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ABSTRACT This paper presents a smooth flight path planner for maneuvering in a 3D Euclidean space,
which is based on two new space curves. The first one is called ‘‘Elementary Clothoid-based 3D Curve
(ECb3D)’’, which is built by concatenating two symmetric Clothoid-based 3D Curves (Cb3D). The combi-
nation of these curves allows to reach an arbitrary orientation in 3D Euclidean space. This new curve allows
to generate continuous curvature and torsion profiles that start and finish with a null value, which means that
they can be concatenated with other curves, such as straight segments, without generating discontinuities on
those variables. The second curve is called ‘‘Double Continuous Curvature 3D Curve (DCC3D)’’ which is
built as a concatenation of three straight line segments and two ECb3D curves, allowing to reach an arbitrary
configuration in position and orientation in the 3D Euclidean space without discontinuities in curvature and
torsion. This trajectory is applied for autonomous path planning and navigation of unmanned aerial vehicles
(UAVs) such as fixed-wing aircrafts. Finally, the results are validated on the FlightGear 2018 flight simulator
with the UAV kadett 2400 platform.
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INDEX TERMS Nonholonomic motion planning, motion and path planning, constrained motion planning,
autonomous vehicle navigation.

I. INTRODUCTION15

In the last decades, the aeronautics industry has maintained16

a continuous and vertiginous development, particularly in17

the military field [1]. The literature in the different fields18

of research is extensive. A relevant field of study focuses19

on path planning, which has been approached from different20

perspectives, such as communication networks [2], [3] or21

computational intelligence based on path planning algorithms22

[4], [5]. On the other hand, applications for civilian missions23

are currently in high demand [6], such as rescue missions24

[7], [8], or work in agriculture [9].25

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenbao Liu .

The aim of flight planning for aerial vehicles is to generate 26

a path joining initial and final configurations, while passing 27

through several intermediate target points. In case of potential 28

collisions with static or dynamic objects, such as other UAVs 29

flying nearby, the initial route must be replanned to guarantee 30

collision-free paths [10], [11]. 31

In particular, this paper addresses the 3D path planning 32

task for UAVs with nonholonomic characteristics [12], [13], 33

i.e., fixed-wing aircrafts. In this sense, it should be high- 34

lighted that one of the most relevant particularities of this 35

kind of paths is the continuity of the curve, since a fixed-wing 36

UAV cannot perform abrupt maneuvers during its flight time. 37

Therefore, the starting point to create a smooth flight path 38

must consider the particular maneuverability capabilities of 39

the UAV. Several studies have been proposed in this context, 40
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where 3D path planning algorithms use cubic Bezier spiral41

