7] = sup{ : x,yeM,Hy}.

mente si existen z,y € M, x # y, tales que | f| = . El conjunto


https://arxiv.org/abs/2208.02916
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El alcanzamiento fuerte de norma de funciones Lipschitz, asi como otros
alcanzamientos de norma mas débiles, se han estudiado ampliamente
durante los ltimos anos, desde los primeros trabajos sobre el tema
([66, 83]). Se sabe que el alzancamiento fuerte de norma es en realidad
bastante estricto (por ejemplo, segin [83, Lemma 2.2], si una funcién
alcanza fuertemente su norma en un par (x,y), debe alcanzarla a lo largo
de todo el segmento [z, y] y ser afin siempre que esté definida). Por esta
razoén, en muchos espacios métricos M, SNA(M) pasa a no ser denso
en Lipy(M), aunque también se han obtenido resultados positivos para

algin otro espacio métrico.

Claramente, si M tiene cardinal n € N, entonces SNA(M) = Lip,(M),
y es un espacio de Banach. En el Capitulo 5 abordamos la siguiente
pregunta: si M es infinito, ; SNA(M) siempre contiene espacios lineales
de dimensién mayor que 17 Por lo estricto que es este alcanzamiento de
norma, y teniendo en cuenta el trabajo de Rmoutil para funcionales, se
puede pensar que la respuesta a esta pregunta puede ser negativa. Sin
embargo, veremos que esto esta lejos de ser cierto. Para hacerlo, nos
basamos en varias técnicas, como el teorema de extension de McShane
(que nos permite extender funciones Lipschitz de un espacio métrico M;
a un espacio métrico mas grande M, conservando su norma), espacios
Lipschitz-free, y algunas otras herramientas. En este capitulo, asumire-
mos implicitamente que todos los espacios métricos son “pointed”, y que

todos los espacios vectoriales son reales.

En general, no es cierto que si un espacio de Banach X estd en SNA (M)
para algiin espacio métrico M, entonces podemos extenderlo mediante
McShane y encontrar el mismo espacio X en SNA (M) para cada espacio
métrico mayor M. Sin embargo, con la norma || - ||;, obtenemos el

siguiente resultado.



60 Resumen

Lema 35. Sea M un espacio métrico “pointed” tal que para algun
subespacio K de M, SNA(K) contiene un subespacio lineal isométrico a
0% para algin n € N. Entonces, SNA(M) también contiene un subespacio

isométrico a (7.

Usando esto y alguna otra técnica, podemos dar una respuesta definitiva

a nuestra pregunta.

Teorema 36. Sea n > 1 un nimero natural, y sea M un espacio métrico

“pointed” con al menos 2™ puntos distintos. Entonces, existe un subespacio
lineal de SNA(M) isométrico a (7.

Corolario 37. Si M es un espacio métrico “pointed” infinito, en-
tonces para todo n € N, SNA(M) contiene un subespacio n-dimensional

isométrico a (7.

Por tanto, si M es infinito, SNA(M) no sélo tiene tiene subespacios de
dimension al menos 2: de hecho contiene a todos los ¢}, n € N, como

subespacios isométricos.

No es dificil ver que SNA([0, 1]) contiene una copia isométrica de c.
Esto lleva a preguntarse qué otros espacios de Banach se pueden formar.
La respuepsta, sorprendentemente, es que todos ellos, si se elige el espacio

métrico adecuado.

Proposicion 38. El espacio de Banach'Y es subespacio isométrico de

SNA(By+).

También es interesante hacerse la pregunta inversa: dado un espacio
de Banach Y, jcomo de “pequeno” puede ser un espacio métrico M
para que Y sea subespacio de SNA(M)? Por el resultado anterior, si Y’
tiene dual separable, M puede ser separable, pero jy si no? El siguiente

teorema muestra que esto es, de hecho, una caracterizacion.
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Teorema 39. Para un espacio de Banach dado Y, equivalen:

(1) Existe un espacio métrico separable M y un subespacio lineal cer-
rado Z < Lipy(M) tal que Z es isométrico a Y y Z < SNA(M).

(2) Existe un espacio de Banach separable X y un subespacio lineal
cerrado Zy < X* tal que Zy es isométrico a Y y Z; < NA(X,R).

(3) Y* es separable.

Por lo tanto, para espacios métricos separables como M = [0, 1], el
conjunto SNA(M) no puede contener subespacios como ¢; con dual
no separable. Esto agrega alguna restriccién a los espacios métricos
separables. De hecho, aparecen otras restricciones para algunos espacios
métricos pequenos, como los o-precompactos, que incluyen por ejemplo
a todos los espacios precompactos y todos los espacios R" (nétese que

los espacios o-precompactos siempre son separables).

Teorema 40. Si M es un espacio o-precompacto, entonces todos los
subespacios de Banach de SNA(M) son separables e isomdrficamente

polihédricos.

En cuanto a resultados positivos, hemos mencionado que SNA([0, 1])
contiene a ¢y isométricamente. De hecho, esto se puede extender a una

clase extensa de espacios métricos que incluye a todos los normados.

Proposiciéon 41. Si M es un espacio métrico que contiene a [0, 1]

isométricamente, entonces SNA(M) contiene a co isométricamente.

En realidad, es posible ver que para todos los espacios métricos M
con una cantidad infinita de puntos no aislados, SNA(M) contiene a cq
isométricamente. Pero incluso en todos los espacios M sin esta propiedad

que estudiamos en profundidad, siempre resultaba posible encontrar cg
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en SNA (M) isomérficamente. Esto motivo a preguntarnos si este siempre
es el caso (véanse [84, Questions 1 and 2]), es decir: si M es infinito,
iSNA(M) siempre contiene a ¢y isomérficamente? Recientemente, Avilés,
Martinez-Cervantes, Rueda Zoca y Tradacete respondieron afirmativa-
mente esta pregunta mediante una elegante distincién de casos y con la

ayuda del teorema de Ramsey.

Teorema 42 ([15, Main Theorem|). Sea M un espacio métrico completo

“pointed” infinito. Entonces, SNA(M) contiene a ¢y isomorficamente.

En cuanto a meter isométricamente a ¢y en SNA(M), los autores de-
mostraron en [15, Lemma 3.1] que si el espacio métrico involucrado
satisface cierta propiedad geométrica (esto se cumple, por ejemplo, para
espacios métricos con una cantidad infinita de puntos no aislados y
para espacios métricos discretos que no son uniformemente discretos),
entonces SNA(M) contiene a ¢y isométricamente. Para el resto de espa-
cios métricos, dejaron abierta la siguiente pregunta (véase [15, Remark
3.6]): si M es infinito, ;SNA (M) contiene a ¢y isométricamente? En [49],
proporcionamos una respuesta definitiva a esta pregunta. Para hacerlo,
primero encontramos el siguiente resultado, que mejora ligeramente las

condiciones de [15, Lemma 3.1].

Lema 43. Sea I un conjunto indice no vacio. Sea M un espacio métrico
“pointed” tal que existen dos conjuntos {x}yer, {Yy}rer € M con z., # y,,
To # xg para v, €L, a # B Sid(xa,x5) = d(Ta,Ya) + d(Ts,Yp)
para todo o # B € I, entonces existe un subespacio lineal de SNA(M)

isométrico a co(T').

Con ayuda de este resultado y algunos otros lemas técnicos, podemos
resolver negativamente la pregunta de [15, Remark 3.6]. Proporcionamos
dos contraejemplos distintos con comportamientos opuestos. Dado un

punto x € M, definimos su radio de separacion como la cantidad R(x) :=



63

inf{d(z,y): ye M\{z}}, y decimos que z alcanza su radio de separacion

si ese infimo es en realidad un minimo. Resumimos nuestros resultados.

Teorema 44. Existen espacios métricos My y M, tales que SNA(My) y
SNA(M,) no contienen a cq isométricamente y tales que My es acotado
y ninguno de sus puntos alcanza su radio de separacion, y Mo es “proper”

no acotado y todos sus puntos alcanzan su radio de separacion.

Curiosamente, también existen espacios métricos completos “pointed” in-
finitos y uniformemente discretos M con ¢y contenido isométricamente en
SNA(M) de tal manera que ningtin punto alcanza su radio de separacion,
o que todo punto alcanza su radio de separacién. En cuanto a los espa-
cios métricos que no son uniformemente discretos, sorprendentemente,

SNA(M) siempre contiene ¢, isométricamente.

Teorema 45. Sea M un espacio métrico infinito que no es uniforme-
mente discreto. Entonces, el conjunto SNA(M) contiene una copia

isométrica de cy.

Finalmente, para el escenario no separable, usando el Lema 43 y un
resultado inspirado en [71, Proposition 3|, conseguimos el siguiente
resultado positivo. Recordemos que dado un espacio métrico M, M’
denota el conjunto de puntos de acumulacién de M, y dens(M) denota
el caracter de densidad de M.

Teorema 46. Sea M un espacio métrico “pointed” tal que dens(M') =T
para algiun cardinal infinito I'. Entonces, existe un subespacio lineal de

SNA(M) que es isométricamente isomorfo a co(T).

El documento concluye con un capitulo de Conclusiones (véase la pagina
277), que incluye algunos comentarios y problemas abiertos. Al final del
documento hay una lista extensa de referencias (véase la pagina 287),

seguida de un glosario de conceptos y notaciones.






Resum (Valencia)

En aquesta dissertacio, estudiem diverses classes d’aplicacions que poden
assolir o no la seua norma o el seu radi numeric naturalment associat. En
particular, parlarem sobre operadors i aplicacions bilineals entre espais

normats, tensors projectius, operadors nuclears i funcions Lipschitz.

El contingut principal d’aquest document esta organitzat en 5 capitols,
on cobrim els continguts dels treballs publicats [42, 43, 59, 84] i el treball
enviat [49], i s’extrauran algunes notes d’antecedents de I’estudi publicat
[40]. En aquesta seccié, resumirem en valencia el contingut de cada
capitol (consulteu la seccié Summary de la pagina 15 i la seccié Resumen
de la pagina 39 per a les respectives traduccions d’aquest resum a ’angles

i al castella).

Resum del Capitol 1

El Capitol 1 serveix com a introduccié. A la Secci6 1.1, fem un comentari
important sobre com llegir aquest document. A la Seccié 1.2, establim
notacio i conceptes basics que es faran servir al llarg del text. A la Secci6
1.3, incloem els antecedents historics necessaris per tal de motivar el
treball. Finalment, a la Seccié 1.4, expliquem breument 'estructura del
document i els continguts dels propers capitols. Comentem alguns fets

historics per motivar millor les altres seccions.
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Inspirats pels treballs de James 1957/1963 ([74, 75]), Bishop i Phelps
1961 ([17]), Lindenstrauss 1963 ([93]), Bollobas 1970 ([18]) i molts altres
(vegeu [2]) sobre la densitat d’operadors que assoleixen la seua norma, el
2008, Acosta, Aron, Garcia i Maestre van introduir i estudiar la propietat
de Bishop-Phelps-Bollobas (vegeu [5]) .

Definicié 1 ([5]). Un parell d’espais de Banach (X,Y") té la propietat
de Bishop-Phelps-Bollobds (abreujada BPBp) si donat ¢ € (0, 1), existeix
n(e) > 0 tal que si T e L(X,Y) iz e Sx satisfan |T|| = 11 |T(x)| >
1 —n(e), existeix S € L(X,Y) iy e Sy tal que |S| = |S(y)|| = 1,
lo—yl <eiS—T| <e.

Notem que si els espais de Banach X i Y satisfan la BPBp, aleshores,
en particular, NA(X,Y') és dens a £(X,Y), encara que el reciproc no
sempre és cert. La BPBp ha estat estudiada per molts autors recentment
(vegeu els estudis [3, 40] per a una exposicié completa de resultats sobre
la BPBp fins al 2022). Diverses variacions interessants de la BPBp també
s’han introduit i estudiat recentment a base de fer canvis especifics a
la definici6 1, com ara la L, , (la BPBp pero per a cada T' previament

fixat, es troba un n(e,T) depenent també de T', i, a més a més, S =T).

Aquest ampli estudi dels operadors que assoleixen les seues normes
també s’ha estés a altres tipus d’aplicacions i normes. Per exemple,
les aplicacions multilineals, polinomis homogenis, funcions holomorfes,
operadors compactes i aplicacions Lipschitz que assoleixen les seues
normes s’han estudiat durant molt de temps, i el mateix passa amb
els operadors que arriben al seu radi numeric. Naturalment, propietats
tipus BPBp també shan introduit i estudiat per a aquests contextos.
Ens referim de nou a la seccié 1.3 i a l'estudi [40] per a més informacié
sobre aquestes propietats i més. Aquest escenari és el punt de partida

d’aquesta dissertacio.
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Resum del Capitol 2

Els continguts d’aquest capitol han sigut publicats a

[42] S. Dantas, M. Jung, and O. Roldan, Norm-attaining operators
which satisfy a Bollobas type theorem, Banach J. Math. Anal.
15(2) (2021), Paper No. 40, 26 pp.

Inspirats per la L,, i les seues moltes aplicacions, el Capitol 2 esta
dedicat a estudiar una classe A |(X,Y) c NA(X,Y) d’operadors que
compleixen una propietat com la L, ,, és a dir, tals que si gairebé arriben
a la seua norma en z, l'assoleixen en un punt proper zy. La classe
analoga per al radi numeric també s’introdueix i s’estudia. La definicio

formal daquests conjunts és la segiient.

Definicié 2. Siguen X,Y dos espais de Banach sobre el cos K =R o C.

(i) Aj(X,Y) representa el conjunt de tots els operadors que assoleixen
la seua norma, 7' € L£(X,Y) amb |T| = 1 tals que si ¢ > 0,
existeix n(e,T) > 0 tal que sempre que = € Sy complisca que
IT(z)| > 1 —n(e,T), existeix xg € Sx tal que ||[T(xo)| = 11

xo — x| < e.

(ii) Au(X) representa el conjunt d’operadors que assoleixen el seu
radi numeric, 7' € L£(X,X) amb v(T) = 1 tals que si ¢ > 0,
existeix n(e,T") > 0 tal que sempre que (z,z*) € II(X) complisca
que |z*(T'(z))| > 1 — n(e,T), existeix (xg,2zf) € II(X) tal que

|25 (T'(x0))] = 1, w0 =z <&, i Jlaf — 2] <e.

A la Secci6 2.2, es presenta una seleccié de resultats i exemples sobre les
classes A|.| i Ay,. Per a espais de Banach de dimensi6 finita, utilitzant
la compacitat de la bola unitat i el fet que cada operador assoleix la seua

norma i radio numeric, obtenim la segiient caracteritzacié positiva.
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Teorema 3. Siga X un espai de Banach de dimensio finita.

(i) A (X,Y) = {T € L(X,Y) : |T| = 1} per a qualsevol espai de
Banach' Y,

(ii) A (X) = {T e L(X,X): v(T) = 1}.

Per a funcionals, obtenim resultats positius per a una classe extensa

d’espais, pero també en trobem de negatius per a altres espais.

Teorema 4. Siga X un espai de Banach sobre K.

(i) NA(CO,K) M Sgl = A”.H(CO,K).
(ii) St X és uniformement convex, aleshores Sxx = Aj(X,K).
(iii) Ewisteiv x* € NA((1,K) N Sy, tal que z* ¢ A (¢1,K).

(iv) Emisteir 2* € NA(ly,K) N Sp tal que 2* ¢ A (Lo, K).

Pel que fa a operadors generals sobre un espai de Banach X, notem que
tota isometria esta en A (X, X), pero aquest no és sempre el cas amb
A (X). De fet, fins i tot en el context dels espais de Hilbert com X = /o,
existeixen (vegeu Exemple 2.2.5) operadors en Ay (X, X) n Ay (X), en
A (X, X)\ A (X)), en Ao (X)\Anu (X, X), i operadors que no sén a
A (X, X)UAn (X) malgrat estar a {T' e NA(X, X)nNRA(X): v(T) =

|T| = 1}. Tot aixo afegeix complexitat a la nostra pregunta.

Una classe important d’operadors per als quals podem obtenir un resultat
positiu son els operadors compactes. El resultat segiient mostra que sota
algunes hipotesis sobre els espais involucrats, tot operador compacte
amb norma 1 (i radi numeric 1) esta en A (X,Y) (i en A (X)).

Teorema 5. Siga X un espai reflexiu amb la propietat de Kadec-Klee.
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(i) Skx,yy < A (X,Y) per a tot espai de Banach'Y .

(i) {TeK(X,X): v(T)=|T| =1} € Auw(X) si X és diferenciable
Fréchet.

En particular, mostrem que sota certes hipotesis sobre 1'espai de Banach
X, tot operador compacte 1" € IC(X, X) amb v(T') = |T'|| = 1 assoleix el
seu radi numeric. Notem que si X és un espai de Banach de dimensio
infinita, la inclusié a (ii) ha de ser estricta, ja que la identitat sempre és
a A, (X), pero no és compacta. També obtenim la segiient conseqiiéncia

immediata del resultat anterior.

Corol-lari 6. Siga X un espai de Banach reflexiu amb la propietat de

Kadec-Klee 1 siga H un espai de Hilbert.

(i) SiY té la propietat de Schur, aleshores A |(X,Y) = Seixy)-

(i) {TeK(H,H): v(T)=|T| =1} € Ap(H).

Si eliminem algunes de les hipotesis sobre els espais al Teorema 5, tots
dos enunciats deixen de ser certs en general (vegeu els operadors de
(2.2.3)1(2.2.5)). A més, el Teorema 5 i el Corol-lari 6 fallen en el context

no compacte, com veurem a la Secci 2.3 .

La demostraci6 del resultat segiient (inspirat en [1, Exemple 1.9]) ens
proporciona una amplia classe d’operadors compactes T € A, (H) tals
que 1 = v(T) < |T| i, per tant, exemples d’operadors que pertanyen a
Ani(H) pero no a A (H, H) (vegeu la demostracié de la Proposici6 2.2.9
per a més detalls). En aquest cas obtenim A, en un sentit uniforme,

on 77 només depen de €.

Proposicié 7. Siga H un espai de Hilbert separable real de dimensio
infinita. Aleshores existeix T € L(H, H) tal que
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(i) T és un operador compacte.
(ii) 1 =v(T) < ||T|| 7 T assoleix el seu radi numéric.

(iii) Donat € > 0, existeiz n(e) > 0 tal que si xg € Sy compleix que

[{T'(x0), )] > 1 —n(e),

existeir x1 € Sy tal que v(T) ={T(x1),x1) =11 ||x1 — xo| < e.
En particular, T € Aw(H) ¢ T ¢ A (H, H).

Els operadors de (2.2.2), (2.2.3) i (2.2.5) mostren que, en general, no
hi ha cap relaci6 entre T e A (X,Y) i T* € A (Y*, X*). No obstant
aixo, si afegim condicions extra als espais X i Y, obtenim el resultat

segiient.

Proposicié 8. Siguen X,Y espacis de Banach i T € L(X,Y).

(i) SiY és uniformement suau, si T € A |(X,Y), aleshores T* €

(ii) Si X és uniformement convex, si T* € Ay (Y*, X*), aleshores

T e ‘AH'H (X, Y)
(iii) Si X és reflexiu, aleshores, T € Ay (X) si i sols si T* € Ay (X¥).
Notem que no podem eliminar la suavitat i convexitat uniformes a (i)

i (ii) (vegeu de nou (2.2.2), (2.2.3), 1 (2.2.5)). A ¢y, obtenim el segtient

resultat relacionat amb (iii).

Proposicié 9. Siga T € A,.(co) tal que el rang de T* € L({1,0;) és a
span{e},...,ex} per a algun N € N. Aleshores, T* € A,.(¢1).
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En la Secci6 2.3, es donara una caracteritzacié completa de tots els
operadors diagonals que pertanyen a Aj.(X,X) (X =cpo0,, 1 <p<
©), a Ap(X) (X =copo0l,, 1 <p<o),aA(clp) (1<p<xm)ia

Ajj(p, co) (1 < p < 0). Podem resumir aquests resultats com segueix.

Teorema 10. Siga (X, Y') igual a (co, co), (p, £p) (1 < p < 0) 0 (£y,co)
(1<p<w). SigaT: X —Y loperador diagonal de norma 1 associat
a la successio fitada de complexos {ou,}o_,. Aleshores, T € A |(X,Y) si

i sols si es donen les dues condicions seguients:

1. Ezisteiz ng € N tal que |ay,| = 1.
2. SiJ={neN: |a,| =1}, aleshores J =N 0 sup,e s || < 1.

Teorema 11. Donat 1 < p < o0, siga T : ¢g — £, l'operador diagonal de
norma 1 associat a la successio acotada de complexos {c,} . Aleshores,

T e A (co,tp) siisols sievisteix N € N tal que o, = 0 per a tot n > N.

Teorema 12. Siga X =cy olp, 1 <p<oo. SigaT : X — X l'operador
diagonal de radi numéric 1 associat a la successio fitada de complexos
{an}e . Aleshores, T € A, (X) si i sols si es donen les dues condicions

seqglients:

1. Ezisteiz ng € N tal que |ay,| = 1.

2. 8 J={neN: |a,| =1}, aleshores el cardinal de {a, : n € J} és

finit i sup,c g lan| < 1 quan J # N.
En particular, si {0y} < R, T € Ap(X) siisols siT e A (X, X).
Com a conseqiiencia, per a les projeccions canoniques sobre els espais

de successions classics, Py(z) := (z(1),2(2),...,2(N),0,...), obtenim

el seglient.
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Corol‘lari 13. Siga N € N donat. Si X =cy 0{,, 1 < p < o0, aleshores
PN S .AH.”(X, X) N .Anu(X).

Finalment, a la Seccié 2.4, estudiem la relacié entre Aj.|(W, Z) i Ap(W®
Z) per a algunes sumes directes dels espais de Banach W i Z. Donats dos
espais de Banach X7 i X3, considerem les aplicacions P; € L(X;® X5, X;)
tals que P(z1,72) == x, ¢ = 1,2, 1 ¢; € L(X;, X1 @& X,) tals que
ti(x) == we;, on e; = (1,0) i eo = (0,1). Per als espais de Banach W
i Z, si tenim un operador T' € L(W, Z), aleshores hi ha una manera
senzilla de definir T € L(W @ Z): considerem T := 150 T o Py, és a dir,
T(w, z) = (0, T(w)) per cada (w,z) € W@ Z. Per contra, podem definir
un procés pseudo-invers de la seglient manera: si tenim un operador

SeL(W®Z,W® Z), aleshores podem considerar S € £(W, Z) definit

com S := PyoS o, és adir, S(w) = (Py0S)(w,0) per a cada w e W.

Obtenim els resultats segiients.

Proposicié 14. Siguen W, Z dos espais de Banach, i siga T' € Scay,z).

Aleshores,

(i) Si T € Aw(W @, Z), aleshores T € AW, 2), ons=10s= .

(ii) Suposem que W i Z son uniformement suaus. SiT € A (W, Z),
aleshores T € Any(W @1 Z).

(iii) Suposem que Z és uniformement convex i W és uniformement
suau. SiT € A (W, Z), aleshores T e Aw(W @y 2).

Finalment, notem que (ii) i (iii) ja no es compleixen en general per
a espais de Banach arbitraris o per a p-sumes si 1 < p < o0, i hi ha
Se LW®ds Z,WdsZ), amb W i Z uniformement suaus i uniformement
convexos, tal que S € A, (W @, Z) perd amb S ¢ AW, 2),s=10
s = o (vegeu els comentaris que segueixen a les Proposicions 2.4.1 i
2.4.4).
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Resum del Capitol 3

Els continguts d’aquest capitol han sigut publicats a

[59] D. Garcia, M. Maestre, M. Martin, and O. Roldan, On the
compact operators case of the Bishop-Phelps-Bollobas property
for numerical radius, Results Math. 76(3) (2021), Paper No.
122, 23 pp.

El 2013, Guirao i Kozhushkina van introduir i van estudiar a [69] la

segiient versi6 de la BPBp per al radi numeric.

Definicié 15 (Combinant [69, Definition 1.2] i [87, Definition 5]). Un
espai de Banach X té la propietat feble de Bishop-Phelps-Bollobas per al
radi numeric (abreujada weak BPBp-nu) si donat ¢ > 0, existeix n(g) > 0
tal que si T'e L(X, X) amb v(T) =11 (x,2*) € II(X) compleixen que
|z*(T'(x))] > 1 —n(e), existeixen S € L(X, X) i (y,y*) € II(X) tals que

v(S) =y (SWI -yl <e o5 =yl <e, 1 |T-5]<e

Si, amés, S es pot triar sempre amb v(S) = 1, diem que X té la propietat

de Bishop-Phelps-Bollobas per al radi numeric (abreujada BPBp-nu).

Arran d’aquest article ([69]), molts autors han obtingut multiples re-
sultats sobre la BPBp-nu (vegeu [3, Section 6] i [40, Section 2.7] per
a exposicions dels principals resultats obtinguts sobre aquest tema).
El 2018, Dantas, Garcia, Maestre i Martin, van introduir i estudiar la
BPBp adaptada als operadors compactes (vegeu [39]). La BPBp-nu i
la BPBp per a operadors compactes van motivar a introduir i estudiar
en profunditat la BPBp-nu per a operadors compactes (considereu la
Definicié 15, perdo amb T € (X, X) i S € £(X,X)). En explorar les

proves existents sobre BPBp-nu i fer-ne xicotetes adaptacions, obtenim
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una primera llista d’espais que satisfan la BPBp-nu per a operadors

compactes. Aquest és 'objectiu de la Secci6 3.2

Examples 16. Els espais segiients tenen la BPBp-nu per a operadors
compactes: espais de dimensié finita ([87, Proposition 2]), ¢o(I") i ¢1(I")
per a qualsevol conjunt index I' ([69, Corollaries 3.3 and 4.2]), i Ly(u)
per a qualsevol mesura p ([7, Corollary 2.1] i [87, Theorem 9]).

A continuacid, adaptant les nocions d’index numeric i segon index numeric
al context dels operadors compactes, ng i ny, respectivament, i adaptant
els resultats de [87] i [89], mostrem que si un espai de Banach X és
uniformement convex i uniformement suau, aleshores té la weak BPBp-nu
per a operadors compactes, i si ng(X) > 0 o n/(X) > 0, aleshores la
weak BPBp-nu per a operadors compactes és equivalent a la BPBp-nu
per a operadors compactes. En particular, mostrem que per a cada
mesura g i cada 1 < p < o, L,(u) té la BPBp-nu per a operadors

compactes.

A [34, Proposition 4.3] es va mostrar que si un espai de Banach X té la
BPBp-nu per a operadors compactes, aleshores tot sumand absolut de
X de tipus 1 i oo també té aquesta propietat, i amb la mateixa funcié 7.
Aix0 permet portar la propietat d’alguns espais a algunes projeccions
d’aquests espais. Es natural preguntar-se si es pot dir alguna cosa en
sentit contrari. A [39, Lemma 2.1] es va presentar una eina que, en
particular, ens permet portar la BPBp per a operadors compactes des
d’unes projeccions d’un espai al mateix espai. Per a obtenir un resultat
analeg per al radi numeric, cal controlar-ho tot tant a I’espai com al seu
dual. El resultat més general obtingut en aquest sentit és el seglient

lema.

Lema 17. Siga X un espai de Banach amb nyx(X) > 0. Suposem que hi
ha una funcié n: (0,1) — (0, 1) tal que donats 6 > 0, a3, ..., x% € Bxx

iy, ..., 2y € Bx, podem trobar operadors de norma 1 P: X — IS(X),
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i JB(X) —> X tals que per a P := ioP: X — X, es compleizen
aquestes condicions:
(i) [P*(x}) —a%| <6, peraj=1,...,n.
(ii) |P(xj) — x| <6, peraj=1,... ¢
(iv) P(X) té la BPBp-nu per a operadors compactes amb la funcié n.
(v) O bé P és una projeccié absoluta i i és la inclusié natural, o
ng(P(X)) =ng(X) = 1.

Aleshores, X té la BPBp-nu per a operadors compactes.

Al llarg de la Secci6 3.3, el Lema 17 s’utilitza per a mostrar que si un
espai de Banach X amb ng(X) > 0 pot ser adequadament projectat en
alguna xarxa d’espais que tenen la BPBp-nu per a operadors compactes
amb una funcié n comuna, aleshores de vegades és possible mostrar que
X també té aquesta propietat (vegeu la Proposici6 3.3.2). Aixo s’utilitza

per obtenir els dos resultats seglients.

Corol-lari 18. Siga X un espai de Banach amb ng(X) > 0. Aleshores
les segiients afirmacions son equivalents.

(i) L’espai co(X) té la BPBp-nu per a opeadors compactes.

(ii) Hi ha una funcio n : (0,1) — (0,1) tal que tos els £ (X), amb

n € N, tenen la BPBp-nu per a operadors compactes amb n.

A més, si X és de dimensio finita, aquestes propietats es donen quan
co(X) 0 ly(X) tenen la BPBp-nu.
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Corol‘lari 19. Siga X un espai de Banach tal que X™* es isométricament

isomorfic a ly. Aleshores X té la BPBp-nu per a operadors compactes.

A la Secci6 3.4, presentem una serie d’eines topologiques que permeten
cobrir convenientment un espai Hausdorff localment compacte L amb
conjunts més xicotets i trobar una particié de la unitat adequada subor-
dinada a aquests conjunts. Aix0 ens fa possible projectar I'espai Cy(L)
en algun espai /£ (p € N) de manera que ens permet utilitzar Lemma
17. Aquesta propietat d’aproximacié forta que obtenim a Cy(L) i el seu

dual es resumeix en el resultat segiient.

Teorema 20. Siga L un espai localment compacte Hausdorff. Donats
(oo fih € Co(L) amb ] < 1peraj = 1,6 i, pin} ©
Co(L)* amb |p;|| <1 peraj=1,...,n, per a cada € > 0 existeir una

projeccid de norma 1 P: Co(L) —> Cy(L) tal que:

(1) |P*(u;) — pi| <&, peraj=1,....n,
(2) |P(f;) = fil <e peraj=1,....¢

(3) P(Co(L)) es isométricament isomorfic a (5, per a algun p € N.

Finalment, com a conseqiiencia, obtenim el segiient resultat.

Teorema 21. Si L és un espai localment compacte Hausdorff, aleshores

Co(L) té la BPBp-nu per a operadors compactes.

En particular, tot espai C(K) (K compacte Hausdorff) i tot espai Lo (1)
(1 qualsevol mesura) té la BPBp-nu per a operadors compactes. Notem
que ara per ara continua sent un problema obert si tots els espais C'(K)
tenen la BPBp-nu, i fins ara només s’han resolt casos particulars en el
context real (vegeu [13]), pero per a operadors compactes obtenim una

resposta definitiva per a aquests espais.
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Resum del Capitol 4

Els continguts d’aquest capitol han sigut publicats a

[43] S. Dantas, M. Jung, O. Roldan, and A. Rueda Zoca, Norm-
attaining tensors and nuclear operators, Mediterr. J. Math.
19(1) (2022), Paper No. 38, 27 pp.

Al Capitol 4, s’introdueixen i estudien les nocions d’assoliment de normes
per a tensors projectius de X®,Y i operadors nuclears de N (X,Y), per
a espais de Banach X i Y. Per motivar per qué aquestes preguntes
poden ser interessants, recordem que dues de les principals preguntes
historiques sobre els operadors que assoleixen la seua norma sén les

seglients:

1. Es K(X,Y) c NA(X,Y) en general?

2. BEs F(X,Y) c NA(X,Y) en general?

La primera pregunta va ser resolta negativament per Miguel Martin el
2014 (vegeu [97]). La segona pregunta roman oberta, i molts la consideren
actualment com la principal pregunta oberta en la teoria dels operadors
que assoleixen les seues normes. Notem que els operadors nuclears es
troben entre els operadors de rang finit i els operadors compactes, i
els tensors projectius hi estan estretament relacionats i tenen moltes
aplicacions en miltiples camps dins de l'analisi funcional. Un altre
factor important per tal de motivar aquest estudi és el fet que si fora
cert que per a tot espai de Banach de dimensi6 finita X tot operador
nuclear a N (X,Y) assoleix la seua norma nuclear, aleshores obtindriem
una resposta afirmativa a la segona pregunta d’abans. Tanmateix, la

suposicié va resultar ser falsa, com veurem més endavant.
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En aquest capitol, farem servir implicitament totes les identificacions
isometriques (X®,Y)* = L(X,Y*) = L(Y, X*) = B(X x Y,K). Notem
també que si X* o Y té la propietat d’aproximacié, aleshores X*®,Y =
N(X,Y) (vegeu, per exemple, [107, Corollary 4.8 ]). Introduim a con-

tinuaci6 les nocions d’assoliment de norma en aquests contextos.

Definicié 22. Siguen X,Y dos espais de Banach. Diem que

(i) z € X®,Y assoleir la seua norma projectiva si existeix una suc-
cessi6 fitada (z,,y,) < X x Y amb X" | [@,]]|ya] < oo tal que
2 =" 2 ®Yni |zl = 2, |7l |yn]. En aquest cas, diem

que z és un tensor que assoleix la seua norma, o z € NAL(X®,Y).

(ii) T e N(X,Y) assoleiz la seua norma nuclear si existeix una

net |5 lyml < o0

tal que T = Y2, 2% @y i [Ty = X2, 2] [y En este cas,
diem que T és un operador nuclear que assoleix la seua norma, o

T e NAN(X,Y).

sucxessio acotada (z%,y,) < X* x Y amb )]

A la Secci6 4.2, s’obtenen els primers resultats d’assoliment de norma
en aquest context. Comencem trobant dues caracteritzacions técniques
que ens permeten afirmar que un tensor o operador nuclear assoleix
la seua norma respectiva sempre que hi haja moltes formes bilineals
que assoleixen les seues normes en molts punts d’'una manera especifica
(vegeu Teoremes 4.2.1 i 4.2.2). Amb aquests resultats presents i el fet
que els espais de dimensi6 finita, cg, ¢1 i els espais de Hilbert tenen la
propietat d’aproximacio, obtenim la nostra primera col-leccié de resultats

positius.

Proposicié 23. Tot tensor projectiu de X*®,Y i tot operador nuclear
de N(X,Y) assoleix la seua norma respectiva si X 'Y tenen dimensid

finita, si X =Y és un espai de Hilbert complex, o si X = cq.
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Es interessant comparar 1'dltim exemple d’ara amb la teoria classica
dels operadors que assoleixen les normes: si NA(X,Y) = L(X,Y) per a
cada espai de Banach Y, aleshores en particular X ha de ser reflexiu pel
Teorema de James. La proposicié anterior ens motiva a preguntar-nos
si NAL(X®,Y) = X®,Y i NAN(X,Y) = N(X,Y) es compleixen en
general per qualsevol espai de Banach X i Y. No obstant aixo, aquest

no és el cas, com mostren els resultats segiients.

Lema 24. Siguen X,Y espais de Banach. Si B € B(X x Y,K) =
(X®,Y)* assoleir la seua norma com a funcional a un element de
Uespai NAL(X®,Y), aleshores B € NAg(X x Y,K).

Proposicié 25. Siguen X,Y espais de Banach. Si NAL(X®.Y) =
X®,Y, aleshores NAg(X x Y, K)”'”B = B(X x Y,K) (i per tant, també
s’obté que NA(X, Y*)H'H = L(X,Y™)).

Hi ha molts exemples coneguts d’espais de Banach X i Y que no com-
pleixen que NA (X, Y*)H'” = L(X,Y™), per la qual cosa existeixen tensors
projectius que no assoleixen la seua norma projectiva. Utilitzant la propie-
tat d’aproximaci6, també obtenim operadors nuclears que no assoleixen
la seua norma nuclear. El segiient exemple és de particular interés, ja que
mostra que no tots els tensors projectius o operadors nuclears assoleixen
les seues normes respectives si s’assumeix que només un dels espais de
Banach és de dimensi6 finita, resolvent negativament un dels factors que

fem servir per a motivar aquest estudi.

Example 26. Siga X = L,(T), on la circumferéncia unitat T esta
equipada amb la mesura de Haar m, i siga Y I'espai de Hilbert de dimensio
2. A [65, Remark 5.7.(2)] es mostra que existeix T' € B(X x Y,K) que
assoleix la seua norma com a funcional a X®,Y perod no com a operador
de X a Y* (i per tant, tampoc com a forma bilineal a X xY"). Pel Lema 24,
obtenim que NA,(X®,Y) # X®,Y, i per tant, NA, (Y, X) # N (Y, X).
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Com que no tots els tensors projectius o operadors nuclears assoleixen la
seua norma, és natural preguntar-se ara si tenim resultats de densitat.
A la Secci6 4.3, proporcionem alguns resultats de densitat positius. Per
tal d’aconseguir-los, es fan servir dos enfocaments. Primer, notem que
per les dues primeres caracteritzacions, per tal d’obtenir molts tensors
projectius i operadors nuclears que assoleixen les seues normes, volem
tenir moltes formes bilineals que assoleixen les seues normes en molts
punts. La L, , assegura l'existencia de molts operadors que assoleixen
les seues normes en molts punts, i es pot adaptar a aplicacions bilineals

de la segiient manera.

Definici6é 27. Diem que (X x Y, Z) té la L,, per a aplicacions bilineals
(o simplement, L, , ) si donats ¢ >0i Be B(X xY,Z) amb |B|gz =1,
existeix n(e, B) > 0 tal que sempre que (z,y) € Sx x Sy compleix que
|B(z,y)| > 1—n(e, B), existeix (zg,yo) € Sx x Sy tal que | B(xo, )| =
Lz —aof <& illy -l <e

Obtenim el segiient resultat.

Proposicié 28. Siguen X,Y espais de Banach. Si (X* x Y,K) té la
Loz, aleshores, NAx(X,Y) ™ = N(X,Y). Si (X x Y,K) t la L, 5,
aleshores, NAW(X@)WY)H.”W - X®,Y.

En particular, notem que les segiients relacions son conegudes, propor-
cionant resultats positius de densitat.
Examples 29 ([48]). Siguen X, Y espais de Banach.
(i) Sidim(X),dim(Y) < oo, aleshores (X x Y, Z) téla L,, 5 per a tot
de Banach Z.

(ii) SiY és uniformement convex, aleshores (X x Y,K) té la L,, 5 si i
sols si (X, Y™) té la Ly,.
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(iii) Si 1 < p,q < o, aleshores (¢, x £,,K) té la L, , 5 siisolssip>¢.

No obstant aixo, notem que la L,,5 per a formes bilineals és una
propietat molt restrictiva, ja que requereix que tots dos espais siguen
reflexius per comencar, i també hi ha parells d’espais reflexius sense la
propietat, com acabem de veure. Per tant, necessitem un enfocament
diferent per tal d’obtenir més resultats positius. Per fer servir allo
que sabem sobre el context de dimensi6 finita, seria convenient tenir
bons subespais dels nostres espais. Les normes projectives no respecten
els subespais en general, pero si es comporten bé amb els subespais
1-complementats, per aixo ens interessa tenir una propietat que assegure
I’existencia de molts subespais 1-complementats adequats dels nostres

espais. Per tant, considerem la propietat m metrica.

Definicié 30. Siga X un espai de Banach. Diem que X té la propietat
m métrica si donats € > 01 {x1,...,2,} © Sx una col-lecci6 finita a la
esfera unitat, podem encontrar un subespai 1-complementat de dimensi6
finita M < X tal que per a cada i € {1,...,n} existeix z;, € M amb

|x; — x| < e.

El concepte anterior realment és equivalent a la propietat d’aproximacio
7 metrica (una propietat d’aproximacié on els operadors d’aproximacié
sén tots projeccions amb norma 1), i aixo ens permet trobar molts més
exemples d’espais per als quals tenim densitat (vegeu [23], [76] i [94] per
a més informaci6 sobre la propietat 7). Es compleixen les propietats

seguents.

Teorema 31. Siga Y un espai uniformement convex o un espai amb
la propietat m métrica. Si X (respectivament, X*) té la propietat m

métrica, aleshores es té que X®,Y = NAL(X®,Y)  (respectivament,
N(X,Y) = NAy (X, Y) ™).

Example 32. Els segiients espais tenen la propietat m metrica.
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(i) Espais de Banach amb una descomposicié de dimensi6 finita amb
constant 1 (en conseqiiéncia, tot espai de Banach amb una base de

Schauder es pot renormar per a tindre la propietat m metrica),
(i) Ly(p) (1 < p < o0, p qualsevol mesura) i duals isometrics de Ly,

(iii) X @, Y, si X,Y tenen la propietat = metrica i | - |, és una norma

absoluta,

(iv) X = [D,en Xnl,, 0 [Dren Xn]gp, peral <p < o, si X, té la
propietat m meétrica per a tot n,

(v) X®,Y i X®.Y quan X,Y tenen la propietat m metrica.

Aix0 mostra que a molts espais, la densitat es compleix. Remetem al
article recent [41, Section 4] per a més resultats de densitat positius
relacionats amb la RNP, espais duals i la propietat m métrica (per exemple,
si X* 1 Y™ tenen la RNP iun d’ells té la propietat d’aproximacio, aleshores
NAW(X*CQ)WY*)H.HTr — X*®,Y*, isiY és qualsevol espai dual, aleshores
m\\'“w

si sempre tenim densitat de tensors projectius o operadors nuclears que

= c()@ﬂY). En aquest punt, és natural preguntar-se ara

assoleixen les normes. Tanmateix, malgrat la nostra amplia col-leccié de
resultats positius, a la Seccié 4.4, obtenim el segiient resultat negatiu

per als tensors.

Teorema 33. Siga R l'espai de Read. Existeixen subespais X de co 1Y
de R tals que el conjunt de tensors de X®,Y* que assoleizen les seues

normes projectives no és dens en XQ,Y*.

Cal assenyalar que la pregunta analoga per als operadors nuclears roman

oberta.

Finalment, notem que encara que no se sap si qualsevol operador de
rang finit pot aproximar-se per operadors que assoleixen la seua norma,

I’afirmacié analoga per als tensors no es compleix en general.



83

Proposicié 34. Hi ha tensors de rang finit que no es poden aprorimar

per tensors que assoleixen la seua norma projectiva.

Resum del Capitol 5

El Capitol 5 té dues mitats ben diferenciades.

La primera mitat d’aquest capitol ha sigut publicada a

[84] V. Kadets and O. Roldan, Closed linear spaces consisting of
strongly norm attaining Lipschitz mappings, Rev. R. Acad.
Cienc. Ezactas Fis. Nat. Ser. A Mat. RACSAM 116 (2022),
Paper No. 162, 12 pp.

i la segona mitat ha aparegut a I'article enviat

[49] S. Dantas, R. Medina, A. Quilis, and 0. Roldan, On isometric
embeddings into the set of strongly norm-attaining Lipschitz

functions. Preprint.