curves to satisfy the curvature constraint are presented in [14],42

[15], [16], while [17] proposes a seventh-order Bézier curve43

as a continuous curvature path approximation, which does44

not exceed the kinematic constraints of an aerial vehicle.45

The authors of [18] have performed a fusion between two46

heuristic methodologies, with the aim of solving the smooth47

path planning problem in a mountainous environment, for48

which the characteristics of B-spline curves are exploited.49

The authors of [19] study curvature constraints in path50

planning and solve this problem through Dubins curves.51

In [20], the smooth trajectory planning problem with contin-52

uous curvature is solved through an optimization algorithm53

based on Pythagorean curves, which satisfies the kinematic54

constraints of the UAV, in a similar approach, the authors55

of [21] propose a path planning generated through a multiob-56

jective optimization problem operating with standard genetic57

operators. In [22] coordinated path planning for multiple58

UAVs is performed, starting from an ant colony optimization59

algorithm smoothed through a k-degree smoothing method.60

While in [23] a Rauch-Tung-Striebel (RTS), smoothing is61

used, a procedure that permits smoothing the path produced62

by a Particle Swarm Optimization (PSO) algorithm, while63

in [24] an RTS smoothing is also used for the control64

of mobile robots with nonholonomic wheels. A particular65

approach is presented in [25], where a smooth path planning66

algorithm based on a Gaussian spectrum function is built,67

which aims to optimize the smooth path. Finally, in [26]68

model-based smooth paths are proposed for the estimation of69

the optimal geometric parameters, through polynomial spline70

curves, the results are used in industrial robots, with the aim71

of improving the productivity.72

Focusing on works with good results based on clothoid73

curves, [27] solves the problem of generating continuous cur-74

vature paths by composing multiple clothoids. The relevance75

of clothoid curves and their application to nonholonomic76

vehicles can also be appreciated in [28], [29], and [30]. In [31]77

and [32], clothoids are approximated using Bézier curves to78

minimize curvature profiles and thus guarantee higher-order79

geometric continuity while minimizing error. In [33], smooth80

paths based on clothoid curves are proposed for planning81

high-speed wheeled vehicle paths, for which a numerical82

optimization is performed within the constraints of convex83

regions. In [34], autonomous valet parking service path plan-84

ning is performed. Finally, the authors of [35] propose a path85

smoothing, based on clothoid curves, parameterized by the86

arc length.87

The aim of this work is to generate a smooth flight path88

in the context of fixed-wing UAV autonomous navigation.89

A new 3D smooth curve, called Elementary Clothoid-based90

3DCurve or ECb3D, is proposed, which is built by combining91

two symmetric Cb3D [36]. An ECb3D is capable of reaching92

an arbitrary direction in 3D space, being its curvature and93

torsion profiles equal to zero at both the beginning and the94

end of the curve. That property allows to build more complex95

curves combining them with straight line segments or other96

ECb3D curves. In this sense, a second 3D smooth curve 97

is introduced, coined as Double Continuous Curvature 3D 98

Curve (DCC3D), which is a concatenation of two ECb3D 99

curves and three straight line segments. A DCC3D curve can 100

reach any arbitrary position and orientation in 3D Euclidean 101

space. Finally, it should be emphasized that collision avoid- 102

ance is out of the scope of this paper, although the proposed 103

path could be used as a primitive in both global and local 104

planners to generate collision-free paths. 105

This paper is organized as follows: in section II, the for- 106

mulations of the preliminary works related to this article are 107

discussed. Section III describes the problem to be solved. 108

In Section IV, the methodology to design smooth curves 109

to reach arbitrary target orientation is explained in depth, 110

whereas Section V describes how to generate 3D Double 111

Continuous Curvature Curves that allow to reach arbitrary 112

position and orientation. Section VI presents the results that 113

validate the application of this new curve through flight simu- 114

lations performed on a fixed-wing UAV. Finally, conclusions 115

and further work are described in Section VII. 116

II. PRELIMINARIES 117

A nonholonomic constraint cannot be expressed only in posi- 118

tion variables but includes the time derivative of one or several 119

variables. In direct reference to fixed-wing UAVs, these con- 120

straints are directly related to their maneuverability in flight. 121

There are different approaches used for the construction 122

of smooth paths, whether they are heuristic [37] or geo- 123

metrical [38], [39], [40]. Thus, this work takes a geometric 124

approach for constructing smooth paths as a starting point, 125

based on the criterion of 3D continuous curves. Thereafter, 126

a set of concepts necessary for the development of this article 127

are defined. 128

A. CURVES IN SPACE 129

A curve in space Rn, can be defined as a vector function [41] 130

such that: 131

C : [a, b]→ Rn, C(s) = (x1(s), . . . , xn(s)) (1) 132

where, the points C(a) and C(b) are the initial and final 133

boundaries of the curve. In particular, a curve in the 134

three-dimensional spaceR3 can be defined asC(s) = (x(s)i+ 135

y(s)j+z(s)k), where i, j, k refer to the unit vectors of the global 136

reference frame. 137

Tangent, normal and binormal vectors are defined as: 138

• T(s) is the unit vector tangent to the curve, pointing tp 139

the direction of movement: 140

T(s) =
C′(s)
‖C′(s)‖

. (2) 141

• N(s) is the unit normal vector, given by the ratio of the 142

derivative of T(s) to its length: 143

N(s) =
[C′(s)× C′′(s)]× C′(s)
‖[C′(s)× C′′(s)]× C′(s)‖

. (3) 144
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• B(s) is the binormal unit vector, represented by the cross145

product of T(s) and N(s):146

B(s) = T(s)× N(s) =
C′(s)× C′′(s)
‖C′(s)× C′′(s)‖

, (4)147

where C′(s) = dC(s)/ds, C′′(s) = d2C(s)/ds2, and C′′′(s) =148

d3C(s)/ds3 are the derivatives of the position vector C(s).149

On the other hand, κ(s) defines the curvature of the curve,150

such that:151

κ(s) =

∥∥C′(s)× C′′(s)
∥∥

‖C′(s)‖3
, (5)152

and τ (s) is the torsion, defined as:153

τ (s) =
C′(s) · (C′′(s)× C′′′(s))

‖C′′(s)‖2
(6)154

Therefore, for a continuous curve defined inR3, as the one155

shown in Figure 1, T(s) is a unit vector defining the direction156

of the curve,N(s) is perpendicular to T(s), while B(s) forms a157

right-handed system betweenT(s) andN(s). Based on Frenet-158

Serret frame, the derivative of equations (2)-(4) depends on159

(5) and (6), and can be computed as follows:160 T′(s)N′(s)
B′(s)

 =
 0 κ(s) 0
−κ(s) 0 τ (s)
0 −τ (s) 0

T(s)N(s)
B(s)

 , (7)161

where T′(s) = dT(s)/ds, N′(s) = dN(s)/ds and B′(s) =162

dB(s)/ds are the first derivatives of such vectors.163

FIGURE 1. Curve in the space R3, where three orthogonal local systems
are shown, which are defined by T vectors (red arrows), N vectors (green
arrows) and B vectors (blue arrows).