El 2001, Godefroy va preguntar si per a cada espai de Banach de dimensi6
infinita X, el conjunt de funcionals que assoleixen les seues normes
NA(X,K) sempre conté espais lineals de dimensié 2 (vegeu [64, Problem
II1]). Aquesta pregunta va ser contestada negativament per Rmoutil el
2017: si R és el renormament de ¢y de Read ([103]), aleshores NA(R, K)
no conté espais lineals de dimensi6é 2. Al Capitol 5, estudiem la quiestio
de lespacialitat analoga per al conjunt de funcions Lipschitz (reals) que

assoleixen la seua norma fortament.

Siga M un espai metric “pointed”, és a dir, un espai metric amb un

punt distingit 0. Lip,(M) és I'espai de Banach de les funcions Lipschitz
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f: M — R tals que f(0) = 0 dotat de la norma Lipschitz

|f(y) — f(z)]

e

cxr,ye M, ,x#y}.

Es diu que una funcié Lipschitz f € Lip,(M) assoleix la seua norma

|~ Mw@l

fortament si existeixen x,y € M, x # i, tals que ||f| i)

conjunt de funcions Lipschitz que assoleixen la seua norma fortament a

M es denota SNA(M).

L’assoliment fort de norma de funcions Lipschitz, aixi com altres as-
soliments de norma més febles, s’han estudiat ampliament durant els
darrers anys, des dels primers treballs sobre el tema ([66, 83]). Se sap que
I'assoliment fort de norma és en realitat bastant estricte (per exemple,
segons [83, Lemma 2.2], si una funcié assoleix fortament la seua norma
en un parell (z,y), ha d’assolir-la llarg de tot el segment [z, y] i ser afi
sempre que estiga definida). Per aquesta rad, en molts espais metrics
M, SNA(M) passa a no ser dens a Lip,(M), encara que també s’han

obtingut resultats positius per a algun altres espais metrics.

Clarament, si M té cardinal n € N, aleshores SNA (M) = Lip,(M), i és
un espai de Banach. Al Capitol 5 abordem la pregunta segtient: si M
és infinit, SNA(M) sempre conté espais lineals de dimensié més gran
que 17 Per com és d’estricte aquest assoliment de norma, i tenint en
compte el treball de Rmoutil per a funcionals, es pot pensar que la
resposta a aquesta pregunta pot ser negativa. No obstant aixo, veurem
que aco s’allunya de ser cert. Per fer-ho, ens basem en diverses tecniques,
com ara el teorema d’extensié de McShane (que ens permet estendre
funcions Lipschitz d’un espai metric M; a un espai metric més gran M,
conservant la seua norma), espais Lipschitz-free, i algunes altres eines.
En aquest capitol, assumirem implicitament que tots els espais meétrics

son “pointed”, i que tots els espais vectorials son reals.
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En general, no és cert que si un espai de Banach X esta a SNA(M)
per a algun espai metric M, aleshores podem estendre’l amb McShane i
trobar el mateix espai X a SNA(Ms) per a cada espai metric més gran

M,. Malgrat aixo, amb la norma | - |1, obtenim el segiient resultat.

Lema 35. Siga M un espai metric “pointed” tal que per a algun subespai
K de M, SNA(K) conté un subespai lineal isométric a {7 per a algun

n e N. Aleshores, SNA(M) també conté un subespai isométric a (7.

Utilitzant aquest resultat i alguna altra tecnica, ara podem donar una

resposta definitiva a la nostra pregunta.

Teorema 36. Siga n > 1 un nombre natural, © siga M un espai metric
“pointed” amb almenys 2™ punts diferentss. Aleshores, existeix un subespai
lineal de SNA(M) isométric a (7.

Corol-lari 37. Si M és un espai métric “pointed” infinit, aleshores per

a tot n € N, SNA(M) conté un subespai n-dimensional isométric a (7.

Per tant, si M és infinit, SNA(M) no sols té subespais de dimensi6

almenys 2: de fet conté tots els ¢7, n € N, com a subespais isometrics.

No és dificil veure que SNA([0, 1]) conté una copia de ¢y. Aixo porta a
preguntar quins altres espais de Banach es poden formar. La resposta,

sorprenentment, és que tots si es tria I’espai metric adequat.

Proposicié 38. St Y és qualsevol espai de Banach, aleshores Y és un

subespai isométric de SNA(Byx).

També és interessant fer-se la pregunta inversa: donat un espai de Banach
Y, com de “xicotet” pot ser un espai metric M perque Y siga subespai
de SNA(M)? Pel resultat anterior, si Y té dual separable, M pot ser
separable, pero i si no? El teorema segiient mostra que aixo és, de fet,

una caracteritzacio.
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Teorema 39. Per a un espai de Banach donat Y, son afirmacions

equivalents:

(1) Ezisteix un espai métrico separable M i un subespai lineal tancat
Z < Lipy(M) tal que Z és isométric a Y i Z < SNA(M).

(2) Ezxisteiz un espai de Banach separable X i un subespai lineal tancat
Zy < X* tal que Zy és isométric 'Y i Z; < NA(X,R).

(3) Y* és separable.

Per tant, per a espais metrics separables com M = [0, 1], el conjunt
SNA(M) no pot contenir subespais com ¢; amb dual no separable. Aixo
afegeix alguna restriccié als espais metrics separables. De fet, apareixen
altres restriccions per a alguns espais metrics xicotets, com ara els espais
o-precompactes, que inclouen per exemple tots els espais precompactes
i tots els espais R™ (noteu que els espais o-precompactes sempre sén

separables).

Teorema 40. Si M és un espai o-precompacte, aleshores tots els subes-
pais de Banach de SNA(M) son separables i isomdrficament polihédrics.

Pel que fa a resultats positius, hem esmentat que SNA([0, 1]) conté cq
isometricament. De fet, aix0 es pot estendre a una classe extensa d’espais

metrics que inclou tots els normats.

Proposicié 41. Si M és un espai métric que conté [0, 1] isométricament,

aleshores SNA(M) conté cy isométricament.

En realitat, és possible veure que per a tots els espais metrics M amb una
quantitat infinita de punts no aillats, SNA(M) conté ¢y isomeétricament.

Pero fins i tot en tots els espais M sense aquesta propietat que estudiem
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en profunditat, sempre resultava possible trobar ¢y a SNA(M) isomorfica-
ment. Aix0 va motivar a preguntar-nos si aquest sempre és el cas (vegeu
[84, Questions 1 and 2]), és a dir: si M és infinit, SNA (M) sempre conté
o isomorficament? Recentment, Avilés, Martinez-Cervantes, Rueda Zoca
i Tradacete van respondre afirmativament aquesta pregunta mitjancant

una elegant distincio de casos i ajudats del teorema de Ramsey.

Teorema 42 ([15, Main Theorem|). Siga M un espai métric complet

“pointed” infinit. Aleshores, SNA(M) conté cy isomdrficament.

Quant a ficar isometricament ¢y a SNA(M), els autors van demostrar a
[15, Lemma 3.1] que si 'espai metric involucrat satisfa certa propietat
geometrica (aix0 es compleix, per exemple, per espais métrics amb una
quantitat infinita de punts no aillats i per a espais metrics discrets que no
sén uniformement discrets), aleshores SNA (M) conté ¢ isometricament.
Per a la resta d’espais metrics, van deixar oberta la pregunta seglient
(vegeu [15, Remark 3.6]): si M és infinit, SNA(M) conté ¢y isometrica-
ment? A [49], proporcionem una resposta definitiva a aquesta pregunta.
Per fer-ho, primer trobem el segiient resultat, que millora lleugerament

les condicions de I'esmentat [15, Lemma 3.1].

Lema 43. Siga I' un conjunt index no buit. Siga M un espai métric
“pointed” tal que existeizen dos conjunts {x-}er, {Yytrer € M amb x., #
Yy, To # Tg peray,o, el a# B. Sid(xa,x5) = d(Ta,ya)+d(xs,yp)
per a todo a # € T, aleshores existeix un subespai lineal de SNA(M)

isomeétric a co(T).

Ajudant-nos d’aquest resultat i d’altres lemes tecnics, podem resoldre
negativament la pregunta de [15, Remark 3.6]. Proporcionem dos con-
traexemples diferents amb comportaments oposats. Donat un punt
x € M, definim el seu rdadi de separacié com la quantitat R(z) :=
inf{d(z,y): ye M\{z}}, i diem que = assoleix el seu radi de separacié

si aquest infim és en realitat un minim. Resumim els nostres resultats.
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Teorema 44. Hi ha espais métrics My i My tals que SNA(M;) i
SNA(Ms) no contenen cq isomeétricament i tals que My és fitat i cap dels
seus punts assoleix el seu radi de separacio, 1 My és “proper” no acotat i

tots els seus punts assoleizen el seu radi de separacio.

Curiosament, també existeixen espais metrics complets “pointed” infinits
i uniformement discrets M amb cq contingut isometricament a SNA (M)
de tal manera que cap punt assoleix el seu radi de separacio, o que tot
punt assoleix el radi de separacié. Pel que fa als espais metrics que no
sén uniformement discrets, sorprenentment, SNA (M) sempre conté ¢

isometricament.

Teorema 45. Siga M un espai meétric infinit que no és uniformement

discret. Aleshores, el conjunt SNA(M) conté una copia isometrica de cy.

Finalment, per a ’escenari no separable, usant el Lema 43 i un resultat
inspirat en [71, Proposition 3], aconseguim el seglient resultat positiu.
Recordem que donat un espai metric M, M’ denota el conjunt de punts

d’acumulaci6 de M i dens(M) denota el caracter de densitat de M.

Teorema 46. Siga M un espai métric “pointed” tal que dens(M') =T
per a algun cardinal infinit I'. Aleshores, existeix un subespai lineal de

SNA(M) que es isométricament isomorfic a co(I).

El document conclou amb un capitol de Conclusions (vegeu la pagina
277), que inclou alguns comentaris y problemes oberts. Al final del
document hi ha una llista extensa de referencies (vegeu la pagina 287),

seguida d’'un glossari de conceptes i notacions.



Chapter 1

Introduction

1.1 About the text

This document is a PhD dissetation on Functional Analysis. The results

in this document will include detailed proofs and references.

One may choose to read this document in its printed version if preferred.
Nevertheless, anyone that chooses to read this document via a PDF

viewer should be aware of some characteristics that these tools offer:

1. The PDF version of the text will contain hyperlinks to particular

sections, results, references, and so on.

2. In addition, if the reader is using a PDF viewer such as Adobe
Acrobat Reader or SumatraPDF, if they click on a hyperlink (for
instance a reference) that leads them to a different page, the reader

can go back to the original page by pressing simultaneously the

keys + (Windows and Linuz) or + (Mac).
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1.2 Notation and preliminaries

The notations and concepts that we will use in this document can be
found in books such as [53, 54]. In this section we will briefly introduce
or recall some of the notations and basic concepts that will be used

throughout the document.

The symbols C, R, Z, and N represent, respectively, the sets of complex
numbers, real numbers, integers, and naturals (that is, positive integers,
not including the number 0). Unless specified otherwise, all vector spaces
in this document are defined over the field K = R or K = C.

If (M,d), or just M, is a metric space, c € M, and R > 0, we denote as
B(e, R) and S(c, R) the closed ball and the sphere of center ¢ and radius
R, respectively, and an R-net (or an R-separated set) is a set A < M such
that for every x,y € A with = # y, we have d(z,y) > R. Recall that if
K >0, a mapping f : M — R is K-Lipschitz if | f(y) — f(z)| < Kd(z,y)
for all z,y € M with z # y, and f is Lipschitz if it is K-Lipschitz for

some K > 0.

The usual notations | - | and {:,-) will be used for norms and inner
products in normed spaces and Hilbert spaces, respectively. Let (X, |- |),
or just X, be a normed space. Bx := B(0,1) and Sy := S(0,1)
respectively represent the closed unit ball and the unit sphere of X. X*
represents the topological dual of X, and X** denotes the bidual. The
elements of X* are called functionals. The dual (evaluation) action
of a functional 2* € X* over a point € X is denoted as z*(x). The
canonical embedding of X into its bidual is the mapping Jy : X — X**
such that Jy(z)(z*) := z*(z) for all z € X and all * € X*  which is an

isometric isomorphism between X and Jx(X).

Let X and Y be two normed spaces. L(X,Y) is the set of linear mappings
from X to Y, and L(X,Y) is the set of linear and bounded mappings
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(equivalently, linear and continuous) from X to Y. The elements of
L(X,Y) are called operators. Note that X* is just £L(X,K). £(X,Y)
and F(X,Y) respectively represent the set of compact and of finite-rank
operators from X to Y. Unless stated otherwise, we will say that two
Banach spaces coincide if there exists an isometric isomorphism between
them. Recall that £(X,Y) is a normed space (in fact, it is a Banach
space whenever Y is a Banach space), when endowed with the operator

norm, given by
|T) := sup{|T'(x)[: [] = 1}.

An operator T' € L(X,Y) is said to attain its norm, or to be norm-
attaining, if there exists zg € Sx such that |T(zo)| = ||T'|. The set of
norm-attaining operators from X to Y is denoted as NA(X,Y). If T'e
L(X,Y), the operator T* € L(Y*, X*) defined by T*(y*)(z) := y*(T'(z))
for all y* € Y* and x € X, is called the adjoint operator of T'. It is a
well-known fact that an operator is compact if and only if its adjoint is

also compact.

A set of points A < Sx is norming for a set of functionals B < X* if for
all b e B, |b]| = sup{|b(a)|: a € A}. If B = X* we just say that A is
norming. Similarly, a set of functionals B < Sxx is norming for a set
of points A < X if for all a € A we have ||a| = sup{|b(a)|: be B}. If
A = X, we just say that B is norming.

Let X, Y, Z be Banach spaces. The notation B(X x Y, Z) represents the
set of bilinear mappings from X x Y to Z. This is a Banach space when

endowed with the norm

T := sup{|T(z,y)|: (z,y) € Sx x Sy}.
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If Z = K, then these mappings are called bilinear forms. It is clear that
B(X x Y,K), £(X,Y*), and L(Y, X*) are all isometrically isomorphic
with the natural identifications T'(z,y) = T(x)(y) = T'(y)(x). A bilinear
mapping 1" € B(X x Y, Z) attains its norm if there exists some pair
(x0,%0) € Sx x Sy such that |T|z = |T(zo,%0)||. The set of norm-
attaining bilinear mappings from X x Y to Z is denoted NAg(X x Y, Z).
Note also that if a mapping 7' € B(X x Y,K) attains its norm, then its
associated operators T e L(X,Y™*) and T € L(X,Y™) also attain their

respective norms, although the converse is not true in general.

Let X be a Banach space and let T' € £(X, X). The numerical range
of Tis V(T) := {«*(T(x)): (x,z*) € TI(X)}, where II(X) := {(z,2*) €
Sx x Sxx: x*(x) = 1} is the set of states of X (note that the numerical
range of 7' e L(X, X) is an extension of the concept of numerical range
in Hilbert spaces, W(T') := {{(I'(z),z): (z,z) e lI(H)}, for T e L(H, H),
H Hilbert space). The numerical radius of T is

v(T) :=sup{|\| : Ne V(T)}

(see the books [19, 20] for a solid background on this topic). T is said
to attain its numerical radius if there exists some (zg, z§) € II(X) such
that |2*(T'(x))| = v(T'). The set of numerical radius attaining operators
on X is denoted as NRA(X). It is easy to see that v is a seminorm and
that 0 < v(T') < |T| for every T' € L(X, X). The numerical index of X

is a way of measuring how similar v and | - | are, and it is defined as

n(X) :=max{k = 0: k|T| < v(T)for all T € L(X, X)}
= lnf{I/(T) T e SL(X,X)}-

If n(X) =1, then v and | - | coincide for every operator, if n(X) > 0,
then v is a norm equivalent to || - |, and if n(X) = 0, then v is not an

equivalent norm to | - |. It is worth noting that n(X) can attain every
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possible value in [0, 1] in the real case, and that if X is complex, then
n(X) = L. For spaces with numerical index 0, we can define a related

concept that is also useful: the second numerical index of X, defined as
n'(X) =inf{v(S): Te L(X,X), |T+ Z(X)|| =1},

where Z(X) = {S € L(X, X): v(S) = 0} is the Lie group of the skew-
hermitian operators (see [89, p. 1004] for the details), and ||+ Z(X)|
is just the quotient norm of £(X, X)/Z(X). These concepts will be
adapted to compact operators in Section 3.1, and we refer to [26], [81],
[82], [89, Subsection 1.1}, and references therein for more information

and background.

In Chapter 4, we will make extensive use of tensors. Let us recall some
basics (we refer to [107] for more background and information). Let
V', W be two vector spaces. Their tensor product V ® W is the linear
subspace of L(B(X xY,K), K) (algebraic dual) spanned by the evaluation

mappings
(v@uw)(A) = A(v,w), AeB(X xY,K),veV,weW.

Tensors allow us to linearize bilinear mappings thanks to the following
universal property: if u: V3 x Vo — Vi ®V4 is the canonical mapping such
that p(v1,v2) = v1®we, then for any bilinear mapping f € B(V; x Vo, W),
there is a unique linear mapping f : Vi ® Vo — W with f(v; ® v5) =
f(vi,v9). The notions of projective tensor product, nuclear operator
and injective tensor product, as well as relations between them, will be

introduced in Section 4.1.1.

Finally, we will briefly recall the notations for the classical Banach
spaces. ¢ is the space of sequences that converge to 0 endowed with

the supremum norm. If 1 < p < o0, {, is the space of sequences
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whose p-norm is finite, endowed with | - [|,; moreover, if n € N, £ is
the finite-dimensional space (K", | - |,). If I is an arbitrary index set,
co(I,K) is the Banach space of functions = : I — K for which the set
{iel: |z(i)] = e} is finite for every € > 0, endowed with the supremum
norm ||z, := sup{|z(i)|: i € I}. If Kis clear or irrelevant in the context,
we can omit it and just write ¢o(/). Note that the elements of ¢o(7, K)
are nets with at most a countable amount of non-zero elements. Note
also that ¢o(N, K) is just the space ¢y over K. If two index sets I; and
I, are bijective, cy(11,K) is isometrically isomorphic to ¢o(/1,K), and
so, if their cardinality is I', we will denote ¢o(I", K) to the space ¢y(I,K)
for any set I of cardinality I'. For this reason, for simplicity, we will
usually just write ¢o(T', K) (or just ¢o(T")) both when T represents a set
and when it represents its cardinal. Similarly, one can define its dual
space, ¢1(I", K), as the set of functions z : I' — K with countable support
and such that the norm [z, := 3, - [(v)] is finite. Like before, if K
is clear or irrelevant in the context it can be omitted, and ¢;(N,K) is
just the space ¢; over K. Note that if I' = {1,...,n} for some n € N,
the spaces ¢o(I', K) and ¢;(I', K) are just the spaces (% and ¢} over K.
Recall that ¢ = 01, {7 = l, and if 1 < p < 0 and 1 < ¢ < o satisfy
% + % = 1, then £ = {, in an isometrically isomorphic sense, and the

same is true for their finite-dimensional versions.

Let Y be a Banach space. Let K be a compact Hausdorff topological
space, and let L be a locally compact Hausdorff topological space. We
denote by C'(K,Y’) the Banach space of continuous functions f : K — Y
endowed with the supremum norm || f|, := sup{|f(z)| : z € K}, and
we denote by Cy(L,Y’) the set of continuous functions f : L — Y which
vanish at infinity (that is, for all € > 0, there is a compact set K < L
such that [|f(x)| < e for all x € L\K), which is again a Banach space
when endowed with the supremum norm | f|y := sup{|f(z)| : x € L}.
If Y = K, we can omit it and just write C(K) and Cy(L), respectively.
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Note that Cy(N) is just ¢y. Let 1 < p < o0, and (€2, ¥, 1) a measure space.
We denote L,(u,Y) (if Y = K, it can be omitted from the notation) the
set of strongly measurable functions f : 2 — Y identified when they
differ in a set of measure 0, such that || f|| is integrable if p < oo or f is

essentially bounded if p = oo, where

1£1p = (o I f@)Paw)"” . ifp < oo,
| £l := sup{|| f(x)]: = €}.

We end this section recalling the following definition. A Banach space
X has the Radon-Nikodijm property (abbreviated RNP) if the Radon-
Nikodym theorem is valid in X, that is: if ¥ is a o-algebra of subsets
of Q and p: ¥ — X is a vector measure of bounded variation that
is absolutely continuous with respect to a finite, positive measure A,
then there exists a A-Bochner integrable function f : {2 — X such that
u(E) = SEfd,u, for all £ € ¥. For instance, reflexive spaces, ¢, and
subspaces of spaces with the RNP have the RNP, but L;([0,1]) and
C(K) for an infinite compact set K do not have the RNP. The RNP,
in its many equivalent reformulations, has historically proven to be a
powerful tool in order to get density results for norm-attaining operators

(see [21] for instance).

1.3 Historical background

In 1957/1964, James proved that a Banach space is reflexive if and only
if all its functionals attain their norm (see [74, 75]). In 1961, Bishop and
Phelps showed that, actually, if X is a Banach space, the norm-attaining
functionals on X always form a dense set in the dual, or in other words,

any functional x* € X* can be approximated by a nearby functional
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y* € X* that attains its norm (see [17]). They wondered if this density
also held in general for operators between Banach spaces X and Y, that
is, if NA(X,Y) is always dense in £(X,Y). Lindenstrauss showed in 1963
that this is not the case in general by providing some counterexamples,
but he also introduced a series of techniques and properties that allow to
get positive results in some cases (see [93]). According to Lindenstrauss’
paper, a Banach space X is said to satisfy Property A if for every
Banach space Y, NA(X,Y) is dense in £(X,Y), and a Banach space
Y is said to satisfy Property B if for every Banach space X, NA(X,Y)
is dense in £(X,Y). With this notation, he showed for instance that
every reflexive space has Property A, and that every space satisfying a
certain geometrical property called Property g (which is satisfied, for
instance, by finite-dimensional polyhedral spaces and by any Banach
space X with ¢y € X < /) has Property B. Ever since this work was
published, the question of for what Banach spaces X and Y we have
that NA(X,Y) is dense in £(X,Y") has intrigued many mathematicians
for the last 6 decades, and hundreds of works have been made about
this topic. Just to name some, Bourgain, Huff, Johnson, Schachermayer,
Uhl, Wolfe, and Zizler continued the study about the set of all linear
operators which attain their norms ([21, 72, 77, 110, 113, 115]). We refer
to [2] for a survey with the most important results on norm-attaining

operators up to 2006.

In 1970, Bollobas improved the statement of the Bishop-Phelps theorem
from [17] by showing that, in fact, for a Banach space X, if * € Sx=«
almost attains its norm at x € Sx, then they can be approximated by
some y* € Sx+ and y € Sx such that y* attains its norm at y (see [18];
see also [25, Corollary 2.4.b] for the sharpest version of this result). Note
that this implies in particular that the set of norm-attaining functionals
is dense in the dual, so this is indeed a strengthening of the result by

Bishop and Phelps. Inspired by this idea of a double approximation
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of operators and points, in 2008, Acosta, Aron, Garcia, and Maestre

introduced as follows and studied the Bishop-Phelps-Bollobéas property.

Definition 1.3.1 ([5, Definition 1.1]). A pair of Banach spaces (X,Y)
has the Bishop-Phelps-Bollobds property (abbreviated BPBp) if given
e € (0,1), there exists n(¢) > 0 such that whenever T' € £(X, Y) and
x € Sy satisfy |T| = 1 and |T(z)| > 1 — n(e), there are S € L(X,Y)
and y € Sx such that [S| = [S(y)| =1, |z —y| <e,and | -T| <e.

Note that if a pair of Banach spaces X and Y satisfy the BPBp, then
NA(X,Y) is dense in £(X,Y), although the converse is not true in
general. (X,Y) is known to have the BPBp in many cases, such as
when both spaces are finite-dimensional, when Y has Property S of
Lindenstrauss, or when X is uniformly convex. The BPBp has been
studied by many authors in the past several years (see the paper [10] and
the surveys [3, 40] and the references therein for a complete exposition
of results about the BPBp up to 2022). Several interesting variations of
the BPBp have also been introduced and studied lately by doing specific

changes to Definition 1.3.1, such as the following ones:

e The BPBop: the BPBp but S =T.

e The L,: the BPBp but for each previously fixed T, you find an
n(e,T) depending also on T

o The L,,: the L, but also S =T

See [38, 45, 47, 86, 108, 112] for more information, and [44, 46, 47] for
“point” counterparts of those properties. We also refer to [40, Sections
4 and 5] for a detailed summary of the known results about all these
properties and the relations between them. Those variants turned out
to be strongly connected to the geometry of the unit ball of the involved

Banach spaces.
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This wide study of norm-attaining operators has also been extended
to other kinds of mappings and norms. For instance, norm-attaining
multilinear mappings, homogeneous polynomials, holomorphic functions,
compact operators, and Lipschitz mappings have all been studied for a
long time, and BPBp properties have also been introduced and studied for
these contexts. In fact, nowadays we have a large literature about various
classes of functions which attain their norms and satisfy a Bollobas type
result (see, for instance, [1, 5, 33, 47] and the references therein, and we
refer once more to the surveys [3, 40] for a complete exposition of results

on the Bishop-Phelps-Bollobas property in several contexts).

In his 1972 PhD dissertation, Sims raised a question that is, in nature,
related to the one that Lindenstrauss tackled in 1963: the norm-denseness
of the set of numerical radius attaining operators on a Banach space
X (see [111]). Many authors have contributed to this question ever
since (see for instance Acosta’s PhD dissertation, where this question is
studied systematically, [1], and see also [69] and the references therein
for a summary of the main known results on the topic). In 2013, Guirao
and Kozhushkina ([69]) introduced and studied a version of the BPBp

for numerical radius, defined as follows.

Definition 1.3.2 (Combining [69, Definition 1.2] and [87, Definition
5]). A Banach space X has the weak Bishop-Phelps-Bollobds property
for the numerical radius (weak BPBp-nu, for short) if given € > 0, there
exists n(e) > 0 such that, whenever T' € £(X, X) with v(T) = 1 and
(x,2*) e TI(X) satisty |z*(T(z))] > 1 —n(e), there exist S € L(X, X)
and (y,y*) € I[1(X) such that

v(S) =y (Sl llz—yl<e Jo"—y* <&, and T -5] <e.
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If, moreover, S can be chosen so that v(S) = 1, we say that X has the
Bishop-Phelps-Bollobds property for the numerical radius (abbreviated
BPBp-nu, although some authors use the notation BPBp-v as well).

Many Banach spaces are known to have the BPBp-nu (see [3, Section 6]
and [40, Section 2.7] for a complete exposition of the known results on
the topic). A list of some important ones: ¢o(I') and ¢;(I") spaces (see
[69]), finite-dimensional Banach spaces (see [87]), L1(R) (see [55]) and,
in fact, L,(p) spaces for 1 < p < oo and for any measure u (see [87, 89]),
and real C'(K') spaces whenever the Hausdorff compact space K has local
compensation (for instance when K is metrizable, see [13]). In Chapter
2, we introduce and study some classes of operators for which a property
like the L, , holds, as well as their analogous for numerical radius (that
is, we will study norm-attaining operators that whenever they almost
attain their norm at a point, they attain it at a nearby point, and the

same for numerical radius).

As mentioned earlier, the theory of norm-attaining operators has also
been extended and studied for some classes of operators. It is particularly
relevant for us the study of norm-attaining compact operators (see for
instance [77, 97, 98] and the references therein for a solid background on
the topic). Inspired by the work [5], and extending some ideas from [77],
Dantas, Garcia, Maestre, and Martin introduced and studied a version
of the BPBp for compact operators (it is like Definition 1.3.1, but with
both T and S being compact, see [39]). The numerical radius attaining
compact operators have also been studied (see for instance [22]). In
Chapter 3 we introduce and study a version of the BPBp-nu for compact

operators.

Two of the main open questions in norm-attaining theory were whether
every finite-rank operator can be approximated by norm-attaining opera-

tors (remains as an open question nowadays) and whether every compact
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operator can be approximated by norm-attaining operators (answered in
the negative by Miguel Martin in [97]). Nuclear operators are in between
finite-rank operators and compact operators, and projective tensors are
closely related (we refer to the book [107] for a solid background on
tensor products and nuclear operators). In Chapter 4, we introduce and
study norm-attainment concepts for nuclear operators and projective

tensors.

Norm-attainment notions have also been studied for Lipschitz mappings.
Strongly norm-attaining Lipschitz mappings were first introduced and
studied in [66, 83|, and ever since, they have been studied by many
authors (see for instance [24, 29] and the references therein, and see
also [32, Section 1] for a very clean exposition of various kinds of norm-
attainment for Lipschitz mappings and the relations between them). The
possibility to embed ¢y and (4, isometrically in Lip,(M) was solved in
[36, 37] (see also [71]).

In 2001, Godefroy asked if for every infinite-dimensional Banach space
X, the set of norm-attaining functionals over X always contained a 2-
dimensional linear subspace (see [64, Problem III}), and Rmoutil showed
in 2017 that this is not always the case (see [104]). In Chapter 5, we
study the analogous question for the set of strongly norm-attaining

Lipschitz mappings over an infinite metric space M.

1.4 Structure of the text

As hinted before and exposed in the Summary (see page 15), the rest
of the document will be structured in chapters as follows. In Chapter
2, the class A, |(X,Y) of operators T € L(X,Y) such that whenever
they almost attain their norm at a point x they do attain it at a nearby

point y, and the analogous corresponding class A, (X) for the numerical
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radius, are introduced and studied. In Section 2.1, the main concepts
will be motivated and defined. In Section 2.2, a first collection of results
and examples about these sets will be provided. For instance, several
properties are obtained for finite-dimensional Banach spaces, functionals,
compact operators, and adjoint operators, and a vast amount of examples
show how sharp the conditions of these results are. We will see several
examples of operators that belong to both of our sets, to just one of
them, or to neither of them. In Section 2.3, a characterization will be
given of all the diagonal operators that belong to A (X, X) (X = c
or £y, 1 <p <o0), to Anu(X) (X =cyor by, 1 <p<oo),to A (co,lp)
(1 < p < ) and to Aj(p,co) (1 < p < o). In particular, it is
shown that every canonical projection Py belongs to both A (X, X)
and A,,(X) when X = ¢y or ¢, (1 < p < ). Finally, in Section 2.4,
relations between the sets A (W, Z) and A,,(W @ Z) will be studied
for some particular types of direct sums and Banach spaces, and several
results, remarks, and examples will be exhibited. The contents of this

chapter have been taken from the published paper [42].

In Chapter 3, the Bishop-Phelps-Bollobas property for the numerical
radius (BPBp-nu) will be adapted to the setting of compact operators
and studied. In Section 3.1, the topic will be introduced and motivated.
In Section 3.2, from the known spaces that have the BPBp-nu, a wide
list of Banach spaces having the BPBp-nu for compact operators will
be immediately obtained, including finite-dimensional spaces, ¢y(I") and
¢1(I") spaces, and every L,(u) space (1 < p < 00, p any measure). In
Section 3.3, some technical tools will be provided to show that if certain
spaces have the BPBp-nu for compact operators, then so do some other
spaces. These tools will be extensively used for the rest of the chapter.
It will be shown, for instance, that every isometric predual of ¢; has the
property. Finally, in Section 3.4, some sort of approximation property is
obtained in all Cy(L) spaces, and this is used to show that every Cy(L)
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space has the BPBp-nu for compact operators whenever L is a locally
compact Hausdorff space. The contents of this chapter have been taken

from the published paper [59].

In Chapter 4, a notion of norm-attainment is introduced and studied
in the setting of projective tensor products and nuclear operators. In
Section 4.1, the main notions are introduced and motivated. In Section
4.2, a first collection of results and examples will be provided. It will
be shown in particular that there exist spaces where every projective
tensor and every nuclear operator attains their respective norms, but
that there are also spaces where this does not hold. In Section 4.3, the
density of the norm-attaining projective tensors and nuclear operators
will be studied. Several results and examples will be provided for which
this density holds. Finally, in Section 4.4 we will see that there also
exist Banach spaces where such a density does not hold for the case of
projective tensors. The contents of this chapter have been taken from

the following published paper [43].

Finally, in Chapter 5, the spaceability of the set of strongly norm-
attaining Lipschitz functionals SNA(M) over metric spaces M will be
studied. This chapter will have two parts (the first one from the published
paper [84], and the second one from the submitted paper [49]). The
first part will be devoted to show that if M is infinite, then SNA (M)
contains linear spaces of dimension greater than 1. In Section 5.1, the
topic will be introduced and motivated. In Section 5.2, it is shown
that if M is infinite, then SNA(M) actually has all the ¢} (n € N) as
subspaces isometrically. In Section 5.3, several related questions are
tackled in order to study the possible sizes of such subspaces. It is shown
for instance that every Banach space Y is a subspace of SNA(M) for an
appropriate metric space M. It is also shown that if a Banach space Y
is a subspace of SNA(M), then the separability of Y* is equivalent to
the separability of M. On top of that, a positive result is obtained for
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metric spaces containing [0, 1] isometrically, and a set of restrictions are
obtained for o-compact metric spaces. In [15], the authors show that if
M is infinite, then SNA (M) contains an isomorphic copy of ¢y, answering
[84, Questions 1 and 2], and they left as an open question whether or
not this embedding could always be isometric (see [15, Remark 3.6]).
In the second part of Chapter 5, we will provide a definitive negative
answer to their question by finding 2 counterexamples with very different
behaviours as metric spaces: one where no points have a closest point,
and one where every point has a closest point. We also show that if M
is not uniformly discrete, then the answer to their question is actually
positive. Finally, using some technical lemmas, we obtain a positive

result in the non-separable case.

Finally, the Conclusions chapter (page 277) contains a list of final remarks,
including some open questions on the topics treated in the chapters. The
document concludes with an extensive list of references and a glossary
(see page 287).






Chapter 2

Classes of operators that
satisfy local Bollobas

properties

2.1 Introduction and Motivation

In this chapter we will study a set of bounded linear operators which
satisfy a very specific version of a Bollobas type theorem. This was
motivated by the natural question of what pairs of Banach spaces (X,Y)
over the field K = R or C satisfy a strong version of Bollobas theorem
where any operator almost attaining its norm at a point will necessarily
attain it at a nearby point. More specifically, for X and Y, given € > 0,
is it true that there exists () > 0 such that whenever |T'(z)|| > 1—1n
(T € Seixyyy, © € Sx), there exists x9 € Sx such that |z — x| < ¢
and T attains its norm at 2,7 Pairs of Banach spaces (X,Y’) for which
that claim holds are said to satisfy the Bishop-Phelps-Bollobas operator
property (abbreviated BPBop), which is a stronger form of the Bishop-
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Phelps-Bollobéas property (BPBp). It turns out that the BPBop is very
restrictive, to the point where the answer for this question is negative
whenever the dimensions of the involved Banach spaces are bigger than or
equal to 2 (see [45, Theorem 2.1]) but, on the other hand, this property
characterizes uniformly convex Banach spaces when we consider the
problem for the case of functionals, that is, when ¥ = K (see [86,
Theorem 2.1]). Since there is no hope for a uniform version for the
operator case of this problem (in the sense that 1 depends only on the
given ¢ > 0) and the functional case is completely characterized, it
seems to be reasonable to consider the same problem but now taking
n depending not just on £ but also on the previously fixed operator
T. This new property, named the L,,, was studied for instance in
[38, 47, 48, 108, 112], and many positive results were obtained, unlike in
the uniform case. In this chapter, instead of studying spaces that satisfy
the L,, property globally (for every operator), we will study classes of
operators that satisfy such a property, as well as its analogous version

for the numerical radius. Let us give the precise definitions.

Definition 2.1.1. Let X,Y be Banach spaces.

(i) Ajp(X,Y) stands for the set of all norm-attaining operators T €
L(X,Y) with |T| = 1 such that if ¢ > 0, then there is n(¢,T) > 0
such that whenever x € Sx satisfies |T'(z)| > 1 —n(e,T), there is

xo € Sx such that |T(zo)| =1 and ||zg — z| < e.

(ii) Anu(X) stands for the set of all numerical radius attaining op-
erators T € L(X,X) with v(T) = 1 such that if ¢ > 0, then
there is n(e,T) > 0 such that whenever (z,z*) € II(X) satis-
fies |2*(T'(z))| > 1 — n(e,T), there is (xg,zf) € II(X) such that
28T (@) = 1, |0 — o] <, and 2§ — 2°] < <.
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Note that if (X,Y") satisfy the L,, property, then Sgxy) = Ap(X,Y),
and since every operator must attain its norm, X must be reflexive by
James’ theorem. Studying the set A|.| gives us more freedom in the sense
that we do not have to restrict ourselves to any condition on the involved
spaces, just on the definition of a specific operator. Note also that, as we
will see in Chapter 4, the L, , property has been recently used in [43] as
a tool to prove that, for some Banach spaces, every nuclear operator can
be approximated (in the nuclear norm) by nuclear operators which attain
their nuclear norms (see Proposition 4.3.3). This makes us think that
studying the sets Aj.| and Ay, might be helpful to get similar results in
the context of tensor products by using an analogous definition of the set
Aj. for bilinear mappings. Thanks to the natural isometric identification
between the bilinear mappings on X x Y and the operators from X into
Y*, our study on the sets A, and A,, for operators might derive in
new progresses on both nuclear operators and projective tensors which

attain their nuclear and projective norms, respectively.

Let us briefly describe the outline of this chapter. In Section 2.2, a first
collection of results and examples about these sets will be provided. For
instance, several properties are obtained for finite-dimensional Banach
spaces, functionals, compact operators, and adjoint operators, and a vast
amount of examples show how sharp the conditions of the results are.
We will see several examples of operators that belong to both of our sets,
to just one of them, or to neither of them. In Section 2.3, a complete
characterization will be given of all the diagonal operators that belong
to Ap (X, X) (X =coorfy, 1 <p< o), todw(X) (X = ¢ or fp,
1 <p<w),to A”.H(Co,fp) (1 <p<oo)and to AH.H(fp,Cg) (1 <p<o0).
In particular, it is shown that every canonical projection Py belongs to
both A (X, X) and A,,(X) when X = ¢g or £, (1 < p < ). Finally,
in Section 2.4, relations between the sets Aj.| (W, Z) and Au(W @ 2)
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will be studied for some particular types of direct sums, and several

results, remarks, and examples will be exhibited.

2.2 First results

In this section, we present a first collection of results on the topic. We
will start discussing the operators with a finite-dimensional domain and
the functionals. Recall that in finite-dimensional Banach spaces, every
operator T" attains its norm (and its numerical radius whenever it can
be defined) by compactness of the closed unit ball. The following result
shows that, when X is finite-dimensional, we can entirely describe the
sets A (X,Y) and A, (X). Moreover, the ideas can be extended to
show that Aj.|(co, K) = S;, n NA(co, K).

Theorem 2.2.1. Let X be a finite-dimensional Banach space. Then

(i) A (X,Y) ={T e L(X,Y) :|T|| = 1} for any Banach space Y,
(i) Aw(X)={Te L(X,X) :v(T) =1},

(iii) Fvery norm one functional on ¢y which attains the norm belongs

to A”.H(CQ, K).

Proof. Ttems (i) and (ii) are proved by using the compactness of the
closed unit ball of the finite-dimensional space X as in [5, Proposition 2.4]

or [38, Theorem 2.4]. We include the details for the sake of completeness.

To prove (i), note that we just have to show that Sgx x) < A (X, X).
Indeed, if this is not the case, then there are £g > 0 and a norm-attaining

operator T € Sg(x x) such that for all n € N, there is x,, € Sx with

1> T(z,) =>1- =,
Tl 21—
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and whenever z € Sy satisfies |z — z,| < ¢, we have |T'(z)| < 1. By
compactness, there is a subsequence of {x,}>_;, which we denote again
by {z,}*_;, and there is xy € Bx such that x, — xq as n — o0. Since
|z,|| = 1 for every n € N, we have that ||z = 1, so 2y € Sx. Now, since

|T(x,)| =2 1, we get that |T(2¢)| = 1, which is a contradiction.

The proof of (ii) is very similar. Notice that we just have to show that
{Tel(X,X):v(T)=1} < Apn(X). If this is not the case, then there
are €9 > 0 and a numerical radius attaining operator 7" € £(X, X ) with
v(T) = 1 such that for all n € N, there is (z,,2}) € II(X) with

)

1
1> | (T(2n))| =2 1 -~
n

and whenever (z,z*) € I1(X) satisfies |z — z,| < ¢ and |z* — 2| < o,

we have |z*(T(x))] < 1. By compactness, there are subsequences of

0

{z,}2_ , and {z*}*_, which we denote again by {z,}°_; and {z}}*_,,

n=1
and there are xg € By and xf € Bx+ such that x,, — 7 and z}, — 2
as n — 0. Since z(x,) = 1 for every n € N, we have that z{(z) = 1.
This shows that (zg, ) € II(X). Now, since |2* (T (z,))| =% 1, we get

that |z(T(x0))| = 1, which is a contradiction.

To prove (iii), suppose z* € Sex attains its norm at some point in By,.
Then, there exists ng € N so that x*(n) = 0 for every n > ng. Let
U (K™, |- |lx) — co be the canonical embedding into ¢q that sends
(kiy - ykng) — (K1, ,kngy,0,0,--+). It is easy to see that |U| = 1.
Moreover, ||z* o ¥| = 1, so (i) implies that z* o ¥ € A} |(K™, K). Given

g > 0, define
d(g, ") := min {%,n (%,x* o \Il)}
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and suppose that |z*(xg)| > 1 — (e, 2*) for some point xy € S,,. Let
zp € K™ be the point such that zy(n) = z(n) for 1 <n < mngy. Then,

(ﬁom)<zo)'>1—&afﬂ>1—n<;fww>

20100

£

so, there is ug € Skno such that |(z* o ¥)(ug)| = 1 and |ug — w <.

20
[ESES H
Finally, let vy € ¢g be such that vg(n) = ug(n) for 1 < n < ng and
vo(n) = zo(n) for n > ng. It follows that z* attains its norm at vy € S,
and
20

u_i
Y

20

oo — 20 = o — 20]0 < Y
Tl

20

0

9
<5t = ]af) <e u

Concerning functionals, we have just seen in item (iii) that, for the space
co, Ajj(co, K) = Si; n NA(co, K). It is natural to wonder what happens
in other classical sequence spaces. Recall that given a Banach space X,

for every 0 < e < 2, the modulus of convexity of | - || is given by

T +y

6)(( ) lnf{]__H H l’»ﬁUEBX; Hx_yH>6}’

and X is called uniformly convex if dx(g) > 0 for all 0 < ¢ < 2 (for
instance, if 1 < p < o0, then ¢, is uniformly convex). In [86, Theorem
2.1] it is shown that a Banach space X is uniformly convex if and only if
(X, K) has the BPBop, which in particular implies that if X is uniformly
convex, then every norm-one functional is in the set Ay (X, K) with an
uniform 7 not depending on the operators (note that if X is uniformly
convex, then every element in X* attains its norm by reflexivity). One
may wonder if in our more relaxed setting, where we do not ask for such

uniformity, we can remove the hypothesis of X being uniformly convex
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and still get a positive result, but this is not the case general, as we will

just see.