Then, the orthogonal basis of the system is defined as164

R(s) := [T(s) N(s) B(s)], which can be integrated from (7),165

based on the functions of κ(s) and τ (s), from an initial value,166

such that, R(0) := [T(0) N(0) B(0)]. Hence, the position can167

be determined by integrating the tangent vector.168

C(s) := C(0)+
∫ s

0
T(ξ )dξ (8)169

B. CLOTHOID IN SPACE R2 (C2D)170

A planar clothoid (C2D) [42], also known as the Euler Spiral,171

defined inR2 (see Figure 2), is a curve whose curvature varies172

linearly with respect to the arc length, being:173

κ(s) := σκs (9)174

FIGURE 2. Clothoid curve in space R2.

where, σκ := dκ(s)/ds is referred to as the curvature sharp- 175

ness, which is related to the homotopy factor K , being σκ := 176

π/K 2. Hence, the tangent angle of the clothoid is defined as: 177

β(s, σκ ) :=
σκ

2
s2 (10) 178

The C2D is a curve that has contributed in various aspects, 179

both in development and construction of roads and/or rail- 180

roads [43], [44], and also in research [45], giving nonholo- 181

nomic vehicles a good tracking control, due to its various 182

geometric properties such as curvature and tangent angle. 183

Being the tangent vector computed as: 184

T(s, σκ ) :=
[
cos(β(s, σκ ))
sin(β(s, σκ ))

]
(11) 185

Consequently, a planar clothoid curve contained in the 186

plane XY , is defined by the equations (8), (10) and (11). 187

Hence, C(s, σκ ) can be solved using the Fresnel integrals, 188

as follows: 189

C(s, σκ ) :=
[
C(s, σκ )
S(s, σκ )

]
:=

[∫ s
0 cos(

σκ
2 ξ

2)dξ∫ s
0 sin(

σκ
2 ξ

2)dξ

]
(12) 190

where C(s, σκ ) and S(s, σκ ) are the Fresnel integrals in cosine 191

and sine, respectively. Finally, it should be noted that without 192

loss of generality, it is assumed that the clothoid starts from 193

the origin of coordinates, being C(0) = 0 according to the 194

equation (8). 195

C. CLOTHOID IN SPACE R3 (C3D) 196

The concept of Euler Spiral defined inR3, also known as a 3D 197

clothoid (C3D), was introduced by [46]. The curvature of a 198

C3D varies as a function of the equation (9), while its torsion 199

is defined as: 200

τ (s) := στ s (13) 201

where στ := dτ/ds is the first geometric derivative (also 202

known as torsion sharpness). The development of this 3D 203

smooth curve allows arbitrary configurations to be achieved, 204

either in position or orientation in 3D space, but not both at 205

the same time. 206
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III. PROBLEM DEFINITION207