Proposition 2.2.2. Let X be a Banach space.

(i) If X is uniformly conves, then Sxx = Ay (X, K).

(ii) There is x* € NA(¢1,K) n Sy, such that x* ¢ A (€1, K).
(iii) There is x* € NA({y,K) N Spx such that x* ¢ Ay (L, K).

Proof. A stronger claim than (i) is contained in [86, Theorem 2.1].

Let us prove (ii) now. Consider the norm one functional

1 2 n—1
=12 =L lo.
Z <72737 ) n b )e o0

Notice that z* is a norm-attaining functional and it is not difficult to

see that the rotations of the unit vector e; € Sy, are the only norming
points of z*, that is, if |z*(2)| = 1 with z € Sy,, then z is of the form
z = e¥e; for some 6 € [0,27). Given € > 0, suppose that there is such
an(e,z*) > 0. We take k € N, k > 2, to be such that < n(e, z*)
and then |z*(ex)| > 1 — (e, z*). This means that there is z € Sy, such
that [2*(2)] = 1 and |z — ex|; < . This implies that 2 = e?e; and

ZG _ . . . .
1 — 4 .
lee; — ex|1 = 2, which is a contradiction

For item (iii), consider the functional z* := (%, 2%, 2%, .. ) on {y, which
is as an element in Sy, (hence it is embedded in Syx ). If there is

z = (z(n))X_, €Sy, such that |2*(2)| = |z*|| = 1, then

“1 “1
= |2 5e2()| < 2 5l

n n=1

1=
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From this, we get that z(n) = € for all n € N. Now, assuming that such
a n(e, z*) > 0 exists, we take k € N with 287(¢, 2*) > 1 and consider the
element e; + ...+ e, € Sy, . Then, [x*(e; + ... +er)| > 1 —n(e,x*). So,
there is € Sy, such that |z*(z)] = 1 and |z — (e1 + ... + €x) | < &,

which leads to a contradiction since |z — (e; + ... + ex)|ls = 1. [ |

Recall that, given a Banach space X, the modulus of smoothness of | - ||
is
|z + 7h| + |z — Th| — 2

px() = sup | : ol =41 = 1},

and we say that X is uniformly smooth if lim o pr(T) = 0. A Banach
space is uniformly convex if and only if its dual is uniformly smooth.
Note that it is immediate that an operator which has norm one but does
not attain the norm cannot be in A (X,Y"), by definition. Analogously,
the same argument for operators that do not attain their numerical
radius applies for the set A,,(X). Nevertheless, the following example
shows that there exists an operator 7' with |T'|| = v(T") = 1 which attains
both its norm and numerical radius but belongs neither to A (X, X)
nor to Ay, (X), for some uniformly convex and uniformly smooth Banach

space X.

Example 2.2.3. Let p > 0 and ¢ > 0 be such that % + % = 1. We

consider the spaces £, and £, as £,(€2) and (,(¢2), respectively, where

€2 = (K? | - |,). For each n € N, we define T, € L(£2,(3) by

To(z,y) = ((1 _ 21n> xy) ((2,9) € ).

Now, define T € L({,,(,) as
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for every z = ((z(n),y(n)))s_, € £,. Following the same steps as in [38,

Theorem 2.21.(ii)], we see that T" attains its norm but 7" ¢ A (¢y, (,).
Let us also see that T ¢ A,,(X). Let e? be the canonical unit vectors of
€2 and (7 for i = 1,2, that is, e} = (1,0) and e3 = (0,1). Consider

ein = ((0,0),...,(0,0), e ,(0,0),...)€ S,

7
——
n-th

and

ein = ((0,0),...,(0,0), e, ,(0,0),...) €S,

7
——
n-th

for i = 1,2. Since |e3,,(T(e2,n))| = 1, T attains its numerical radius and
v(T) = |T| = 1. Suppose that T' € A,,(¢,) and consider 5- < n(e,T)

for a given ¢ € (0,1). Since v(T) = |le1nll, = \|e’1'"n||q = e’l"m(el,n) =1
and |e], (T'(e1n))| > 1 —n(e,T), there is (w,w*) € T(¢,) such that
W (T@))] = 1, | = ernly < & and [uw* — e}l < e. Since [T = 1

and |w*(T(w))| = 1, it follows that |T'(w)|, = 1. If we denote w =
((u(n),v(n)))y; € S,, then it is not difficult to see that u(j) = 0 for

all j € N. This implies that |w — ey [, = [((0,v(n)))y; — e1nl, = 1,
which is a contradiction.

Remark 2.2.4. Due to the relation between the norm of an operator and
its numerical radius, it is natural to wonder whether the fact that an
operator is in A (X, X) for some Banach space X implies that it also
belongs to A, (X) (or viceversa). However, this is by no means the case,
even in the context of Hilbert spaces. The following example shows that,

in fact, every scenario is possible regarding our sets.
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Example 2.2.5. Consider these operators on the Hilbert space £5:

Ty(z) =z, forallxe Eg,
Ty(z) := | «( x(3), —z(4), =x(5), .. ) , for all x € 45,

T3(x) := (22(2) —2:6(1) x(3),0,0,...), for all x in the real /5,
Ty(x) = (0,2(1),2(2),z(3),x(4),...), for all z in the complex /.

Then, as we will observe in Theorems 2.3.3 and 2.3.5, Ty € Aj.|({2,{2) N
Anu(l2), but Ty ¢ A (2, l2) U Any(f2), even though it satisfies that
|T3| = v(T2) = 1 and Ty € NA(ly, l5) n NRA(ly). It can also be
seen that Ty € Ayu(l2)\A|.| ({2, 2) (see the proof of Proposition 2.2.9).
Finally, note that every isometry on X belongs to A (X, X), and so,
Ty € Ay (la, £2), but it cannot belong to Ay, (¢2), as it is known that the
numerical range W(T},) of T} is the open unit disk D in the complex
plane (see, for example, [70, Example 2]), which implies that v(T}) = 1,
but [z, Ty(z))| <1 for every x € S,.

We will obtain next a positive result for the class of compact operators.
A Banach space X is said to satisfy the Kadec-Klee property when the
weakly convergent sequences on the unit sphere Sy are norm-convergent.
It is well known, for instance, that every locally uniformly rotund (LUR)
space satisfies the Kadec-Klee property, although the converse is not
true, e.g., /1 (recall that X is called locally uniformly rotund (LUR) if
for all x,z,, € X satisfying that lim, . 2|z|? + 2|z,[? — |z + z.[* = 0,
we have lim,, . |2, — | = 0). Recall also that, by the Smulian lemma,
the norm of X is Fréchet differentiable at x if and only if (2}) < Sx«
is convergent whenever lim,, x*(z) = 1. In the next result, under some
assumptions on the involved Banach spaces, we show that some subsets

of the space of all compact operators belong to the classes Aj.| and A,,,.
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Theorem 2.2.6. Let X be a reflexive space which satisfies the Kadec-Klee
property. Then,

(i) Skx,y) < A (X,Y) for every Banach space Y .

(ii) {T e K(X,X) :v(T) =|T| =1} ¢ Aw(X) whenever X is Fréchet
differentiable.

Proof. 1t is shown in [108, Theorem 2.12| that, under these conditions,
the pair (X,Y) has the Lo, property for compact operators, which
implies in particular our item (i) (note that compact operators from X

to Y always attain their norms if X is reflexive).

Let us prove (ii) by contradiction. Suppose that it is not true. Then, there
are g € (0,1) and a compact operator 1" € K(X, X) with v(T") = |T|| =1
such that for every n € N, there is (x,,z*) € II(X) such that

1= |2k (T(zn))| =1 - - (2.2.1)
and whenever (z,2*) € [1(X) satisfies |z — z,| < ¢ and |z* — 23| < o,
we have |z*(T'(z))| < 1. By reflexivity of X, there is a subsequence
of {x,}*_;, which we denote again by {x,}>_;, and xy € Bx such that
T, —% xo. Thus, T(x,) =% T(z) in norm. From this and 1 = v(T) =
T = |T(z,)| = |2*(T(z,))| =3 1, we get that ||T(x0)| = 1. This
shows that z¢y € Sx. Since w and norm topologies coincide in Sy, we

have that z,, =% z, in norm. Notice now that for each n € N, we have
12 |23 (T(x0))| = |27 (T (20))] = |20 — 20

Since {x,}*_, converges to xy in norm, by using the inequality (2.2.1),
we get that |2 (T (x¢))| converges to 1. Thus, there exists a subsequence

of {z*}*_,, which we denote again by {z*}*_, and some 6 € [0, 27) such
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that 2* (T (z0)) converges to €. Let S € K(X, X) be the operator defined
by S := e T. One clearly has that S(xq) € Sy and z*(S(x)) converges
to 1. By Smulian lemma, there is o3 € Bx» such that x* "=% z¥ in
norm. Since z(z,) = 1 for every n € N, we get that z{(z9) = 1. So,
xy € Sx+ and then (zg,z§) € II(X). Finally, in view of (2.2.1) and
|22 (T (2))| =5 |2E(T(x0))], we get that |zi(T(x0))| = 1. This is a

contradiction. [ |

In fact, the above argument shows that, under the assumptions on (ii),
every compact operator 7" which has norm and numerical radius 1 attains
its numerical radius. Notice also that the identity operator always belongs
to Apu(X) whereas it is not compact unless X is finite-dimensional, so
in the infinite-dimensional setting, the inclusion in Theorem 2.2.6.(ii)
must be strict. Recall that a Banach space has the Schur property if
weak-convergent sequences are always norm-convergent (this happens
for example in £1). Since every operator from a reflexive space into a
space which satisfies the Schur property is known to be compact and
Hilbert spaces satisfy all the hypothesis of Theorem 2.2.6, we have the

following consequence.

Corollary 2.2.7. Let X be a reflexive Banach space with the Kadec-Klee
property and let H be a Hilbert space.

(i) If Y has the Schur property, then A |(X,Y) = S(x,v)-

(i) If T e K(H,H) is with v(T) = |T| = 1, then T € A, (H).

Next, we will show with some examples that if some of the conditions
from these results are dropped, the claims stop being true in general. We
present now a numerical radius attaining compact operator S ¢ A, (X)
with v(S) = ||S|| = 1 defined on a Banach space X which is not reflexive,
its norm is nowhere Fréchet differentiable, and satisfies the Schur property

(and, in particular, the Kadec-Klee property).
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Example 2.2.8. Consider ¢y as a real space. Define the operator
T € L(co, cp) by

) and (T'(x))(k) =0 (k=2) (2.2.2)

w‘,_

UEDER

0

for every x = (2(j))7Z; € co. It is proved in [1, Proposition 2.8] that
IT| = v(T) = 1 but T attains neither its norm nor numerical radius.
In particular, T" belongs neither to Aj.|(co, co) nor to Anu(co). We claim
that S := T™ is a compact numerical radius attaining operator with
v(S) = ||S|| = 1 but does not belong to Ay, (¢1). Indeed, first notice that
S e L(y,0,) is given by

- i y(1~)€j (v = (y(4));21 € ). (2.2.3)

J
2

Moreover, v(S) = v(T') = 1. Note that, if z = (1,1,1,...) € Sy, then

z(e1) =1, and z(S(e1)) = Zjo 1 57 = 1, which implies that S attains the

numerical radius (and the norm). Before proving that S ¢ A,,(¢1), let us
first observe that S € A\I 1(41,41). Indeed, given € > 0, take x € Sy, such

that |S(z)|y > 1 — £, that is, 37, Pl > 1 — = Thus, |2(1)] > 1 - £

and 37, [()] < 5. Con51der Y = <|wE ;‘ 0,0,. ) € Sy, then

IS =1 and |z -y =[z(1) —y(1 |+Z|~T
€

This shows that S € A (€1, ¢1).
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Next, we claim that S cannot be in A,,(¢1). Indeed, observe that if
(y,z) € I1(¢y) satisfy |2(S(y))| = 1, then

2@ =1, y(5)=0) Z 21

From the third equality, we have
i La
= 2

This implies that the only possible candidates are y = (1,0,0,0,...) and

=(1,1,1,1,...)ory = (—1,0,0,0,...) and z = (—1,—1,—-1,—1,...).
We will proceed by contradiction. Suppose that for a given ¢ € (0, 1),
there is (e, S) > 0. Let ng € N be such that >;7°, %= >1-n(e,S). Set

yo = (1,0,0,...)€ Sy, and 29 = (1,1,...,1,_ 1 ,0,0,...) € S, . Then,

=1, and sup |z(j)| = 1.
jeN

o0
1
2‘2 <1

no-th

(40, 20) € TI(¢1) and |20(S(y0))| = 272, 5= > 1—n(e,S). So, there is
(y,2) € I1(¢1) such that |2(S(y))| =1, |y — yo|1 <&, and ||z — 2] < €.

But this is not possible since ||z — zo|oo = |2(ng + 1) — 29(no + 1)| = 1.

Let us recall that in Corollary 2.2.7 we proved that if a compact operator
T defined on a Hilbert space is such that v(T") = ||T'| = 1, then T must
belong to the set Ay, (H). However, the following result (inspired by [1,
Example 1.9]) provides us a wide class of compact operators T' € Ay, (H)
such that 1 = v(T') < |T| and so, in particular, examples of operators
which belong to A,,(H) but not to Ay (H).

Proposition 2.2.9. Let H be a separable infinite-dimensional real Hilbert
space. Then, there is T € L(H, H) such that

(i) T is a compact operator.

(ii) 1 =v(T) < ||T| and T attains its numerical radius.
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(iii) given € > 0, there is n(e) > 0 such that whenever xo € Sy satisfies

[{T'(0), z0)] > 1 =n(e),

there is x1 € Sy with v(T) = (T(x1),x1) =1 and ||x; — x| < €.
In particular, T € Ay (H) and T ¢ Ay (H, H).

Proof. Let 0 < a < 1 and {a,})°_; be a sequence such that |a;| > 1,
-1l <a, <lforn>2 and a, — 0 as n — oo. Let {Ji, s, J3}
be a partition of N such that |J;| = |Jo| = No, |J3] = € < 0. Write
the subsets Jy, Jo as J; = {ng : k = 1}, Jo = {my : k = 1} where
ng < ng < ...,m; < my < ... and each n; corresponds to m; via a

one-to-one correspondence between J; and Jo. Define T e L(H, H) by
T(en,) = —klm, , T(em,) = anen, , T(e,) = ae, (keN,neJs),

where {e, : n = 1} is an orthonormal basis of H. Note first that for

every x € H, we have

(x,en)T(en)

(—arlz, eny yem, + T, em, Yen, ) + Z alz, e, e,.

nGJg

The item (i) is clear, as T is a limit of finite-rank operators. Indeed,
since J3 is finite, we may take j sufficiently large so that j ¢ J3 and
j€JiuJy. Assume j e Jy. If j = ny for some k > 1, then |Te;| = |ou.
Since a,, — 0 as n — o, we have |[Te;| — 0 as j — . For a given
e > 0, choose jy such that |Te;| < € for j > jo. For each n > 1,
set T, := 277 (-, ;)T (e;). Let us observe that for every z € Sy and
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n=m = jo (jo is large enough so that jo ¢ J3), we have that

|(T = T)

" 1/2
<_Z H<x 61>T ej 2)

" 1/2 "
€ (_Z |<x,ej>y2> <e

since {T'e;}%_,, are orthogonal. This shows that (T},) is a Cauchy sequence

in £(H, H) which converges to T'. Since each T, is finite-rank, it follows
that T is compact.

Let us calculate the norm and numerical radius of T'. Note for each
x € Sy, we have

<T(x)7 $> = Z (ak<enk7 .73><:L‘, emk> - &k<emk7 QJ><.1', enk>)
+ Z alen, x)Xx, epn).

nGJg

The first two terms are canceled out because H is real, and then

(T(x),xy = Y Kz e (2.2.4)

nE.]g

for x € Sy, which implies that v(7") < . Since [(T'e,, e,)| = a for every

n € Js, we have that 7" attains its numerical radius and v(T") = «a.

On the other hand, let us notice that, for every x € H, we have
|T(2)|* = Z (T (x), el

= D (Jande, em) + leule, en)?) + 3 ladz, en)l.

k=1 TL€J3
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It follows that ||7"| < max{|{n}|ew,|@|}. However, we also have

IT] = sup{|T(en)] : n =1} = sup{fel, |af : k = 1}

= max{|{an}|ew, |}

hence |7T'|| = max{|{a,}|w», |@|}. In particular, since || > 1, we have
|T| > 1> a=uv(T). This proves item (ii).

Now we prove that T' € A, (H) when o = 1. Givene € (0,1), let g € Sy
be such that [{T'(zg),xo)| > 1 — %. By equation (2.2.4), we have that

2

2
£ 9
> Ko, en)* = KT (o), wo)| > 1——, and then D Kao,enl” < =

neJs keJiuds

Let 73 be the projection of H onto the closed subspace H3 = spanf{e, :
n € Js} (where span{A} denotes the vector space spanned by the elements
of A, and span(A) is its closure). Then we have m3(x0) = >, ;. {To, €n)en

and

(T(m3(0)), ms(x0)) = Y. [{ms(@o), e = Y Ko, ea)l*.

neds neJs

I~

It follows that 7" attains its numerical radius at |m3(xo)|~'73(z0) € Sg-

Moreover, the following chain of inequalities clearly holds.
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7T3([E0) 7T3([E0)
s — @ < | = — ma(@o) | + [ms(0) — o
s (o) s (o)
1/2
< 1 = |ms(zo)[| + ( >, \<x0,ek>]2>
k€J1uJ2
<S4i-¢
2 2

Remark 2.2.10. Let us notice that item (iii) of Proposition 2.2.9 says
that T belongs to the set Ay, in a uniform sense, that is, the 1 does not
depend on the operator T" defined there. We do not know how often this

happens in general.

Observe that it is not true in general that 7% € A if T € A or
viceversa (see the operators from (2.2.3) and (2.2.5)). However, if we
put some extra assumptions on the spaces X and Y, then we can obtain
the following.

Proposition 2.2.11. Let X,Y be Banach spaces and T € L(X,Y).

(i) Suppose that Y is uniformly smooth. If T € A (X,Y), then
T* € A”.H(Y*, X*)

(ii) Suppose that X is uniformly convex. If T* € Ay (Y™, X*), then
T e AH.H(X, Y)

(iii) Suppose that X is reflexive. Then, T € An(X) if and only if
T* e A (X™).

Proof. Note that (ii) is just a consequence of (i) since, in this case, X is,

in particular, reflexive. Let us prove (i). Let Y be a uniformly smooth
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Banach space. Let T'e A (X,Y). Then, |[T*| = |T| = 1 and T* is also
norm-attaining. In order to prove that 7% € A (Y*, X*), let € € (0, 1)
be given and consider n(e,T) > 0. Set

n(e, T*) == min {77 <5Y*(€>,T) , 5’”*(5)} >0,

2 2

where the mapping € — dyx(g) is the modulus of convexity of Y*. Pick
yi € Sy= to satisfy |[T*(y7)| > 1 — n(e, T*). There is x; € Sx such
that Re(y}(T(z1))) = Re(zr (T*(57))) = |T*(s7)] > 1 — (=, T*). This
implies that |T'(xy)|| > 1 — n(e,T%). Since T' € Aj(X,Y), there is
zg € Sx such that |T(zg)| = 1 and |22 — 21| < ‘SYLZ(&). Take y3 €
Sy« to be such that Re(ys(T(z2))) = ||[T(z2)| = 1 and notice that
Re(yf(T(x3))) > 1 —dy«(e). Then, |yf +y5| > 2 — 25y« (e). This shows
that |y5 — yi| < e. As T* attains its norm at y5 which is close to yj,

and therefore, T* € Ay (Y*, X*).

Now we prove (iii). Since X is reflexive, we just have to prove one
direction. Assume 7" € A,,(X). Note that T* € L(X*, X*) clearly also
attains its numerical radius. Now let € > 0 be given and set n(e,T%) :=
n(e,T) > 0. Let (zF,27*) € TI(X™*) be such that |z3*(T*(x}))| > 1 —

n(e, T*). Since X is reflexive, there is x1; € Sx such that x; = x}*. Then
21 (T (21))| = |21 (T7(27)| = |27 (T (2)| > 1=n(e, T") = 1 =n(e, T).

Then there is (2, x3) € II(X) such that |25(T(z2))| = 1, |x2 — 21| < &
and |z5 — 27| <e. So, T* € Ap(X*) as desired. [ |

Given T € L(cp,cp) and N € N, it is not difficult to see that T*(¢;) <
span{e;, ..., eN} if and only if 7' = T'o Py, where Py is the natural N-th
projection on ¢yg. A property related to Proposition 2.2.11.(iii) above

can be proved for the non-reflexive space ¢y under this condition.
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Proposition 2.2.12. Let T' € A,,(co) be an operator such that the
range of T* € L({1,¢,) is in span{e,...,ex} for some N € N. Then,
T* € Anu(gl)

Proof. Let ¢ > 0. Set (e, T*) := min{,n (£,T)} > 0. Let (z},27*) €
I1(¢,) be such that |27*(T*(x}))| > 1 — n(e,T*). Let ng > N be big
enough so that >"°, [zF(n)| > 1 —n(e, T*). Define (23, 23*) € {1 x £y
as follows:

(a) 23(n) = (7, [ (n)) "3 (n) for 1 < n < ng and 23(n) = 0 for
n > no,

(b) 23*(n) = zi*(n) for 1 < n < ny and 23*(n) = 0 for n > ny.

As xf(n)xf*(n) = |23 (n)| for every n € N, we get that (z3, 25*) € TI(41).
Note that |23 — zf|| < 2n(e, T*) < %. Now,

|25 (T (37))] = [a5" (T (23))| =

(f xr<n>|>

Hence, there exists (z3, x%) € II(co) such that |x%(Tzs)| = 1, |23 —a3*| <

S, )T )

Zx N(T*(2¥))(n)| > 1 —nle, TH).

5, and ||z — 23| < 5. Notice that |z3(n)| < § for every n > ng; hence
zi(n) = 0 for every n > ng. Define z3* € By, by z5*(n) = x3(n) for
1 <n < ngand 25*(n) = z7*(n) for n > ng. Then, (25, 25*) € I1(4),

|2k — 2F| <, and [23* — 27| < £. Finally,

|5 (T (5))| = Z 3" (n)(T™(25))
n=1
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In Proposition 2.2.11, if we drop off some of the hypothesis, then it is
possible to construct operators which do not satisfy the conclusion of that
result. Recall that, in Example 2.2.8, we constructed an operator 7" on
co such that 7% € A (€1, ¢1) but T' ¢ Aj.j(co, co) (see (2.2.2)). Next, we
present an operator S such that S e A (X, X) but S* ¢ A (X*, X*).

Example 2.2.13. The operator T defined in (2.2.2) is such that 7** ¢
Aj (L, £s) although T* € Ay (¢1,¢1). Indeed, T** € L(le, {s) is given
by

o0
1
(T(2)(1) = 5 2() and (T™(2))(k) =0V k=2 (2.25)
7j=1
for z € ¢,. Then, for the vector ug = (1,1,1,...) € Sy, , we have

IT**(ug)| = 1 = ||T**||. Let 2z € S, be such that |7%*(z)], = 1. This
implies that |zo(7)| = 1 for all j € N. For a given € € (0, 1), suppose that
there is (e, T**) > 0. Let ng € N be such that 2"n(e, T**) > 1 for every

n = ng. Consider the vector z € Sy, defined as z;(n) =1 for 1 <n < ng
and zi(n) = 0, otherwise. Then, [T**(z1)| = >7%, 5 > 1 —1n(e ,T**).

However, the vector z; cannot be close to norming points of T** by

definition. This shows that T%* ¢ Ay (le, €s).

2.3 Diagonal operators

In Example 2.2.5, we saw two examples of diagonal operators 11,7, €
NA(ls, l3) n NRA(¢y) and with ||T1]| = |1y = v(Th) = v(T2) = 1, but
such that T} € Aj.|(€a, £2) N Anu(la) and Ty ¢ Aj (2, £2) U Apu(l2). The
purpose of this section is to characterize the diagonal operators which
belong to the sets Aj.| and A,, for the classical Banach sequence spaces.

We give a complete characterization for these operators which belong
to A (X, X) whenever X = ¢y or £, with 1 < p < 00 and for A, (X)
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whenever X = ¢ or £, with 1 < p < o0, and we also study what diagonal
operators belong to A |(X,Y) when X = ¢pand Y = ¢, (1 <p < )
and viceversa. Before we get into the details of the proofs, let us show

some intuitions on how the statements can be found.

Example 2.3.1. Consider the real space ¢g. Consider the following
diagonal operators T' : ¢y — ¢q defined as T'(z) = (ayz(1), asx(2),...)
for all z € ¢g with sup{|a,|: n € N} = 1, all of which satisfying ||T =
v(T)=1:

1 If o= 0,

does not attain its norm or numerical radius. So at least one of

then T cannot be in Aj.j(co, o) U Anu(co), since T'

the o, needs to have absolute value 1 to be in our sets.

2. If oy = 1 and «,, = 1—%forn > 1, then T is also not in
A (co, co) U Any(cp), since the only points x € S,, where it attains
its norm are of the form s - e; with |s| = 1, but the sequence
{|T(ens1)|}, is strictly increasing and converges to 1, none of
the points e, 1 being close to ey, and a similar thing happens with
the numerical radius. So to be in our sets, not only there must be
some v, with |a,| = 1, but also, those that are not 1 have to be far

from 1 (that is, 1 cannot be an accumulation point of {|a,|}r,).

3. Finally, if oy = 1 and «,, = % for n > 1, then T"is in Aj.|(co, o) N
Auu(co), since the only points where the norm is almost attained

are close to some point x € S, with |z(1)| = 1 (similar for A,,).

The intuitions presented above hint us towards necessary and sufficient
conditions for a diagonal operator to be in Aj(co, co) U Anu(co) in the
real case, and they can be adapted to other spaces and to the complex
case with some suitable changes. We will get into the results of the

section now.
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The following lemma describes the norm-attaining diagonal operators
defined on ¢y or ¢, spaces. Although it might be well-known in the
literature, we present a short proof of it for the sake of completeness and

we will use it to prove Theorem 2.3.3.

Lemma 2.3.2. Let X = ¢y or ¢, with1 <p <. Let T € L(X,X) be
an operator defined as

T(z) = (amz(n))pzy (v = (2(n))5z, € X)),

n=1

where {a, }°_, is a bounded sequence of complex numbers. Given x € Sx,

T attains its norm at x if and only if the following is satisfied:

(i) Case X = cy: there exists ng € N such that |oay,| = ||T| and
|z(ng)| = 1.

(ii) Case X = ly: either the same condition as in ¢y holds or there
exists a subsequence of the natural numbers, {ny}i_,, such that

|y, | converges to |T'| and |x(ny)| converges to 1 as k — .

(ili) Case X =€, with 1 <p < oo: setting J = {n € N: |a,| = 1}, J is
non-empty and x(n) =0 for all n € N\J.

Proof. We claim first that |T| = v(T) = B := sup,y |an|. Indeed,
clearly v(T') < |T'| < 8. Moreover, if there exists some N € N such that

lan| =S, then it is clear that

len(T(en))| = [T(en)] = 5.

On the other hand, if no such N exists, then there is a subsequence
{an, }y of {an}, such that {|a,, |}, converges to . It suffices now
to notice that

lim |ef, (T(er,)] = Jim |T(e,,)] =

k—o0
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to prove the other inequality and hence the claim.

Now, to prove the lemma, note that the proofs for X = ¢y and X = £,

are an immediate consequence of the fact that
|71 = 1T ()] = sup |anz(n)| < sup fon| < [T,
neN neN

and the proof for X = ¢, with 1 < p < o is a consequence of
0 0
IT@)P = Y lanllzm)P = Y |z + 3] lanlPle()P < Y ol
n=1 neJ neN\J n=1

Theorem 2.3.3. Let X = ¢y orl,, 1 <p<w. Let T € L(X,X) be a

norm one operator defined as

T(z) = (anz(n)),:

n=1

(z = (z(n));2, € X),

where {a,}2_, is a bounded sequence of complex numbers. Then, the

following assertions are equivalent:

(i) Te Ay (X, X),
(ii) Both of these conditions are satisfied:

(a) There exists some ng € N such that |a,,| = 1.

(b) If we denote J = {n € N: |a,| = 1}, then either J = N or
SUD,en g la,| < 1.
Proof. We prove the result for X = ¢ first.

(i) = (ii): By Lemma 2.3.2, it suffices to show that sup,,cy s || <1
when J # N. Assume to the contrary that sup,cy ;|an| = 1. Pick a
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sequence {ng}, < N\J such that |ay,,| =1 — ; for each k € N. Given ¢ €
(0,1), choose N € N so that N=' < 5(e,T), then |T(e,,)|| > 1 —n(e, T).
Thus there exists z¢ € S., such that 7' attains its norm at xy and
|xo — enyll < e. Now, Lemma 2.3.2 implies that there exists k € J such
that |zo(k)| = 1 = |ag|. This contradicts ||xg — e, || < €.

(ii) = (i): If J = N, then T attains its norm at every point in S,,.
Suppose that J # N and sup,,oy, s [an| < 1. Assume to the contrary that
T ¢ A (co, co), then there is some gy € (0, 1) such that for each n € N,
there is some ,, € S, such that 1 > |T(x,)| = 1 — =, and whenever
x € S, satisfies that ||z — z,|| < o, we have that |T'(z)| < 1. Let ng e N
be such that
1 1
sup |a,| <1—— and — < &.
neN\J Mo No

Since || T(zp,)| = 1— nio, we can choose k € J such that |x,, (k)] = 1— =.

no
Let y,, € S¢, be the point such that

(1) yn(4) := xn(j) for all j € N\{k},

_ (k)

(2) yn(k) :

It is clear that |T(yn,)| = |¥nell = 1 and |yn, — Zne| < = < 0. This

o

contradiction completes the proof of this case.

The proof for X = £ is very similar. Nevertheless, we include the details

for the sake of completeness.

(i) = (ii): Suppose first that there is not any ng € N with |a,,| = 1.
Then, by Lemma 2.3.2, for each = € Sy, with |T'(z)| = 1, there exists a
subsequence of the natural numbers {n;};_, such that |a,, | and |z(ng)|
both converge to 1 as k — co. Given € € (0,1), let ky € N be such that
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% < n(e,T). Then, for all k > ko,

IT(en)ll = lam,| > 1 =n(e,T).

However, for each « € Sy, such that |T'(z)| = 1, it is clear that |z—e,, | =
1 > ¢ for all k > ko, which is a contradiction. Therefore, item (1) from

the statement must hold.

It suffices now to show that sup,cy ;s [an| < 1 when J # N. Assume to
the contrary that sup,cy ;s |an| = 1. Pick a sequence {ny.};, = N\J such
that |a,, | = 1 — ¢ for each k € N. Given € € (0,1), choose N € N so that
N1 <n(e,T), then |T(en,)| > 1 —n(e,T). Thus there exists xo € Sp,,
such that 7" attains its norm at zo and |zg — e,, | < €. However, like

before, that is a contradiction.

(ii) = (i): If J = N, then T attains its norm at every point in Sy .
Suppose that J # N and sup,,oy s [an| < 1. Assume to the contrary that
T ¢ A |(€p, {y), then there is some gy € (0,1) such that for each n € N,
there is some x, € Sy, such that 1 > |[T(z,)| = 1 — %, and whenever
x € Sy, satisfies that |z —x,| < ¢, we have that |T'(x)| < 1. Let ng e N
be such that
1 1

sup |a,| <1—— and — < &.

neN\J Mo No
Since || T(zp,)| = 1— nio, we can choose k € J such that |z, (k)| = 1— nio
Let y,, € Sy, be the point such that

o Yn(j) = w,(j) for all j € N\{k},

o xn(k)
(k) = o T

It is clear that |T(yny)| = |ynoll = 1 and |y, — @n, |l < nio < g9. This

contradiction completes the proof of this case.
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Finally, let us prove now the result for X = ¢, with 1 < p < .

(i) = (ii): It suffices to check that sup,cy s || < 1 when J # N.
Assume to the contrary that sup,cy s || = 1. Given ¢ € (0, 1), pick
no € N\J so that |ay,,| > 1 —n(e,T). Thus, |Te,| > 1—n(e,T). By
Lemma 2.3.2, if T attains its norm at z € Sy, then |x(ng)| = 0 which

implies that |z — ep,| =1 > «.

(i) = (i): If J = N, then we are done. Suppose that J # N and
B = sup,en s |an| < 1. Assuming that T' does not belong to Ay (¢, £;),
there exists o € (0, 1) such that for each n € N, there is some x,, € Sy,
such that 1 > |T(z,)| = 1 — %, and whenever z € S, satisfies that

n’

|z — x| < o, we have that |T'(z)| < 1. Note that

0
(1-2) < Tl +5 3 kel < X bealill = 1
keJ keN\J k=1

This implies that >, ; |z, (k)|P converges to 1 and X, s |24 (K)[? con-

verges to 0 as n — o0. Set A, == (X, |a:n(k:)|p)% and choose ng € N
such that 1T — AP = < % Define y,, € Sy, by

Ty (K)

for every ke J and y,, (k) =0 for every ke N\J.

By Lemma 2.3.2 that ||T'y,,| = 1. However,

Hyno - "L‘noHp < (1 - Ano)p + Z |$no( (1 - Ap ) < 80

JeEN\J
]
Next we are going to prove the counterpart of Lemma 2.3.2 and Theorem

2.3.3 for numerical radius. As in the Aj case, it gives a complete

characterization for the set A, for diagonal operators on ¢, and ¢, spaces
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(1 < p < ). Let us notice that Lemma 2.3.4 below establishes necessary
conditions for a numerical radius one diagonal operator on ¢y and ¢, to
attain its numerical radius. We will use it to prove Theorem 2.3.5, and

again, we present a short proof of it for the sake of completeness.

Lemma 2.3.4. Let X = ¢y orl,, 1 <p<w. Let T € L(X,X) be a

numerical radius one operator defined as

T(z) = (anz(n))izy  (z = (z(n));2, € X),

where {a,}°_, is a bounded sequence of complex numbers. If T attains

its numerical radius at (z,x*) € II(X), then we have the following:

(i) There exists ng € N such that |o,,| = 1.

(ii) For X = ¢y, Re(z*(n)x(n)) = |z*(n)z(n)| = |z*(n)| for every
n e N.
For X = {1, Re(z*(n)z(n)) = |z*(n)x(n)| = |z(n)| for every
n e N.
For X =/{,, 1 <p < o, Re(z*(n)x(n)) = |z*(n)x(n)| = |z(n)[? =

|2*(n)|? for every n € N, where 5 + o = 1.

(iii) There exists 6 € [0,27) such that a,, = € on the set {n € N :
jz(n)] - [2*(n)] # 0}.

Proof. Note first that, like on Lemma 2.3.2, we have v(T) = ||T| =
SUp,,cy |vn|. From that, item (i) is clear, as the operator T attains its
norm as well. Let us prove now item (ii). For the space X = ¢y, first of

all, as (x,2*) € II(¢g), then for all n € N, we have

Re(z*(n)z(n)) < [z*(n)x(n) < [2%(n)],
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but we also know that
o0 0
1= > a*(n)z(n) = ) |z*(n)].
n=1 n=1

This proves what we wanted for X = ¢.
For /1 we will use the same exact argument, changing the roles of z(n)
and z*(n): as (x,z*) € II({;), then for all n € N, we have

Re(a*(n)z(n)) < |z*(n)x(n)| < [z(n)],

but we also know that
o0 o0
L= z*(n)a(n) = )] [z(n)].
n=1 n=1
This proves what we wanted for X = /;.

Finally, for X = ¢, (1 < p < ), we argue similarly, taking into
account the equality case of Holder’s inequality. Indeed, note that if
(x,x*) e II(¢,), then

L= a*(n)z(n) < ) [a*(n)z(n)] < |2*], - 2], = 1,

and hence, Holder’s inequality becomes an equality in this case. Note
that then, for each n € N, Re(z*(n)z(n)) = |z*(n)z(n)|, and by Holder’s

equality case, the following identities must hold for each n € N:

A ORI o 5 (O 0
Rl T e Re@ma(n) == =

This proves item (ii) for X = /,,.
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Finally, to see (iii), observe that

z))| = Z anz™(n) Z v, * n)| < 1.

Therefore, using (ii), there exists 6 € [0,27) such that a,, = € on
{neN:|z(n)|-|x*(n)| # 0}. [ |

Theorem 2.3.5. Let X = ¢y or{,, 1 <p <. Let T € L(X,X) be a

numerical radius one operator defined as

T(x) = (amz(n))pzy (= (2(n))5z, € X)),

where {a,}_; is a bounded sequence of complex numbers. Then, the

following assertions are equivalent:

(i) T e Anu(X).
(ii) The following both conditions hold:

(a) There exists some ng € N such that || =1

(b) If J = {n € N: |ay,| = 1}, then the cardinality of the set
{an, 1 n e J} s finite and sup,en ;s |an| < 1 when J # N.

Before proving Theorem 2.3.5, let us notice that when {a,}r_; is a
bounded sequence of real numbers, we have that the set {a,, : n € J} <
{1, —1}, that is, it is automatically finite. Combining Theorem 2.3.3 and

Theorem 2.3.5, we get the following immediate consequence.

Corollary 2.3.6. Let X =cy or{,, 1 <p<oo. Let T € L(X,X) be a

numerical radius one operator defined as

T(z) = (anz(n))yzy (= (2(n))72, € X),
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where {a, }22_, is a bounded sequence of real numbers. Then, the following

assertions are equivalent:

(i) T e Ap (X, X).
(ii) T € An(X).
(iii) Both of the following conditions are satisfied:

(a) There exists some ng € N such that |a,,| = 1.

(b) If J = {n € N: |ap| = 1}, then J = N or sup,ey s |an| < 1
when J # N.

Proof of Theorem 2.3.5. Let us prove first the result for X = ¢.

(i) = (ii): By Lemma 2.3.4, the set J is non-empty. Assume that the set
{a, : m € J} is an infinite set. Write {a,, : n e J} = {e, ... ¥ .. }.
Then, there exists a subsequence {n;}_, = J such that e? x converges
to some A € C with |A| = 1. Given € € (0,1/2), let ky € N be such
that e — A| < n(e,T) for every k > ko. Then, for k # k' = ko,
we obtain that ‘M —)\‘ < n(e,T). Pick n # n’ in J so that
an = %% and a,y = €. Then, ((e, + ew), 3(ek + €%)) € II(cy) and
[2(ex +ei) (T (en + en))| = ‘w‘ > 1 —n(e,T). However, if T
attains its numerical radius at (z,z*) € II(¢g), then, by Lemma 2.3.4,
there exists 0 € [0, 27) such that a,,, = € on A := {m e N : [2*(m)| # 0}.
If n,n' ¢ A, then for k € A, |z — (e, + en)| = |ef(x — (en + en))| =
|z(k)| = 1 > e. Otherwise, without loss of generality, we may assume
that n € A. As a,, # a,, we have that n’ ¢ A, ie., |2*(n')| = 0.
It follows that |z* — (ek +ek)| = |(a* — 2(ef + ei))(ew)| = 5 > &

This proves that {a,, : m € J} must be a finite set. Finally, arguing

similarly to Theorem 2.3.3, we can deduce that sup,,cy s [am| < 1 when

J # N. Indeed, assume that sup,cy ; = 1 and suppose that T'€ A, (co).
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Then, for € € (0,1), let n(e,T) be given. For each k € N, there exists
tome n; € N\J such that |, | > 1 — 4. Choose N € N such that
~ <n(e,T). Then |ef (T(eny))| =1—+ >1—n(e,T). However, for
each (z,x*) € II(cy) such that |x*(T'(x))| = 1, it is clear (see the proof

of Theorem 2.3.3) that ||z — e, || > €, so we have a contradiction.

(i) = (i): Let us say that {a, : n € J} = {e, ... e} for some
m € N. Assume to the contrary that 7' does not belong to Ap,(co).
Then, there exists some gy € (0,1) such that for each n € N, there
is (zy,2%) € I(co) such that 1 > |2%(T(x,))| = 1 — L, and whenever

(x,2*) € II(co) is such that ||z — x,| < g9 and |z* — z*| < &9, we have
that |«*(T'(x))| < 1. If J # N, then, by Lemma 2.3.4,

> YRz (k) + .+ Y an(k)za(k) + B > (k). (k)

keJy keJm keN\J

_|_

>, awah(k)za(k)

keN\J

for every n € N, where J, = {n € N: a,, = ¢} and § := sup,,, s || <
1. By passing to a subsequence if necessary, we may assume that
Yokes, Tn(k)zn(k) converges as n — oo for each 1 <1< m. As e £ et

for all 1 <1 # I’ < m, we can choose 1 < s < m so that

Z xr(k)x,(k) — 0 forall [ #s, and Z xr(k)xn (k) — 1
keJ; keds
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as n — 0. Also, notice that Y ; 27, (k). (k) — 0 as n — oo. Pick
ng € N large enough so that

£ £
Z|xn0 <—mf0ralll7&s 1—Z\x \<§

keJ; keds

and

D (k)2 (k) <

keN\J

Wl ™

Let yn, = Tn, € Se, and define y: € Sy, as

g (K)

Y, (k) = === for every ke J;and y, (k) =0 for every ke N\J,
v

where T = Zkejs ‘IZO (k)‘ Then, (ynmyzo) € H(C())a

- ey (k)an, (k)
v T =1 0 Cl=1,
keJs v
and
lyf, —af | <(m—1)—+=+=<e
Yno 3m 3 3°°

This is a contradiction. For the case when J = N, we have

1= ap(k)za(k) = Y ai(k)za(k) +...+ > a

k=1 keJy keJm

> e Y wn(k)aa (k) + .+ e Y ak (k) (k)| > 1 - =,

keJy kedm n

for every n € N. Arguing as above, we may choose 1 < s < mand ng e N
such that

N, (k ‘<% forall 1#s, and 1- Y |a% (k \<g
keJ; keds
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By defining (yn,, ¥;;,) € II(co) as above, we get a contradiction.

The proof of the case X = ¢ is almost identical to the proof for X = ¢,

by a duality argument, so we will omit it.

Let us prove the result for X = ¢, with 1 < p < 0. Let ¢ be such that
141 _7
p T =

(i) = (ii): Note that Lemma 2.3.4 implies (1). Assume that the set
{a,, : m € J} is an infinite set, say {a, : n € J} = {ei, ... e .. .}
Then, there exists a subsequence {n;};°, = J such that e converges
to some A € C with |A| = 1. Given ¢ € (0, (%)%), let ko € N be such that
e — A] < (e, T) for every k = ko. Then, for k # k' > ko, we obtain

that % - )\‘ <n(e,T). Pick n # n’ in J so that a,, = ¢+ and

oy = €% Thus, ((%)%(en + enr), (%)%(e; + €%)) € I1(¢,) and

(e () o))

>1—n(eT).

et 4 e
2

However, if T attains its numerical radius at (z,z*) € II(¢,), then, by
Lemma 2.3.4, there exists 6 € [0, 27) such that a,, = ¢ on A := {m e
N: |z*(m)| # 0}. If n,n' ¢ A, ie., |[z*(n)| = [2*(n')| = 0, then Lemma
2.3.4 implies that |z(n)| = |z(n’)] = 0. Thus, |z — (%)% (en + €en) "
%—I— % = 1 > . Otherwise, without loss of generality, we may assume that
ne A As «a, # a,, we have that n’ ¢ A, ie., [z*(n')| = 0. It follows
that |m* — (l)% (ex +ef) !

=

! > % > ¢9. This proves that {a,, : m € J}

must be a finite set. Again, like in Theorem 2.3.3, we can deduce

that sup,,en s || < 1 when J # N. Indeed, assume once more that
SUp,enyy = 1 and suppose that 7' € Auu(co). Then, for e € (0,1), let
n(e,T) be given. For each k € N, there exists tome ny € N\J such

that |a,,| > 1 — +. Choose N € N such that 1 < n(¢,T). Then
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ek (T(eny))| =1—+% >1—n(e,T). However, for each (z,z*) € II(co)

such that |z*(T'(x))| = 1, it is clear (see the proof of Theorem 2.3.3) that

|z — en,| > €, so we have a contradiction.

The implication (ii) = (i) is very similar to the one for X = ¢;. We
will include the details for the sake of completeness. Let us say again
that {a, : n € J} = {1, ... e?n} for some m € N. Assume to the
contrary that 7" does not belong to A, (¢,). Then, there exists some
o € (0,1) such that for each n € N, there is (z,,2}) € II({,) such that
1 > |2z5(T(x,))] = 1 — %, and whenever (z,z*) € II({,) is such that
|z — x| < eoand |z* —xk|| < &o, we have that |2*(T'(x))| < 1. If J # N,
then, by Lemma 2.3.4, the following chain of inequalities holds

2
> Y )+t D ah(R)za(k)+ 8 ) @

keJy keJm keN\J
> e Y ak(k)an(k) + ...+ € Y (k) (k)| +
keJy kedm
1
D (k) (k)| =1 - =,

keN\J

for every n € N, where J, = {n € N: a,, = €%} and 3 := sup,,, s || <
1. By passing to a subsequence if necessary, we may assume that
Des, Ta(k)zn (k) converges as n — oo for each 1 <1 < m. As e # e

for all 1 <1 #1I' < m, we can choose 1 < s < m so that

2 zh(k)x,(k) — 0 forall [ #s, and Z xr(k)x, (k) — 1

keJ; keJs

as n — . Also, notice that 3, ; z7, (k). (k) — 0 as n — 0. Pick
ng € N large enough so that the following inequalities hold:
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4
Z |z, (k)1 < 3 for all I # s,
keJ;

q

l/q
- (2 rx:0<k>rq) <<

keJs

p
Z |2, (k)P < ;—m, for all [ # s,

keJ;
1/p\ P ,
1- <kz |xn0(k)|p> < %’ and
eJs
P q
Z (k)2 (k) < min {E, g} :
keN\J 33

For simplicity, and using Lemma 2.3.4, for each 1 <[ < m, denote

Al - Z l'no Z ‘xno ‘p = Z ’mzo(k) q

kEJl kEJl kEJl

Now define y, € Sy, as the point such that y,(k) := ‘T”l(/’; if ke J,,
and y,(k) = 0 if k € N\J;, and define y} € Sy, as the point satisfying
(k) := 28 if ke J,, and y* (k) = 0 if k € N\J,. By Lemma 2.3.4, the

l/q

following 1dent1tles hold:
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ks, [Tn (k)P
lynlh = WT = [lz|l5 = 1,
lyally = === = ll2l; = 1,
. Dive, T (k)zn (k)
yn(yn) = kEJs A = ]'7
|y (T'( Z oy, (k)zn (k)| = 1.
5 keJs

Now, to obtain a contradiction, it suffices to note that

— APNP gP gP
_ p _ _ _ p
o= nly < () T b+ (= D+ 5 <
neds
el gl
w (g _ . s < q
=iy = () R il on -+ S <o

Finally, note that for the case J = N, the same argument is still valid if
we change
Dk (k) (k) = 0.
neN\J

One may wonder whether or not we can find a characterization for
diagonal operators in the set Aj.,| when the domain is different from the
range space. As announced earlier, there is one for certain choices of
domain and range spaces. Similar techniques as in Theorem 2.3.3 and

Theorem 2.3.5 yield the following result on operators from ¢, into ¢,
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and from ¢, into cy. Notice that in this case we cannot consider the set

Anu(X>‘

Theorem 2.3.7. Let 1 < p < o0 be given.

(i) Let T e L({,,co) be a norm one operator defined as

T(z) = (anz(n)),= (= (x(n)),_ € b),

n=1 n=1

where {a, }2°_ is a bounded sequence of scalars. Then, the following

assertions are equivalent:
(a) T e Ay(by, o).
(b) If J ={neN:|a,| =1}, then J is non empty and
1. J=Nor

2. SuPpemys o] <1

(ii) Let T € L(co, £,) be a norm one operator defined as

T(z) = (anz(n)),zy (@ = (2(n)),=; € co),

where {a,}*_| is a sequence of scalars with p-norm equal to 1.

Then, the following assertions are equivalent:

(a) T'e Ao, &)-
(b) There is some N € N such that o, = 0 for alln > N.

Proof. (i). Let us prove (a) = (b) first. In this case, note that, like
before, T is well defined and |T| = sup,cy|an| = 1. As T attains its

norm at some o, € Sy, we have

|7 (o) = sgg\oznxoo(nﬂ = [|T] = 1.
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Moreover, there exists ny € N such that |a,,| = 1 and |z4(ng)| = 1
(otherwise, we can extract a subsequence {n}{_; such that |z (ng)| — 1,
a contradiction). This shows that J is not empty. It remains to prove
that sup,ey s || < 1 when j # N. Assume to the contrary that this
supremum is 1. Then, there exists N € N\J such that |ay| > 1—n(e,T).
Therefore, |T'(ey)| > 1 —n(e,T). Thus, there exists g € Sy, such that
IT(x)| =1 and |zo — en|| < €. However, as we observed above, there
exists ny € J such that |ay,,| = 1 and |xg(nq)| = 1. This contradicts the
fact that |zo — en| < €.

Let us prove (b) = (a) now. Assume first that J = N and |T(xg)|| > 1—¢
for some z € Sy,. Then, there exists ng € N such that [x(ng)| > 1 —«.
Define x; € Sy, by x1(ng) = () and 21(n) = 0 for all n # ng. It is

|zo(no)|’

clear that |T'(z1)| = 1. Observe that

e —zol? = 3 [zl )P + (1 - |<1n)|) zo(no)

J#no
=1—|zo(no)l’ + (1 = |zo(no)|)? <1— (1 —¢)? +£P.

In other words, we have |T'(x1)| = 1 and |2, — x| < (1—(1—¢)P 4P)"/?.
SoT e Ay, Ly, co).

Now, assume that J # N and sup,,ey s [an| < a < 1. We will proceed
once more by contradiction. Assume to the contrary that 7" ¢ A (¢,, co).
Then, given € > 0, there is a sequence {z,};_; < Sy, such that |T'(z,)| >
1—2 andif z € S, satisfies that |2, — | < ¢, then |T(z)| < 1. Choose
no € N such that |T(x,,)| > max{a,d}, where § ~ 1 is such that

(1—6"+ (1= <e.
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Let y € Sy, be defined as y(n,) = ‘z"(’gz;' and y(n) = 0 for all n # n;.
nQ
Then ||T'(y)| = 1, and

[ny =yl < (1 =07+ (1= 0)")'7" <e.

This is a contradiction, and the proof of this case is finished.

(ii). First of all, T" is well defined if and only if {a,}r; € ¢,. Indeed,

(<) is clear, and for (=) it suffices to evaluate T at the points
z, = (1,),1,0,0,...), forneN,

and use the fact that ¢, is a Banach space.

Also, |T| = |{an}oqllp- Indeed, for all x € S, it is clear that

ee} 6]
IT@)P <) lanz(n)P < ) fanl”.
n=1 n=1

Now it suffices to evaluate at the same points as before.

Moreover, T attains its norm if and only if there is some N € N such
that a,, = 0 for all n > N. Indeed, the implication (<) is clear, and
for (=), we will argue by contradiction. Assume that no such N exists
but that 7" attains its norm at some = € S,,. Consider a subsequence
{ni}7_, of the natural numbers such that «,, # 0 for all k£ € N. Since

T € ¢y, there exists some ko € N such that |z(ng,)| < 1. Then,

L=[T@) = Y} lana(m)]" +|an, z(m)lP < D) [l +lag, [ =1,

n;énko n#nko

which is a contradiction. Since every operator in Ay (co, ¢;) is norm-
attaining by definition, this proves that (a) = (b). Let us prove the

other implication now.
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First of all, if M = {ki,...,k.} < N is the set of indexes such that
a, # 0 if and only if n € M, then a similar argument than before shows
that the only points = € S,, such that |T'(z)| = 1 are those such that
|z(n)| =1 for all n e N.

We will proceed now by contradiction. Assume that 7" ¢ Ay (co, Cp).
Then there is some ¢y € (0,1) such that for each n € N, there is some
T € S, such that 1= |T'(z,)[P =1 — %, and whenever z € S, satisfies

|x — x,| < €0, we have that | T'(z)|P < 1. Then, for each n € N, we have

1 < -
1——< Z |akzwn(kz)|p < Z |O'/ki|p = 1.
n =1 =1

Given n € N, assume now that there is some 1 < 4, < r such that
|z, (ki )] < 1—ep. Then, we have

1 T
1—-—< 1P + (1 —e0)? oy, | < P = 1.
" < DU o > (1= o), | < . low,|

ie{1,..r M\ {in} i=1

From here, we would get that (1 — (1 — &9)?)|a,, [P < +. Therefore, if
no € N is such that nio < (1—=(1—¢¢)?)m, where m := min{|ay| : k € M},
then for all n > ny, it is clear that for all k € M, |z, (k)| > 1 —&¢. Finally
define y € S, as the point such that y(k) = \ZSEI& when k € M and
y(k) = (k) when k ¢ M. It is clear that |T(y)| = 1 and |z,, — y| < <.

This is a contradiction and completes the proof. |

The previous theorems provide a wide class of operators that belong to
our sets. For instance, the canonical projections Py € L(X,X), N € N,
belong to both A, (X, X) and A,,(X) for the Banach spaces X = ¢, or
l,, with 1 < p < o0, and to A (X, X) when X = (.

Corollary 2.3.8. Let N € N be given.
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(i) PNEAH.”(X,X) if X =cyorX ng, 1<p< o

(i) Py e Am(X) if X =cp or X =1,, 1 <p < .

2.4 Connecting the sets via direct sums

In this section, we introduce a natural approach to connect the sets
A (W, Z) and A, (W @ Z) for some choices of direct sums and of the
Banach spaces W and Z. Throughout the section, we will be using the
following notation. Given two Banach spaces X; and X5, consider the
mappings P; € L(X; ® X, X;) such that Pj(x1,29) := x;, i = 1,2, and
t; € L(X;, X1 @ X;) such that ¢;(x) := ze;, where e; = (1,0) and ey =
(0,1). For Banach spaces W and Z, if we have an operator T' € L(W, Z),
then there is a simple way to define T' e L(W @ Z,W & Z): consider
T := 10T o Py, that is, T(w, z) = (0,T(w)) for every (w,z) e W Z.
Conversely, we can define a pseudo-inverse process as follows: if we have
an operator S € L(IW @ Z, W @ Z), then we can consider Se LW, Z)
defined as S := PyoSouy, that is, S(w) = (PyoS)(w,0) for every w e W.
We start with the following result, which establishes a bond between the
assertions T' € Ay (W, Z) and T € Aw(W @, Z) under some assumptions

on the spaces.
Proposition 2.4.1. Let W and Z be two Banach spaces, and let T €
SL(W,Z)- Then,
(i) If T € Aw(W @, Z), then T € Ay (W, Z).
(ii) Suppose that W and Z are uniformly smooth Banach spaces. If
T e .AH.H(W, Z), then Te A (W @1 Z).

Proof. (i). Assume T € An, (W@, Z) and for a given € > 0, set (e, T) :=
n(e,T) > 0. Pick wo € Sy to be such that |T(wo)| > 1 — n(e,T). Let
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24 € Szx be such that |z5(T(wo))| = |T'(wo)|| > 1 —n(e,T). Let wj €
Sw# be such that wg(wy) = 1 and consider the point ((wg, z5)((wo,0)) €
II(W @; Z). Since T € Ap, (W @; Z) and

~ ~

|(wg, 26)(T (wo, 0))| = |25(T (wo))| > 1 =n(e,T) =1 —n(e,T),

there is (wi, 25)((wy, z1)) € (W @1 Z) such that

~ ~

v(T) = [(wy, 27)(T (w1, 21))], [[(w1,21) = (wo,0)[1 <

and
I(wi, 2§) = (wg, 28)]lo < &

~

So 1 = [(wf, 2{)(T (w1, 21))| = [z{(T(w1))| < |27[|T(w1)]| < 1. Then,
IT(wy)| =1 and 23 = 0. So |wy; — wy| < . This proves that T €
A (W, 2).

(ii). Suppose T' e A (W, Z). 1t is not hard to check that T attains its
numerical radius and v(T) = 1. Indeed, note that v(T) < |T| = |T| = 1.
On the other hand, if wy € Sy is such that |T'(wg)| = |T| = 1, then
we take z§ € Sz+ to be such that |z5(T(wp))| = [|T(wo)| = 1 and we
consider the point ((wyo,0), (wg, z5)) € II(W @, Z), where wj € Sy«

is such that wi(wg) = 1. So 1 = [z5(T(wo))| = |(wg, 25)(T((wo, 0)))].

Given ¢ € (0,1), we set the positive number

ne T) =
i {n (mm{fﬁv*(&)ﬁz*(e) 6},T)75W*(6)’5z*(6) 6}’

2 2 2 2 2 2

where € — dy=(¢) and € — dz«(¢) are the modulus of convexity of W*
and Z*, respectively. Let ((wy, z1), (w7, 25)) € I(W @ Z) be such that

~

2T ()] = | (25), T, 20)| > 1= (e, ),
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As we have
w0l > £ )] > 1= g (min | 55,2208 2 7).

there is wy € Sy such that

5W*(5) (52*(8) 3
2 7 2 ’2}'

|T(ws)| =1 and |jwy —wy| < min{ —

Since |Jwy|| = |23 (T(w1))| > 1 —n(e, T), we have that |z < n(e,T). Let
wj € Sy+ be such that w3 (we) = 1, then

wi + ws - wi + ws (wy)| = 2 —2f (%) + wf(wg — wy)
2 2
) ;

N (ZT(Zl) wi (wy — wy )

- 1_'(;:1"(21) w2i‘ wy — Wy )

+
>1-— <”Zl| ||1202 wl) > 1 — dw=(e),

which implies that |wj —w| < e.

Let 6 € R be such that (T (ws)) = €|z (T (w-))|. Notice that
|21 (T (w2))| = |27 (T (w))] = |27 (T (w2 — wi))| = 1 = dzx(e).
Now, let z¥ € Sz« be such that 23 (T(ws)) = €. Observe that

> (552 ) ) - HETE

* *
2] + 29
2

2
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hence |z5 — 27| < e. Finally, considering the point ((ws,0), (w3, 23)) €
(W @, Z), we conclude that T' € A (W @, 2). [ |

Remark 2.4.2. Proposition 2.4.1.(ii) no longer holds in general if we
consider arbitrary Banach spaces instead of uniformly smooth ones.
Indeed, consider the real Banach space ¢;. In (2.2.2) we provided an
operator that belongs to Aj.(¢1,¢1) but not to A,,(¢1). We will show
that this operator does not satisfy the property stated in Proposition
2.4.1.(ii). Let S € L(¢y,¢;) be the operator defined in (2.2.2). Note that
if ((x,y), (x*,y*)) € I1(¢; @, ¢1) satisfies

(=%, y*)(S(a,y))| = ly*(S Z

~1, (2.4.1)

then, one gets easily that y*(j)z(1) has to be equal to either 1 or —1 for all
j € N. From here, we get that the only possibilities have the form x = sey,
y =0, 2% = (s,2%(2),2%(3),...), and y* = (r,r,r,...) with |z*(j)] < 1
for all j > 1, where s,r € {—1,1}. Now, we argue by contradiction.
Suppose that for a given € € (0, 1), there is (e, §) > 0. Let ng € N be
such that Z] L 27 > 1—n(e, §), and set w = e, z = 0, w* = e}, and
z* =ef +...+e) . It is immediate to check that ((w,z2), (w*,z%)) €
I1(¢; ®, ¢) and also that |(w*, 2*)(S(w, 2))| > 1 — (e, S). Then, there
must be some ((z,y), (z*,y*)) € [1(¢; @, ¢1) satisfying (2.4.1) and such
that [(w,2) — (z,y)|l1 < e and ||(w*, 2*) — (z*,¥*)| < . But this is
already a contradiction, since |(z* — w*,y* — 2*)|x = |y* — 2%l = 1.
Therefore S ¢ Anu(l1 @1 £1) as desired, even though S € Ay (¢4, ¢1).

Notice that the situation for operators T is different.

Remark 2.4.3. There exists an operator S € L(IW @&, Z,W @&, Z), with
both W and Z being uniformly smooth Banach spaces, such that S e
Anu(W @1 Z) but § ¢ AHH<W, Z) Indeed, let S € ,C(ég @1 £27£2 @1 62)
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be defined as
S($7y) = ((x<1)707 O: o ')7 (0707 07 o ))7 V(x,y) € EQ @1 627

where (5 is a real space. Note that v(S) = 1 and S attains its numerical
radius. For ¢ € (0,1), suppose that |(z*,y*)(S(z,y))] > 1 —¢ > 0 for
some ((z,y), (*,y*)) € II(ly @1 ls). Then |z(1)] >1—¢, [2*(1)]| > 1—¢
and ||y| < e. Note also that

L= [e()f + ) e = lz()]° > (1 —¢)?
n#l

which implies that (Zn;él |I(n)|2)1/2 < (26— 52)1/2.

On the other hand,

1= a(n)z*(n) + Y y(n)y*(n) < [l + lylly*| < =) + [yl = 1

n n

From this, we have |z*| = |y*| = 1. As above, we can see that

1/2
(Z |x*(n)\2> < (26 — 22,

If we define pairs of vectors

0= (e 00) 0) e
== ((fapoe)»)

then |(z,y) — (%, 9)] < + vZ and |(2*,y*) — (%, 5¥)] < V2.

It is clear that ((%,7), (%, y*)) € II(ly @, £5) and | (2%, y*)(S(Z,7))| = 1.
This proves that S belongs to Ay, (¢s @ ¢2). However, Se Ly, 05) is
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the operator such that
§$: (PQOS)<x70) :P2((x(1)70707'")7(070707"'» =0

for every z € {5; hence S = 0, and the null operator cannot belong to

'AH'H (Lo, £5).

We proceed now to prove the analogous results for /,,-sums but under

different hypothesis on the underlying spaces.

Proposition 2.4.4. Let W and Z be two Banach spaces, and let T €
SE(W,Z)- Then:

(i) If T € Aw(W @ Z), then T € Ay (W, Z).

(ii) Suppose that Z is uniformly convex and W is uniformly smooth.
If T e .AH.”(VV, Z), then ff € .Anu(W P Z).

Proof. (i). Suppose T € Ap (W@ Z). Givene € (0,1), we set (e, T') :=
n(e,T) > 0. Let wy € Sy be such that |T(wo)| > 1 — (ET) . Take
20" € Sz« to be such that

(1)

20" (T (wo))| = [T (wo)| > 1 ===

By the Bishop-Phelps theorem there is z§ € Sz« and 2y € Sy such
that |25(2)| = 1 and |28 — %] < "(2 Since zi(Z) = € for some

0 € [0,2m), we take zg 1= e~ 97:0 € Sz which satisfies z(z9) = 1 and

|26 (T'(wo))| = 125" (T'(wo)) + (25 — 2")(T'(wo))|
207 (T (wo))| = |25 — 27|
>1—n(e,T).

WV
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~

Consider the point ((wo, 20), (0, z5)) € II{W @ Z). Then, since v(T') = 1

and

~ ~

(0, 25) (T (wo, 20))| = |20 (T(wo))| > 1 = (e, T) =1 —n(e, T),

there exists a state ((wy,21), (Wi, 2F)) € T(W @y Z) satisfying that

~

|(w>1kazf)<T(w1721))| =1, H(wlvzl) - (wOaZO)HOO < ¢ and H(wikvzf) -
(0,25)llh < e So, since 1 = [(wf, 27)(T(w1, 21))| = [z (T(w1))] <
[T (wy)| < 1, we get that |T(wy)|| = |wi| = 1. Finally, ||w; — wp| <

|(w1, 21) — (wo, 20) s < €. This shows that T € Aj.| (W, Z).

~

(ii). Suppose T' € A (W, Z). 1t is not difficult to see that v(7") = 1 and
that 7" attains its numerical radius. Indeed, we always have v(T) < |T| =
|T| = 1. Now take wy € Sy to be such that |T'(wg)|| = |7 = 1. Let 2§ €
Sz be such that |25 (T (wo))| = |T'(wo)| = 1. Since Z is reflexive, there
is zp € Sz such that z§(z9) = 1. Consider the point ((wo, 20), (0, z5)) €
(W @y Z). Then |(0, z5)(T((wo, 20)))| = |25 (T(wo))| = 1.

Now let € € (0,1) be given and set 7(e, T) as the positive real number

n(e, T) := min {ey, 7 (g0, T)}, where

i (L (s {229 21 920 )

Let ((wy, z1), (wf, 2F)) € I(W @y Z) be such that

~ ~

2T ()] = |, 1) (T, 20)| > 1= n(e, D).

Since |T(wy)| = |zF(T(ur))| > 1 —n(e, T), there is wy € Sy such that
T ()] = 1 and s —wy] < eo. Since 5] > |4(T(w)| > 1 - (e, ),
we get that |wf| < n(e,T) < 5. Let 0 € R be such that 2f(T'(w;)) =
|2# (T (ws))]e®. Pick z¥ € Sz« to be such that 2% (T (w2)) = € and notice
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that [z (T (we))| > 1 =259 > 1 — 0% (min {622(8), %}) . Thus,

gtz |23 (T (w))| + 1

9 (T'(we))| =

=1 6 (min {522(5) , ;}) . (2.4.2)

This implies that |23 — z{| < min {622(5), %}

* *
A

2

=

By using the above estimates,

—10
+ Z1
> zi"(

H T(e Pwy) + 2

2
_ |21(T(w2))|+1_ wi(wy)
2
N |zf<T<u;>>| + 1’ - ’wi‘;wﬂ > 11— 6y(e)

and so |T(e~®wsy) — z| < e. Finally, we conclude that T attains its
numerical radius at the point ((ws, T(e™?w,)), (0, 23)) € I(W @y Z)
which is close to (w1, z1), (w¥, 2})): hence T € Apy (W ®up Z). [ |

Remark 2.4.5. Similar to what happened on Proposition 2.4.1, the item
(ii) from Proposition 2.4.4 is not true in general for arbitrary Banach
spaces. Indeed, consider the real Banach space ¢;. Like we did in
Remark 2.4.2, we will show that the operator introduced in (2.2.2)
does not satisfy the property stated in Proposition 2.4.4.(ii): Let S €
L(¢y,0,) be the operator defined in (2.2.2) and let S € L£(¢; ®x £1, {, D
/1) be defined accordingly. Notice as before that if ((x,y), (z*,y*)) €
(6, @2, 1) satisfies |(2*,y*) (S(x. )| = [y*(S(x))] = )Zw )
1, then y*(j)x(1) has to be equal to either 1 or —1 for all j € N. From

here, we get that the only possibilities have the form x = se;, y =
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(y(1),9(2),y(3),...) with 377, y(j) = 7, 2* = 0, and y* = (r, T ),
where s,r € {—1,1}. Assuming that for € € (0, 1), there exists n(e, ) > 0,

we get a contradiction in the same manner as in Remark 2.4.2.

Once again, notice that the situation for operators T is different.

Remark 2.4.6. There exists an operator S € LIW @, Z, W@, Z), with W
uniformly smooth and Z uniformly convex, such that S € A,,(W @y Z)
but S ¢ A (W, Z). Indeed, the same argument used in Remark 2.4.3
shows that S € L(l @y Lo, la Do l2), which is defined as

S(I,y) = ((m(1>70707 ) ")7 (070707 ) ))7 V(l‘,y) € 62 Do 627

where /5 is a real space, belongs to Ay, (fo @ l2). However, S = 0 cannot
belong to A|.|(fa, l2).

We finish the chapter by noting that Propositions 2.4.1.(ii) and 2.4.4.(ii)
are no longer true for p-sums with 1 < p < c0. Indeed, let X be a
uniformly convex and uniformly smooth Banach space and consider the
identity operator Idx € £(X,X). Clearly, Idx belongs to A} (X, X).
On the other hand, Idy € L(X®, X, XP,X) is defined as Idx (21, 22) =

(0,21) for all 21,25 € X. Then v(Idy) < |ldx| = |Idy| = 1. If
|(z7, 23)(Idx (21, 22))| = 1 for some ((x1, x2), (2F,23)) € (X @, X), we
would have |23 (z1)| = 1, which would imply |z3|| = ||z1| = 1. Because of

this, we would have =} = x5 = 0 since ||z7||7 + |23]|7 = 1 = |z1|? + 22|
with % + % = 1, contradicting the assumption z3(x1) + x5(x2) = 1.
So, INdX cannot attain its numerical radius; hence it cannot belong to

A (X @, X).



Chapter 3

The Bishop-Phelps-Bollobas
property for numerical radius

and compact operators

3.1 Introduction and motivation

Let X be a Banach space over the field K = R or C. Recall that the
numerical index of X is defined as
X):= inf T) = kE=0: k|T| <
n(X)i= il v(T) = max | 7] < (1)),
For the purposes of this chapter, where we will mainly deal with compact
operators, we need a compact version of n(X). Following [26], we define
the compact numerical index of X as

= i = = <
nc(X) : Teé,?(iyx)”(T) DA {k=0: k|T| <v(T)}.
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We refer to [26], [82], [81], [89, Subsection 1.1], and references therein

for more information and background on both of these terms.

In his 1972 PhD dissertation, Sims asked when the set of numerical radius
attaining operators on a Banach space X is dense (see [111]). Many
authors have contributed to this question ever since (see for instance
Acosta’s PhD dissertation, where this question is studied systematically,
[1]). With this in mind, and inspired by [5], Guirao and Kozhushkina
introduced and studied in 2013 a numerical radius version of the Bishop-

Phelps-Bollobéas property (see [69]). We recall its definition.

Definition 3.1.1 (Combining [69, Definition 1.2] and [87, Definition
5]). A Banach space X has the weak Bishop-Phelps-Bollobds property
for the numerical radius (weak BPBp-nu, for short) if given € > 0, there
exists n(¢) > 0 such that, whenever T' € L(X, X) with v(T) = 1 and
(x,2*) € II(X) satisty |z*(T(z))] > 1 — n(e), there exist S € L(X, X)
and (y,y*) € II(X) such that

v(8) = ly*(SWI, e —yl <& [o* =yl <e, [T-5]<e

If, moreover, S can be chosen so that v(S) = 1, we say that X has the
Bishop-Phelps-Bollobds property for the numerical radius (abbreviated
BPBp-nu, although some authors use the notation BPBp-v as well).

Since then, several works have been done in order to study what spaces
satisfy that property. We summarize next some of the most important

results on the matter:
(i) All the spaces ¢(I") and ¢1(I") have the BPBp-nu (see [69)]).
(ii) L1(R) has the BPBp-nu (see [55]).

(iii) Finite-dimensional spaces have the BPBp-nu (see [87]).
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(iv) The real or complex space L, () has the BPBp-nu for every measure
p when 1 < p < oo ([87, Example 8] except for the real case with
p = 2, which is covered in [89, Corollary 3.3]).

(v) Any uniformly convex and uniformly smooth Banach space X with
n(X) > 0 has the BPBp-nu (see [87]).

(vi) Every separable infinite-dimensional Banach space can be renormed
to fail the BPBp-nu, even though the set of numerical radius
attaining operators is always dense in spaces with the Radon-

Nikodym property (see [87]).

(vii) The real space C'(K) has the BPBp-nu if the compact Hausdorff
space K has local compensation, which happens for instance if K
is metrizable ([13]).

We refer to the cited papers [13, 55, 69, 87, 89], the papers [7, 34, 88],
the surveys [3, 40], and references therein for more information and

background.

In 2018, Dantas, Garcia, Maestre and Martin [39] studied the BPBp for
compact operators. They presented some abstract techniques (based
on results about norm-attaining compact operators by Johnson and
Wolfe [77]) which allow to carry the BPBp for compact operators from
sequence spaces (such as ¢y and £,,) to function spaces (such as Cy(L,Y)
and L,(u,Y')). As one of the main results, it is shown in [39] that the
BPBp for compact operators of the pair (¢, Y") is sufficient to get the
BPBp for compact operators of all the pairs (Cy(L),Y") regardless of the

locally compact Hausdorff topological space L.

The numerical radius attaining compact operators have also been studied
in the recent years (see [22]). Our aim in this chapter is to study the
following property, inspired both by the BPBp for compact operators
and by the BPBp for numerical radius.
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Definition 3.1.2. A Banach space X is said to have the weak BPBp-nu
for compact operators if for every 0 < e < 1, there exists n(e) > 0 such
that whenever T' € IC(X, X) and (z, z*) € TI(X) satisfy v(T) = 1 and
|z*(T'(x))| > 1 —n(e), there exist S € K(X, X) and (y, y*) € II(X) such
that

v(8) =ly* (Sl T =5l <e Je—yl<e |27y <e

If, moreover, S can be chosen so that v(S) = 1, we say that X has the
BPBp-nu for compact operators.

The first work where a somewhat similar property was introduced is
[7], where the BPBp-nu was considered for subspaces of £(X, X) and

studied in the case of Li(u), with p a finite measure.

In this chapter, we will study the BPBp-nu for compact operators, and
we will provide an extensive list of Banach spaces that satisfy it. The
rest of the chapter is structured as follows. In Section 3.2, we will
show that a wide collection of classical Banach spaces have the property,
including finite-dimensional spaces, ¢o(I") and ¢, (I") spaces, and L,(u)
spaces (1 < p < 0, u any measure). At the end of the chapter, we will
show that all Cy(L) spaces also have the property (see Theorem 3.4.7). In
order to prove that, we need two kinds of ingredients. First, we provide in
Section 3.3 some abstract results that will allow us to carry the BPBp-nu
for compact operators from some spaces (for example, some sequence
spaces) into some other spaces (for example, some function spaces). The
most general result we have of this kind is Lemma 3.3.1, which will be
the first ingredient for the proof of Theorem 3.4.7. This lemma extends
[39, Lemma 2.1], but it needs more restrictive hypothesis in order to deal
with the numerical radius instead of with the norm of the operators. We
also provide in that section some useful particular cases and applications

of Lemma 3.3.1 which allow to show, for instance, that every predual of ¢,
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has the BPBp-nu for compact operators (see Corollary 3.3.6). The second
ingredient for the proof of Theorem 3.4.7 is some strong approximation
property of Cy(L) and its dual which will be provided in Section 3.4 (see
Theorem 3.4.5) and which will allow us to apply Lemma 3.3.1 in this
case, thus providing the proof of Theorem 3.4.7. Let us also comment
that Theorem 3.4.5 gives a much stronger approximation property of
Co(L) and its dual space than [39, Lemma 3.4].

3.2 First results

In this section, we will provide an extensive list of Banach spaces that
have the BPBp-nu for compact operators. First, by carefully examining
the known proofs of spaces that have the BPBp-nu, we can already show
that many of those spaces also have the BPBp-nu for compact operators

with some adaptations.

Examples 3.2.1. The following spaces have the BPBp-nu for compact

operators:

(i) Finite-dimensional spaces.
(ii) co(T") and ¢4 (T") for every index set I'.

(iii) Lq(p) for every measure p.
Proof.

(i) It follows from [87, Proposition 2] and the fact that every operator

T : X — X is compact if X is finite-dimensional.

(ii) This follows from [69, Corollary 3.3] and [69, Corollary 4.2], since
in the proof of those results, if the original operator 7" is compact,

the new operator they build is also compact.
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(iii) The case of finite measures was already studied in [7, Corollary
2.1]. From there, it suffices to follow the reasoning in the proof of
[87, Theorem 9], keeping in mind that if the original operator Tj

is compact, so is the new one they build. [ |

Adapting now the results from [87] and [89], one also has that the L,(u)
spaces have the BPBp-nu for compact operators when 1 < p < oo, as we
will see in Proposition 3.2.8. We need some preparatory work to do so.
It is shown in [87, Proposition 4] that uniformly convex and uniformly
smooth Banach spaces have the weak BPBp-nu. This result also holds

for the compact operators version by an easy adaptation of the proof.

Proposition 3.2.2. If a Banach space is uniformly convex and uniformly

smooth, then it has the weak BPBp-nu for compact operators.

Proof. We can follow the proof of [87, Proposition 4], just keeping in
mind that if the original operator Tj is compact, then the rest of operators

T, from that proof are also compact, and so, S is compact too. |

Later, in [87, Proposition 6], it is proven that in Banach spaces with
positive numerical index, the BPBp-nu and the weak BPBp-nu are
equivalent. This claim is also true for the compact operators versions of

the properties if we use the compact numerical index.

Proposition 3.2.3. Let X be a Banach space such that nic(X) > 0.
Then X has the BPBp-nu if and only if it has the weak BPBp-nu.

Proof. Tt suffices to follow the proof from [87, Proposition 6] but with
both 7" and S being now compact operators, and using n(X) instead

of n(X) in all instances. [

As a consequence of these two results, similarly to [87], we get that all

L, (1) spaces have the BPBp-nu for compact operators when 1 < p < oo
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in the complex case and when 1 < p < o0, p # 2, in the real case. This

is so because, on the one hand, in the real case,

ne(Ly() = n(Ly(n) >0 (1<p<on, p#2)

by [99] and, on the other hand, nxg(X) = 1/e > 0 for every complex
Banach space (see [82, Eq. (1) in p. 156], for instance).

This provides the proof of Proposition 3.2.8 except for the real space
Ly (). Our next aim is to show that real Hilbert spaces also have the

BPBp-nu for compact operators, by adapting the ideas from [89].
First, given a real Banach space X, we consider the following subset of
K(X,X):

Zr(X) = {T e K(X,X): v(T) = 0},
which is the set of all skew-hermitian compact operators on X. Observe
that Zi(X) = K(X, X) n Z(X), where Z(X) ={T € L(X,X): v(T) =
0}. Adapting the concept of second numerical index given in [89], we

define the second numerical index for compact operators of a Banach

space X as the constant

nje(X) == inf{v(T): T € K(X, X),|T + Zc(X)| = 1}
=max{M = 0: M|T + Zx(X)| < v(T) for all T € K(X, X)},
where |7 + Z(X)| is the quotient norm in K(X, X)/Z(X).

The next result is a version for compact operators of [89, Theorem 3.2].

Proposition 3.2.4. Let X be a real Banach space with nj-(X) > 0.
Then, the BPBp-nu for compact operators and the weak BPBp-nu for

compact operators are equivalent in X .
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Proof. 1t suffices to adapt the steps from the proof of [89, Theorem 3.2]
to the case of compact operators. That is: all the involved operators T,
S, Sy and Sy are now compact, the set Z(X) is replaced by Zi(X), and
the index n'(X) is replaced by nj-(X). [

We are going to see next that the second numerical index for compact

operators of a real Hilbert space equals one.

Proposition 3.2.5. Let H be a real Hilbert space. Then, nj-(H) = 1.

The proof of this result will be an adaptation of the one of [89, Theorem
2.3]. Recall that in a real Hilbert space endowed with an inner product
(-, -y, H* is identified with H by the isometric isomorphism x — (-, ).
Therefore, II(X) = {(x,2) € H x H: x € Sy}, and so, for every T €
L(H, H), one has v(T') = sup{|{T'(x),x)|: x € Sy}. We first need to
give the compact operators version of [89, Lemma 2.4] whose proof is an

obvious adaptation of the proof of that result.

Lemma 3.2.6. Let H be a real Hilbert space.

(i) 2c(H)={TeK(H,H): T =-T%}.

(i) If T e K(H, H) is self-adjoint (i.e. T =T%*), then |T| = v(T).
We are now ready to present the proof of Proposition 3.2.5.

Proof of Proposition 3.2.5. Tt suffices to adapt the proof of [89, Theorem
2.3] to the compact operators case, that is: the involved operators T and
S are now compact, and the set Z(X) is replaced by Zi(X). |

As a consequence of Propositions 3.2.2, 3.2.4, and 3.2.5, we get the
following result which finishes the proof of Proposition 3.2.8.
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Corollary 3.2.7. If H is a real Hilbert space, then it has the BPBp-nu

for compact operators.

As a consequece of this all, we get the result we wanted.

Proposition 3.2.8. L,(u) has the BPBp-nu for compact operators, for

every measure p and 1 < p < 0.

3.3 Technical tools

In this section, we will provide an abstract result that will allow us later
to carry the BPBp-nu for compact operators from some sequence spaces
to function spaces, or from some projections of a space to the space itself.
The most general version that we are able to prove is Lemma 3.3.1 below,
which is inspired by [39, Lemma 2.1], but it needs more requirements.
We recall some needed notation first. An absolute norm |- |, is a norm
in R? such that [(1,0)], = |[(0,1)|s = 1 and |(s,t)|. = |(|s],]¢|)] for
every (s,t) € R%. Given a Banach space X, we say that a projection
P on X is an absolute projection if there is an absolute norm | - |,
such that |z = |(|P(2)], |z — P(m)”)!a for every x € X. Examples of
absolute projections are the M-projections, the L-projections and, more
in general, the £,-projections. We refer the reader to [39] for the use of
absolute norms with the Bishop-Phelps-Bollobés type properties and to

the references therein for more information on absolute norms.

Lemma 3.3.1. Let X be a Banach space satisfying that ne(X) > 0.
Suppose that there is a mapping n: (0,1) — (0,1) such that given 6 > 0,
xi, ...,z € Bxx and x4, ..., vy € Bx, we can find norm one operators
P: X — P(X), i: P(X) — X such that for P:=ioP: X — X,

the following conditions are satisfied:
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(i) [P*(x%) — 23| < 9§, forj=1,...,n.
(ii) |P(z;) —zjl| <9, forj=1,...,¢.
(iii) Poi=TIdpy,.
(iv) ]B(X) satisfies the Bishop-Phelps-Bollobds property for numerical
radius for compact operators with the mapping n.

(v) Either P is an absolute projection and i is the natural inclusion,

~

or n(P(X)) = ne(X) = 1.
Then, X satisfies the BPBp-nu for compact operators.

Let us comment on the differences between the lemma above and [39,
Lemma 2.1]. First, condition (ii) is more restrictive here than in that
lemma that only dealt with one point. Second, the requirements of
item (v) on the compact numerical index or on the absoluteness of the
projections did not appear in [39, Lemma 2.1, but they are needed
here as numerical radius does not behave well in general with respect to

extensions of operators.

Proof. Given € € (0, 1), let g¢(g) be the unique number with 0 < g¢(g) <
1 such that

2 1
“(€) (3 - 50(5))”K(X)) -

which, in particular, exists and satisfies that £¢(¢) < . From now on,

we write gy instead of g¢(g). We define next for each ¢ € (0,1)

(X)) (n(2))” WMX))Q} | (3.3.1)

7' () := min { = , =

where 7 is the function appearing in the hypotheses of the lemma. We fix

T e K(X,X) with v(T) = 1 (thus, |7 < m) and (z1, z7) € II(X)
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such that
|27 (T (1)) > 1=/ (e).
Since T*(Bxx) is relatively compact, we can find z3, ..., x¥ € Bx« such
that
. /
in |IT*(z*) — 2| <n'(e) forall 2" € Bxs.

Similarly, since T'(By) is relatively compact, we can find 5, ..., xy € Bx
such that

. /
Join, |T(x) —x;| <n'(e) forall z € By.

Let P: X — P(X),i: P(X) — X and P := ioP: X —> X satisfying

the conditions (i)-(v) for z1,...,2y € Bx, xf,...,2% € Byx and § = 1/(¢).

Now, for every z* € Byx, we have

|77 (2%) = PH(T" (7))
< min {|T*(2*) = af| + |2} — P*(a})] + | P*(2}) — P*(T*(z*))|}

2<y<n

< 31'(¢),

and hence, |T' —TP| = |T* — P*T*|| < 3n'(¢). On the other hand, for

each x € By, we have

|T(x) = P(T(2))]
< in {|T(x) — ;] + |z; = P(a;)| + [ P(x;) = P(T(2))[}

2<5 <l

< 31'(e),
and then, |T"— PT'| < 31/(¢). Therefore,

|PTP—T| < |PTP—PT|+|PT—T| < |TP—T|+|PT—T| < 61/ (¢).
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Consider (P(z), i*(2%)) € P(X) x (P(X))*. Note that it is not true in
general that (P(z,), i*(2%)) € II(P(X)), but we have that |P(z;)] < 1
[i*(x%)] < 1, and also, that

23 (i(P(21))) = 25 (21) — 25 (i(P(21)) — 21),
! AN )

~
=1 [Pz1—z1]<n’(e)

and so, Re(z*(i(P(z1)))) = 1 — 1/ (e).

By the Bishop-Phelps-Bollobas Theorem (in particular, the sharp version
from [25, Corollary 2.4.b]), there is (y, y*) € II(P(X)) satisfying that

€0

max {[y = P(a)], ly* = (@Dl | < V27 () < 3

Next, we observe that the following two inequalities hold:

|P*(y*) = 2} < |P*(y*) = P (@})] + | P*(i*(a})) - 7]

\/T e 250, (3.3.2)
lity) = a1 < [i(y) = i(P(@)] + [i(P(1)) = 2]
(3.3.3)

2
<A/27/(e) +1'( 550

~

Let Ty := PoToi: P(X) — P(X).

Claim: we have that

(@) > 1= () and (@) > 1=
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Indeed, from equations (3.3.2) and (3.3.3), we obtain that

[o*(T(21)) = P*(y*(T(i(y))))|
< [25(T(21)) = 25 (T(i))| + 25 (T(i(y)) = P*(y*(T(i(y)))]
< Tl = ity)l + T2} = P*(y*)]

<27 (V2@ + 7).

Now, we can estimate |y*(73(y))| as follows:

y* ()] = [P*(y* (T ()]
> [21(T (931 )| = |21 (T(= ))—f’*( “(T(i(y))))]
> 1—=1'(e) = 2|TIv2n'(e) = 2T ()

From here, using the definition of 7/(¢) given in Eq. (3.3.1) and the fact
that |T] < 1/ni(X), we get both assertions of the claim.