Let us assume R as a UAV of nonholonomic character-208

istics, such as a fixed-wing aircraft, whose state space209

qR = [xR yR zR θR 9R]T ∈ R3
× S2, is composed210

of the coordinates position pR = [xR yR zR]T , and ori-211

entation coordinates 6 qR = [θR 9R]T , pitch and yaw212

angles. Whereas the input parameters to the system are given213

by the curvature sharpness σκR and the torsion sharpness214

στR . It is important to remark that the roll angle of the215

curve is not relevant for computing the curve geometrically216

and, for this reason, it is not considered as part of the217

configuration.218

Assuming thatR can performmotions within its kinematic219

boundaries of maneuverability (boundaries set by the partic-220

ular aerodynamic constraints of the UAV) and that the values221

of the geometric derivatives of curvature and torsion (defined222

as curvature sharpness and torsion sharpness, respectively),223

are within the set boundaries, being σκR ∈
[
σκmin σκmax

]
and224

στR ∈
[
στmin στmax

]
. Then, the aim is to build a new smooth225

curve G1 to join two arbitrary configurations in position226

and orientation, starting from qS = [xS yS zS θS 9S ]T to227

qG = [xG yG zG θG 9G]T . In addition to this, curvature and228

torsion at start and goal configurations must be zero, i.e.,229

κS = κG = 0 and τS = τG = 0.230

IV. ELEMENTARY CLOTHOID-BASED 3D CURVE (ECb3D)231

The aim is to construct a new three-dimensional curve, in the232

space R3
× S2, able to reach an arbitrary configuration in233

orientation with continuous curvature and torsion (CC). This234

new curve will be composed of two segments of the Clothoid-235

based 3D curve (Cb3D) [36].236

The procedure starts with the description of the Cb3D237

curve. Afterwards, the generation process of the new Ele-238

mentary Clothoid-based 3D Curve (ECb3D), generated from239

the concatenation of two symmetrical Cb3D curves is240

detailed. Specifically, the ECb3D will allow reaching an241

arbitrary orientation, but the position will be given accord-242

ing to the shape and size of the constructive clothoid243

parameters.244

A. CLOTHOID-BASED 3D CURVE (Cb3D)245

The authors of [36], propose a new Clothoid-based 3D Curve246

(Cb3D), capable of achieving an arbitrary configuration in247

position or orientation in 3D space. The Cb3D is built from248

two C2D curves generated in the orthogonal XY and XZ249

planes. Thus, Cb3D projects a C2D curve in the XY plane250

with arc length s, while the clothoid in the orthogonal XZ251

plane depends on the length of the C2D curve in the XY plane252

(see Figure 3). The curve Cb3D achieves relevant results due253

to its analytical solution. Moreover, the curve presents a set of254

interesting properties/operations such as scalability, symme-255

try, monotonicity, and smoothness along the curve. Appendix256

A includes the most relevant aspects of the curve [36], which257

have been included in this work to justify the computations258

of the proposed methodology.259

FIGURE 3. Clothoid-based 3D Curve (Cb3D). The dotted red line shows the
C2D construction in the XY plane, the green line shows the C2D in the XZ
plane while the blue line shows the Cb3D curve. Image taken from [36].

B. ECb3D CURVE GENERATION 260

The concept of Elementary Curve in R2 (E2D) was intro- 261

duced by [47], a curve developed to build appropriate paths 262

for mobile wheeled vehicles. In that sense, the E2D is built 263

by combining two symmetric C2D curves that have the same 264

homotopy factor and the same length. The goal is to create 265

smooth trajectories that do not exceed certain physical limits 266

associated with comfort and safety in mobile vehicles [45], 267

leading to proper path following. 268

In particular, the ECb3D curve seeks to extend the original 269

concept of E2D curve to the space R3, by concatenating two 270

symmetric Cb3D curves [36]. Continuity and smoothness are 271

guaranteed due to the properties of the original Cb3D curve 272

(see Appendix A for a brief description of Cb3D curves). 273

An ECb3D curve has zero curvature and torsion values at 274

start and goal configurations, that is κS = κG = τS = τG = 0. 275

Figure 4 shows an example of ECb3D curve, where 276

C(s, µ, ρ) (in solid blue) is the first Cb3D curve, 277

FIGURE 4. ECb3D curve generation from the symmetry of two
concatenated Cb3D curves, through an intermediate deflection angle
6 qM . It is assumes an initial orientation configuration
6 qS = [θS 9S ]T = [0 0]T , while the goal orientation configuration is
6 qG = [θG 9G]T .
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C∗(s, µ, ρ) = C(−s, µ, ρ) (in dashed red) is symmetrical to278

C, and C†(s, s̃, µ, ρ) (in solid red) is the second Cb3D curve,279

which is C∗ rotated and translated. Consequently, the curve280

C† starts at configuration qM and ends at configuration qG.281

Note that in Figure 4 the start configuration qS is at the origin282

of coordinates aligned with x-axis, so 6 qS = [θS 9S ]T =283

[0 0]T . In a generic case, where start configuration with284

respect to the global frame is different from zero, that is,285

6 q0S 6= [0 0]T , we can compute the local tangent vector of286

6 qG, by considering the following rotation:287

TG ≡

cos(θG) cos(9G)
cos(θG) sin(9G)
− sin(θG)

 := RT (0, θ0S , 9
0
S )288

×

cos(θ0G) cos(90
G)

cos(θ0G) sin(9
0
G)

− sin(θ0G)

 (14)289

with 6 q0S :=
[
θ0S 9

0
S

]T
and 6 q0G :=

[
θ0G 9

0
G

]T
being start290

and goal angles expressed with respect to a global frame and291

R is a rotation matrix292

R(φ, θ,9) := Rz(9)Ry(θ )Rx(φ) (15)293

where Rx(•), Ry(•) and Rz(•) are basic rotation matrices294

around each axis of the global reference frame; being roll φ,295

pitch θ and yaw 9 the Euler angles.296

Then, the deflection angle 6 qG = [θG 9G]T can be com-297

puted from (14) as follows298

θG := arctan

 TG,z√
(TG,x)2 + (TG,y)2

 (16)299

9G := arctan
(
TG,y
TG,x

)
(17)300

where subscripts x, y and z refer to each component of the301

tangent vector TG.302

On the other hand, for the computation of the intermediate303

deflection angle 6 qM , the following rotations must be applied304

to ensure that the curve is continuous (in position, curvature305

and torsion):306

[TG,NG,BG] = Rz(9M ) · Ry(θM ) · Ry(θM ) · Rz(9M )307

TG =

 2 cos2(θM ) cos2(9M )− 1
2 cos2(θM ) cos(9M ) sin(9M )
−2 cos(θM ) cos(9M ) sin(θM )

 . (18)308

where the first column of the right-side expression corre-309

sponds to the symbolic expression for computing TG. Thus,310

with equations (14) and (18) we can compute the intermediate311

deflection angle 6 qM = [θM 9M ]T :312

θM := arctan
(
tan(θG) sin(9M )

sin(9G)