In particular, we get that v(7}) = 1 —eg > 0. On the other hand, we
also have that v(T1) < 1. Indeed, if there were some (g, ¢*) € II(P(X))
with |¢*(T1(q))| > 1, we would get

l¢*(T1(0))| = |¢* (P(T(i(q))))] = [(P*(¢*)(T(i(q)))| > 1,
but v(T) = 1, and
(P*(q"))(i(q)) = ¢*(P(i(q)) = ¢*(q) = 1.

Thus (i(q), P*(¢*)) € II(X), and that is a contradiction.

V(Tzﬁly Clearly, Tis a compact operator

such that v(T) = 1. From the claim, we get that

We define now the operator T:=

€0

" (T(y))| = V(T1)|y*(T1(y))| > y*(Ti(y)) > 1—n <—) .

3
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Now, since P(X ) has the BPBp-nu for compact operators with the
mapping 7, there exist a compact operator S: f’(X ) — ]S(X ) with
v(S) =1 and (2, z*) € II(P(X)) such that

fal *(Q * * € o7 €
v(S) = 2" (S(2)| =1, |z—yl < |2* =y < 30 |S-T < =

o

37

Let ¢ = i(z) € Bx and ¢* = P*(z*) € Bx+. We have that
t5(t) = 2*(P(i(2))) = 2*(2) = 1.

Thus (¢, t*) € II(X), and also, by (3.3.2) and (3.3.3),

. . . . . €0 280
[t=a1]l < t=i(m)l+]ily) —21]l = [i(2) =i+ [i(y) —a] < T+ <,
* ® % [ % % [ % a9 €0 280
[t —arll < 1P*(%) = PRyo)| + PP (y") — 2t < 5+ =~ <e.

We define S =ioSoP: X — X , which is a compact operator. It is
clear that v(S) > 1 since

[£(S(1))] = [z* (PGS (P = [2*(S(2)] = 1.
Also,

|5 =T =[iSP—-T|
< [iSP —iTP| + |[iTP — PTP| + |PTP —T)|

PTP
= iSP — zTP||+‘—PTPH+|PTP T|

< 15—+ 7] ] |4 prr—1)

1
Zaks
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and, since |T| < —+5, 1 —go < v(T1) <1, and 67/(e) < £, we continue

k(X)) EX
as:
€0 €0 , 2 1 )
< — 4+ +6n(e)<eg | =+ < €.
3 T (1= eo)ne(X) UOR (3 (1 — 20)ne(X)

We finish the proof if we prove that v(S) < 1. We consider the following

cases:

o Case 1: if P is an absolute projection and 7 is the natural inclusion,

as a consequence of [26, Lemma 3.3], we get that

~ ~

v(S) =v(ioSoP)=uv(5)=1.

« Case 2: if nc(X) = n(P(X)) = 1, then

v(S) =[5 < [S] =v(s) = 1.
Hence, the result follows in both cases. |

We will now provide some applications and consequences of the previous
lemma. Given a continuous projection P: X — X, if we set P: X —>
P(X) = P(X) c X to be the operator P with a restricted codomain
and i: P(X) — X is the natural inclusion, then, trivially, we have that
P =ioP and that Poi = Idﬁ(x)- This easy observation allows to get

the following particular case of Lemma 3.3.1.

Proposition 3.3.2. Let X be a Banach space with nie(X) > 0. Suppose
that there exists a net {Py}aea of norm-one projections on X satisfying
that { P, (z)} — « for all x € X and {P*(z*)} — z* for all x* € X*,
and that there exists a function n: (0,1) — (0,1) such that all the
spaces P,(X) with a € A have the BPBp-nu for compact operators with
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the function n. Suppose, moreover, that for each o € A, at least one of

the following conditions is satisfied:

(i) the projection P, is absolute,

(ii) nic(Pa(X)) = ne(X) = 1.
Then, the space X has the BPBp-nu for compact operators.

We can now obtain the following consequence of the above result. Given
a Banach space X and m € N, the space ¢7'(X) represents the {,-sum
of m copies of X, and we will write ¢, (X) for the {,-sum of countably
infinitely many copies of X. Similarly, co(X) is the co-sum of countably
infinitely many copies of X. When X = K, we just write ¢ for {7 (K).

Corollary 3.3.3. Let X be a Banach space with ni(X) > 0. Then, the

following statements are equivalent:

(i) The space co(X) has the BPBp-nu for compact operators.

(ii) There is a function n: (0,1) — (0,1) such that all the spaces
00 (X), with n € N, have the BPBp-nu for compact operators with
the function 7.

Moreover, if X is finite-dimensional, these properties hold whenever
co(X) or €y (X) have the BPBp-nu.

Proof. That (ii) implies (i) is a consequence of Proposition 3.3.2 since for
every n € N, the canonical projection on cy(X) which is the identity on
the first n coordinates and 0 elsewhere is an absolute projection whose

image is isometrically isomorphic to ¢Z(X).

(i) implies (ii) is a consequence of [34, Proposition 4.3], as one can

easily see £ (X) as an {y-summand of ¢o(X). Let us comment that the
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function n valid for all ¢ (X) is the function valid for ¢o(X) and this
actually follows from the proof of [34, Theorem 4.1] (from which [34,
Proposition 4.3] actually follows).

Finally, when X has finite dimension, if ¢y(X) or £, (X) has the BPBp-
nu, then condition (ii) holds by using [34, Theorem 4.1] and the fact
that ¢ (X) is finite-dimensional and so, every operator from ¢2 (X) to

itself is compact. [ |

As stated in Examples 3.2.1, that ¢y and the spaces ¢2 for n € N have
the BPBp-nu for compact operators is a consequence of [69, Corollary
4.2] and [87, Proposition 2]. Actually, the fact that all the spaces (7
have the BPBp-nu with the same function 7 follows from [69, Corollary
4.2] and (the proof of) [34, Theorem 4.1]. However, let us note that we

can also get this result as a consequence of our previous corollary.

Corollary 3.3.4. There is a function n: (0,1) — (0,1) such that the
space ¢y and the spaces (), with n € N, have the BPBp-nu for compact

operators with the function n.

Additionally, [34, Proposition 4.3] also implies that whenever ¢ (X) has
the BPBp-nu for compact operators for some n € N, then so does X,

although the converse remains unknown in general (even for n = 2).

Another consequence of Proposition 3.3.2 is the following:

Corollary 3.3.5. Let X be a Banach space with ni(X) > 0. Suppose
that there exists a net {Py}aea of norm-one projections on X such that
a < B implies P,(X) < Ps(X), that {PX(z*)} — z* for all 2* € X*,
and that there ezists a function n: (0,1) — (0,1) such that all the
spaces P, (X) with o € A have the BPBp-nu for compact operators with
the function n. Suppose, moreover, that for each o € A, at least one of

the following conditions is satisfied:
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(i) the projection P, is absolute,

(ii) ne(Pa(X)) = ne(X) = 1.
Then, the space X has the BPBp-nu for compact operators.

Proof. Observe that in order to apply Proposition 3.3.2 we only need
that {P,(x)} — z in norm for all z € X. But this is proven in [39,

Corollary 2.4}, so we are done. ]

The previous result can be used to show that all the isometric preduals

of ¢; have the BPBp-nu for compact operators.

Corollary 3.3.6. Let X be a Banach space such that X* is isometrically
isomorphic to ¢1. Then X has the BPBp-nu for compact operators.

Proof. By a deep result due to Gasparis [63], it is shown in the proof of
[39, Theorem 3.6] that there exists a sequence of norm-one projections
P,: X — X satisfiying that P, P, = P, (and so, P,(X) < P,11(X)),
that P,(X) is isometrically isomorphic to ¢, and also that P*(z*) —
x* for all * € X* (this claim holds since the sets Y,, defined on that

proof satisfy that their union is dense in X* = ;).

Next, as P,(X) is isometrically isomorphic to ¢2, on the one hand we
have that all the spaces P, (X) have the BPBp-nu for compact operators
with the same function 7 as a consequence of Corollary 3.3.4. On the
other hand, n(X) = n(P,(X)) =1 for all n € N (see [82], for instance)
so, in particular, ne(X) = nx(P,(X)) = 1 for all n € N. Finally, by
Corollary 3.3.5, we get the desired result. |
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3.4 Cy(L) spaces

The aim of this section is to provide some strong approximation property
of Cy(L) and its dual (see Theorem 3.4.5) which allow to use Lemma
3.3.1 (or Proposition 3.3.2) to give a proof of Theorem 3.4.7. Before we
get into the results, we will attempt to visualize some of the key ideas

that will be used in the proofs.

In order to prove Theorem 3.4.7, given X = Cy(L) for some locally
compact Hausdorff space L, ¢ > 0, fi,...,fr € Bx and py,...,u, €
By, we will find in Theorem 3.4.5 a projection P € Sy (x x) satisfying
I1P(f;)—fi| <e forj=1,...,¢ and |P*(u;)—p,| <e,forj=1,...,n,
and such that P(Cy(L)) is isometrically isomorphic to some ¢2 (for some
p € N). Now, since ¢£, has the BPBp-nu for compact operators, and since
n(Co(L)) = n(fE)) = 1, we have that nie(Co(L)) = nx(¢5,) = 1, and so,

we can now apply the following simplified version of Lemma 3.3.1:

Lemma 3.4.1. Let X be a Banach space with ni(X) = 1. Suppose
that there is a mapping n: (0,1) — (0,1) such that given any ¢ > 0,
fi,---, fe € Bx and py,...,u, € Bxx, we can find a projection P €

SE(X7X) s.t.:

(i) [P(f;) = fill <&, forj=1,...,¢
(ii) | P*(p;) — pi| <e, forj=1,...,n.
(iii) P(X) has BPBp-nu-K with the mapping 0.

(iv) nc(P(X)) = 1.
Then X has the BPBp-nu for compact operators.

In order to find such a projection P, first we need to cover L with

some conveniently chosen sets where functions and measures have small
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variation. Then, we will find a partition of the unity subordinated to
those sets, and define P in terms of those functions (recall that a partition
of the unity of a topological space A is a set of continuous functions

{#,}7er from A to [0,1] such that >, . é,(z) = 1 for all z € A). The

following diagrams may help to visualize the upcoming proofs.

U, Up_y

1) Compact Ky s.t. f; smallin L\ K, 2) Finite open cover {Uy,...,Up_1}

3) Measurables {A4, ..., Ay} within 4HIfK =Ko U Ky U--- UK,
{U1,...,Up_1,L\ Ko}. Ap, D compacts complete open cover of K with
K, where p; ~ g; have small variation {Up,Up41, .-, Ur}

Figure 3.1. Step 1: Finding the sets {U,}% ,, {K,,}}_,, and K.

r=1» m=1
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Now we need to refine the open cover conveniently.

1) We have L, K, the compacts 2) We find disjoint opens {Zm};:'le
{Km};"f:l and the opens {Ur}f'zl

3) We finish covering K with 4) Wecall Zg,; = L\ U Zs,
a=1

dzg41 € Zgyq if L not compact

s
s=M+1 Dot

covering K,,, each set with a

non-empty sets {Z;}

point not in the others.

Figure 3.2. Step 2: Finding the sets {Z,}51].

ety

Finally, we use Urysohn’s lemma to find a partition of the unity {¢,
such that ps(z) = 0 forall x ¢ Z; (1 < s < 5), pp = 1 on K,,
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I<m<M),p(z) =1 (M+1<s<S+1),and g +...+psg=1
on K. We will define P in terms of those functions (see the proof of
Theorem 3.4.5).

1| ¥Ps+ PM+1 P1 Ps P2 Ym
[ | [ \
[ | [ \
[ \ [ \
[ | [ \
[ Vo) V'
I A
12§ | JRY
| X /Ir/\ I
4 1A ]
0
Y7 PZM+ 125+
K
K, K, Ky
Z, Zy Zym
Zya (Znr11) :
Zs (Zs) (Zs) :
Zs 1 (Zs41)

Figure 3.3. Step 3: Finding the partition of the unity {¢,}51}. Each
function is shaded with a unique texture.

We will now present the formal statements and proofs of all the results
needed in this section.

Lemma 3.4.2. Let L be a locally compact space, let {Ky,..., Ky} be

a family of pairwise disjoint non-empty compact subsets of L, and let

M
K < L be a compact set with | J K,, ¢ K. If {Uy,...,Ur} is a family

m=1
of relatively compact open subsets of L covering K such that for each

m there is an r(m) with K, < Uyny, m = 1,..., M, then there exists
an open refinement {Zy,...,Zs}, M < S < R+ M with Zy,...,Zy

pairwise disjoint, satisfying:

(1) Form =1,....M, K,, € Zp,, and K,, n Zs = & for all s €
{1,...,SH\{m}.
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(2) For all sy > M, there exists zs, € Zs,\ < U Zs>.

S#S0

Proof. As {Kj,..., Ky} are pairwise disjoint, there exist {Vi,...Vy}
pairwise disjoint open subsets of L with K,, < V,, < Uy, m =
1,..., M.

The family {vl, e Van UL (LJ%:1 Km) e Ug) (Ui‘f:l Km>} is an-
other cover of K by open subsets of L subordinated to {U,} ,. We
define the sets Z,, := V,, for m =1,..., M, and W, := U,\ ( L]\j Km>
forr=1,...,R. "

EWycViu...uVyy, then {Vy,... Vi, Wy, ..., Wg} is again a cover of
K. If that happens again and again until Wg, we have that {71, ..., Zy/}

is the cover we were looking for. In other case, let 71 > 1 be the first
M

natural number such that there exists w,, € W\ ( U Vm>, and denote
m=1

Zys1 = W, The family {Vi,... ., Vi, W, , W, 11,...,Wg} is a cover
of K by open sets, and then, so is the family

M, Vs W W\ w3y WR\ w3

Consider now r9 > ry the first natural number such that there exists
Wy, € Wi, \{w,,} and w,, ¢ Viu...0 Vi W, . Let Zyry0 := W, \{w,,}
and proceed as before. In at most R steps, we get {Z1,...,Zs}, M <
S < R+ M, such that

e K,cZ,form=1,...M.

M
. (U Km)stzgfors>M.
m=1

o For all sg > M, there exists w,, _,, € Zso\ ( 9 ZS). [ |
S#S0
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We next provide a result showing the existence of certain partitions of
the unity. We separate the non-compact case (Lemma 3.4.3) and the
compact case (Lemma 3.4.4) for the sake of clarity. We start with the

non-compact case.

Lemma 3.4.3. Let L be a non-compact locally compact space. Let K < L
be a compact set and {Ky,..., Ky} a family of pairwise disjoint non-
empty compact subsets of K. Given a family {Uy,...,Ugr} of relatively
compact open subsets of L that cover K, let {Zy,...,Zs} be a family
of open subsets of L covering K such that they Ssatz'sfy the thesis of

Lemma 8.4.2, and denote by Zs,1 the set L\ <U ZS). Then, there
s=1

exists a partition of the unity subordinated to {Z,}35}, {0 Y55}, such

that:

(1) {¢1,...,0om} have disjoint support.

(2) om(Kyn) =1, form=1,..., M.

(3) For all M < s < S+ 1, there exists zs € Zs such that ps(zs) = 1.
(4) For s =1,...,8, ps(x) =0 for all x ¢ Zj.

(5) (p1+ -+ @s)(x)=1, forallx € K.

S
Proof. By hypothesis, there exists some zg,1 € L\ (U Zs>, since for
s=1

__ R
all s, Z; < |J U,, which is a compact set. Now, we follow the argument

r=1
from the proof of [106, Theorem 2.13], but adapted to our case.

As K € Zy u...u Zg, for each x € K, there exists a neighbourhood
of z, Y, with compact closure Y, c Z, for some s. Consider z1,...,x,
such that K < Y, u ... uY, . Foreach 1 < s < S, let H; be the
union of those Y, which lie in Z,, and if M < 5o < S, we take H,, U
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{25}, With 2z, € Zg\ < U Zs>. Note that the sets Hy,..., Hy and
S#S0
Hyri1 v {zymstlt, ..., He U {zs} are non-empty. By Urysohn’s Lemma,

there are continuous functions gs: L — [0, 1] such that g,(H,) =1 and
9|1z, =0, for 1 <'s < M, and gy, (Hyo U {z}) = 1 and gy, —0
for M < sy < S. Define

‘L\ZSO

©1 = g1,
0o 1= (1 — g1)g9,

ps =1 —g1)(1—g2)-- (1 —gs-1)gs

Clearly, ¢s(x) =0 for all x ¢ Z, for all s =1,...,5, and we have that

pr+-tps=1-(1—g1) - (1-gs)

Since K ¢ Hy U ... U Hg, for each z € K, there exists s = s(z) with

gs(z) =1, and also, for all s = 1,..., M, we have that
{relL:psx)#0} c{xel:gsr)+#0}c Z.

Therefore, the functions {¢1, ..., vy} have disjoint support, and ¢ +
-+ pg=1on K.

We define pgi1:=1—(p1+ -+ ps) = (1—g1) - (1 — gg). Moreover,
K,cZy,form=1,..., M,and K,,nZ, = Jform #s,m=1,..., M,
s=1,...,5. Hence,

S
Om(x) = Egos(x) =1, VexeK,, m=1,...,M.
s=1
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On the other hand, if M < sg < S, let zy, € Z,\ ( U ZS). We have

SF#S0
that
S
9080 280 Z 250 -

and

S

2541 ¢ U Zs, thus wsi1(zs11) = 1. u
s=1

The next result is the version of the previous lemma for compact topo-

logical spaces.

Lemma 3.4.4. Let L be a compact space. Let {Ky, ..., Ky} be a family
of pairwise disjoint non-empty compact subsets of L. Given a family
{U,...,URr} of relatively compact open subsets of L that cover it, let
{Z1,...,Zs} be a family of open subsets of L covering K such that they
satisfy the thesis of Lemma 3.4.2. Then, there exists a partition of the
unity subordinated to {Z,}5_,, {ps}5_,, such that:

(1) {e1,...,0m} have disjoint support.

(2) om(Kpn) =1, form=1,... M.

(3) For all M < s < S, there exists zs € Zs such that pg(zs) = 1.
(4) For s =1,...,8, ps(x) =0 for all x ¢ Zj.

(5) (p1+ -+ @s)(x)=1, forallz e K.

Proof. We can follow the proof of Lemma 3.4.3 taking K = L and
adapting the steps from that proof, keeping in mind that now Zg,1 = &
(and hence there is not such a point zg,1), and that the mapping @g1

is identically 0, and hence, it can be omitted. |
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The following result provides the promised approximation property of
Co(L) and its dual.

Theorem 3.4.5. Let L be a locally compact space. Given {fi,..., fo} <
Co(L) such that | f;]| < 1 for j = 1,...,¢, and given {uy,...,u,} <
Co(L)* with || <1 forj=1,...,n, for each e > 0 there exists a norm
one projection P: Cy(L) —> Cy(L) satisfying:

(1) [P*(ps) — i <&, forj=1,...,n,
(2) |P(fy) = fil <&, forj=1,....4,

(3) P(Co(L)) is isometrically isomorphic to (&, for some p € N.

Let us comment that this result extends [39, Lemma 3.4] (which, actually,
was itself an extension of [6, Proposition 3.2] and [77, Proposition 3.2]).
The main difference is that here we are able to deal with an arbitrary
number of functions of Cy(L) in (2), while in that lemma only one
function is controlled, and besides, this was done with the help of
an inclusion operator which is not the canonical one. However, this
difference is crucial in order to apply Lemma 3.3.1 (or its consequence
Proposition 3.3.2).

The following observation on the theorem is worth mentioning.

Remark 3.4.6. Let us observe that by just conveniently ordering the
obtained projections in Theorem 3.4.5, we actually get the following:
given a Hausdorff locally compact topological space L, there is a net
{P,}aen of norm-one projections on Cy(L), converging in the strong
operator topology to the identity operator, such that {P}},cn converges
in the strong operator topology to the identity on Cy(L)*, and such that
P,(Co(L)) is isometrically isomorphic to a finite-dimensional (., space.
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Proof of Theorem 3.4.5. We will assume first that L is not compact.
Since f; € Co(L), j = 1,...,¢, there exists a compact set Ky < L such
that

sup {|f;(@)]: w e D\Ko} < Z
=1,....0

J=45
For each x € K, there exists a relatively compact open subset U, of L

containing x and such that
€ .
i) = f) <5 foryeUpandj=1,..,¢

Therefore, {U, }+ek, is a cover of K, and so, there exist a finite subcover
{U1,...,Ug_1} such that Koy < Uy u...uUg_1, and if x,y € U, for some

r, then |f;(@) — f(y)] < 5, for j = 1,...L.

We define p := 37, [u;] € Co(L)*. Since for each j e {1,...,n} p; is
absolutely continuous with respect to p, by the Radon-Nikodym Theorem,
there exists g; € Ly (p) such that p; = g;pu, that is,

i) = | S = | F@g@dute) forall 7 < (L)

Since the set of simple functions is dense in L;(u), we may choose a
set of simple functions {s;: j = 1,...,n} such that |g; — s;||; < § for
j=1,...,n.

Next, we consider a family {A,,}}_, of pairwise disjoint measurable sets
with p(A,,) > 0 for all m, such that each A,, is contained in one of
the elements of the following cover of L: {Uy,...,Ugr_1, L\Ky}, and also
{amj:m=1,...,M, j=1,...,n} such that s; = Zyj‘r{:lam,jXAm‘ This
cover satisfies that if x,y € L\Ky, or if ,y € U,, then |f;(z) — f;(y)| < §
forallj=1,...,0and allr=1,...,R—1. Let C' > max{|a,,;[: m =
1,...,M,j=1,...,n}.
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Since p is regular, for each 1 < m < M, we can find a compact set K,,, <

Ap such that p(A,\Kn) < 75 and p(K,,) >0 forallm =1,..., M.

R-1
Let K = Kou K u...u Ky. As K\ ( U Ur) is a compact subset
r=1

of L, we can cover it with finitely many relatively compact open sub-
sets of L\Kj that we will denote Ug, Ugy1,...,Up. If we now apply
Lemmas 3.4.2 and 3.4.3 to the family {Uj,...,Up} and the compacts
{Ky,..., Ky} and K, we obtain a refinement of relatively compact
open subsets of L, {Z,...,Zs} with K,,, < Z,, form = 1,..., M
and {Zi,...Zy} pairwise disjoint, and defining Zg,; to be the set

S
L\ (U ZS>, we also have a partition of the unity subordinated to
s=1

{ZS}S {st SS;—ll’ such that:

s=1)
(i) {¥1,--.,on} have disjoint support.
(i) om(Kp)=1form=1,..., M.
(iii) For all M < s < S + 1, there exists z; € Z such that ¢4(zs) = 1.
(iv) For s =1,...,85, ps(z) =0 for all = ¢ Z;.

(V) (14 ... +ps)(K)=1.

Now, we define P: Cy(L) — Cy(L) by

M 1 S+1
PO = 3 e ( L fdu) out 3, [()eu, forall [ CuE)

Let us first check that (2) holds, that is, that |P(f;) — f;| < e for all
j=1,...,0. Let x € L. We will distinguish two cases:
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M
o Case l: if z € |J Z,, then there exists exactly one mg such that
m=1
X € Zpy,- Then, for each j =1,...,¢, we have:
|P(f)(x) = fi ()]
S+1

= |P(f;)(z) — Z fi(@)om(z) — Z fi(@)es(x)

m=1

M(;m) ( p fi(y) dM(Z/)) — fi(z)

N~

o () +

J

N

—
=

S+1
+ Z | fi(z) = fi(2s) s () -
s=M+1 )

For (I), we have

1
(I) = M(Tmo) (meo (fi(y) — fj(x))du(y)>

1 f € €
< — —du(y) = =.
M(Kmo) Kmo 2 ( ) 2

S + 1}. Note that if z ¢ Z,

Now, for (IT), let s € {M +1,...,
then ¢,(x) = 0, and if x € Z,, we have that |f;(x) — f;(z)] < §
) —

|
and 253“1 ps(x) < 1, and so, (II) < 5. Therefore, |P(f;)(

M
filx)| <eforallze |J Z,, forall j=1,... ¢
m=1

Pmo ()

M
o Case2:ifx¢ |J Z,, then for each j = 1,..., ¢, we have
m=1

S+1

[P)() = f@)] = | X, (fil@) = fiz))es(@)] <
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as in item (II) of the previous case.

Summarizing, we get || P(f;) — f;|| < e for j =1,...,¢, getting thus (2).

Now we check (1), that is, that |[P*(u;) — p;] <eforall j =1,...,n.
Indeed, first observe that if v is a regular Borel (real or complex) measure

on L, its associated z € Cy(L)* is defined as

23 (f) = j f@)du(z), Vf e ColL),

and we identify =} = v. In our case, we have that

PO)) = | PO dvta)

S|
_ L ( m; e ( - fdu> gpm(a:)) dv(x)+
S+1
( Y f(zs)sos(m)) dv(x)

M
In particular, if supp(v) < |J K, then by Lemma 3.4.2.(1)
m=1

S+1
> f(z) L ps(r) dv(z) =0, Vfe Cy(L).

s=M+1
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Let now v; := t;u, where ¢; := Z%zl QO i XK, for all 7 =1,... n, that

is,

vi(f) = L (@) <Z am,jXKm(x)) du(z), Vfe Co(L).

M
It holds that P*(v;) = vjfor j = 1,...,n. Indeed, as supp(v;) = |J K,
m=1
we have

P = S o ( medu> [ ente (f az,jmx)) au()

2 (K
_ ﬁl u(fl(m) ( N fdu) L g XK, () dpa()

o (Km)

for all fe Cy(L) and all j =1,...,n.

Now, we know that |[P*] = |P| < 1 and, since P(;) = ¢ for j =

1,...,n, we get that |P*| = 1. Therefore, since P*(v;) = v;, we get

1P*(p5) =t < [ P* (5 — v)| + v — ps]
<P -y — vil| + g — vil| < 2)py — v

But we have

I = vl = lgsm = tinl < llgjp— sl + |sjm = timl
£ 9 9
= ng - SjHl + HSj —thl < 1 + 1 = 3
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since
M M
by = il = [ |5 cmaan, = X e, | i
L \m=1 m=1
M
MCe ¢
< i A NK,) < = -,
" <o
forall j =1,...,n. Hence,

3

foryj=1,...,n.
5 e fory N 1)

1P* (1) — 5] < 2l — vl < 2

Let us finish the proof by checking (3). As u(K,,) > 0, we have K,,, # J,
m = 1,..., M. Hence, we have that z, € Z, for s =1,...,5 + 1 and
that z;, ¢ |J Zs for all s = 1,...,5 + 1. By the definition of P, we

S#S0

have that P(Cy(L)) = span{ps: s = 1,...,S + 1} and we will be done
by proving the following equality:

Jarpr + -+ + assapsiaf,, = max{la,..., lasil} = af

for every a = (aq,...,as41). Indeed, for x € L

S+1
arpr (@) + -+ + agps i (@)] < lalo D ¢s(@) = [ale.
s=1

But for each s,

|a1901(25) -t aS+lSOS+1(Zs)‘ = |as,

and then,

larer + ... + assapsia], = lalw.
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Hence, the mapping p: 5+t — Cy(L) given by

(ar,...,as11) = a1 + ... + as11Ps+1

is an isometry, and hence, P(Cy(L)) is isometrically isomorphic to £51.

Now, for the case when L is compact, by taking Ky = L and using
Lemma 3.4.4 instead of Lemma 3.4.3, a similar proof is valid, except
that now all the elements depending on S + 1 will vanish in the proof:
here we get Zs41 = & (hence zg,1 does not exist), pgi1 = 0 (and hence
it can be omitted), and so, the vector a will only have S components;

therefore P(Cy(L)) is isometrically isomorphic to 5 in this case. W

We are ready now to state and prove the main result of this section and
chapter.

Theorem 3.4.7. If L is a locally compact Hausdorff space, then Cy(L)
has the BPBp-nu for compact operators.

Proof of Theorem 3.4.7. Let fi,..., fo € Beywys M, - -5 ln € Boyny)*
and £ > 0 be given. Let P: Cy(L) — Cy(L) be the same projection from
Theorem 3.4.5, which satisfies that P(Cy(L)) is isometrically isomorphic
to (2 for some p € N. Let P: X —> P(Cy(L)) be the operator such
that P(f) = P(f) for all f € Co(L), and let i: P(Co(L)) —> Co(L) be
the natural inclusion. Let 1 be the mapping with which all £, spaces
has the BPBp-nu for compact operators (see Corollary 3.3.4). Since
n(Co(L)) = 1 and n(f;) = 1 for all n € N (see [89, Proposition 1.11] for
instance), in particular, ng(P(Cy(L))) = ng(Co(L)) = 1. Therefore, we
are in the conditions to apply Lemma 3.3.1 (in fact, by the simplified
version Lemma 3.4.1) and get that Cy(L) has the BPBp-nu for compact

operators, as desired. [ |
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Alternatively, by Remark 3.4.6, we may prove Theorem 3.4.7 applying
Proposition 3.3.2 instead of Lemma 3.3.1.

As a direct consequence of Theorem 3.4.7, Lo (u) spaces also have
the BPBp-nu for compact operators, thus completing the claims from
Example 3.2.1.(iii) and Proposition 3.2.8.

Corollary 3.4.8. L (u) has the BPBp-nu for compact operators for

every measure .

Finally, let us point out that it is shown in [13] that the real space
C(K) has the BPBp-nu for some compact Hausdorff spaces K, but the
general case, as well as the complex case, remain open as far as we know.
However, Theorem 3.4.7 gives a complete answer for these spaces in the
case of compact operators: all the real and complex C'(K) spaces have

the BPBp-nu for compact operators.






Chapter 4

Norm-attaining projective

tensors and nuclear operators

4.1 Introduction and motivation

Ever since the works of James ([74, 75]), Bishop and Phelps ([17]),
and Lindenstrauss ([93]), many authors have contributed to the theory
of norm-attaining mappings. Just to name some, Bollobds, Bourgain,
Huff, Johnson, Schachermayer, Uhl, Wolfe, and Zizler continued the
study about the set of all linear operators which attain their norms
([18, 21, 72, 77, 110, 113, 115]); Acosta, Aron, Aguirre, Choi, and Payéa
tackled problems about norm-attaining bilinear mappings ([4, 11, 31]);
Garcia and Maestre studied norm-attaining homogeneous polynomials
([8, 12]); and many more authors have studied norm-attainment questions
for other types of mappings, such as multilinear mappings, holomorphic
functions, compact operators (see Chapter 3) and Lipschitz mappings
(see Chapter 5).
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In 2014, Miguel Martin solved in the negative an open problem from
the 1970s (posed explicitly by Diestel and Uhl in [51] and by Johnson
and Wolfe in [77]) on whether or not every compact operator can be
approximated by norm-attaining operators (see [97, Theorem 1]). On
the other hand, the main open problem in the theory of norm-attaining
operators nowadays seems to be if every finite-rank operator can be
approximated by norm-attaining operators (see [97, Question 9]). Since
every nuclear operator is compact and is a limit of a sequence of finite-
rank operators, it seems natural to introduce and study norm attainment
questions for nuclear operators (we will see all the necessary definitions
and background below). On account of clear relations between nuclear
operators and projective tensor products, we focus also on a concept of
norm-attainment in projective tensor products (see Definition 4.1.1). The
study of these questions has strong and deep connections with different
open problems from the theory of norm-attaining operators (check for
example Remark 4.2.14 to see how our topic is connected to the main

open problem about norm-attaining operators).

4.1.1 Tensor Products and Nuclear Operators

We use essentially the notations and terminology from [107]. Let X and
Y be two Banach spaces over the field K = R or C. We are going to
define now their projective tensor product, and its associated projective
norm following [107, Chapter 2]. First, note that it is natural to require
that a norm in X ® Y satisfies that |z ® y|| < [|z||y| for all z € X and
y € Y. From here, it is natural to define the projective norm of a tensor
2 X®Y as

N N
|2 := inf {Z [@allynll = 2= D 20 ®@yn, N € N}.

n=1 n=1
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This is, indeed, a norm, and we refer again to [107, Chapter 2] to see
its most basic properties. If X ®, Y denotes the space X ® Y endowed
with the projective norm, then the projective tensor product of X and
Y, denoted by X®,Y, is the completion X ®, Y. By [107, Proposition
2.8], for each z € X®,Y and for each ¢ > 0, there exist sequences
{rn}®, < X and {y,}*; = Y such that z = > 7, ®y, and

n=1

e 0]
D lzallynl < 2lx +e.
n=1

Because of that, we get the following equality, which gives us the projec-

tive norm of any tensor z € X®,Y:

o o0 o0
|zl = inf {Z [zalllynl : D l@nllynll < 00,2 = ) l’n®yn}
n=1 n=1 n=1
o o0 o0
= inf {Z Al 2 = Z Ann @ Yn, Z Al < 0, [zn] = ya] = 1}a

n=1 n=1 n=1

where the infimum is taken over all such representations of z. It is
well-known that |z ® y|, = |z|[ly| for every x € X, y € Y, and the
closed unit ball of X @)WY is the closed convex hull of the set Bx ®
By ={x®uy :x € Bx,y € By}. Throughout the chapter, we will be
using both formulas indistinctly, without any explicit reference. The
canonical identification B(X x Y, Z) = L(X®,Y, Z) allows us to obtain
the isometrical identification B(X x Y,K) = (X®,Y)*. Using the fact
that the spaces B(X x Y,K) and £(X,Y™) are isometrically isomorphic,
we also have the identification (X®,Y)* = £(X,Y*), where the action

of an operator G : X — Y* as a linear functional on X®,Y is given by

. (2 xn®yn> = 3 G
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for every 3.7 2, @y, € X ®,Y. Let us recall also that there is a
canonical operator Q : X*®,Y — L(X,Y) with |Q| = 1 defined by
z=>"  ¢on®Yy — L, where L, : X — Y is given by

L.(x) = Z pn(@)yn  (r € X).

The operators that arise in this way are called nuclear operators. We
denote the set of such operators by N'(X,Y") endowed with the nuclear

norm
0 0
|7 n = inf {Z | ynl : T() = > fﬂi’i(l‘)yn},
n=1 n=1

where the infimum is taken over all possible representations of T of
the form T'(z) = Y7 | z¥(z)y, for bounded sequences {z*}* , < X*
and {y,}*, < Y such that >, [z*||ly.| < oo. Notice that every
nuclear operator is compact since it is the limit in the operator norm of a
sequence of finite-rank operators. Using the function (), we can identify
the space N(X,Y) with X*®,Y/ker Q isometrically. In order to clarify
the relations between the set of nuclear operators, the quotient space of
the projective tensor product and their respective duals, we consider the

following diagram:

é*

(ker Q)* (X*®,Y /ker Q)" N(X,Y)*

X*®.Y /ker Q ¢

N(X,Y)

Y

where @ and § are isometric isomorphisms between X *@,rY/ ker ) and
N(X,Y), and (ker Q)+ and (X*CQ)WY/ ker Q)*, respectively. If we con-
sider a nuclear operator 7' € N(X,Y) given by T = >," | 2% ®y, for
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some {z*}*_ | < X* and {y,}*_; = Y bounded with Y.~ | |z¥|||y.| < o,
then for every H € N(X,Y)*, we have

HUU=Z;G@9ww,

where G = (671 o Q*)(H) € (ker Q)*.

Recall that a Banach space is said to have the approzimation property
if for every compact subset K of X and every ¢ > 0, there exists a
finite-rank operator T : X — X such that |T(z) — x| < € for every
x € K. Let us take into account that if X* or Y has the approximation
property, then X*®,Y = N(X,Y) (see, for instance, [107, Corollary
4.8]). Recall also that the injective norm of z € X ® Y is defined by

Vs=$m{

where " | z; ® y; is any representation of z. We denote by X ®. Y

:l’*EBX*,y*EBy*},

the tensor product X ® Y with the injective norm and its completion,
denoted by X®.Y, is called the injective tensor product of X and Y.

For a complete background on tensor products in Banach spaces, we
refer to the books [50, 107].

4.1.2 Norm-attaininment concepts

Recall that T € L(X,Y) attains its norm (in the classical way) if
there is xy € Sx such that |T'(zo)| = |7 = sup,es, [T(z)|. In this
case, we say that T' is a norm-attaining operator, and the set of norm-
attaining operators from X to Y is denoted NA(X,Y"). Recall also that
B e B(X x Y, Z) attains its norm if there is (zo,y9) € Sx x Sy such that
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|B(z0, o)l = [ Blls = Sup(zy)esx x5y |B(®;y)[. In this case, we say that
B is a norm-attaining bilinear mapping, and the set of norm-attaining
bilinear mappings from X x Y to Z is denoted NAz(X x Y, Z). In
the next sections, we will be considering norm-attainment concepts on
the Banach spaces X®,Y and N(X,Y). We introduce next a natural

approach for both scenarios.

Definition 4.1.1. Let X,Y be Banach spaces. We say that

(1) z € X®,Y attains its projective norm if there is a bounded sequence
{(@n, yn)}2 < X x Y with D37, |2 |lys] < oo such that we have
2= X7 2, @y and 2y = 27, fealllynl In this case, we
say that z is a norm-attaining tensor. The set of norm-attaining
projective tensors in X®,Y is denoted NA,(X®,Y).

(2) T € N(X,Y) attains its nuclear norm if there is a bounded se-
quence {z¥, y,}° ; € X* x Y with >,°_| |2%||y.| < c such that
T =37 2:®y, and that [Ty = X7, [2*]|yn]. In this case, we
say that T is a norm-attaining nuclear operator. The set of norm-

attaining nuclear operators in N (X,Y) is denoted NAy (X, Y).

If (1) (respectively, (2)) holds, then we say that Y. | z,®uy, (respectively,
Zle xrk ®yy,) is a norm-attaining representation. Notice that, as we
pointed out before, when X* or Y has the approximation property then
X*®,Y is isometrically isomorphic to N'(X,Y). In such case, it is clear
that both concepts of norm-attainment agree. Due to the connection
between projective tensor products, bilinear mappings, and operators,
we should also observe that the density of the set NAg(X x Y, K) clearly
implies the density of the set NA(X,Y™*), but the converse is not true in
general: indeed, Choi proved in [31] that NAg(L; ([0, 1]) x L([0,1]),R)
is not dense in B(L1([0,1]) x L1([0,1]),R), but Finet and Payd showed
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in [56] that if p is any o-finite measure, then NA(L;(u), Lo ([0,1])) is
dense in £(Ly(1), Loo([0,1])) (in fact, that pair of spaces has the BPBp,

as shown in [9]).

Since several norms are being considered in these spaces of mappings,
let us clarify what we mean by approximating elements from X®,Y
or N(X,Y) by norm-attaining ones. When working with X®,Y, it is
natural to make the approximation of an element z € X®,Y by an
clement 2’ € NA{(X®,Y) using the projective norm | - |,. Similarly,
we shall be dealing with the nuclear operator norm | - |, whenever we
approximate a given nuclear operator T' by a norm-attaining nuclear

operator T”. Density results will also use these respective norms.

Finally, to end this section, we will briefly discuss the structure of this
chapter. Section 4.2 is devoted to find the first examples of nuclear
operators and tensors which attain their norms. We give a character-
ization for these kind of elements, which will be very helpful during
the entire chapter (see Theorems 4.2.1 and 4.2.2). We provide a list of
pairs of spaces where every projective tensor and every nuclear operator
attains its norm. Nevertheless, we also show that this cannot hold in
general, since if every tensor from X®,Y attains its projective norm,
then the set of norm-attaining operators from X to Y* must be dense,
and there are known examples of pairs of spaces that do not satisfy
that (see Corollary 4.2.11). Therefore, there also exist projective tensors
and nuclear operators which do not attain their respective norms. In
Section 4.3, we show that the set of all norm-attaining projective tensors
is dense in the projective tensor product whenever the involved Banach
spaces X and Y satisfy certain conditions (for instance, when (X x Y, K)
has the L, , for bilinear forms, or when both X and Y have the metric
m-property; see Proposition 4.3.5 and Theorem 4.3.8), and analogous
results are also obtained for nuclear operators. As a consequence, a wide

list of spaces for which the density holds are found. Finally, in Section
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4.4, inspired by [97], we present an example of two Banach spaces X
and Y, both failing the approximation property, for which the set of
norm-attaining tensors is not dense in the projective tensor product

space.

4.2 Existence of norm-attaining elements

In this section, we provide the first examples of elements in X®,Y and
N (X,Y) which attain their norms. The first result gives us an important
characterization that will be used abundantly and implicitly in the rest

of the chapter.

Theorem 4.2.1. Let X,Y be Banach spaces. Let z € X@WY with

0
Z = Z )\nxn®yn7

n=1

where \, € RY, z, € Sx, and y, € Sy for every n € N. Then, the

following assertions are equivalent:
(1) [2]lx = 3272, Ay in other words, z € NAL(X®,Y).

(2) There is G € L(X,Y™) with |G| = 1 such that G(z,)(yn) = 1 for

every n € N.

(3) Every norm one G € L(X,Y™) such that G(z) = ||z||» satisfies that
G () (yn) = 1 for every n € N.

Proof. Suppose that |z]l, = X7 A\, with z = > | \,z,, ® Yy, where
A}, € R, {z,}2, < Sx, and {y,}>, < Sy. Now pick any G €
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(X®.Y)* = L(X,Y*) such that |G| = 1 and G(2) = |z|,. Since we

have
o0

Z = |zl = G(2) = Z MG (20) (Yn),

n=1 n=1
it follows that G(z,)(y,) = 1 for each n € N, which proves that (1)
implies (3). It is obvious that (3) implies (2). Finally, assume that there
exists G € L(X,Y*) with |G| = 1 such that G(z,)(y,) = 1 for every
n € N. Then,

e} e} e}
S = Y MGl ) = G) < 2l < A
n=1 n=1 n=1
This completes the proof. |

Taking into account the isometric isomorphism between A (X,Y") and
X*®,Y /ker(Q), we can take advantage of the previous estimates to

prove a nuclear operator version of Theorem 4.2.1 as follows.
Theorem 4.2.2. Let X,Y be Banach spaces. Let T € N(X,Y) with
0
T = 2 AT @ Yn,
n=1

where A\, € R*, x, € Sx, and y, € Sy for every n € N. Then, the

following assertions are equivalent:
(1) |T|x = 20, An; in other words, T € NAy(X,Y).

(2) There is G € (ker Q)% with |G|l = 1 such that G(z%)(y,) = 1 for

every n € N.

(3) For any G € (ker Q)* with |G| = 1 and G(T) = |T|x we get that
G(z%)(yn) = 1 holds for every n € N.
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Proof. Let Q : X *RrY /ker @ — N (X,Y) be an isometric isomorphism
which maps, according to the notation of Subsection 4.1.1, z + ker )
to L,. If we let zp := D", A\ Qup € X*®,Y, then Q(z) = T and
|T||n = |lz0 + ker Q. Now assume (1) and let us prove (3). To this end,
pick any G € (ker Q)* with |G| = 1 and G (2 + ker Q) = |z + ker Q|.

Then,
o0
G ( Anp, @ yn> ‘
n=1

0

An = [Tl = llz0 + ker @ = |G(20)] =
=1

n

o0 o0
< Zl M| Gz ()] < Z_]l An.-

Then, we have |G(z%)(yn)| = 1 for each n € N. Using a convexity
argument, we get that G(z%)(y,) = 1 for every n € N. The other

implications can be proved as in Theorem 4.2.1. [ |

With Theorems 4.2.1 and 4.2.2 in mind, we can now exhibit examples of

nuclear operators which attain their nuclear norms.

Example 4.2.3. Let X, Y be two reflexive Banach spaces such that X*
or Y has the approximation property (recall that, in this case, we have
X*®,Y = N(X,Y)). Assume further that X* is isometrically isomor-
phic to a subspace of Y*. Take G : X* — Y™ to be a linear isometry and
pick {z*}*_, < Sxx. Now, for any n € N, notice that |G (z%)| = ||k = 1.
Since Y is reflexive, we have that G(z%) € Sy« attains its norm, so there
exists y, € Sy so that G(z%)(y,) = 1. Now, Theorem 4.2.1(or The-
orem 4.2.2) implies that, given any sequence {\,}"_; < (0,1] with

> A < 0, the nuclear operator

Ti= ) Al @y e N(X,Y)

n=1
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attains its nuclear norm.

One may think that a norm-attaining nuclear operator should attain
its norm (in the classical way). This is not true in general as observed

below.

Remark 4.2.4. Let Y be an infinite-dimensional strictly convex Banach
space. Then, there is T' € NA (¢, Y) such that T ¢ NA(cp,Y). Indeed,
let {y,}°_; < Sy be linearly independent. For every n € N, find y* € Sy«
such that y’(y,) = 1. Define ¢ : Y — (o, by ¢(y) := {y;(y)}72, € Lo
for every y € Y. Given n € N we get that |y*(y)| < ||y since |y*|| = 1
holds for every n € N. This implies that sup, oy |y*(y)| < |y|, which
proves that ¢(y) € £y for every y (i.e., ¢ is well defined) . In view of the
linearity, we have that ¢ is continuous and |¢| < 1. Furthermore, notice
that ¢(y,)(e,) = 1 holds for every n € N, where {e,}*_, is the basis of
¢1. This proves that the nuclear operator T : ¢o — Y defined by

0
1 A~
T = Zl 276n®yn € gl@ﬂ'y

attains its nuclear norm by Theorem 4.2.2. Nevertheless, notice that T'
is not a finite-rank operator and, consequently, T" does not belong to
NA(co,Y) (see [97, Lemma 2.2] or the proof of [93, Proposition 4]).

We prove next that on the the finite-dimensional setting, every tensor is
norm-attaining. Before presenting the proof, let us notice that since the
convex hull of a compact set is compact when X and Y are both finite-
dimensional spaces, we have that conv(Bx ® By) = conv (Bx ® By)
(where conv(A) denotes the convex hull of A, and conv(A) is its closure),
which is a consequence of Minkowski-Carathéodory theorem (see, for
instance, [53, Exercises 1.57 and 1.58]).
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Proposition 4.2.5. Let X,Y be finite-dimensional Banach spaces.
Then, every tensor attains its projective tensor norm. In other words,

NAA(X®,Y) = X&,Y.

Proof. Let z € X®,Y with ||z|, = 1 be given and let us prove that
z € NAL(X®,Y). As we have mentioned before, since X and Y are
finite-dimensional Banach spaces, Bx ® By is compact in X @WY and
this implies that Byg y = conv(Bx ® By ) = conv(Bx ® By ). Therefore,

z can be written as a finite convex combination of elements in Bx ® By,

i.e.
! ’ n n
z = Z Nz ®y;  with Z Aj=1,
j=1 J=1
where \; € R*, z; € By, and y; € By for j = 1,...,n, that is, z is
norm-attaining. [ |

Let us notice that in Remark 4.2.4, we have constructed by hand a
nuclear operator from ¢y into a particular Y which attains its nuclear
norm. It turns out that every nuclear operator from ¢y into any Banach
space Y attains its nuclear norm. This should be compared to the fact
that, in the classical theory, whenever X is a Banach space such that
NA(X,Y) = L(X,Y) for some Y # {0}, X must be reflexive, by James’
theorem. However, by the following proposition, this result is no longer

true in the context of nuclear operators.

Proposition 4.2.6. Let Y be a Banach space. Then,

(a) every T € N(co,Y) attains its nuclear norm. Equivalently,

(b) every element in (,&,Y attains its projective norm.
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Proof. Indeed, in the last part of [107, Lemma 2.6], it is proved that
0 (Y) — £,®,Y given by

D({zp}y) Zen®xn

is an onto linear isometry, where {e,}_, is the basis of ¢; (in fact,
® = Q' in the proof given there). Let T e N(co,Y) = £1&®,Y be given.
By the surjectivity of ®, we can find an element {z,}> ; € ¢;(Y) such
that ®({x,}°_;) = T. Consequently, T' = >, e, ® x,,. Then,

1T = le{zn}izd)l = {andaml = Z lznll = Z lenlln]l-

This proves that T" attains its nuclear norm, as desired. |

Remark 4.2.7. Notice that Proposition 4.2.6 is also true for ¢o(I") and
¢4(T") for any arbitrary index set I" (see [107, Example 2.6]).

In the infinite-dimensional case, besides the nuclear operators from cg
into an arbitrary Banach space Y, we have that every nuclear operator
on a complex Hilbert space attains its nuclear norm. Although we prove
this result for nuclear operators (justified by the fact that we will be
dealing with eigenvalues and Schatten classes), we also get that every
tensor in H®,H attains its projective norm, as every Hilbert space H

has the approximation property.

Proposition 4.2.8. Let H be a complex Hilbert space. Then, every

nuclear operator T € N'(H, H) attains its nuclear norm.

Proof. Note that T'e N'(H, H) can be written as

no
T =Y N )y;,
j=1
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where ng € N u {oo}, {\;}7, is the sequence of nonzero eigenvalues
of |T| = (T*T)z, and {7;}72, and {y;}72, are orthonormal systems in
H (see [67, Theorem 2.1]). On the other hand, it is well-known that
T ar = o1(T) = 272, Aj, where o1(-) is the Schatten 1st norm (see, for
example, [67, pages 96-97]). This completes the proof. [ |

Taking into account Propositions 4.2.5, 4.2.6 and 4.2.8, it is natural to ask
whether or not the equalities NAy(X,Y) = M(X,Y) or NAL(X®,Y) =
X®,Y hold for all Banach spaces X and Y. We will give a negative
answer to this question by proving that if this happens, then the set
of norm-attaining bilinear forms which attain their norms is dense in

B(X x Y,K), something which is known to fail in many spaces.

Lemma 4.2.9. Let X,Y be Banach spaces. If B € B(X x Y,K) =
(X®,Y)* attains its functional norm at an element of NAL(X®,Y),
then B € NAg(X x Y, K).

Proof. Let B € B(X x Y,K) = (X®;Y)* and let z € Syg y such that
z =37 Ay, Yy € NA,(X®.Y) be such that B(z) = 1, where
A € RT, z, € Sx, and y, € Sy. By Theorem 4.2.1, B(z,,y,) = 1 for
every n € N. In particular, B € NAg(X x Y, K). [ |

Proposition 4.2.10. Let X,Y be Banach spaces. If every element in
X®.Y attains its projective norm, then the set of all bilinear forms on
X x Y which attain their norms is dense in B(X x Y, K). In other words,
if NAL(X®,Y) = X®,Y, then

NAs(X x V,K)'® = B(X x V,K).

Proof. Let ¢ > 0. Let Be B(X xY,K) = (X®,Y)* with |B|z = 1. By
the Bishop-Phelps theorem, for X®,Y, there are By € (X®,Y)* with
|Bols =1 and 2 € Sxg y such that By(z9) = 1 and |By — B|s < . By
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hypothesis, zp € NA(X,Y) attains its projective norm and by Lemma
4.2.9 we have that By € NAg(X x Y,K). Since |By — B|g < €, we are
done. ]

Proposition 4.2.10 yields the following immediate consequence.

Corollary 4.2.11. Let X,Y be Banach spaces. Suppose that every
element in X®.Y attains its projective norm. Then, the set of norm-

attaining operators from X into Y* is dense in L(X,Y ™). In other words,

if NAL(X®,Y) = X®,Y, then

NA(X, Y9 = £(X,Y*).

Now, by using Lemma 4.2.9, Proposition 4.2.10, and Corollary 4.2.11,
we can get examples of pairs of Banach spaces (X, Y') such that there
are elements in the projective tensor product X®,Y which do not attain

their projective norms.

Examples 4.2.12. In the following cases, there are elements z € X @WY
such that z ¢ NAL(X®,Y).

(a) When X = L;(T), where the unit circle T is equipped with the Haar
measure m, and Y is the two-dimensional Hilbert space. Indeed,
it is shown in [65, Remark 5.7.(2)] that there is T € B(X x Y, K)
which attains its norm as a linear functional on X®., Y but not as

an operator from X into Y* (nor the more as a bilinear form on
X x Y). By Lemma 4.2.9, it follows that NA(X®,Y) # X®,Y.

(b) When X is Li[0,1] and Y* is a strictly convex Banach space
without the Radon-Nikodym property. Indeed, by [113, Theorem
3], the set NA(L[0,1],Y™) is not dense in £(L;[0,1],Y™*). Let us
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notice that this also shows that Proposition 4.2.6 is no longer true

if we consider an L;(u)-space for a non-purely atomic measure .

(¢) WhenY =/, for 1 < p < oo and X is the Banach space constructed
by Gowers. Indeed, there is a Banach space G such that NAg(G x
?,,K) is not dense in B(G x {,,K) (see [68, Theorem, page 149]).
We should notice that the unit ball of G lacks extreme points. This
result should be compared to the fact that, if X is reflexive and Y
is any Banach space, then (X,Y) € NA(X,Y).

(d) When X and Y are both L[0,1]. Indeed, [31, Theorem 3] shows
that the set NAg(L1[0, 1] x L1[0, 1], K) is not dense in B(L4[0, 1] x
Ll [07 ]-]a K)

Let us finish this section by highlighting two observations.

Remark 4.2.13. Notice that if we weaken the hypothesis in Proposition
4.2.10 and just assume that NA(X®,Y) is dense in X®,Y, the result
does not remain true. Indeed, by Example 4.2.12.(c), we know that
NAg(L1[0,1] x Ly]0,1],K) is not dense in B(L4[0,1] x L]0, 1], K), but
we will see in Section 4.3 that the set of all tensors which attain their
projective norm on L; [0, 1]®,L;[0, 1] is dense in L, [0, 1]®,L1[0,1] (see
Theorem 4.3.8 and Example 4.3.12.(b)). Nevertheless, we will always
have that NA(X,Y™) n Bgx,y#) is w*-dense in B xy*) under this
hypothesis (see Remark 4.4.4).

Remark 4.2.14. In Proposition 4.2.5, we saw that if both Banach spaces
are finite-dimensional, then every tensor attains its projective norm,
and every nuclear operator attains its nuclear norm. It is natural to
wonder if the same holds by just considering one of the spaces to be
finite-dimensional. Let Y be a finite-dimensional Banach space. Then,
NA(Y, Z) = L(Y, Z) for every Banach space Z, by the compactness of
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the unit ball of Y. Let us suppose for a second that the same holds for
nuclear operators. Then, NAy (Y, Z) = N (Y, Z) for every Banach space
Z. Since Y is finite-dimensional, it has the approximation property
and then we would have that NA(Y*®,Z) = Y*®,Z, and so, that
NAL(Z&.Y*) = Z®.Y*, for every Banach space Z. By Corollary
4.2.11, we would then have that the set NA(Z,Y) is dense in L(Z,Y)
for every Banach space Z, which would imply that Y has property B
of Lindenstrauss (positively solving the main open question on norm
attainment, [97, Question 9]). Therefore, it is natural to wonder whether
every nuclear operator 7' : Y — Z attain its nuclear norm for every
Banach space Z whenever Y is finite-dimensional. However, this is
actually not the case, as shown in Example 4.2.12.(a), by taking Z =
Li(T) and Y = /2, the Euclidean plane (see [65, Remark 5.7.(2)]).

4.3 First density results

In this section we will be focusing on examples of Banach spaces X and
Y such that the sets NA(X®,Y) and NAy(X,Y) are dense in X®,Y
and NV (X,Y), respectively. As we have seen in the previous section,
there are many examples of projective tensor products where we can
guarantee the existence of elements which do not attain their projective
norms even when one of the factors is reflexive (see Example 4.2.12.(b)).
In spite of the existence of such non-norm-attaining tensors, it is natural
to ask if the set of elements in a tensor product space which attain their

projective norms is dense in the whole space.

Let us start by explaining where the difficulty comes from when one
tries to get such a property. Assume that z € NA (X @WY) is a norm-
attaining tensor in X®,Y. This implies that there are bounded se-
quences {z,}; € X and {y,,}>_; € Y such that z = > z,, ®y, with

n=1 —
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Iz = 227 |zalllya]- It is clear that the task of choosing the optimal
representation for z as a series of basic tensors is the most difficult part.
In order to avoid this inconvenience, let us make use of Theorem 4.2.1.
By applying it, for any bilinear mapping B € Spxxvk) = S(xg,v)*
such that B(z) = ||z|,, we have that B(z,)(y,) = |zn||yn| for every

n € N. In other words, B attains its bilinear norm at the pair <II£ZH , Hz:H
for every n € N. Because of this, in order to get examples of Banach
spaces X and Y where the set NA (X @WY) is dense in X®, Y, we need
somehow that the space B(X x Y, K) contains many bilinear forms which
attain their bilinear norm at many elements of Sx x Sy. This motivates
us to make use of the following definitions, which can be found in [38]

and [48].

Definition 4.3.1. Let X,Y and Z be Banach spaces.

(a) We say that (X,Y) has the L, , for operators if given ¢ > 0 and
T e L(X,Y) with |T| = 1, there is (e, T") > 0 such that whenever
x € Sx satisfies |T'(x)| > 1 —n(e,T), there is zp € Sx such that
|T(zo)| =1 and |zg — z| <e.

(b) We say that (X x Y, Z) satisfies the L, , for bilinear mappings (or
just L,, ) if given ¢ > 0 and B € B(X x Y, Z) with |B|g = 1,
there exists n(e, B) > 0 such that whenever (z,y) € Sx x Sy
satisfies |B(z,y)| > 1 —n(e, B), there is (zo,y0) € Sx x Sy such
that |B(zo,%0)| = 1, ||z — zo| < &, and |ly — yo| < €.

Example 4.3.2. Let us highlight some examples and results related to
the properties just defined.

(a) If dim(X),dim(Y) < oo, then (X x Y, Z) has the L,, 5 for every
Banach space Z (see [48, Proposition 2.2]).
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(b) (X xY,K) has the L,,, for bilinear mappings if and only if (X, Y™)
has the L, , for operators, whenever Y is uniformly convex (see
[48, Lemma 2.6]). In particular, if X is finite-dimensional and Y is
uniformly convex, then (X x Y,K) has the L, , for bilinear forms
(see [38, Theorem 2.4]).

(¢) If1 <p,q < o, then (¢, x {,,K) has the L, , 5 if and only if p > ¢/,
where ¢ is the conjugate of ¢ (see [48, Theorem 2.7.(b)]).

(d) As a consequence of (c), there are reflexive spaces X and Y such
that (X x Y,K) fails the L, , 5 (see also [38, Theorem 2.21.(ii)]).

Using this property, we will find our first positive density results about
norm attainment in our context.

Proposition 4.3.3. Let X,Y be Banach spaces. Suppose that (X* x
Y, K) has L,, for bilinear forms. Then, every nuclear operator from X
into Y can be approximated (in the nuclear norm) by nuclear operators

which attain their nuclear norm. In other words,

NAN (XYY = (X, Y.

We get the following particular case by combining Proposition 4.3.3 with
Example 4.3.2.

Corollary 4.3.4. Let X be finite-dimensional Banach space. IfY is

uniformly convex, then

NAN (XL Y)Y = N(X, Y.

Now, we prove Proposition 4.3.3.
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Proof of Proposition 4.3.3. Let T € N(X,Y) and € > 0 be given. There
exists H € N(X,Y)* with |H| = 1 such that H(T) = |T| . Consider
G = (071 o Q*)(H) € (ker Q)* (see Subsection 4.1.1). Let Ag be the
bilinear form on X* x Y defined by Ag(z*,y) = G(z*)(y) for every
z*e X*andy €Y. Then |Ag|s = |G| = 1. Consider the positive value

n(e, Ag) > 0 from the assumption that (X * x Y,K) has L, for bilinear
forms. Now, choose {\,}_; € RY, {z*}* | < Sx+, and {y,}_, S Sy
so that T'= 3" | \,x* @y, with

22 < I Tl + ne, Aa)™.

n=1

We get that
|Tly = H(T) = Re H(T) = Z A Re (G(27,) (yn)

)
N
>
£l
«Q
=
$

n=1
0
< 20 < Tl +n(e Ac)
n=1
In particular,
0¢]
2 (1= Re (Glal) (wn))) < (e, Ao (4.3.1)

Consider the following set

I ={neN:Re(G(z})(ys)) >1—n(e, Ag)}.
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From (4.3.1), notice that

nEAG) Y A< 1 A (1 Re (Glal)(5))) < nle, A

nel¢ nel¢

which implies that >
nel,

An < n(e,Ag). On the other hand, for each

nelc

Re Ag(x},yn) = Re (G(z2)(yn)) > 1 —n(e, Ag).

Thus, there exist norm one vectors {Z%},c; in X* and {g,}ner in Y such
that

[Ac (T, 0n)l = |G(@) ()] = 1, 75, =2l < e, and g, —yal <e

for every n € I. Let us write G(7*)(J,) = € with some 6,, € R for
every n € I. Notice that |1 — €| < \/2n(e, Ag) for every n e I. Let us
define

T =) e E @ G

nel
Then,
1T = Tl < | DA€™ @Fn — 25 @ua)| + D, A
nel N nel¢
<Z)\n|1—e’59”|+ Z)\n@;@%—xz@yn) + (e, Ag)
nel nel N

<V20(e, Ag)(IT|w + nle, Ag)?) + 2e(| Ty + n(e, Ac)?) + n(e, Ac)
= (\/2n(g, Ag) + 26)(|T|w + n(e, Ac)?) + n(e, Ac).
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Finally, it is clear by definition that ||T"||x < ] On the other

hand,

ZEI

[T | = [H(T)| =

Z)\ e ZH"G

nel

= A

nel

This shows that 7" attains its nuclear norm and completes the proof. W

Using very similar arguments to Proposition 4.3.3 and Corollary 4.3.4,

we can obtain the following results.

Proposition 4.3.5. Let X,Y be Banach spaces. Suppose that (X x
Y.K) has L,, for bilinear forms. Then, every tensor in X®,.Y can be
approximated by tensors which attain their projective norm. In other

words,

NATI' (X®TI'Y) i = X@ﬂy

Corollary 4.3.6. Let X be a finite-dimensional Banach space. IfY is

uniformly convex, then

NA. (X&) T = x&,Y.

Let us notice that, although we have the first examples of denseness
by using Propositions 4.3.3 and 4.3.5, property L, , 5 seems to be very
restrictive. Indeed, when a pair of Banach spaces satisfies this property,
both of them must be reflexive since every bilinear mapping attains its
norm. Moreover, even if both spaces are reflexive, sometimes (X x Y, K)
fails to have this property (see Example 4.3.2.(d)). On the other hand,
we could have used the previous results together with Example 4.3.2.(c)
in order to get examples where the denseness holds for £,-spaces: for
instance, if 1 < p,q < co and p > ¢, then the set NA,(£,®,¢,) is dense
in Ep@%fq by Proposition 4.3.5. Nevertheless, in what follows we will take
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advantage of the finite-dimensional case to obtain more general examples
of Banach spaces where the density holds. The only problem here is
the fact that in general the projective norm does not respect subspaces,
but it does respect 1-complemented subspaces (recall that a subspace
Y of X is called a complemented subspace if there exists a projection
P e L(X,X) such that P(X) =Y, and if P can be chosen to have norm
1, Y is a 1-complemented subspace). For this reason, intuitively, we need
a property of Banach spaces which guarantees the existence of many
1-complemented subspaces. Motivated by this, we consider the following

definition.

Definition 4.3.7. Let X be a Banach space. We will say that X has the
metric m-property if given € > 0 and {z1,...,x,} S Sx a finite collection
in the sphere, then we can find a finite-dimensional 1-complemented
subspace M < X such that for each i € {1,...,n} there exists a} € M

with ||x; — x}|| < e.

Before proceeding, let us make a small observation. Let ¢ > 0 and
F ={xy,...,2,} € Sx be given. Suppose that X has metric w-property
as defined above and let M be a finite-dimensional subspace of X with
| — x| < e forzf e M and ¢ = 1,...,n. Let P.p be the norm one

projection onto M. Then, for each i = 1,...,n, we have
| P p (i) — @il < |Pep(@i) — Pep(ay)| + | Per(ah) — 2] < 26

Consider now the net {P. p: ¢ > 0, F' < Sx a finite set} with (e, /1) <
(€2, F3) if and only if ey < €y and Fy © F. Then, {F. p}. p) strongly
converges to the identity on Sx and hence on X with ||P.r| < 1 for
every € and F. This shows that Definition 4.3.7 is in fact equivalent to
[23, Definition 5.1], the classical way of defining the metric w-property

as an approximation property where the approximating operators are
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norm one projections (we refer to [76] and [94] for more information on

the m-property).

We have the following general result, which confirms that our intuition
of finding a property of Banach spaces, which guarantees the existence of
many l-complemented subspaces, was in the right direction. This result
will give us many positive examples of denseness in both norm-attaining

tensor and nuclear operator cases (see Examples 4.3.12).

Theorem 4.3.8. Let X be a Banach space satisfying the metric -
property.

I-ll=

(a) IfY has the metric w-property, then NAL(X®,Y) = X®,Y.

(b) If Y is uniformly convex, then NAW(X(Q)WY)H'Hw = X®,Y.

Proof. (a). Let u € Sxg y and € > 0 be given. By [107, Proposition
2.8], there are bounded sequences {\,}r_; < R*, {z,}°, < Sx, and

{yn}2, = Sy with u = >, Ay, ® v, and

o0
DA< l+e (4.3.2)
n=1

Find k € Nlarge enough so that |u—z|r . =~ <5 forz:= S AT ®Yn.
Since X and Y have the metric m-property, we can find finite-dimensional
subspaces Xy of X and Yy of Y which are 1-complemented and such
that, for every n € {1,..., k}, there are z/, € X, and y,, € Y such that

5
4kN,

max {|z, — [, [|yn — ypl} <

Define 2/ = 3*_ A,/ ®y/, and notice that |2/ — 2|, . _ < 5. Moreover,
n XQrY
note that 2z’ € Xq ® Yy. We have that X is 1-complemented in X and
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Yy is 1-complemented in Y. Consequently, by [107, Proposition 2.4] we
get that norm of X®,Y agrees on X, ® Yy with the norm of Xo®,Y;.
In particular,

4 = |2/l

(4.3.3)

‘WXO®7T Yy ‘“X&)ﬁy :

Finally, since X, Y, are finite-dimensional spaces, we use Proposition
4.2.5 to show that 2’ attains its projective norm in Xo®,Y;. Since (4.3.3)

holds, 2’ attains its norm in X®,Y and we are done.

b). Let u € Syg y and € > 0 be given. There are bounded sequences
X®Y
M}, S RY {2}, < Sy, and {y,}>, < Sy with u =>7" Az, ®

n=1 —
€

yn and (4.3.2) holds. We can find k large enough so that ||u—zH7rX® s <3

for z .= 27’2:1 AT, @ 1y,. Since X satisfies the metric m-property, we can

find a finite-dimensional subspace X which is 1-complemented and such

that for every n € {1,..., k}, there is 2}, € Xy such that |z, — 27| < g5

Define 2/ = Zi:l A2l ® y,. Notice that |z" — ZHWX@Y < : and that
7 e Xo®Y. Since Xy is finite-dimensional and Y is uniformly convex,

by Corollary 4.3.6, we can find 2" € X,®,Y such that

/ "
EEF N

e ¢] e @]
€ .
< — with 2" = Z a, ®b, and HZ”H’TX()@,TY = Z | an|[[bn]-
n=1

n=1

Since the norm of X®,Y agrees on Xo® Y with the norm of X®,Y,

the result follows as in the previous item. |

Let us notice that if a Banach space Z satisfies the metric m-property,
then it has the metric approximation property, and then the analogous
result for nuclear operators follows immediately from Theorem 4.3.8 and
[107, Corollary 4.8].

Corollary 4.3.9. Let X be Banach space such that X* satisfies the

metric w-property.

(a) If Y has the metric m-property, then NA (X, Y)H'“N =N(X,Y).
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(b) If Y is uniformly convez, then NA (X, Y)H.HN =N(X,Y).

To finish this section, let us see particular cases where Theorem 4.3.8
and Corollary 4.3.9 can be applied. The next examples show that we
always have denseness in all classical Banach spaces. Note that item
(a) below tells us that the metric m-property happens very often. Also,
the stability results, (d), (e), (f), and (g), allow us to get more positive

examples on denseness. We will first recall the following definition.

Definition 4.3.10. Let X be a Banach space. A sequence {X,} ", of
finite-dimensional subspaces of X is called a finite-dimensional decompo-
sition of X (FDD for short) if every x € X has a unique representation

of the form z = >)” | z,, with x,, € X,, for every n € N.

Remark 4.3.11. A FDD on a Banach space X determines a sequence
{P,}_, of projections (called the partial sum projections of the decompo-
sition) such that if z = 3% | x,, € X, then Pj(z) = > _ x, forall j € N.
These projections are commuting, have increasing range, and converge
strongly to the identity operator on X. The supremum of the norms of

those projections is finite and is called the decomposition constant.

Example 4.3.12. The following Banach spaces satisfy the metric n-

property (we include the proofs for the sake of completeness).
(a) Banach spaces with a finite-dimensional decomposition with the
decomposition constant 1 (consequently, every Banach space with
Schauder basis can be renormed to have the metric m-property);

(b) L,(u)-spaces for any 1 < p < oo and any measure y;

(c) Isometric preduals of Ly;
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(d) X @, Y, whenever XY satisfy the metric m-property and | - |, is

an absolute norm;

e) X = X,| or X,|, , for all 1 < p < oo, with X,
( ) neN co neN Ly
satisfying the metric m-property for all n;

(f) X®,Y, whenever X,Y satisfy the metric 7-property;

(2) X®.Y, whenever X,Y satisfy the metric m-property.

Proof. (a). Given a Banach space X, if there exists a sequence of finite-
dimensional Banach spaces and 1-complemented subspaces { F,, }nen such
that E, < E,.:1 holds for every n and such that (J, . £, is dense in X,
then X has the metric m-property. In particular, it applies whenever
X is a Banach space with an FDD with the decomposition constant
1 (if P, : X — X are the associated norm-one projections, take
B, = Py(X)).

(b). Let 1 < p < o be given. Let us write X = L,(u), for short.
Consider z1,...,z, € Sx,e > 0. For every 7 € {1,...,n}, we can find a

simple function x} € Sx such that
|z — x| <e, (4.3.4)

where ) = Z;":I aijXA; for suitable m € N, a;; € R and pairwise disjoint
Aj € 3. Now, in order to prove that X has the metric m-property, define
M := span{xy, : 1 < j < m} and let us construct P : X — X by the

equation

T(f) = iu(}@ JA_ fdpxa;.

It is clear from the disjointedness of A;,...,A,, and the fact that
IP(f)| < |If|l holds for every f € X. Furthermore, it is clear from
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the definition that P(f) = f holds for every f € M, so P is a norm-
one projection onto M. The result follows since z; € M and by the

arbitrariness of ¢ > 0. This proves (b).

(c). Let X be an isometric predual of Ly. Let ¢ > 0 and {x1,...,x,} C
Sx be given. Define F; = {0} and Fy = span{zy,...,z,}. By [92,
Theorem 3.1] and [101, Theorem 1.3], we may find a subspace E of X
such that F is isometric to ¢ for some m € N and d(z, E) < ¢ for all
x € Fy. For each 1 < i <, pick 2} € E so that ||z; — 2| < e. By [100,
Lemma 2.1], there exists a norm one projection P from X to E; hence

E is indeed an 1-complemented finite-dimensional subspace of X.

(d). To prove that the metric m-property is stable by absolute sums, let
us first notice that Sy, in its definition, can be replaced by By (indeed,
let € > 0 and {x1,...,2,} < Bx be given; without loss of generality, we
may assume that z; # 0 for all 1 < i < n; from the metric m-property, we
may find a 1-complemented finite-dimensional space M of X with = € M
such that |z;/|z;| — «}|| < e for every 1 < i < n; thus, ||z; — |z;|z}]| < e
and {|zq|2}, ..., |zal2l} < M). Set Z = X @, Y. Let ¢ > 0 and
{z1,..., 20} < Sz be given. If we write z; = (x;,y;) for each 1 < i < n,
then max{||z;|[, |v:|} < |zi]o = 1 for every 1 < i < n. As X has the
metric m-property and {z1,...,z,} < By, there exist a 1-complemented
finite-dimensional subspace M of X and {z},...,2/,} € M such that
|x; — x| < e. Similarly, there exist a 1-complemented finite-dimensional
subspace N of Y and {y,...,y,} = N such that |y; — v} < e. If we let

/

2l = (2, y}) for each 1 < i < n, then for every 1 < i < n, we have

Iz = zila < ll2i = 23] + lyi — il < 2.

Let P and @ be norm one projections from X onto M and Y onto NV,
respectively. Consider the map (P, Q) defined on X @, Y as (z,y) —
(P(x),Q(y)) for every (x,y) € X @, Y. Note that (P, Q) is a projection



4.3 First density results 219

with (closed) range M @, N. Moreover,

[(P(2), Q))la = [(IP ()], Q) Dl < (], lyDla = 1z, 9)]a

for every (z,y) € X ®, Y; hence M @, N is a 1-complemented finite-
dimensional subspace of Z with {z],...,2.} € M @, N satisfying |z; —
2l| < 2e for each 1 < i < n.

(e). This can be obtained by extending the proof of (d). Indeed, let

{zq,...,2,} S Sx be given. First, approximate z; by z} of finite support.
Now, say «; = (zs,...,%#,0,0,...) with some common k € N. Find
a l-complemented subspace M; in X; containing x;, ..., Z,; from the

assumption that X, enjoys the metric m-property for each 1 < j < k.
Then, M = {(z1,292,...,2£,0,0,...) : z; € M;,;1 < i < k} is a finite-
dimensional subspace of X which is 1-complemented by the projection
(P1, Py, ..., P, 0,0,...) (defined similarly as in the item (d)) and M

contains the set {z},..., 2/

Y nl:*

(f). Let e > 0 and 21,...,2, € Sxg y be given. For each 1 < i < n,
consider {xy), yj(-l)} C Bx x By to be such that

o0 o0
s= @yl with [z > Y |2y e
j=1 j=1
For each 7 =1,...,n, let N; € N be such that
A @@y €
Z 5 ;™ | < 7
Jj=N;+1

Now, since X has the metric m-property, there exists a 1-complemented
finite-dimensional subspace M with {fj(i) 1<y <N, 1< < n} cM
such that

|2;® — xy)H < min {4]€VZ 1<i< n}
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and, analogously, there exists a 1-complemented finite-dimensional sub-
space N of Y with {g]j(i) 1<j<N,1<1< n} < N such that

~ (i i . £ .
yj()—y](-)<mm{4N :1<z<n}

foreach 1 < j < N; with¢=1,...,n. By [107 Proposition 2.4], M&,N
is an 1-complemented space. Let Z; := Z e )® y . Then,

€
< 2N; mi
min {4Ni

:1<’i<n}<

Ni . .
- ey
j=1

™

for every i = 1,...,n. Then, X®,Y has the metric m-property, as

desired.

(g). Let 21,...,2, € Syg_y and 0 > 0 be given. For each i e {1,...,n},
let Z; € X ®Y be such that |z; — Z]. < &. Let Z] . ] ®y] be a
representation of z; for each i = 1,...,n. Since

{() 1<j<N,1<i<n}cX and
(W 1<j<N,1<i<n}cy,

%

there are 1-complemented finite-dimensional subspaces M < X and
N <Y with {#;7:1<j<N,1<i<n}<Mand {g;" :1<j<
N;,1 <i<n} < N such that

|2 — 79| < min {

Hyj(.i) _gj(i)” < min{4Ni 1<i < n}
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As M®.N is a 1-complemented subspace of X®.Y (see, for instance,
[107, Proposition 3.2]),

N n

N;
%= 5" 7" e M&N and |5 - 6. < |2 — G <
j=1

’

which implies that |z; — 0;|. < J, we have that X ®.Y satisfies the metric
m-property. |

Remark 4.3.13. From the estimates of case (g) above it follows that
X®,Y has the metric m-property whenever X and Y enjoy the metric
m-property and « is a uniform cross norm (see [107, Section 6.1] for

background and details).

Example 4.3.12.(g) allows us to extend Theorem 4.3.8 for larger projective

tensor products.

Corollary 4.3.14. Let N € N be given. Let Xi,...,Xx be Banach

spaces with the metric w-property, and Y be a Banach space. Then,

— — — H.”ﬂ_ ~ ~ ~
NAL(X1®r - R Xn®rY) " = X1®; - - R Xn®, Y.

4.4 Tensors not approximable by norm-

attaining tensors

By the results from previous section, one may think that the denseness
for norm-attaining tensors may always hold. In this section, we will
see that this is not the case. We show that there are Banach spaces
X and Y such that the set of all tensors in X®.,Y* which attain their
projective norms s not dense in X®,Y*. In order to do that, let

us notice that, by Theorem 4.2.1, it would be enough to show that
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NA(X,Y™*) n Bp(x,y#*) is not norming for X®,Y* (and in fact that is
what we do; see Remark 4.4.4). On the other hand, in view of the proof
of [91, Proposition 2.3], note that if either X or Y** satisfies the metric
approximation property (respectively, bounded approximation property),
then F(X,Y**) is norming (respectively, K-norming) for X®,Y*, and
this implies that F (X, Y**) is w*-dense in L£(X,Y**). This suggests us
to look for our counterexample in the context of Banach spaces failing
the approximation property and trying to guarantee that the set of
operators which attain their norms is not bigger than the set of finite-
rank operators. This is the reason why we will adapt [97, Theorem 1]

taking into account all the previous considerations.

For this, we will use Read’s space R (see [79, 80, 103] for all the details
on this space). Read’s space is a renorming of the Banach space ¢y,
R = (co, ||]l]), whose bidual R** is strictly convex (see [79, Theorem
4]). This implies that NA(X, R**) < F(X, R**) whenever X is a closed
subspace of ¢y (see [97, Lemma 2]). It is worth mentioning that we
are not using here the deep properties of R (that it contains no two-
codimensional proximal subspaces) but only the fact that its bidual is
strictly convex for the bidual norm and that it contains ¢ (this is in fact
well-known; the existence of such norms can be justified, for instance, by
using [80, Lemma 2.1] and taking R as a one-to-one operator from ¢y
into 5).

Theorem 4.4.1. Let R be Read’s space. There exist subspaces X of c
and Y of R such that the set of tensors in X®,Y* which attain their

projective norms is not dense in X®,Y*.
In order to prove Theorem 4.4.1, we would like to present several previous
results which are interesting themselves.

Lemma 4.4.2. Let X,Y be a Banach spaces such that Y* is separable.
If F(X,Y**) is viewed as a subspace of (XQ,Y*)* = L(X,Y**), we
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have
*

B]-'(X,Y**) - B]—'(X,Y)w

Proof. Let T € F(X,Y**) with |[T| < 1. Choose a countable dense
subset {y*}*_, of Y* and let F,, = span{yf,...,y’} for each n € N. By
the Principle of Local Reflexivity (see [53, Theorem 9.15] for instance),
for each n € N, there exists an operator ¢, : T(X) — Y such that

L (1= ) [7@)] < [6a(T@)] < (1+2) [T(@)] for every z € X,

2. y*(¢n(T(x))) = y*(T(x)) for every y* € F,, and z € X.

Choose ng € N so that % < ﬁ — 1 whenever n > ngy. Let us define
K, =¢,0T e F(X,Y) for each n = ny. Then |K,| < ||¢.][T] < 1 for
each n > ng. We claim that K, w7 First, observe that given x € X

and m € N, we have

Ym (K (2)) = Y (00 (T (2))) = Y (T'(2)) for every n=m.  (4.4.1)

Now, let z € X\{0}, y* € Y* and £ > 0 be given. Pick ng € N so that
lym, — v < s BY (4.4.1), we have for n = no,

v (Kn(2)) = y*(T(2))]
< |y* (B () = Yoy (B (2))] + [ (K () = 4, (T'(2))]
+ Yy (T(2)) =y (T'(2))|

< v* = vn [l + Ny, — v* [T l]]
<< + R
2 2
By a linearity argument we get that K, (z) — T'(z) for every z€ X ®Y.
Finally, since the sequence K, is bounded we get that K,, — T in the

w*-topology.
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This implies that {7 € F(X,Y*) : |T| < 1} € Brxy" . As a w*

closed set in L£(X,Y™) is | - |-closed, we conclude that Br(xy#x)
*

Brxy) - u

In what follows, we will be using the strong operator topology (SOT, for
short) and the weak operator topology (WOT, for short). Recall that
the strong operator topology in L(X,Y) is the topology defined by the

basic neighborhoods
N(T;Ae) ={Se L(X,)Y):|(T—-95) ()| <e,xe A},

where A is an arbitrary finite subset of X and € > 0. Thus, in the SOT,
a net (T,) converges to T if and only if (T,(x)) converges to T'(x) for
every x € X. On the other hand, the weak operator topology is defined
by the basic neighborhoods

N(T; A, A% ) = {S e L(X,Y), |[y"(T — S)(@)| < &,y* € A*,z € A},

where A and A* are arbitrary finite sets in X and Y™, respectively,
and € > 0. Thus, in the WOT, a net T, converges to T' if and only if
(y*(To(x))) converges to y*(T'(z)) for every x € X and y* € Y*.

Let us notice that a convex set in £(X,Y’) has the same closure in the
WOT as it does in the SOT (see, for instance, [52, Corollary 5, page
477]). We will use this fact in the proof of Theorem 4.4.1 below.

Lemma 4.4.3. Let X be a Banach space failing the approximation
property. Then, the identity map on X does not belong to RB;(X7X)WOT

for any R > 0.

Proof. Let X be a Banach space which fails the approximation property
and let us denote the identity map on X by Idyx. Then, by definition,

Idy ¢ F(X,X) , where 7 is the topology of uniform convergence on
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compact sets. For given R > 0, let us prove that Idx ¢ RMSOT
In order to get a contradiction, let us assume Idy € RmSOT. Then
there exists a net {Ti}aea © RBr(x,x) such that T, 59T, Tdy. Now, let
K be a compact set in X and € > 0 be given. Choose a (min {%, %})-net
{zq,..., 2%} for K. Pick ag € A such that for every a > «y

3
max [Ta(zi) — Idx ()] = max |Ta(z:) — @i < 3.

Given z € K, take i € {1,...,k} so that |z — z;| < min {55, £}. Then,

|Ta(x) = Idx ()| < [Talz) = Ta(z:)| + | Talw:) — @il + i — 2]

€ 9
< Tulle - il + 5 + 5

< = + = + ‘- €
3 3 3
for every a = «ap. This implies that Idy € F(X, X )T, a contradiction.
————SO0T _—
SO, IdX ¢ RB]:(X’)() = RBJ—'(X,X) . [ |

Now we are ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. Let X be a closed subspace of ¢y which fails the
approximation property (see, for instance, [95, Theorem 2.d.6]). Then,
by Lemma 4.4.3, the identity map on X does not belong to RmWOT
for any R > 0. Let Y = (X, |||-[), where [|-|| is the norm that defines
Read’s space. Let us denote by ¢ € £L(X,Y) the formal identity map
from X to Y. Then T = ¢/||¢| does not belong to RmWOT for any
R > 0. It follows that T does not belong to RW* for any R > 0,
where the previous weak-star topology refers to o(L(X,Y**), X®,Y*).
Indeed, if T' € me* for some R > 0, given x € X, y* € Y* and

e > 0, there exists Ty € RBr(x,y) such that

y* (T'(x) = To(x))| = (T = To)(x®@y")| <e,
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which implies that T'e RBxr X}y)WOT, a contradiction. In particular, T'
*

. As Y* is separable, by Lemma 4.4.2, T
iw*

does not belong to Br(x,y++) . Thus, by the Hahn-Banach theorem

w

does not belong to Br(x,y)

we have that the unit ball Bz x y#+) is not norming for X ®.Y*. Take
ze X®,Y* with |z|, = 1 and a > 0 such that

sup{|G(2)| : G € Brxy*} <1—a. (4.4.2)

Claim: dist (z, NA,(X®,Y*)) > %

If this is not the case, there exists 2’ € NA(X®,Y*) such that ||z—2/|, <
$. This implies that |2'|, > 1 —§. Let G € L(X,Y™) with |G| =1
such that |G(2')| = |#/|». In particular, G € NA(X,Y**) by Theorem
4.2.1. Notice that Y** = Y1 is a closed subspace of R**, so Y** is
strictly convex. Thus, we have that G € F(X,Y**) by [97, Lemma 2],
which implies by (4.4.2) that |G(z)| < 1 — a. Nevertheless,

|G(2)]

WV

G =lz=#>1-5 -5 =1-a,

which is a contradiction. [ |

Remark 4.4.4. Notice that from the above proof it follows that, given
two Banach spaces X and Y, if NA;(X®,Y) is dense in X®,Y, then
NA(X,Y*) n Bg(x.y+) is norming for X®,Y .

In fact, from the proof of Theorem 4.4.1 (and its lemmas) we extract
more information. Recall that for every non-zero tensor u e X ® Y,
there is a smallest N € N U {0} for which there is a representation for z
containing N terms. The number N is known as the rank of u. Because
of this, we will say that ue X ® Y is a finite-rank tensor if the rank of

u is finite. Although it is not known whether every finite-rank operator
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can be approximated by norm-attaining operators, the case for tensors

does not hold in general.

Proposition 4.4.5. There are tensors of finite-rank which do not attain

their projective norm.

Proof. Consider X and Y* as in Theorem 4.4.1. Then, there exist a > 0
and z € X®,Y* such that dist(z, NA,(X®,Y*)) = a. Now, take u of
finite-rank such that |z —u. < §. Then, this element cannot attain its

projective norm. |

As we have commented at the beginning of this section, let us notice
that from the proof of Theorem 4.4.1, there exist some Banach spaces X
and Y such that NA(X,Y™*) n Bg(x y##) is not w*-dense in By x y+).

Actually, we have the following result.

Corollary 4.4.6. There are Banach spaces X and Y such that

w
CODV(NA(X, Y**) N BL(X,Y**)) # Bc(ny**).