)
313

9M := arctan
(

cos(θG) sin(9G)
cos(θG) cos(9G)+ 1

)
. (19)314

Therefore, the parameters necessary to build Cb3D curves 315

are computed by means of the following expressions (see 316

Appendix): 317

ρ∗ :=
2θ∗M
s̃2

(20) 318

µ∗ :=
29∗M

C2(s̃, ρ∗)
, (21) 319

being s̃ the length of one Cb3D, that is, the half length of the 320

ECb3D curve. 321

On the other hand, the transformation governing the 322

rotation and translation of the curve C∗(s, µ, ρ) to obtain 323

C†(s, µ, ρ) (see Figure 4) is expressed as: 324

H =

[
2T(s̃, µ, ρ)TT (s̃, µ, ρ)− I 0T

2T(s̃, µ, ρ)TT (s̃, µ, ρ)C(s̃, µ, ρ) 1

]T
325

×

[
C†(s, s̃, µ, ρ)

1

]
= H ·

[
C(−s, µ, ρ)

1

]T
, (22) 326

where, it can be seen that, as the C† curve has been defined, 327

when s = 0 the curve is in the qM configuration, while when 328

s = s̃, the curve ends in the qG configuration. 329

Finally, as a result of the concatenation of the curvesC and 330

C†, the ECb3D curve is defined as: 331

E(s, s̃, µ, ρ) =

{
C(s, µ, ρ) if s < s̃
C†(2s̃− s, s̃, µ, ρ) otherwise

(23) 332

Hence, the ECb3D curve is evaluated for s ∈ [0 2s̃], with no 333

discontinuity. 334

Figure 5, shows a comparative example of the ECb3D 335

curve (blue line) and the Cb3D curve (dashed red line), both 336

of which point to a goal orientation of θG = −π/4 and 337

9G = π/2 with s̃ = 0.5. In Figure 5(b), the variation of 338

the pitch θ and yaw 9 Euler angles is displayed, while in 339

Figures 5(c) and 5(d) the behavior in the curvature profiles 340

and their sharpness in the orthogonal XY and XZ planes can 341

be appreciated. It can be highlighted that the ECb3D curve 342

starts and ends with curvature and torsion equal to zero (κ= 343

τ = 0), characteristic that allows the ECb3D to link with 344

another curve without loss of continuity, a property lacking 345

in the Cb3D. 346

V. DOUBLE CONTINUOUS CURVATURE 347

3D CURVE (DCC3D) 348

This section defines a curve that reaches an arbitrary config- 349

uration in position and orientation in the 3D Euclidean space. 350

The new Double Continuous Curvature 3D Curve (DCC3D) 351

is built by three straight line segments and two ECb3D curves, 352

as can be seen in Figure 6. 353

In this sense, since there are two ECb3D paths in aDCC3D, 354

a subscript has been added in order to refer to the corre- 355

sponding ECb3D. Therefore, configurations qS , qM and qG 356

of an ECb3D have been renamed as qS,i, qM ,i and qG,i, 357

respectively, where i = 1 refers to the first ECb3D, E1, and 358

i = 2 to the second one, E2. Thus, the following equalities 359

94266 VOLUME 10, 2022



G. Vanegas et al.: Smooth Three-Dimensional Route Planning for Fixed-Wing Unmanned Aerial Vehicles

FIGURE 5. Case study with final orientation θG = −π/4 rad and 9G=π/2 rad, with s̃=0.5. ECb3D (blue) vs. Cb3D
(dashed red): (a) position, (b) Euler angles, (c) curvature profile and its sharpness in the orthogonal plane XY ,
(d) curvature profile and its sharpness in the orthogonal plane XZ .

FIGURE 6. Double continuous curvature 3D curve (DCC3D).

relative to configurations’ orientations hold: 6 qS ≡ 6 qS1 ,360

6 qG1 ≡
6 qS2 , 6 qG2 ≡

6 qG.361

Since there are multiple solutions to the problem, the362

deflection angle 6 qG,1 is assumed to be known, which allows363

determining the straight lines and clothoids’ lengths. That 364

is possible because derivatives of curvature and torsion are 365

performed at the maximum admissible sharpness, that is 366

|µ| ≤ µmax and |ρ| ≤ ρmax . This allows to obtain the 367

shortest path for the given deflection angle in a preliminary 368

step. Thus, this states a numerical optimization problem that 369

aims to obtain the shortest curve by finding the intermediate 370

orientation 6 qG,1 that minimizes the overall length, while 371

ensuring that the path satisfies some constraints to avoid 372

abrupt changes in curvature and torsion. As shown later on, 373

the lengths of the first and third straight lines act as relax- 374

ation variables in order to satisfy position constraints for a 375

given 6 qG,1. 376

A. DCC3D CURVE GENERATION 377

Let us assume that the intermediate orientation of the DCC3D 378

curve is given, that is, 6 qG,1. Let us also assume that in 379

order to satisfy position constraints imposed by qG, we allow 380

maneuvers, that is, changes in the direction of the curve that 381

would force a robot stop to avoid abrupt changes in curvature 382

and torsion. The steps to generate the DCC3D curve are 383

described next. 384

1) Compute the first ECb3D: the intermediate deflection 385

angle 6 qM ,1 = [θM ,1 9M ,1]T is determined from 386
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equation (19) using the orientation of the goal config-387

uration 6 qG,1 = [θG,1 9G,1]T (assuming that the start388

configuration 6 qS,1 = [0 0]T ). Otherwise, a rotation389

must be applied to compute 6 qG,1 with respect to the390

local frame of 6 qS,1, as in equation (14).391

Assuming that the curve is computed with the max-392

imum allowable torsion sharpness ρ1 := ρmax , the393

arc-length of each Cb3D curve (of the ECb3D), and the394

curvature sharpness to reach the deflection angle 6 qM ,1395

can be obtained from (20) and (21) as follows:396

s̃1 :=

√
2|θM ,1|
ρmax

, µ1 :=
29M ,1

C2(s̃1, ρmax)
(24)397

If |µ1| > µmax , then it means that the assumption398

of the previous point was incorrect and, therefore, the399

curve with the maximum admissible curvature sharp-400

ness µ1 := µmax must be computed as:401

s̃1 :=

√
2|9M ,1|
µmax

C(1, 2|θM ,1|)
, ρ1 :=

2θM ,1
s̃21

. (25)402

2) Compute the second ECb3D: repeat the previous step403

to obtain curvature µ2 and torsion ρ2 sharpness param-404

eters, as well as the arc-length s̃2 based on deflection405

angle between 6 qS,2 ≡ 6 qG,1 and 6 qG,2 ≡ 6 qG.406

3) Compute line segments: it is interesting to remark that407

the resulting curve, as a consequence of concatenating408

the two ECb3D, satisfies orientation constraints, but it409

does not satisfy position constraints. Indeed, the posi-410

tion displacement imposed by the clothoid arcs is:411

pE1,E2 := E1(2s̃1)+ E2(2s̃2) (26)412

Thus, line segments must generate the remainder413

position displacement in order to satisfy position414

constraints:415

1p = pG − pS − pE1,E2 (27)416

As a consequence, lengths of line segments can be417

computed as:418

L =
[
TS TG,1 TG

]†
1p (28)419

where † denotes the Moore-Penrose pseudo-inverse,420

TS := [1 0 0]T and421

TG,1 :=

cos(θG,1) cos(9G,1)
cos(θG,1) sin(9G,1)
− sin(θG,1)