Chapter 5

Linear spaces consisting of
strongly norm-attaining

Lipschitz mappings

5.1 Introduction and motivation

According to Rmoutil’s result [104], there exists an infinite-dimensional
Banach space X (namely ¢y in the equivalent norm constructed by
Read [103]) such that the set NA(X,K) < X* of norm-attaining linear
functionals does not contain two-dimensional linear subspaces. That is
a negative answer to [64, Problem III] by Godefroy. Read’s construction
was generalized in [80], where such equivalent norms with “extremely
nonlineable set of norm-attaining functionals” were constructed in all

separable and some non-separable Banach spaces containing cg.

In the first half of this chapter, we address an analogous question for
metric spaces M and the set SNA(M) of strongly norm-attaining Lips-

chitz functions on M. Surprisingly, for Lipschitz functions the answer
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happens to be just the opposite, as we will see: for every infinite M the
corresponding set Lip,(M) always has linear subspaces of dimension at
least 2 consisting of strongly norm-attaining functionals, and in fact, it
contains much bigger linear spaces in general. After figuring out this
new fact, we study some other natural questions about possible sizes for

closed linear subspaces in SNA(M).

It was shown in [36, Theorem 3.2] that if M is an infinite metric space,
then Lipy(M) contains linear subspaces isomorphic to ¢4, and later, an
isometric version of this result was given in [37, Theorem 5]. However,
the proofs cannot be adapted to the setting of strongly norm-attaining
Lipschitz mappings in general and, as we will show in Theorem 5.3.3,
for separable M, the non-separable space ,, cannot be embedded in

SNA(M), neither isometrically nor isomorphically.

5.1.1 Preliminaries

All vector spaces in this chapter will be assumed to be real without
explicit mention. Let (M, d) be a pointed metric space (that is, a metric
space consisting of at least 2 points and containing a distinguished point
0). We will usually consider only one metric on M which permits us to
write just M for the metric space instead of (M, d). We use the standard
notation Lip,(M) for the space of all Lipschitz mappings f : M — R
such that f(0) = 0 endowed with the Lipschitz constant as the norm,

that is
|f(z) = [l
d(z,y)

We refer to the book [114] for a solid background on Lipschitz mappings.

f||=sup{ ;x,yeM,Hy}.

There is a natural way to define the norm-attainment in this context.

According to [83], a Lipschitz function f € Lipy(M) is said to strongly
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attain its norm if there is a pair of points x,y € M with x # y such that

d(z,y)
We will denote the set of Lipschitz functions from Lip,(M) that attain
their norm strongly by SNA(M) (the notations SA(M) and LipSNA (M)
have also been used in the literature).

The reason behind calling this natural norm-attainment strong is that
this is a restrictive notion, and other weaker notions of norm-attainment,
which are also natural and give interesting results, have also been in-
troduced and studied since the initial works on the topic [66, 83] (see
for instance [32, Section 1] for a very clean exposition of various kinds
of norm-attainment for Lipschitz mappings and the relations between
them).

The systematic study of norm-attaining Lipschitz mappings was started
in [66] and [83]. Since then, a fruitful line of research arose and continues
to be very active nowadays (just to list some relevant references on
the topic, we refer to [15, 24, 27-30, 32, 60, 61, 65, 66, 78, 83, 84] and
the references therein for a solid background on the topic). As we just
mentioned, the notion of strong norm-attainment is a bit restrictive.

This can be justified by the following facts:

o If a Lipschitz function f strongly attains its norm at some pair
of points x # y, then f strongly attains its norm at any pair
of different points in between them (see [83, Lemma 2.2] for the
details).

o If M is a complete length metric space (that is, if for every
x # y € M, the distance d(z,y) is equal to the infimum of the

length of rectifiable curves joining them; note that every normed
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space is a metric length space), then SNA(M) is never dense in
Lipy(M) (for the details, see [24, Theorem 2.2], which improves
[83, Theorem 2.3], and check also [14, 62, 73] for more background

and characterizations on complete length metric spaces).

However, despite the above results, positive results have also been
achieved in this direction in the recent years for some metric spaces
(see for instance [24, Section 3| and [29]). Evidently, if M is of finite
cardinal n € N, then SNA(M) = Lip, (M), which means that it is already
an (n — 1)-dimensional linear space, so we are mainly focused in infinite

metric spaces.

An important tool in the study of Lipschitz mappings is the concept of
Lipschitz-free spaces (also referred to as Arens-FEells spaces and Trans-
portation cost spaces in the literature). Given a metric space M, denote
0 : M — (Lipy(M))* the canonical embedding given by 6(z) = d,, v € M,
where 0, is the evaluation functional f — f(x). Then the norm-closed
linear span F (M) of §(M) in Lipy(M) is called the Lipschitz-free space
over M. The space F(M) can be seen isometrically as a predual of
Lipy (M) (see [24, Section 1] and the survey [65] for a solid background
on Lipschitz-free spaces). The identification (F(M))* = Lipy(M) can
be explained as follows: every Lipschitz mapping f : M — R can be
identified with the continuous linear mapping f : F(M) — R given by
f(8,) — f(p) for pe M and extended to the whole F(M) by linearity
and continuity. This identifies isometrically the spaces Lipy,(M) and
(F(M))*. It is easy to check that SNA(M) can be identified with the

set of those elements of L(F(M),R) that attain their norm at a point of
L

d(x,y?j’
to get many results about strongly norm-attaining Lipschitz mappings

(see for instance [24, Section 3|, [28, Section 2], [29], [60, Section 7] and

the form for different x,y € M. This identification has been used




5.1 Introduction and motivation 233

[61, Section 4]). We refer to [37, 85, 102] for works where the possibility

to embed /¢; into Lipschitz-free spaces was studied.

Remark also, that the structure of Lip,(M) and SNA(M) does not
depend on the selection of the distinguished point 0: if M’ is the same
metric space but with another distinguished point 0’ then the mapping
f — f— f(0) is a bijective linear isometry between Lip,(M) and
Lipy(M’), which maps SNA(M) to SNA(M’) in fact, and it is w* — w*
continuous, which proves that the Lipschitz-free spaces do not depend

on the choice of the origin either.

Another important tool is the well-known McShane’s extension theorem
[114, Theorem 1.33] that allows us to extend f € Lip,(M;) to f €
Lip,(Ms), with My < M, in such a way that | f] = | f].

Given a metric space M, in this chapter, the expression linear subspaces of
SNA(M) should be understood as linear subspaces of Lip,(M) consisting
of strongly norm-attaining Lipschitz functions. Also, we use below
the following slang. Let Y be a Banach space and M be a pointed
metric space. We say that Y embeds in SNA(M) (or equivalently
SNA(M) contains a copy of Y), if there is a linear isometric embedding
U :Y — Lipy(M) such that U(Y) = SNA(M).

To finish this section, we will briefly discuss the structure of the rest
of the chapter. The first half, contains two extra sections. In Section
5.2, we show that if a metric space M has more than n € N points,
then SNA(M) contains n-dimensional subspaces (see Theorem 5.2.7 and
Corollary 5.2.9), solving in the positive our original question. In Section
5.3 we study other related questions, such as the possible sizes for linear
subspaces of SNA (M) (see Proposition 5.3.1), or how “small” a metric
space M can be if the Banach space Y is a subspace of SNA(M) (see
Theorem 5.3.3). We also show that the existence of Banach spaces

in SNA(M) has restrictions for o-precompact metric spaces M (see
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Proposition 5.3.7), and, on the other hand, we show that if a metric M
contains [0, 1] isometrically, then subspaces of SNA(M) can be infinite-

dimensional (see Proposition 5.3.9).

In the very recent work [15], Avilés, Martinez-Cervantes, Rueda Zoca, and
Tradacete, managed to show that, in fact, if M is any infinite complete
metric space, then SNA (M) always contains ¢y isomorphically, answering
[84, Questions 1 and 2], and they asked if this could be always done
isometrically (see [15, Remark 3.6]). We will devote the second half of
the chapter to tackle this question. In Section 5.4, some important tools
will be presented. In Section 5.5, we will study and solve the question
from [15, Remark 3.6]. In particular, we will show that the embedding of
¢o can be isometric if M is not uniformly discrete (see Subsection 5.5.2),
but in the uniformly discrete case we find several counterexamples with
very different behaviours (see Subsections 5.5.1 and 5.5.3). Finally, in

Section 5.6, we will provide a result in the non-separable setting.

5.2 Finite-dimensional subspaces

In this section, we will study the existence of n-dimensional linear
subspaces in SNA(M), where M is a pointed metric space and n € N.
Our main result from the section states that if M contains at least
2" points (in particular, if M is infinite), then SNA(M) contains an
isometric copy of ¢} (see Theorem 5.2.7). This provides a shocking
contrast when compared to Rmoutil’s result from the classical theory of
norm-attaining functionals (see [104]). In order to prove our main result

in this direction, we need a bit of preparatory work.

First of all, recall that if a finite pointed metric space M has exactly
n > 1 distinct points, for some n € N, then Lipy(M) = SNA(M), and it

is an (n — 1)-dimensional Banach space.
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Remark 5.2.1. Note that, in general, we cannot claim that if a Banach
space Y is a linear subspace of SNA(K) for some metric space K, then
Y is also linearly isometric to a subspace of SNA (M) for metric spaces
M containing K as a subspace. One may be tempted to use McShane’s
extension theorem in order to try to get such a result, but the extensions
do not behave well like a linear space in general. However, the well-
behaving norm | - |; will allow us to get a result in this direction, as

Lemma 5.2.2 below shows.

Lemma 5.2.2. Let M be a pointed metric space such that for some
subspace K of M, SNA(K) contains a linear subspace isometrically
isomorphic to 07 for some n € N (respectively, ¢1). Then, SNA(M) also

contains a linear subspace isometrically isomorphic to (7 (respectively,

61).

Proof. We will prove the finite-dimensional case, that is, ¢}, as the
infinite-dimensional case (¢;) can be proven with the same method. Let

E < Lipy(K) be a linear isometric copy of ¢} consisting of strongly

norm-attaining functionals. Then, there are fi,..., f, € Sg © SLip (k)
such that for all aq,...,a, € R,
n n
anfs] = D laxl.
k=1 =1
Let g1,...,9n € SLip,(ar) be norm-preserving extensions of fi,..., f,

respectively. Then, by the triangle inequality, for all aq,...,a, € R,

n n
2 akgr|| < Z |ax|.
k=1 k=1
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On the other hand, there is a pair of different points t;,t; € K at which

> r_y Gk fr strongly attains its norm. This gives us

) — (Xl argr) (f2)]
(t1,t2)

S |(Xhey axgk) (B

d
ey an i) () — Ol anfi) ()] Z ],
- d(ty, t2) ‘
SO Zzzl argr strongly attains its norm. H

In particular, if we were able to embed ¢} spaces isometrically in SNA (M)
for a finite pointed metric space M, we could use the previous lemma
to obtain the same result for all metric spaces containing M. We will
provide now a constructive proof of the fact that if a metric space M has
4 points, then SNA(M) contains 3 isometrically. Naturally, by Lemma

5.2.2, this implies that for bigger metric spaces, the result remains true.

We will use the following notation. Given a function f € Lipy(M) and
two points «, § € M with a # 3, the notation S(f, a, §) will denote the

incremental slope of f from « to 3, that is,

Proposition 5.2.3. Let M = {0,a,b, c} be a pointed metric space con-
sisting in exactly 4 points. Then Lip,(M) has a linear subspace that is

isometrically isomorphic to (3.

Proof. We will first rename the points of M as x1, zs, 3, x4 satisfying
that 1 = 0 and that

d(zy,x4) + d(z2, 23) = min {d(c, B) + d(,6) : M ={«a,5,7,0}}.
(5.2.1)
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-

Figure 5.1. Visualization of the condition (5.2.1).

Define the following mappings:

fl(xl) =0,
I fi(w2) = d(x1,24) — d(z9, 24),
f1<l’3) = d($1,$4) — d(l‘g,l’4) + d(l‘g,l‘g),
kfl(%'z;) = d(z1, 74),
[ falan) = 0,
e f2(l’2) = d(9€1>$2),
fo(w3) = d(x1,29) — d(z2, x3),
ka(fL’zl) = d($1,$4).

We will verify that the linear space generated by f; and fs is isometrically
isomorphic to £2. Let us study the slopes of all 6 pairs of points for each

of these functions. For f; we have the following.

L S(fl,xl,x4) =1.
. S(fhxg,l’g) =1.

. S(f1,1‘2,1'4) =1.

Note that, by the triangle inequality, it holds that

—d(r1,9) < d(x1,74) — d(x2, 74) < d(7,72).
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Therefore, |S(f1,z1,29)| < 1.

S(f1,x3,24) = dle.wa)=d(@2.23)  Note now that, by the triangle

d(z3,x4)

inequality, it holds that
—d(z3,14) < d(x9,24) — d(x2,23) < d(x3,24).

Therefore, |S(fi, z3,24)| < 1.

Finally, S(fi,21,23) = d(xl’14)72';&2?:23”(”“3). Note once more
that

—-1< S(fl,xl,LUg) <1

Indeed, the first inequality comes from applying the triangle in-

equality as follows
d(xe,x4) < d(xg,x3) + d(T3,21) + d(271, T4),

and the second inequality is derived directly from (5.2.1).

About f5, we have the following.

S(fo, z1,74) = 1.

S(fe, 2, x3) = —1.

S(fa, x1,22) = 1.

Note that, by the triangle inequality, it holds that

—d(z9,14) < d(x1,24) — d(x1,22) < d(29,24).

Therefore, |S(f2, 2, 24)| < 1.
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o By the triangle inequality, it holds that
—d(x1,x3) < d(x1,22) — d(x9, x3) < d(271, 23).

Therefore, |S(fa, x1,23)| < 1.

e Finally, S(fy, 23,74) = d(ml’14)7(?&2:23”(“@3). Note once more
that

-1 < S(f27x37x4) < 1.

Indeed, the first inequality comes from applying the triangle in-

equality as follows
d(x1,29) < d(xq,x4) + d(T4, 23) + d(x3,2),

and the second inequality is derived directly from (5.2.1).

Thus, we have obtained two mappings fi, fo € SNA(M), both with
Lipschitz constant 1, and such that

S(f17x17x4>:17 S(f17x27x3>:1
S(f2,$1,$4) = 1, S(fg,ZEQ,ZL‘g) = —1.

Let a1,b; € R, and let f = ayf; + asfs. Note first that for all i # j €
{1,2,3,4},

S(f, iCi,%') = als(f1>$i,$j) + @2S(f2,37¢737j)-

From here, it is clear that | f|| < |a1| + |az|. Also, if a; and as have the

same sign, one gets immediately that

|S(f, 21, 24)| = [a1 + az| = |ay]| + |az],
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and if a; and as have different sign, then
‘S(f, $2,5C3)| = |CL2 - ag\ = \ag\ + |a3].

This shows that the linear space generated by f; and fy is isometrically

isomorphic to ¢2, and the proof is now finished. [ |

Using Proposition 5.2.3 together with Lemma 5.2.2, we get that any
metric space M with more than 2 points (in particular, any infinite
metric space) satisfies that SNA(M) contains a 2-dimensional subspace,
which shows a shocking contrast when compared to Rmoutil’s result
for functionals from [104]. However, we can actually go much further
than this. In the recent works [85] and [102], the existence of ¢} and ¢,
subspaces of Lipschitz-free spaces was studied, providing an answer to
[37, Question 2]. This has proven to be an important tool in our case,
and we will use the cited below first half of [85, Theorem 14.5] in the
proof of our main result. For the sake of completeness and easy reference,

we include below the formal statement.

Lemma 5.2.4 (First half of [85, Theorem 14.5]). For every n € N, if
a pointed metric space M contains 2n elements, then F(M) contains a

1-complemented subspace isometric to (7.

Recall that it is not true in general that if Y is a subspace of a Banach
space X, then Y* is isometric to a subspace of X* (for instance, recall that
¢, embeds isometrically in C([0, 1]), but £, does not embed isometrically

in C([0,1])*); however, the scenario is different if Y is 1-complemented.

Lemma 5.2.5. Let X be a Banach space that contains a 1-complemented

subspace Y. Then Y* embeds isometrically as a subspace of X*.

Proof. Let P: X — Y be a norm-one projection. Consider the mapping
U:Y* — X* such that for all y* € Y* U(y*) := y* o P, that is, for all
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re X, Uy*)(z) := y*(P(x)). Then U is an isometric embedding, as

desired. Indeed, just note that for each y* € Y*, we have

Uy = sup UG ()] = sup |y*(P(z))] = sup |y*(y)| = [y".

:DEBX yEBy

Finally, recall the following well-known result, for which it is sufficient
to consider the span of n vectors in K%H with +1 coordinates, built
analogously to the Rademacher functions on [0, 1] (that is, the ba-
sis would be formed by the vectors (1,1,...,1), (1,-1,1,—1,...,—1)),
(1,1,-1,-1,1,...,—1), and so on).

Lemma 5.2.6. If n e N, then (7 is isometric to a subspace of (% .

We now have all the necessary tools for the proof of the main result of

the section.

Theorem 5.2.7. Let n > 1 be a natural number, and let M be a pointed
metric space with at least 2™ distinct points. Then, there exists a linear

subspace of SNA(M) which is isometrically isomorphic to (7.

Proof. First of all, consider a metric subspace K of M containing exactly
2™ distinct points. By Lemma 5.2.4, F(K) contains a 1-complemented
subspace isometric to /2", Recall that F(K)* is isometric to Lipy(K),
and that (¢2"")* is isometric to £, so by Lemma 5.2.5, Lip,(K) =
SNA(K), and it contains a subspace isometric to Egg_l. Applying Lemma
5.2.6 we deduce that SNA(K) contains a subspace isometric to ¢/} as well.
Finally, by Lemma 5.2.2, SNA(M) also contains a subspace isometric to
7. [ |

Corollary 5.2.8. If M 1is an infinite pointed metric space, then for all

n €N, SNA(M) contains an n-dimensional subspace isometric to (7.
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Corollary 5.2.9. Let n € N. For a pointed metric space M, the following

statements are equivalent:

1. SNA(M) contains n-dimensional linear subspaces.

2. M contains at least n + 1 points.

5.3 Infinite-dimensional subspaces

We start this section by showing that there exist metric spaces M for
which SNA(M) contains “big” Banach subspaces. Actually, any Banach
space Y can be a subspace of SNA(M) for a suitable metric space M.

Proposition 5.3.1. If Y is a Banach space, then it is a subspace of
SNA(By+).

Proof. Let Y be any Banach space. Consider the metric space Byx. For
each y € Y, let 6, : By+ — R be the evaluation map d,(y*) := y*(y),
for all y* € By=, which is clearly a linear mapping. For each y € Y,
there exists some y* € By« such that y*(y) = |ly|. It is immediate to
check that §, is in Lipy(By#) with Lipschitz constant |y, and that it
attains its norm strongly at the pair (0,y*). Therefore, Y is a subspace
of SNA(By+). [

A natural question arises now: given a Banach space Y, how small can
a metric space M be so that Y is a linear subspace of SNA(M)? From
the previous proposition, it is clear that if Y has separable dual, then

M can be chosen to be separable.

What if Y* is not separable? For instance, we have seen in Theorem 5.2.7

that if M is an infinite pointed metric space, then SNA(M) contains
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isometrically all the ¢} spaces as linear subspaces, so it is natural to
wonder if it also contains, say, /1. However, this is not the case in general,
as we are about to see. Theorem 5.3.3 below shows that separability of
Y* actually characterizes the possibility of M being separable. A set
B < Bxx is a James boundary of X if for every x € X, there is g € B
such that g(z) = |z| (see [54, Definition 3.118]). In order to prove it, we
rely on the concept of James boundary and also on the following result
by Gilles Godefroy.

Proposition 5.3.2 (Godefroy, [54, Corollary 3.125]). Let X be a Banach

space. If X has a separable James boundary, then X* is separable.

Theorem 5.3.3. For a Banach space Y, the following assertions are

equivalent.

(1) There is a separable pointed metric space M and a closed linear
subspace Z < Lipy(M) such that Z is isometric to Y and Z
SNA(M).

(2) There is a separable Banach space X and a closed linear subspace
Zy < X* such that Zy is isometric to Y and Z; < NA(X,R).

(3) Y* is separable.

Proof. (1) implies (2): It is sufficient to consider X = F(M) and use the
identification of Lipy(M) with X*. With this identification Z < Lip,(M)
identifies with a subspace of Z; < X™* and all elements of Z; remain to

be norm-attaining as elements of X*.

(2) implies (3): Assume that such a separable Banach space X exists,
denote as usual Jx : X — X** the canonical embedding of X into its
bidual and R : X** — Z7 the natural restriction operator. The condition
7y < NA(X,R) means that for every f € Z; there is x € Bx such that
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f(z) = |||, so in other words ((Ro Jx)(z))(f) = | f|l. Consequently,
(Ro Jx)(Bx) is a separable James boundary of Z;, so Z} is separable
by Proposition 5.3.2). Hence, we have that Y* is separable.

(3) implies (1): If Y* is separable, take M = By« and apply Proposition
5.3.1. -

As a consequence of the above result, there exist infinite metric spaces
M such that SNA(M) does not contain linear subspaces isometrically

isomorphic to /7.

Remark 5.3.4. Note that a direct proof that (2) implies (1) in Theorem
5.3.3 can be achieved by considering M = Bx. In this case, the oper-
ator U that maps each f € X™ to its restriction on M is an isometric
embedding with the property that if f is norm-attaining then U(f) is
strongly norm-attaining on M. So the subspace Z := U(Z;) is what we

are looking for.

The previous result shows that for separable metric spaces M, the spaces
we can find in SNA (M) must satisfy some restrictions. The next Theorem
5.3.7 shows in a similar way that if M is “small” then the restrictions
on Banach subspaces in SNA(M) happen to be much stronger. In the
proof we will use [58, Corollary 2.2]. Recall that a Banach space X is
polyhedral if the unit ball of every finite-dimensional subspace of X is a
polytope. A space that is isomorphic to a polyhedral space is said to be
isomorphically polyhedral.

Proposition 5.3.5 ([58, Corollary 2.2]). If X has a boundary that can be
covered by a set of the form U;O=1 comv?” (K;), where each K; is countably

infinite and w*-compact, then X is isomorphically polyhedral.

Corollary 5.3.6. If X has a boundary that can be covered by a count-
able number of compact sets, then X 1is separable and isomorphically

polyhedral.
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Proof. Let the boundary W of X be covered by Ujozl W; for compact
sets W;. Then, the boundary is separable, so by Godefroy’s result
(Proposition 5.3.2), X* is separable, and then X is separable as well.

According to [96, Proposition 1.e.2], every compact subset W is included
in a subset of the form conv{z},};_, = X* where |27, | ">% 0. Thus,
the boundary W has the property from Proposition 5.3.5, so X is
isomorphically polyhedral. |

Remark that the same result follows from an “internal” characterization
from [57]. A metric space is said to be o-precompact if it is a countable

union of precompact sets. We can now prove the announced result.

Theorem 5.3.7. Let M be a o-precompact pointed metric space, then all
Banach subspaces in SNA(M) are separable and isomorphic to polyhedral

SPaces.

Proof. Let {M,}*_, be a sequence of precompact sets satisfying that
M c U;O=1 M,. TFor each n € N, denote A, = {0, : x € M,}
Lipy(M)*. By our assumption, each A, is precompact in Lip,(M)*.
Then aconv(A,, — A,,) is compact for every n,m € N (where aconv(A)
denotes the absolute conver hull of A, and aconv(A) is its closure). The

set

6 — 0y . I
MOI:{d(t,T)'t?éTEM}C U k - aconv (A, — A,)

m,n,k=1
is covered by a countable number of norm-compact sets.

Let Y < SNA(M) be a Banach space. Denote R : Lip,(M)* — Y*
the natural restriction operator. Then by the continuity of R, R(Mol)
is covered by a countable number of norm-compact sets as well. The
set R(Mol) [ Sy forms a boundary for Y (by the definition of strong

norm-attainment), so the statement follows from Corollary 5.3.6. |
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Note that all compact spaces and all R" spaces, with n € N, are o-
compact. In particular, every linear subspace in SNA([0, 1]) is separable
and isomorphically polyhedral. It is worth noting, however, that such

subspaces can be infinite-dimensional, as we will see in Example 5.3.8.

Since all Lipschitz functions are absolutely continuous, one can identify
(see for instance [114, Example 1.6.5]) the space Lip,([0, 1]) isometrically
with the space Ly ([0, 1]), where the isometric isomorphism between them

is just the differentiation operator (which exists almost everywhere):

U - Lipg([0, 1)] = Lo ([0, 1))
f=U) =1

It is clear from this and [83, Lemma 2.2] that U(SNA([0,1])) is the
subset of Ly ([0, 1]) consisting of functions that attain their norm || - |
throughout an interval with non-empty interior. We get the following

result.
Example 5.3.8. If M = [0, 1], then SNA(M) contains linear subspaces

isometrically isomorphic to c¢.

Proof. Consider the set A of functions g : [0,1] — R such that the

following holds for some a = (ay, as,...) € co:

g(@)=ap, fzxe[l-3,1—77), k=1,2,...
g(1) =0

Then (A, | - |») is a linear subspace of U(SNA([0,1])) which is isometri-

cally isomorphic to c¢.
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Finally, if we invert the mapping U, we actually get a linear subspace
of SNA([0, 1]) which is isometrically isomorphic to ¢y, as desired (see

Figure 5.2 for a visualization of the process followed in this example). W

Naturally, the previous example remains true if one changes [0, 1] with
any other interval [a,b] = R with a < b.
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Figure 5.2. Visual construction of ¢y in SNA([0, 1]) as in Example 5.3.8.

Finally, the next result shows that one can extend the existence of ¢ in
SNA([0,1]) to SNA(M) for any pointed metric space M that contains
[0,1] isometrically (for instance, any normed space). Recall that a
Lipschitz mapping f : A ¢ R" - B < R" (n € N) is a Lipschitz
retraction if f(x) = x for all z € A.

Proposition 5.3.9. If M is any pointed metric space containing [0, 1]
isometrically, then SNA(M) contains linear subspaces isometrically iso-

morphic to c.

Proof. Let M and Z be metric spaces such that Z < M. Assume that
there exists some retraction F': M — Z with Lipschitz constant 1, that
is:

F(z) = z, for all z € Z,

d(F(a), F(b)) <d(a,b), foralla,be M.
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Let T : Lipy(Z) — Lipy(M) be such that for all f € Lipy(Z), T(f) :=
foF. Thus, for all z € M, we have (T(f))(x) = f(F(z)). It is clear
that T is linear. Moreover, T(Lip,(Z)) is a subspace of Lip,(M) (and
T(SNA(Z) is a subset of SNA(M)). Hence any linear subspace of Lipy(Z)
yields a subspace of Lipy(M).

All that remains is to note that if X is any metric space containing [0, 1]
isometrically, then the mapping F exists. Indeed, the identity operator
Id on [0, 1] is a Lipschitz function with constant 1, and by McShane’s
extension theorem, it can be extended to the whole X preserving its
Lipschitz constant. [ |

Observe that Proposition 5.3.9 applies to all normed spaces. This should
be once more compared with the classical theory of norm-attaining
functionals, where there exist Banach spaces X such that NA(X,R) does

not have 2-dimensional subspaces (see [104]).

5.4 The isometric embedding of cy: Tech-

nical tools

As mentioned earlier, the existence of infinite-dimensional spaces in
Lipy(M) has already been studied (see for instance [36, 37, 71]), but,
as Theorem 5.3.3 shows, the techniques used in those papers do not
work for SNA(M). In this second half of the chapter, we will study the

existence of infinite-dimensional subspaces of SNA (M) if M is infinite.

Recall that in Theorem 5.2.7 we saw that if M is infinite, then SNA (M)
contains all the ¢} spaces isometrically for n € N. Note, however, that
not every metric space M can satisfy that ¢, is isometrically contained
in SNA(M) (see Theorem 5.3.3). In fact, Theorems 5.3.3 and 5.3.7 tell
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us that if the metric space M is “small”, then the subspaces of SNA (M)

need to satisfy some restrictions.

On the other hand, recall that, by Proposition 5.3.9, any metric space
M isometrically containing [0, 1] satisfies that SNA(M) contains cq
isometrically (note that this includes all normed spaces). In fact, as
we will see later, using some geometrical constructions, it is possible
to show that every metric space M with an infinite amount of cluster
points satisfies that ¢y is isometrically contained in SNA(M). But even
without that condition, the spaces M that we were able to originally
study in detail satisfy that SNA(M) contains ¢y at least isomorphically.

This motivated us to ask the following two natural questions in [84].

Question 5.4.1 ([84, Question 1]). Is it true that for every infinite
complete pointed metric space M the corresponding SNA(M) contains

infinite-dimensional closed (or at least non-closed) linear subspaces?

Question 5.4.2 ([84, Question 2|). Is it true that for every infinite
complete pointed metric space M the corresponding SNA(M) contains

an isomorphic copy of co?

In the very recent work [15], Avilés, Martinez-Cervantes, Rueda Zoca,
and Tradacete, by means of an elegant case distinction, and with the
help of Ramsey’s theorem, were able to solve in the positive both of

these questions, as they proved the following.

Theorem 5.4.3 ([15, Main Theorem]). Let M be an infinite complete

pointed metric space. Then SNA(M) contains an isomorphic copy of cq.

As for the isometric case, they were able to show that metric spaces M
satisfying a certain geometrical condition satisfy that SNA (M) contains
¢o isometrically (this includes, for instance, every metric space with an
infinite amount of cluster points, and every discrete metric space which

is not uniformly discrete).
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Lemma 5.4.4 ([15, Lemma 3.1]). Let M be a metric space. Assume
that there is a sequence B(x,, R,), n € N, of balls satisfying the following

conditions:

1. d(B(z;, R;), B(xj, R;)) > 0 for every n # m,

2 Ri+R]’
. d(B(mi,Ri),B(mj ,Rj))

1 . .
< 5 for everyi # j, and

3. for everyn € N, there is y, € B(x,, R,)\{z,} such that d(x,,y,) <
d(Yn, M\B(zn, Ry,)).

Then, for every n € N, there is a norm-one Lipschitz function f, with
Mf’lgz") =1, so that {f,} is isometric to the co-basis and SNA(M)

d($nayn
contains span{ f,}.

At the end of their paper, in [15, Remark 3.6], the authors asked if
this could be extended to all infinite metric spaces, that is: “if M is an
infinite (complete) pointed metric space, then does SNA(M) contain cq
isometrically?” In the remaining part of this chapter, we will provide a
definitive answer to that question. We will show that there exist metric
spaces for which such embedding of ¢y cannot be done isometrically. We
will show, however, that the isometric embedding can be done for a wide
class of metric spaces (in fact, for any metric space that is not uniformly
discrete), and we will also provide some results about the non-separable
scenario. In order to prove our main results, we need some preparatory
work. We will first introduce, or recall, some notations and concepts

which will be used throughout the rest of the chapter.

Recall once more that all vector spaces in this document are real, and so,
the notation ¢y(I") should always be understood as the space co(I", R).
Let M be a metric space. The separation radius of a point x € M is
defined by

R(x) := inf {d(x,y): y€E M\{x}},
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and it will be central in some of the upcoming results. We will say that
a point x from a metric space M attains its separation radius whenever
there is y € M such that R(z) = d(x,y).

The symbol M’ stands for the set of all cluster points of M. Recall that
a metric space M is said to be discrete if M' = &, uniformly discrete if
inf{R(z): z € M} > 0, and proper if every closed and bounded subset
of M is compact (note that every proper space is o-compact, although

the converse is not true in general).

Let X be a separable Banach space with a Schauder basis denoted
by {z,}_;. We say that a sequence {y,}>_, in a Banach space Y is
(isometrically) equivalent to the basis {z,}*_; if there exists a linear
(isometric) isomorphism T': span{y,: n € N} — X such that T'(y,) = x,
for all n € N. The following straightforward facts will be used throughout

the text without any explicit reference.

(i) A sequence {x,}r_, is isometrically equivalent to the canonical
basis of ¢q if and only if the equality H > Anan = max, |\,

holds for every sequence {\,}>_; € co.

(ii) If a sequence {x,}>_; is isometrically equivalent to the canonical
basis of ¢, then so is the sequence {e,x,}i_,, where ¢, € {—1, 1}

for every n € N.

(iii) Any subsequence of a sequence which is isometrically equivalent to
the canonical basis of ¢y is once again isometrically equivalent to

the same basis.

Given any set A and a natural number k € N, we denote by Al the set of
all subsets of A with exactly k elements. We will use Ramsey’s Theorem
intensively throughout the text, which ensures that given any infinite set
A and any finite partition of the set A*l, {B,, ..., B,} for some n e N,
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there exists an infinite subset S of A and a number i € {1,...n} such

that SI*l is contained in B; (see, for instance, [54, Proposition 6.4]).

We will end this section by stating and proving some auxiliary results
that will be crucial for the rest of the chapter. The following are three
essential, yet straightforward, statements that hold in any complete

metric space. We provide their proofs for the sake of completeness.

Lemma 5.4.5. Let M be a complete metric space. Suppose that {f,}>_,
is a sequence of functions in Lipy(M) which is isometrically equivalent
to the canonical basis of cy. Then, for every n € N, if the function f,

strongly attains its Lipschitz norm at a pair of points x,,y, € M, then

(@) = fin(yn) for every m € N\{n}.

Proof. Let n € N be fixed. Suppose that the function f, strongly
attains its Lipschitz norm at a pair of points z,,y, € M. Without
loss of generality, we may (and we do) assume that |f,(z,) — fu(yn)| =
fo(@n) = fulyn) = d(zn, yn). We will proceed by contradiction. Let us
suppose to the contrary that there exist natural numbers m # n such
that fo(z,) # fm(yn). We may again suppose without loss of generality
that f,(z,) > fim(yn) (otherwise we may consider the sequence {gx},
defined as g,, = —f,, and gy = f for k # m, which is still equivalent to
the ¢q basis). Set f := f,, + fn. Then, we have that

|f(xn) - f(yn)| = (fn + fm)(xn) - (fn + fm)(yn)
= fu(®n) = fo(yn) + fn(zn) = fin(Yn)
> d(fEn,yn)’

which yields a contradiction with the fact that f is 1-Lipschitz. |

Lemma 5.4.6. Let M be a complete metric space. Suppose that {f,}>_,
is a sequence of functions in Lipy(M) which is equivalent to the canonical
basis of co. Then, for allpe M, lim, ., |f.(p)| = 0.
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Proof. Let T: ¢y — span{f,: n € N} be a linear isomorphism with
T(e,) = fn for all n € N and set C' = |T'|. Suppose that for some
p € M, the sequence {f,(p)}_; does not converge to 0. Then, there
exists N € N such that Ziv:l |fu(p)| > C - d(p,0). However, this implies
that there exist {g,}Y_;  {~1,1}" such that the function 3 | &, f, is
not C-Lipschitz, contradicting the fact that the operator norm of T is
C. [ |

The following remark is an immediate consequence of the triangle in-
equality, and it will be used several times in the chapter together with
the following clear fact (that will be used implicitly): if A, B,C, D >0
and A+ B < C + D, then one of the elements in {A, B} is smaller or
equal than one of the elements in {C, D}.

Remark 5.4.7. Let f € Lip,(M) be given. Suppose that x,y € M with
x # y are such that |f(x) — f(y)| = d(x,y). Then, we have that

[f(@) = Cl+ [f(y) = C| = d(,y)
for every C' € R.

Finally, for the upcoming positive results of the chapter, we need the

following generalization of [15, Lemma 3.1].

Lemma 5.4.8. Let I' be a nonempty index set. Let M be a pointed metric
space such that there exist two sets {x}yer, {Yytrer © M with z., # ys,
To # x5 for v,a, e, a# B. If d(xq,28) = d(xa,ya) + d(xs,ys) for
every a # 3 € I', then there is a linear subspace of SNA(M) isometric
to co(T).

Proof. For each v eI, define f, : M — R by

fy(@) = max{0, d(z,, y,) — d(z,z,)} (2 € M).
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Let A := {\,: y e I'} € ¢o(I') and let vy € I" be such that |A\,)| = |A]w.
Finally, set f: M — R to be defined as

fi= Z Ay (fy = f4(0)).
vyel
We will be done when we check that f is an element of Lip,(M) with

Lipschitz norm ||A[|,, strongly attaining its norm at the pair (z.,, ¥y, )-

It is easy to check that, for all v € I', f, strongly attains its norm at
the pair (x,,y,) with | f,|| = 1. Also, let us notice that the support of f
lies in |, B(2y, d(24,y,)). Note that we can assume without loss of
generality that f,(0) =0 for all yeI.

Let us now prove that | f| = |\,,|. Let  # y be two points in M. We

will distinguish several cases. For simplicity, for each v € I', denote

0y 1= d(T+, Yy)-

(a) If both x and y lie outside of | J,.p B(z,,d(2,,y,)), then clearly
|f(x) = f(y)] = 0.

(b) Assume that = ¢ (J . B(x,,0,) and that there exists some a €
I such that y € B(za,d(Za,Ys)). Since d(z,y) = d(za,z) —
d(xa,y) = d(Ta, Ya) — d(Ta,y) = 0, we have

[f(@) = FW)] _ Aalld(Za, ya) — d(za,y))
d(z,y) d(z,y)

< sl

(c) Assume now that there is some v € T' satisfying that x,y €
B(z,,d(z,,y,)). Then, since d(z,,y) < d(z,,z) + d(z,y) and
d(z,x) < d(zy,y) + d(z,y), we have

|f(z) = f(y)] (0y = d(zy, %)) = (6 = d(z,y)) _ |
d(z,y) d(z,y) el

= |)\V|’



5.4 The isometric embedding of cy: Technical tools 255

(d) Finally, if there are different «, § € I such that x € B(zq, d(Zq, Ya))
and y € B(xp,d(xp,ys)), assuming without loss of generality that
|Aa| = |As] > 0, we have

|f(z) — f(y)] [Aa(b0 — d(, 7))

) — As(d5 — d(y, p))|
d(z,y) d(

z,y)

= (=)

We will distinguish 2 cases now.
Case 1: A\, and Ag have the same sign.

We can assume for the following computation that both are positive
(if not, we can multiply by sign(A,) when needed). For 7 € {«, 8},
define g, : M — R by g,(z) := A\, (0, — d(z,,2)), for all z € M.
Note that we can also assume that f(x) # f(y), since if they were

equal we would just have (x) = 0.

If f(x) > f(y), we have

_ f(x) = galy) |
D ey S iy Y

since f(y) = 0 = g,(y). By definition of f and g, we would then

have

0o —d(x,24) — 00 + d(T4,Y)
d(z,y)

where the last inequality comes from using the triangle inequality

(indeed, just note that d(z.,y) < d(zqs, x) + d(z,y)).

(x%) = Ao

< /\om

On the other hand, if f(y) > f(z), we can do a symmetric argu-

fly) = f(z)
dz,y) — d(z,y)

ment:

(+) =
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since f(z) = 0 = gs(z). By definition of f and gz we would then

have
55 — d(y, ZB/g) — 55 + d([E/B, ZE)

d(z,y)

where the last inequality comes from using the triangle inequality

(#2) = Ag

< )\5,
once more (since d(xg,z) < d(xg,y) + d(z,y)).
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Figure 5.3. Visualization of proof for Case 1 (left) and Case 2 (right).
The main inequalities can be seen as a comparison of slopes.

Case 2: N\, and A\g have different signs.

We can assume that A, is positive and Az is negative (else, we
could repeat the argument multiplying by (—1) when needed). In

this case, we have
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Note now that d(z.,y) + d(y,z5) = d(za,25) = do + s, SO in

particular we have that
Aa(0a +05) < Aa(d(za,y) + d(y, 75)),
which, regrouping terms, leads to
Aa(0a = d(7a,y)) < (=Aa) (0 — d(25,9)).

In other words, if g, is defined as in Case 1,

since f(y) < 0. Therefore now we can repeat the same argument

as in the first subcase of Case 1:

f(z) = ga(y)

e

0o —d(x,24) — 00 + d(T4,Y)
d(zw,y)

< )\om

by the triangle inequality.

Therefore, in both cases we clearly have

< sl

This proves that || f|| < |\,,|. Finally, it is clear that f strongly attains

its Lipschitz norm at the pair (z.,,y,,), and the proof is over. [ |

Remark 5.4.9. Note that the previous lemma is, indeed, a slight general-
ization of [15, Lemma 3.1] in the following sense. On the one hand, the
existence of ¢ is generalized to the existence of ¢o(I") (which can also be
done in [15, Lemma 3.1]). On the other hand, it is clear that any metric

space satisfying the conditions from [15, Lemma 3.1], trivially satisfies
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the conditions from Lemma 5.4.8, but the converse is not true in general
even if I' is countable. For instance, consider the metric space M formed

by the following points of ¢y endowed with the ¢y metric:

xoz(OOOO...)
(1000

(i)

(n—1)
1 1
TIn = | = 7_7770707 ) neN
n nn

Then, this space cannot satisfy the conditions from [15, Lemma 3.1],
since for all r > 0, B(xq,r) is a cofinite set of M, and for all r # s € N,
p(x,,xs) = pla,,x0) + p(xo, xs). However, M trivially satisfies the
conditions from Lemma 5.4.8 if we consider {z,}7_; as the center points

and y, = xo for all n € N.

5.5 The isometric embedding of cy: the

results

In this section, we will prove the main results about the isometric
embedding of ¢y in SNA(M). We divide the contents in 3 subsections:
the construction of a first counterexample, a positive result for a wide
class of metric spaces, and the construction of a second counterexample

with a radically different behaviour as a metric space than the first one.
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5.5.1 A bounded counterexample

In this subsection, we construct an infinite complete metric space M
such that the set SNA (M) of strongly norm-attaining Lipschitz functions
does not contain an isometric copy of ¢y, answering the question from
[15, Remark 3.6] in the negative. It is worth mentioning that no point

of this constructed metric space attains its separation radius.

Theorem 5.5.1. There exists an infinite bounded uniformly discrete
complete metric space M such that cy is not isometrically contained in

SNA(M) and for which no point in M attains its separation radius.

Proof. Let M = {p,}_; be any countable set endowed with the metric
d given by d(pp,pm) =1+ m, for n # m. Note that the diameter
of M is 3/2.

For the sake of contradiction, let us suppose that there exists a sequence
{fn}_; of strongly norm-attaining functions which is isometrically equiv-
alent to the canonical basis of ¢y. For every n € N, let z,,y, € M be
such that z,, # y, and |fo(2n) = fou(yn)| = d(2s, ys). Our goal is to find
two natural numbers ng # mg and § € {—1,1} such that the Lipschitz
function f,, + ¢ fn, has Lipschitz norm strictly greater than 1. This will

lead to a contradiction.

Let us consider the sets

A= {{n,m} e N2 . {Zn, yn} O {Zm, Ym} = @}7
By = {{n,m} € NP g, = T}

By o= {{m) N -, = g}, and

By :={{n,m} e N® 2, =y, or 2, =y} .
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By Ramsey’s theorem, there exists C' € {A, By, By, B3} and an infinite
set S < N such that S < C.