 (29)422

Obviously, when the rank of
[
TS TG,1 TG

]
is not 3, i.e.,423

the matrix has one or two singular values close to zero,424

it implies that line segments are redundant. In those425

cases, we can force to zero one of the line segments and426

compute the others. In particular, we propose to force427

to zero L1 and L3 before forcing to zero L2, details left428

to the reader.429

B. SHORTEST CURVE 430

The aim now is to compute the curve with the shortest length, 431

being 6 qG,1 decision variables of an optimization process: 432

6 q∗G,1 = arg min
6 qG,1

L1 + 2s̃1 + L2 + 2s̃2 + L3, 433

subject to L1,L2,L3 ≥ 0 (30) 434

Note that values of L1, L2, L3, s̃1 and s̃2 depend on the 435

deflection angle as discussed in the previous section. Since 436

this procedure looks for solutions of maximum sharpness in 437

torsion or curvature of the clothoid arcs, the curve resulting 438

after solving (30) will produce the shortest length that joins 439

the initial and goal configurations without discontinuities. 440

Also note that the positiveness constraints imposed to L1, 441

L2 and L3 ensure that the obtained curve will imply no 442

maneuvers, and thus are suitable for fixed-wing UAVs. 443

Lemma 1: The optimal solution will imply that lengths for 444

the first and third lines are zero. 445

Proof: For the unbounded problem, where ρmax = ∞ 446

and µmax = ∞, the clothoid lengths have zero length, i.e.: 447

s̃1 = 0 and s̃2 = 0, which implies an instantaneous change of 448

orientation between the line segments. In that case, it is obvi- 449

ous that the optimal solution joining two points in the Carte- 450

sian space is 6 q∗G,1 = [arctan(1py
1px

) arctan( −1pz√
1p2x+1p2y

)]T , 451

which implies that the lengths of the line segments are L1 = 452

0, L2 = |1p| and L3 = 0. The optimal solution of the 453

bounded problem will generate clothoids with the shortest 454

possible length such as the angle between TG,1 and 1p is 455

minimum, which implies that numerically L1 → 0 and 456

L3→ 0, details left for brevity. 457

C. COMPUTATION TIME 458

In order to test the computational effort to generate a DCC3D 459

curve, a total of 104 arbitrary goal positions and orientations 460

have been used to analyse time performance. The compu- 461

tational time has been divided into two stages. In the first 462

stage, the optimization process to find the intermediate con- 463

figuration angle 6 q∗G,1 that minimizes the overall length, 464

obtaining an average time of tq∗G,1 = 0.110 s. The second 465

timing analysis focuses on determining the computational 466

time to get µ and ρ values for each Elementary segment, 467

E1 and E2. The mean time to compute such parameters is 468

tE = 0.0024 s. 469

The computer used for this analysis has the following 470

specifications: CPU Intel i5-9400F 4.100GHz, GPUNVIDIA 471

GeForce GT 610 and 8 GB DDR4 memory, under an Ubuntu 472

18.04.4 LTS x86_64 OS with Kernel 5.4.0-120-generic. 473

D. CASE STUDY 474

To achieve a better understanding of the results obtained, 475

a specific case study with three variants is described next. 476

Figure 7 shows an example of DCC3D curves joining the 477

initial configuration qS = [0 0 0 0 0]T with a goal config- 478

uration qG = [170 120 90 π/4 π/6]T . The aim is to describe 479

the behavior of the DCC3D curve by setting three different 480
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FIGURE 7. DCC3D curve with final orientation θG = π/4 rad and 9G = π/6 rad, final position pG = [170 120 90]T m,
with ρmax = µmax = 0.001 (blue), ρmax = µmax = 0.0005 (red), and ρmax = µmax = 0.00025 (green). (a) Smooth path
3D, (b) Euler angles, (c) curvature profile and its sharpness in the orthogonal plane XY , (d) Curvature profile and its
sharpness in the orthogonal plane XZ .

values for the maximum curvature sharpness and torsion481

sharpness. Figure 7(a) shows the curves obtained in 3D space.482

In Figure 7(b), the Euler orientation angles along the curves483

length are shown, while in Figures 7(c) and 7(d), the cur-484

vature and torsion profiles together with their sharpness are485

depicted.486

As expected, lower values of maximum curvature sharp-487

ness and torsion sharpness yield longer and smoother ECb3D488

curves. That implies shorter straight lines and, consequently,489

longer DCC3D curves. It is interesting to remark that, reach-490

ing positions too close would imply curvy trajectories with491

a very pronounced S shape (or even an 8 shape) or a com-492

plete loop, i.e. turning to the opposite direction. If we do493

not seek for such type of curves, then the target config-494

uration must be consistent with the sharpness constraints495

and the initial deflection angle can be set to 6 qinitialG,1 =496

[arctan( yGxG ) arctan( −zG√
x2G+y

2
G

)]T .497

VI. FLIGHT SIMULATION EXPERIMENTS AND RESULTS498

In order to realistically reproduce the Kadett 2400 fixed-wing499

UAV dynamic model, a setup with the Flight-Gear 2019 sim-500

ulator and Matlab R2020b has been used for the low-level501

control of the different subsystems shown in Figure 8. For 502

this experimentation the same computer as in Section V-B 503

has been used. 504

The UAV has four actuators δe (elevation), δa (aileron), 505

δr (rudder) and δth (throttle), which are controlled by three 506

PID regulators implementing low-level control of the yaw 507

9∗ and pitch θ∗ angles, as well as the ground speed vel∗. 508

The yaw and pitch references are obtained from the yaw and 509

pitch angles of the designed smooth curve, while the forward 510

velocity reference is kept constant at vel∗=18m/s throughout 511

the simulation. Notice that in our implementation the aileron 512

and rudder angles are actuated by the same controller, which 513

directly affects the yaw orientation. 514

As mentioned before in the article, a nice characteristic of 515

the DCC3D curve is to maintain zero curvature and torsion 516

values, both at the beginning and at the end of the path. 517

Therefore, a concatenation of DCC3D curves can be eas- 518

ily performed, producing a smooth flight path without any 519

in-flight lift loss. Figure 9 shows an example of a smooth 520

flight, where three DCC3D paths have been concatenated, 521

being the maximum values of Cb3D sharpness parameters 522

µmax =0.001 rad/m2 and ρmax =0.001 rad/m2. Without loss 523

of generality, the path begins at initial configuration qS (the 524
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FIGURE 8. Kadett 2400 control model with 3 inputs to control roll, yaw
and pitch which modify the aerodynamic surfaces δe (elevator), δa
(aileron), δr (rudder).

FIGURE 9. DCC3D curve and flight simulation with four concatenated
configurations.