Case 1: C = A.

We may assume by passing to a subsequence that {x,, y,} " {Tm, Ym} = &

for every n,m € N with n # m. For each n € N, let us set

Ep 1= T(n)’ where k(n) :=max{keN:p, =z, or pp=y,}.
Let us fix ng € N. Since {z,,yn} N {Zm,ym} = & for every n,m € N
with n # m, by Lemma 5.4.6 and the definition of the metric d, there
exists mgo € N\{ng} such that

(3) (] oy (@) o ()} < 52 and

.. En
(1) max{d(zny, Tme), ATng, Ymo)> AYng Tmo)s AYnes Ymo)} < 1+ ?0
Now, by Lemma 5.4.5, there is a constant C,,, € R such that f,,(z;,) =
Jro(Wmo) = Cuo- By relabeling the pairs (x,,, Yn,) and (Zmg, Yme) if

necessary, we may assume that

|fn0(xno)_0mo| = |fm)(y7m)_cmo| and |fm0(xm0)| = |fm0(ymo)|'

With this assumption, Remark 5.4.7 yields that

1 1
|fm0(xmo>’ = 5 + Emg and |fn0(xn0) - Cm()’ = 5 + Eng- (551)

In particular, f,,(Zm,) # 0. Set now § := Mrmogl € {—1,1}. To finish

fmo (Z'mO
the proof of this case, we distinguish two possibilities according to the

Sign of |fn0 (xno) - C(m0|:
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If fo,(n,) < Chy, consider the function f = f,, + fn,, which is 1-
Lipschitz by assumption. However, using properties (i) and (ii) and
equation (5.5.1) we obtain that

|f<xno) - f(xmo)| = _fn0<x7l0) - 5fmo(xno) + fno(xmo) + 5fm0(xm0)

1 1
> 5 + Eng + 5 - ’fmo(xno)‘ > d(mnovxmo)’

a contradiction.

On the other hand, if f,,(z,,) = Cp,, an analogous procedure shows
that the function g = f,, — d fin, has a Lipschitz norm greater than 1

witnessed by the same pair (z,,, Tm,). This again yields a contradiction.
Case 2: C € {Bl, BQ, Bg}

We will prove it for C' = By, since the two remaining possibilites can
be reduced to this one. Indeed, it is straightforward to check that, if
C' = Bs, by relabelling the pairs (z,,¥,), for n € N, we may assume
that C' = By. Else, if Ramsey applied to Bs, fix ng € S. For each
m € S\{no}, we have that either x,, = yn, Or T, = Yn,, S0 one of the
sets S1 = {m € S\{no}: zpm = yn,} or So = {m € S\{no}: Yym = Tn,}
is infinite, and we have now reduced this situation to the case where

Ramsey applies to By or By, respectively.

Hence, by taking subsequences if necessary, we assume that there exists
k* € N such that x,, = pp. for every n € N. By Lemma 5.4.5, we have
that y, # ym, for every n,m € N with n # m. Using Lemma 5.4.6, we

may find ng, mg € N with ng # mg such that

Fro@l <55 and  |fu(@)] < 1o (5.52)
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Hence, applying now Remark 5.4.7, we have that

9

o (5.5.3)

9
|fn0(yn0)| = E and |fmo(yMO)| =

Changing signs of f,,, and f,,, if needed, we may assume that f,,, (yn,) > 0
and fi,(Ym,) > 0. Finally, consider the function f := f,, — fin,, which
is 1-Lipschitz by the assumption on the sequence {f,}*_,. However,
applying (5.5.2) and (5.5.3), and recalling that the diameter of M is 3/2

we obtain that

|f(y7m) - f(ymo)| = fno(yno) - fmo(ymo) + fmo(yno) - fno(ymo)

9

= 5 ([ frno Wno )| + | fro Wmo)|) > d(Yng, Ymo)-

This is a contradiction and the proof is over. [ |

It is worth mentioning that there exist countable bounded uniformly
discrete complete metric spaces M with the condition that no point z in
M attains its separation radius, but such that ¢y embeds isometrically in
SNA(M). Indeed, it suffices to consider a countable collection {M,}>_;
of copies of the previous space in such a way that d(M,, M,,) = 3 for
all different n,m € N, and observe that, in this context, Lemma 5.4.8
trivially applies. This means that the aforementioned property is not

sufficient for ¢y not to be contained in SNA(M) isometrically.

Likewise, one could be tempted to assume that the condition of not
attaining the separation radii is at least necessary in negative results
as Theorem 5.5.1. However, this is far from being true as well. In fact,
later in this section we will exhibit a proper but not bounded uniformly
discrete complete metric space M such that ¢y cannot be embedded in
SNA(M) isometrically (see Theorem 5.5.4) (in particular, every point

of M attains its separation radius, since closed bounded sets in M are
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compact). On the other hand, we will see in the next subsection that
the property of being uniformly discrete is indeed necessary in order to

get such negative results (see Theorem 5.5.2).

5.5.2 Non uniformly discrete metric spaces

In the previous subsection, we found a metric space M for which SNA (M)
does not contain ¢y isometrically. Note that the constructed space was
uniformly discrete. As announced, in this subsection we will show that
this is actually necessary for all counterexamples. The main positive

result is the following.

Theorem 5.5.2. Let M be an infinite non uniformly discrete metric

space. Then, the set SNA(M) contains an isometric copy of cq.

Proof. By [15, Theorems 3.2 and 3.4] it suffices to assume that M’ is
non-empty and finite. We also assume without loss of generality that
0 e M'. Now we can find a sequence {x,}r_; in M converging to 0 such
that R(x,) > 0 for all n € N. It is clear that the sequence {R(z,)}>_,

converges to 0.

We are going to define a sequence {fy};2; of 1-Lipschitz functions in
SNA (M) which will be isometrically equivalent to the canonical basis of
¢o and such that the subspace span{fy : k£ € N} (which is isometric to
¢p) is contained in SNA(M).

We define the following sets:

A= {{n, m} e NE d(xp, xm) = R(x,) + R(xm)},
B = {{nv m} e NEI: d(rp, Tm) < R(zn) + R(xm)}’
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which form a partition of N2, By Ramsey’s theorem, there is C' € {A, B}
and an infinite subset S < N such that S[2! = C. These two possibilities

give us two separate cases.
Case 1. C = A.

Consider the subset {x,},cs, which satisfies that d(z,,z,) = R(z,) +
R(z,,) for all n # m € S. Assume first that there is an infinite subset
of S, which we denote by S again, such that R(z,) is attained for
every n € S. Consider now for each n € S an element y,, € M such
that d(z,,y,) = R(x,). It is straightforward to see that the sequences
{Zn}nes, {Un}nes satisfy the assumptions of Lemma 5.4.8 and we are

done.

Otherwise, we may assume that R(z,) is not attained for any n € S. Let
us then choose inductively a sequence {a;};~; among the elements of

the sequence {,},cs satisfying that for every k € N,

d(a;,0) — R(a;)

d(ak, 0) < A

Vi < k. (5.5.4)

For the sake of clarity, let us denote Ay = w for each k € N.
It is clear from (5.5.4) that {Ag}, is a decreasing sequence. Now,
from the fact that R(ay) is not attained, we deduce that for each k € N,
there is by € B(ag, R(ax) + Ay). Finally, let us prove that the sequences
{ag}, {bx} are under the assumptions of Lemma 5.4.8. Pick now n, m € N

with n < m. Clearly, the following expressions hold

d(a,,0) =R(a,) + 4A,, d(am,0) < A,, d(a,,b,) < R(a,) + A,
<

d(@pm, b)) < R(ap) + A, < d(am,0) + A, < 2A,.
(5.5.5)
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Hence, by (5.5.5) we have that
d(an, am) = d(a,,0) — d(am,0) = R(a,) + 3A, = d(an, by,) + d(am, by).
This finishes the first case.

Case 2: C' = B.

Since the set S is infinite and the sequence {x,}°_; is convergent, we can
inductively define a pair of sequences {ay}r_; < {Zn}nes and {bx}, <

{x,}nes satisfying the following properties:

(1) R(ag) <¢€;/2, for j, ke N with j < k, where ¢; = R(a;) + R(b;) —
d(aj, bj) > 0.

(17) R(br) < R(ay)/2 for every k € N.

Fixed k € N, we define f, : M — R by

Rla) -5 ifp=a
fe(p) = 3 —R(b) + %k if p = by,

0 otherwise.

Property (i) and the definition of 4, ensure that fx(ax) = 0 and fi(bx) <0
for every k € N. With this, we obtain that

3

fla)| = Rlar) = 5, and [ fulb)| = R(bx) - %’“ for all k € N.
(5.5.6)
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Let {\¢}2; € co. Again we will show that f := > A\.fx € SNA(M)
and also that |f| = maxgen{|\c|}. Choose ky € N such that |\ | =

maneNH)\k}.

We again start by proving that f is |\g,|-Lipschitz. Take p,q € M with
p # q. We show that |f(p) — f(q)| < | Mk |d(p, q). If both p and ¢ form a
pair {ag, by} for some k € N, the previous inequality is clear. We need to

study now the two remaining possibilities:

(a) Suppose that there exist ki, ks € N with k; < ko such that p €
{ak,, b, } and q € {ak,, bg,}. Then, by (5.5.6) we have in particular
that £(p)] = Pl (R(p) — %) and [£(0)] < el R(ax,). Hence,
we obtain that

) = £@)] < Aol - (BO) = 5 + Rlaw,)
<Akl - B(p) < Aol - d(p, q)-

(b) If p e M\{zx}},, then f(p) = 0 and, using (5.5.6) again, we have
that

1f(0) = f(@)] = 1 (@] < [ Akl - R(@) < [Mio| - d(p, @)

We have proven then that the Lipschitz norm of f is smaller or equal
than |Ag,|. Finally, considering the pair of points ag, and by,, we quickly
observe that || f| = |\, | and that f strongly attains its Lipschitz norm
at this pair of points. This finishes the proof. [ |

In [15, Theorem 3.3], ¢q is isomorphically embedded into SNA(M) for
countable compact metric spaces M in a non constructive way. Indeed,
the authors show that the little Lipschitz space is an infinite-dimensional

subspace of ¢ contained in SNA(M). The following corollary, which is
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an immediate consequence of Theorem 5.5.2, improves that part of [15,

Theorem 3.3] with a different approach.

Corollary 5.5.3. Let M be an infinite compact metric space. Then, the

subset SNA(M) contains an isometric copy of cq.

On the other hand, unlike in [15, Theorem 3.3], it is not possible to extend

Corollary 5.5.3 to proper spaces, as we will see in the next subsection.

5.5.3 A proper counterexample

In Subsection 5.5.1, we provided a metric space M where no point
attains its separation radius and such that SNA(M) does not contain
co isometrically. Then, in Subsection 5.5.2, we saw that if M is not
uniformly discrete (in particular, if M is compact), then SNA(M) always
contain ¢y isometrically. In this subsection, we will provide an example
of proper metric space M (and so, every point attains its separation

radius) such that SNA (M) does not contain ¢y isometrically.

Theorem 5.5.4. There exists an infinite proper uniformly discrete
complete metric space M such that cy is not isometrically contained in

SNA(M) and for which every point in M attains its separation radius.

Proof. Let M = {py};°, with distinguished point py = 0, be a countable
set endowed with the metric d: M x M — R given by:

(k4 j — cmaxpeyy 1F k # j € N\{0},
k if j =0,
j if k =0,
0 if j = k,

d(pr,pj) = 4
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where {e}72, is a sequence of positive numbers such that €1 > €5 and
er < 1/2 for all k € N. For convenience, write §; = ex1 — & > 0 for all

k e N. It is clear that M is proper since every bounded set is finite.

As in the proof of Theorem 5.5.1, we start by assuming that there exists
a sequence {f,}*_; of functions in SNA(M) isometrically equivalent to
the canonical basis of ¢, and we are going to find two natural numbers
ng # mgo such that f,, — fi,, is not 1-Lipschitz, which will yield a
contradiction. For each n € N| since f, is strongly norm-attaining, we

may consider two points z,, # y, such that |f(x,) — f(yn)| = d(xn, yn).

We write k(n) and j(n) to denote the natural numbers such that z,, =
Pr(n) and Y, = pjm) for every n € N. By relabelling the pair (z,,y,), we
may assume that k(n) < j(n) for all n € N.

We now define the sets A, By, By, and Bs as in the proof of Theorem
5.5.1. By Ramsey’s theorem, there exists C' € {A, By, By, B3} and an
infinite set S < N such that S?! ¢ C. Note, however, that the case
C' = Bj can be reduced to C' < {By, By} as in Theorem 5.5.1, and the
case C' = B, cannot happen, since in that case we would forcefully get
functions f,, and f,, from the basis that would strongly attain their
norms at the same pair of points, contradicting Lemma 5.4.5. Hence,
the conclusion of Ramsey’s theorem can only apply to sets A and B;
in this scenario, and thus, by passing to a subsequence if needed, this

allows us to reduce the possibilities to only two cases.
Case 1: For every n # m we have {x,, yn} N {Tm,ym} = .

In this case, choose an arbitrary ng € N such that k(ng), j(ng) # 0. By
Lemma 5.4.6, and using that {z,,y,} N {zm, ym} = & for all n # m e N,
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we can find mg € N with k(mg) > j(no) such that
1 1
|fmo(‘rno)| < iéj(no) and ’fmo(ym” < §5j(n0)‘ (557)

Using Lemma 5.4.5 we can define Cy,, € R such that Cy,,, = fr, (Tm,) =
fro(Umo)- With Remark 5.4.7 we obtain that either

(CLO) |fno($no) - Cm0| = k(no) - %5]'(710)’ or

(al) |fn0 (yno) - C(m0| = j(no) - %gj("o)'

Similarly and by the same lemma, we have that either

(b0) | fimo (@mo)| = k(mo) = (3€j(mo) + 30i(ne) ), OF

(bl) |fmo (ymo)| = ](mO) - (Ej(mo) - %gj(no) - %(%(”0))‘

In total, there are now 4 different possibilities that must be checked for
contradiction. We will only expand on the two possibilities where (ag)
holds, since the two remaining possibilities (when (a;) holds) are proven
similarly. Hence, suppose first that (ag) and (by) hold. By changing the
signs of f,,, and fp,, if necessary, we may suppose that f,, (2n,) — Ciny =
k(ng) — %Ej(no) and fin, (Tm,) = k(mo) — (%Ej(no) + %5j(n0)). Consider the
function f = f,, — fm,, Which is 1-Lipschitz since we are assuming that
{fn}_, is isometrically equivalent to the canonical basis of ¢y. However,
using (5.5.7), we have that

’f(xno) - f(xmo)‘ = fno(xno) - fmo(xno) - Omo + fmo(xmo)
1 1 1 1

> k(no) — €i(m0) ~ 5% (mo) + k(mg) — 5Ci(no) ~ 5%%(no)

2 k(no) + k(mg) - Ek(mo) = d('rnou xWLo)?



270 Linear spaces of strongly norm-attaining Lipschitz mappings

which yields a contradiction. Suppose now that (ag) and (b;) hold. Again
we may suppose that fo,(Tng) = Cing = k(n0) = 3E5(no) a0 frng (Ymy) =
3(mo) = (Ej(me) — 2jno) — 30j(no))- Using (5.5.7) again, the 1-Lipschitz
function f = f,, — fim, now tested at the pair (z,,, ym,) yields

|f(xn0) - f(ym0)|

1 1 , 1 1
> k(no) — €itno) = 505(mo) + J(Mo) = Ejme) + Citn) + 505(n0)
= k(”()) + ](mO) — Ej(mo) = d<xno7ym0)7

which is again a contradiction. This finishes the proof for Case 1.
Case 2: x, = x,, for all n,m € N.

Write k* to denote the natural number (including 0) such that pgx = x,,
for all n € N. Suppose first that £* = 0. Then, choose any two different
numbers ny # mo € N. Since both f,,, and f,,, strongly attain their norm
at the pair (0, yy,,) and (0, ym, ) respectively, and both f,, and f,, vanish
at 0, we have that |f.,(Yn,)| = J(no) and | fi, (Yme)| = j(mo). With
Lemma 5.4.5 we obtain that f,,(Ymy) = fine(Yn,) = 0. By changing the
signs of both functions if needed, we may suppose that f,,(yn,) = j(no)
and fino(Ymo) = 7(mo), producing a contradiction directly by considering
the mapping f = fn, — fm,, Which is not 1-Lipschitz as witnessed by the
pair (Yng, Ymy ). Indeed,

|f(Wno) = f(Ymo)| = G(10) + J(m0) > d(Yng, Yrmo)-

Suppose now that £* # 0. Using Lemma 5.4.6, choose two different
natural numbers ny # mg € N with j(mg) > j(ng) > k* such that

1 1
| o (D1 )| < 1 and | frno (Pr)| < 1
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On the one hand, this means that | fu, (yno)| > &* + j(n0) — €jtne) — 1
and | fing (Ymo)| > k* + j(mo) — €j(me) — 3, while, on the other hand, it
implies by Lemma 5.4.5 that

1 1
’fno(ym())‘ <7 and |fmo<yno)’ <

4 4
Finally, we may again suppose without loss of generality that f,, and
fm, are both positive at the points y,, and y,,, respectively, and consider
the function f = f,, — fin,, which is assumed to be 1-Lipschitz. However,

we have that

‘f(yno) - f(yﬂm)‘ = fno(yno) - fmo(yno) - fn()(ymo) + fm()(ymo)
= j(no) + j(mo) + 2k™ = 1 = €j(ng) — €j(mo)
> j(nO) + j(m(J) > d(ynm ymo)u
a contradiction. This finishes the proof of Case 2 and so the theorem is

finally proven. |

Remark 5.5.5. Note that there exist infinite proper uniformly discrete
complete metric spaces M where every point attains its separation radius
and such that SNA(M) contains ¢, isometrically. For instance, if M is
the space of natural numbers N with the usual metric, then Lemma 5.4.8

trivially applies to M.

5.6 The non-separable case

To end this chapter, in this section we tackle the problem of embedding
co(T") in SNA(M) isometrically, where I' is an arbitrary set of large

cardinality. We need to first introduce some basic concepts and results
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of set theory that will be heavily used in this section. We will use the
notation from the book [90].

An ordinal « is a cardinal if for every smaller ordinal 5 < «, [ is not
equivalent to a. We denote by dens(M) the density character of a
metric space M, defined as the smallest cardinal I" such that there is
a dense subset of M of cardinality card(I"). The cofinality cof(a) of
an ordinal « is the smallest ordinal 5 such that o = sup, _z a,, where
{a,},<p is an ordinal sequence of length f with a., < a for all v < f.
An ordinal I' is reqular if cof(I') = I', and note that regular ordinals are
always cardinals (see [90, Lemma 10.35]). For an ordinal «, we denote
by a* the least cardinal strictly bigger than «, which is always a regular
cardinal (see [90, Lemma 10.37]). We again refer to the book [90] for a
comprehensive background on this topic. Finally, recall that a subset of
a metric space S < M is called r-separated for some r > 0 if d(z,y) > r
forall x # y e S.

The next result is essentially based on the proof of [71, Proposition 3].

Proposition 5.6.1. Let M be a metric space with dens(M) =T, for
some uncountably infinite cardinal I'. Then, there exists a discrete set
L c M with card(L) = T'. Moreover, if cof(I") is uncountable, then L

can be chosen to be uniformly discrete.

Proof. For every k € N, let M} be some maximal %-separated subset of
M. Denote I'y := card(Mj,) for all k € N. If cof(I') is uncountable, then,
since UZO:I Mj, = M, we have that there is ky € N such that I'y, = I" and
so we take L := My, .

Now, let us assume that cof(I") is countable. If there exists ky € N such
that I'y, = I', we are done, since we can take once again L := My,. On
the other hand, if this is not the case, we have that I'y < I' for every

k € N and cof(I") is countable. Since I' is not regular, we know that
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I} < T, for every k € N. Using this, and the fact that sup,yTx = T,
it is straightforward to inductively construct a subsequence {T'y, }?°_; of
{T'x}72, with Ty, infinite and such that I'} < Ty, ., for all n e N.

Now, for each n € N, let us consider a sequence of sets {Mn}le such
that M, is a subset of My, ., with Card(ﬂn) =TIy for all n e N. Let us

write M, = {af ca el }.

For each n € N, each j < n, and each a € I’,:rj, we define
A= B n B (o,
g = Mnbt VB Fas GpnnT )

We will inductively construct, for every n € N, a set L, ]\7n with

card(Ly,) = I'; and a finite subset N,, © M such that whenever j < n,
1

d(Ly,, L\N,) = ST (5.6.1)

Set Ly := ]\71 and N; := . Now, assuming that for some n € N we

have constructed L; and N; for all j < n, we can do the inductive step

towards n + 1.

(a) Suppose that card(A},) < T} | for every j < n and a € T .

Since I’ < T} and I')  is regular, we have that
k’n k‘n+1 kn+1 )

card U AL | <T% — card(M,,1).

n+1
; +
j<n, ael"kj

Therefore, the set

Ln+1 = Mn+1\ U A;'l,oz

; +
j<n, aefkj
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satisfies card(L,,1) = F,jm and (5.6.1) holds by setting N, .1 = &J.
Indeed, for any j € {1,...,n}, every point in L; is of the form a7,
for some « € F+ Hence, if there exists a point p € L, 1 such that
d(p, @) <

contradiction with the definition of L, 1.

then p belongs to the set A” , which leads to a

ok +1+2’ Jyo

Suppose now that card(A} , ) = F,jnﬂ for some jo < n and some
Qg € F,jjo. Without loss of generality we consider jo € {1,...,n} to
be such that card(A’},) < T  forall jo <j<nandall ael}.
Define

Lo =A%\ | Al

L +
Jjo<j<n, O‘Eij

Arguing as in case (a), we obtain that card(Ly1) = T’} . Finally,
define Nyy1 := {z € M:3i € {1,...,jo} such that z € L; and
d(z, Lni1) < ﬁ}, which is finite since for each i € {1,...,jo},
there can only be at most a single point z; in L; such that
d(x;, Lpyp) < ﬁ

that can satisfy that property is 7 , since for every § € I‘,‘: \{ao},

Indeed, if ¢ = jo, the only point in Lj,

d(xﬁ JAT ) > W On the other hand, if i < jo, if there were

J0, &0

two points z; # y; € L; with that property, we would have that

n n n 1
d(ws,y;) < d(wi, A ) + d(yi, A ) + dlam(A% ) < Ser
a contradiction with the fact that L; is - —~-separated.

Let us check that the sets L, and Nn+1 Satisfy equation (5.6.1)
for each j € {1,...,n}. Fix j € {1,...,n}. If j < jo then the
inequality follows directly by definition of N, ;. Otherwise, if
J > Jjo, then the inequality holds following the same argument as

in case (a).
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Having discussed both possibilities, the induction is finished. To finish the
proof, set L := ( o Ln) \ (U:f:l Nn). It is clear that card(L) =T, and
using equation (5.6.1), it is straightforward to prove that all convergent

sequences in L are eventually constant, and thus, L is discrete. |

As an application of Lemma 5.4.8 and Proposition 5.6.1, we have the

following isometric result.

Theorem 5.6.2. Let M be a pointed metric space such that dens(M') =T
for some infinite cardinal I'. Then there is a linear subspace of SNA(M)

that is isometrically isomorphic to co(T).

Proof. The case where T" is countable is already covered in [15, Theorem
3.2, and is also a direct consequence of Lemma 5.4.8. Assume now that
I' is uncountable. If we apply Proposition 5.6.1 to the set M’, we find
a discrete set L ¢ M’ with card(L) = dens(L) = I" and such that all
points of L are cluster points of M. If I is an index set of cardinality I,

if we write now L = {z;}:cs, since L is discrete, for all j € I,
r; = inf{d(z;,z): ke I\{j}} > 0.

Using now that L < M’ for each i € I, let y; € M be such that
d(zi,y;) < %. Now, for each j, k € I such that j # k, we have

T; + Tk

5 < max{rj,rp} < d(z;,xy),

d(xj,y;) + d(zg, yr) <

by the definition of r; and rj. Finally, applying Lemma 5.4.8 with the
sets {z;}icr and {y;}ier, we get that SNA(M) contains ¢o(I") (or just
co(1)) isometrically. [ |






Chapter 6

Conclusions and open

questions

In this chapter we will summarize the conclusions we got in this work,
and we will also discuss some remarks and open questions that arose

from our study.

6.1 Chapter 2

The contents of Chapter 2 were extracted from the published paper
[42], where we studied classes of operators (denoted respectively as A
and A,,) that satisfy that whenever they almost attain their norm
(respectively, their numerical radius) at a point (respectively, at a state),
they do attain it at a nearby point (respectively, a nearby state). These
classes of operators were inspired by the L, , property and its applications,

and were defined in a similar manner (see Definition 2.1.1).
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In Theorem 2.2.1 we characterized what operators are in A, and Ay,
when the domain space is finite-dimensional, and also what functionals
on ¢ are in A||. This made us wonder whether we could get some more
results for functionals in some other sequence spaces. Both positive
and negative results were achieved about this in Proposition 2.2.2. For
the more general scenario of operators bewtween two Banach spaces,
we saw that there are operators that belong to Aj.j N Ay, to AH.H\AHH,
to An\Aj.|, and operators that do not belong to A U A,, despite

attaining their norm and numerical radius (see Example 2.2.5).

For compact operators we got a positive result if the involved spaces
satisfy certain conditions (see Theorem 2.2.6 and Corollary 2.2.7), and
we provided some examples that show how sharp the conditions in the
statement are (see the operators from (2.2.3) and (2.2.5), and see also
Proposition 2.2.9 for a related result). These examples also show that,
in general, there is no relation between the claims 7" e A(X,Y’) and
T* € Ay (Y™, X*), although the implications hold if the involved spaces
satisfy certain conditions (see Proposition 2.2.11, items (i) and (ii)). In
Proposition 2.2.11.(iii), we saw that if a Banach space X is reflexive
then T € A,,(X) if and only if T* € A,,(X*), and a related (but not
analogous) result for ¢y can be found in Proposition 2.2.12. However, we
do not know if we can remove reflexivity in the original statement in

general. In fact, the following remains unknown.

Open Question 1. Let X be a Banach space. If T € A (X), is it true
that T* € Ano(X*)? If T* € Apu(X™), is it true that T € Ap(X)?

In Section 2.3, we obtained a complete characterization of all the diagonal
operators that belong to Aj.(X,X) (X = ¢y or £, 1 < p < ©), to
A (X) (X =¢oor £y, 1 <p < ©), to Ap(co,?,) (1 < p < ) and
to A (€p,co) (1 < p < o0). In particular, it was shown in Corollary
2.3.8 that every canonical projection Py belongs to both A (X, X)
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and A, (X) when X = ¢y or £, (1 < p < ). Finally, in Section 2.4,
relations between the sets Ay (W, Z) and A, (W @ Z) were studied for
some particular types of direct sums. Positive results were obtained
for some cases in Propositions 2.4.1 and 2.4.4 for the @; and ®,, sums,
respectively, and some remarks were made to discuss the sharpness of

the conditions in the statements and to study the @, sums’ scenario.

6.2 Chapter 3

The contents of Chapter 3 were extracted from the published paper
[59], where we introduced and studied a version of the Bishop-Phelps-
Bollobas property for numerical radius in the setting of compact operators
(abbreviated BPBp-nu for compact operators). Natural adaptations of
the existing proofs for the BPBp-nu provided us a first list of spaces that
satisfy the BPBp-nu for compact operators: finite-dimensional spaces,
co(T") and ¢1(T") for any index set I', and L;(u) spaces for any measure
p. By adapting the concepts and results from [87] and [89], we also got
in Proposition 3.2.8 that, actually, all L,(x) spaces have the BPBp-nu

for compact operators for all 1 < p < o0 and for any measure .

In [34, Proposition 4.3], it was shown that if a Banach space has the
BPBp-nu for compact operators, then some of its absolute projections also
have the property. A natural question is whether or not the property
can also be carried from projections of a space into the space itself.
Inspired by that question and by [39, Lemma 2.1], where a similar
claim was achieved for the norm instead of the numerical radius, we
obtained a technical tool that allows us to carry the BPBp-nu for compact
operators from some spaces to others (see Lemma 3.3.1). In particular,
we showed in Proposition 3.3.2 that the property can be carried from

some projections of a space into the space itself if some conditions are
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satisfied. These technical tools were used to show, for instance, that all
isometric preduals of ¢; have the BPBp-nu for compact operators (see
Corollary 3.3.6).

In Section 3.4 we presented a series of topological tools with which we
obtained a strong approximation property for Cy(L) spaces and their
duals for any locally compact Hausdorff space L (see Theorem 3.4.5).
As a consequence, we showed that all Cy(L) spaces have the BPBp-nu
for compact operators (and therefore, so do all C(K) spaces with K
compact Hausdorff, and all L. (u) spaces with p any measure). Note
that in the general non-compact setting, only some particular cases of
C(K) spaces are known to have the BPBp-nu in the real case, and the

general case and the complex setting remain open.

Open Question 2 ([13, Section 4.3, Question (a)]). Let K be any
compact Hausdorff space. Is it true that C(K) has the BPBp-nu?

In fact, we do not know if the BPBp-nu implies the BPBp-nu for compact
operators or viceversa. It was shown in [39] that there exist pairs of
Banach spaces with the BPBp for compact operators but without the
BPBp, but in the setting of numerical radius, this remains an open

question.

Open Question 3. Let X be a Banach space. If X has the BPBp-nu,
does X have the BPBp-nu for compact operators? If X has the BPBp-nu
for compact operators, does X have the BPBp-nu?

6.3 Chapter 4

The contents of Chapter 4 were extracted from the published paper

[43], where norm-attainment notions were introduced and studied for
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projective tensors and for nuclear operators. First, we obtained character-
izations of the existence of norm-attaining projective tensors and nuclear
operators in terms of the existence of many norm-attaining operators
and bilinear forms (see Theorems 4.2.1 and 4.2.2). With the help of
those results, we showed that there indeed exist projective tensors and
nuclear operators that attain their respective norms, and in fact, every
projective tensor in X*®,Y and every nuclear operator in A (X,Y) at-
tain their respective norms if X and Y are finite-dimensional, if X =Y
is a complex Hilbert space, or if X = ¢; (see Propositions 4.2.5, 4.2.6,
and 4.2.8). However, we also showed that there exist projective tensors
and nuclear operators that do not attain their respective norms, even if
one of the involved spaces is finite-dimensional (see Proposition 4.2.10

and its consequences).

In Section 4.3, we sought for density results for norm-attainment of
projective tensors and nuclear operators using two different approaches.
First, we were able to obtain a positive result of density whenever the
L, for bilinear holds at the respective involved Banach spaces (see
Propositions 4.3.3 and 4.3.5 and its consequences). However, the L, , 5
is a very restrictive property (both Banach spaces must be reflexive, and
even in the reflexive scenario, many spaces do not satisfy the property), so
we went for a different approach that allowed us to reduce the problem to
the finite-dimensional scenario. We were able to obtain positive density
results if the domain space has the metric w-property and the range space
either has the metric w-property or is uniformly convex (see Theorems
4.3.8 and 4.3.9 and their consequences). A wide list of spaces satisfying
the metric m-property was provided in Example 4.3.12. Further results on
the density of norm-attaining projective tensors have also been obtained
in [41, Section 4] and [105].

All these positive density results made us wonder whether or not the

density of norm-attaining projective tensors and nuclear operators always
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holds. We obtained in Theorem 4.4.1 that this is not the case for
projective tensors. However, if one tries to mimic the proof of Theorem

4.4.1 (and its lemmas) for the nuclear operator case, then

*

(ker Q)" # (ker Q)T n F(Y, X*)"

needs to be one the hypothesis (which we cannot guarantee to be true
in general). We do not know if there is a version of Theorem 4.4.1 for

nuclear operators.

Open Question 4 ([43, Question 6.2]). Are there Banach spaces X,Y
so that NAx(X,Y) is not dense in N'(X,Y)?

Note that it is not known up to now whether every finite-rank operator
can be approximated by norm-attainin operators. However, the analogous
claim for projective tensors is false, as we showed in Proposition 4.4.5.
Recall that we have shown that if H is a complex Hilbert space, then
every tensor in H®,H attains its projective norm (see Proposition
4.2.8) and that the set NA,(L,(1)®;L,(v)) is dense in Ly,(1)®x L, ()
for 1 < p,qg < o and measures p and v (see Example 4.3.12.(b)).
However, we do not know what happens in general when both spaces

are reflexive spaces.

Open Question 5 ([43, Question 6.1]). Let X,Y be reflexive Banach
spaces. Is it true that the set of all norm-attaining tensors is dense in

X®,Y?

Let us point out, however, that in [41, Corollary 4.6], it is shown that
if both spaces are reflexive (in fact, if they have the Radon-Nikodym
property) and one of their duals has the approximation property, then the
set of norm-attaining tensors is dense, which provides a partial answer
to the previous question. A related result for nuclear operators was also

given in [41, Theorem 4.5].
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Finally, we say that a Banach space X has property quasi-c if, for an index
set I', there are A = {z, € Sx : y e '}, A* = {27 € Sx+ : y € I'}, and
A A — R such that z%(z,) = 1 for every v € I'; |22 (z,)| < AM(z,) < 1
for v # n; and for every e € Ext(Bxs=x), there is a subset A, € A and
a scalar t with |t| = 1 such that te € mw* and r. = sup{\(z) :
r € A} < 1, where Jx is the canonical embedding on X** (see [35]).
Notice that property quasi-a is weaker than property a introduced by
W. Schachermayer in [109]. We have proved that NA,(£,®,Y) = (,®,Y
for every Banach space Y (see Proposition 4.2.6). Consequently, using

Proposition 4.2.10, we get that

NAs(l x V), K% = B(t, x Y,K)

for every Banach space Y. Note that this is a particular case of [35,
Theorem 2.17], where it is shown that if X is a Banach space satisfying

property quasi-c, then for every Banach space Y,

NA(X x V), K ® = B(X x V,K).

It seems natural to wonder the following.

Open Question 6 ([43, Question 6.3]). Let X be a Banach space with
property a (or quasi-a). Is it true that NAL(X®,Y) = X&®,Y holds for

every Banach space Y ?

6.4 Chapter 5

The contents of Chapter 5 were extracted from the published paper [84]
and the preprint paper [49], where we studied the spaciability of the set
SNA (M) of strongly norm-attaining Lipschitz functions on an infinite

complete pointed metric space M. For functionals, Rmoutil showed
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in 2017 that the set of norm-attaining functionals on a Banach space
may not contain any 2-dimensional linear space (see [104]). However, in
our setting, we were able to show that if a metric space M has at least
2" distinct points for some n € N (in particular, if M is infinite), then
SNA(M) always contains a linear space isometric to ¢} (see Theorem
5.2.7). This arose the question of what other Banach spaces may be
found in SNA(M). In Proposition 5.3.1 we showed that any Banach
space Y is contained in SNA(By= ), so every Banach space can be formed
in SNA (M) if one chooses M suitably.

A natural question now was the inverse scenario: if a Banach space
Y is contained in SNA(M), how small can M be chosen? It turns
out that the claim “Y has separable dual” and “M is separable” are
equivalent, as we showed in Theorem 5.3.3. Therefore, separable metric
spaces present some restrictions on what Banach spaces we can form in
SNA(M). Even more restrictions were obtained for small metric spaces:
if M is o-compact, then every space contained in SNA(M) must be
separable and isomorphically polyhedral (see Theorem 5.3.7).

A metric space M is said to have the small ball property if for every
e > 0, it is possible to write M as a union of a sequence (B(x,, 7)), of
closed balls such that r, < ¢ for all n and r, =% 0. It is known that
o-precompact spaces have the small ball property but the converse is
not true in general (see [16, Theorem 5.2]). We do not know if Theorem

5.3.7 can be extended to spaces with the small ball property.

Open Question 7 ([84, Question 3]). Let M be a pointed metric space
with the small ball property. Is it true that all subspaces of SNA(M) are
separable and isomorphically polyhedral?

Regarding positive results for infinite-dimensional Banach spaces, we
showed that if M is a metric space that contains [0, 1] isometrically, then

SNA(M) contains ¢q isometrically (see Example 5.3.8 and Proposition
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5.3.9). In fact, this claim is also true for may more spaces, such as all
spaces with an infinite amount of non-isolated points, but even in the
spaces without that property that we were able to study, we always
obtained ¢y in SNA (M) isomorphically. This arose the following natural

questions.

Question 8 ([84, Question 1]). Is it true that for every infinite complete
pointed metric space M the corresponding SNA(M) contains infinite-

dimensional closed (or at least non-closed) linear subspaces?

Question 9 ([84, Question 2|). Is it true that for every infinite com-
plete pointed metric space M the corresponding SNA(M) contains an

isomorphic copy of ¢y ?

In the very recent work [15], Avilés, Martinez-Cervantes, Rueda Zoca,
and Tradacete, by means of an elegant case distinction, and with the
help of Ramsey’s theorem, were able to solve in the positive both of

these questions. They, however, left the following as an open question.

Question 10 ([15, Remark 3.6]). If M is an infinite (complete) pointed

metric space, then does SNA(M) contain ¢y isometrically?

In Theorems 5.5.1 and 5.5.4, we provided a definitive negative answer
to that question: there exist infinite complete pointed metric spaces
M such that SNA(M) does not contain ¢q isometrically. The isometric
containment holds, however, whenever M is not uniformly discrete (in
particular, if M is compact, for instance), as we showed in Theorem
5.5.2). Finally, in the non-separable setting, with the help of Lemma 5.4.8
and Proposition 5.6.1, we showed in Theorem 5.6.2 that if dens(M’) =T'
for some infinite cardinal I" (where dens is the density character and M’
is the set of non-isolated points of M), then there is a linear subspace of
SNA(M) that is isometrically isomorphic to ¢o(T).
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Glossary

aconv(A) (absolute convex hull of A), 245

AlF] (subsets of A of k elements), 251

A (X,Y), 106

An(X), 106

B(c, R) (closed ball of center ¢ and radius R), 90
By (closed unit ball of X), 90

B(X x Y,K) (bilinear forms on X x Y), 91

B(X xY,Z) (bilinear mappings from X x Y to Z), 91
¢o(X) (co-sum of countably many copies of X), 170
cof () (cofinality of ), 272

C (set of complex numbers), 90

conv(A) (convex hull of A), 201

dens(M) (density character of M), 272

F (M) (Lipschitz-free space over M), 232

F(X,Y) (finite-rank operators from X to Y), 90
Jx (canonical embedding into bidual), 90
K-Lipschitz function, Lipschitz function, 90
K=RorK=C,90

K(X,Y) (compact operators from X to V'), 90
7(X) (byp-sum of m copies of X), 170

lon(X) (Lop-sum of countably many copies of X), 170
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Lipy(M) (space of Lipschitz functions f : M — R with f(0) = 0,
endowed with the Lipschitz norm), 230

L, property, 97

L, , property, 208

L, .5 property (L,, property for bilinear mappings), 208

L(X,Y) (linear mappings from X to Y’), 90

L(X,Y) (operators from X to Y), 90

M’ (set of cluster points of M), 251

NAg(X x Y, Z) (norm-attaining elements of B(X x Y, 7)), 91

NAN(X,Y) (norm-attaining nuclear operators from X to Y'), 196

NA,(X®,Y) (norm-attaining projective tensors from X®,Y), 196

NA(X,Y) (norm-attaining operators from X to Y'), 91

NRA(X) (numerical radius attaining operators on X), 92

N (set of natural numbers), 90

n(X) (numerical index of X), 92

n’(X) (second numerical index of X'), 92

ni(X) (compact numerical index of X), 155

nj(X) (second compact numerical index of X), 161

v(T) (numerical radius of T7), 92

N(X,Y) (nuclear operators from X to Y), 194

II(X) (set of states of X), 92

R (set of real numbers), 90

R-net or R-separated set, 90

R(z) (separation radius of x), 250

SNA(M) (set of strongly norm-attaining Lipschitz functions on M), 230

o-precompact metric space , 245

span(A) (vector space spanned by the elements of A), 121

S(c, R) (sphere of center ¢ and radius R), 90

Sx (unit sphere of X), 90

T* (adjoint operator of T'), 90
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V(T') (numerical range of 77), 92

V ® W (tensor product of V' and W), 93

X®.Y (injective tensor product of X and Y), 195
X®,Y (projective tensor product of X and Y'), 193
X* (topological dual of X), 90

X** (bidual of X), 90

Z (set of integers), 90

Zi(X) (skew-hermitian compact operators on X), 161
Z(X) (skew-hermitian operators on X), 92

card(A) (cardinality of A), 272

Absolute norm, 163

Absolute projection, 163
Approximation property, 195
Attaining the separation radius, 250

Bilinear norm (| - |5), 195

Bishop-Phelps-Bollobés operator property (BPBop), 97
Bishop-Phelps-Bollobas property (BPBp), 97
Bishop-Phelps-Bollobés property for numerical radius (BPBp-nu), 98
Bishop-Phelps-Bollobéas property for numerical radius for compact

operators (BPBp-nu for compact operators), 157

Canonical projections on sequence spaces, 145

Cardinal, 272

Classical Banach function spaces (C(K,Y), C(K), Co(L,Y), Co(L),
Ly(,Y), Lyp(p)), 94

Classical Banach sequence spaces (co, £p, co(I', K), co(I'), ¢,(I", K),
('), 93

Complemented and 1-complemented subspaces, 212

Discrete metric space, 251
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Equivalent to the basis of ¢g, 251

Finite-dimensional decomposition of X (FDD), 216
Finite-rank tensor, 226

Functional, 90

Injective norm (| - <), 195
Inner product ({-,-)), 90
Isometrically equivalent to the basis of ¢g, 251

Isomorphically polyhedral space, 244
James boundary of X, 242
Kadec-Klee property, 114

Length metric space, 231

Linear subspace of SNA(M), 233
Lipschitz retraction, 247

Locally Uniformly Rotund (LUR), 114

Metric m-property, 213

Norm ([ - [}), 90

Norm-attaining operator, 91

Norm-attaining representation of a tensor or nuclear operator, 196
Norming points and functionals, 91

Nuclear norm (| - ), 194

Nuclear operators, 194

Operator, 90
Operator norm, 90

Partition of the unity, 173
Pointed metric space, 230
Polyhedral space, 244
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Projective norm (| - [|), 192
Proper metric space, 251

Property quasi-a, 282

Radon-Nikodym property (RNP), 95
Rank of a tensor, 226
Regular cardinal, 272

Schur property, 116
Small ball property, 284
Strong operator topology (SOT), 224

Uniformly convex, modulus of convexity of X (dx), 110
Uniformly discrete metric space, 251

Uniformly smooth, modulus of smoothness of X (px), 112

Weak Bishop-Phelps-Bollobés property for numerical radius (weak
BPBp-nu), 98

Weak Bishop-Phelps-Bollobas property for numerical radius for compact
operators (weak BPBp-nu for compact operators), 157

Weak operator topology (WOT), 224
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