UAV in horizontal flight), passes through two intermediate525

configurations qA and qB, and finishes at goal configura-526

tion qG:527

qS =
[
0.0 0.0 0.0 0.0 0.0 0.0

]T
528

qA =
[
480.0 200.0 20.0 0.0 −0.4 0.3

]T
529

qB =
[
1000.0 440.0 28.0 0.0 0.2 0.2

]T
530

qG =
[
1400.0 600.0 56.0 0.0 −0.6 0.1

]T
531

Figure 9(a) shows the reference path followed by the UAV.532

Figure 9(b) shows the Euler angles, where the reference533

angles of the DCC3D curve are the blue lines, and the UAV534

angles generated by the in-flight tracking system are the 535

dashed red lines. In Figure 9 it can also be seen that the 536

errors during the curve tracking in yaw and pitch angles are 537

small, being the mean square error of εθ = 0.00042 rad and 538

ε9 = 0.006 rad, respectively, where, εθ = 1
sT

∫ sT
0 (θ∗ − θ )ds 539

and ε9 = 1
sT

∫ sT
0 (9∗ − 9)ds. Finally, it is important to 540

mention that the flight time is t = 86.68 s with a full flight 541

path of sT =1560.28 m. 542

VII. CONCLUSION 543

The work developed in this paper presents a novel 3D smooth 544

path planner based on a concatenation of Clothoid-based 3D 545

curves (Cb3D) and straight line segments. The planner solves 546

the problem of joining two arbitrary configurations (position 547

and orientation) in 3D space (without loss of continuity and 548

smoothness), making it suitable for navigation of fixed-wing 549

UAVs. 550

To generate DCC3D paths, a new 3D smooth curve called 551

Elementary Clothoid-based 3D Curve (ECb3D) has been 552

presented. An ECb3D can achieve any orientation with zero 553

curvature and torsion values both at initial and final con- 554

figurations. That feature allows ECb3D paths to be used as 555

primitives for path generation, since it is possible to smoothly 556

concatenate several ECb3D paths and straight lines without 557

loss of curvature and torsion continuity. 558

The computational time of the curve, including finding 559

the curve with the shortest distance takes, in average about 560

0.1 on an Intel i5 (seed details in section 5). Hence, the fast 561

computation of the proposed DCC3D, allows to generate 3D 562

smooth paths in real-time. 563

As further work, we aim to include the proposed trajectory 564

in global planners such as Randomized Path Planner (RPP), 565

Probabilistic Road Map Method (PRM), Rapidly Exploring 566

Random Tree (RRT). A different use of DCC3D curve would 567

be the development of a local path planner for obstacle 568

avoidance in 3D maneuvers. Finally, the same methodology 569

could be implemented using other transition curves in order 570

to compare the performance against the Cb3D curves used in 571

this work. 572

APPENDIX 573

A. CLOTHOID-BASED 3D CURVE 574

Without loss of generality it is assumed that the Cb3D starts 575

from the origin, therefore, the generic parameterization of 576

the curve is defined by the vector p, being C(s,p). Thus, p 577

contains the vector of design parameters of the curve, such 578

that p := {µ, ρ} represent the sharpness parameters of the 2D 579

clothoids contained in the XY and XZ planes. Therefore, the 580

objective is to compute p∗ := {µ∗, ρ∗} given a target tangent 581

vector T∗ to be achieved. 582

Specifically, the curve C2D contained in the XY plane is 583

computed as: 584

C1(q, µ) :=
[
C(q, µ)
S(q, µ)

]
∈ R2 (31) 585
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where, q is the arc length, while:586

C2(ω, ρ) :=
[
C(ω, ρ)
S(ω, ρ)

]
∈ R2 (32)587

corresponds to the second C2D, contained in the XZ -plane,588

where the arc length is defined by ω with sharpness ρ. Con-589

sequently, the curve Cb3D presents a solution combining both590

clothoids, such that:591

C(s,p) ≡ C(s, ρ, µ) :=

C(C(s, ρ), µ)
S(C(s, ρ), µ)
−S(s, ρ)

(33)592

The orientation angles of the reference system associated593

to the Cb3D curve are given by:594

θ (s, ρ) :=
ρ

2
s2 (34)595

9(s, µ, ρ) :=
µ

2
C2(s, ρ) (35)596

φ(s, µ, ρ) := − arcsin

(
θ ′(s, ρ)√

ω(s, µ, ρ)2 + θ ′(s, ρ)2

)
(36)597

being, ω(s, µ, ρ) := cos(θ (s, ρ))9 ′(s, µ, ρ), θ ′(s, ρ) :=598

dθ (s, ρ)/ds and9 ′(s, µ, ρ) := d9(s, µ, ρ) /ds. Similarly, the599

tangent, normal and binormal vectors of the reference frame600

associated to the curve are defined by:601

T(s, µ, ρ) :=

c cos(9(s, µ, ρ)) cos(θ(s, ρ))
sin(9(s, µ, ρ)) cos(θ(s, ρ))

− sin(θ (s, ρ))

 (37)602

N(s, µ, ρ) :=
T′(s, µ, ρ)
‖T′(s, µ, ρ)‖

(38)603

B(s, µ, ρ) := T(s, µ, ρ)× N(s, µ, ρ). (39)604

Consequently, the target tangent vector T∗, is defined by605

the angles θ∗ ∈ [−π/2, π/2] rad, and 9∗ ∈ [−π, π] rad,606

so that, for a given value of arc length s > 0, the clothoid607

parameters will be computed from (34) and (35):608

ρ∗ =
2θ∗

s2
, µ∗ =

29∗

C2(s, ρ∗)
. (40)609
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