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ABSTRACT This paper presents a smooth flight path planner for maneuvering in a 3D Euclidean space,
which is based on two new space curves. The first one is called “Elementary Clothoid-based 3D Curve
(ECb3D)”’, which is built by concatenating two symmetric Clothoid-based 3D Curves (Cb3D). The combi-
nation of these curves allows to reach an arbitrary orientation in 3D Euclidean space. This new curve allows
to generate continuous curvature and torsion profiles that start and finish with a null value, which means that
they can be concatenated with other curves, such as straight segments, without generating discontinuities on
those variables. The second curve is called ‘“Double Continuous Curvature 3D Curve (DCC3D)” which is
built as a concatenation of three straight line segments and two ECb3D curves, allowing to reach an arbitrary
configuration in position and orientation in the 3D Euclidean space without discontinuities in curvature and
torsion. This trajectory is applied for autonomous path planning and navigation of unmanned aerial vehicles
(UAVs) such as fixed-wing aircrafts. Finally, the results are validated on the FlightGear 2018 flight simulator
with the UAV kadett 2400 platform.

INDEX TERMS Nonholonomic motion planning, motion and path planning, constrained motion planning,
autonomous vehicle navigation.

I. INTRODUCTION

In the last decades, the aeronautics industry has maintained
a continuous and vertiginous development, particularly in
the military field [1]. The literature in the different fields
of research is extensive. A relevant field of study focuses
on path planning, which has been approached from different
perspectives, such as communication networks [2], [3] or
computational intelligence based on path planning algorithms
[4], [5]. On the other hand, applications for civilian missions
are currently in high demand [6], such as rescue missions
[71, [8], or work in agriculture [9].
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The aim of flight planning for aerial vehicles is to generate
a path joining initial and final configurations, while passing
through several intermediate target points. In case of potential
collisions with static or dynamic objects, such as other UAVs
flying nearby, the initial route must be replanned to guarantee
collision-free paths [10], [11].

In particular, this paper addresses the 3D path planning
task for UAVs with nonholonomic characteristics [12], [13],
i.e., fixed-wing aircrafts. In this sense, it should be high-
lighted that one of the most relevant particularities of this
kind of paths is the continuity of the curve, since a fixed-wing
UAV cannot perform abrupt maneuvers during its flight time.
Therefore, the starting point to create a smooth flight path
must consider the particular maneuverability capabilities of
the UAV. Several studies have been proposed in this context,
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where 3D path planning algorithms use cubic Bezier spiral
curves to satisfy the curvature constraint are presented in [14],
[15], [16], while [17] proposes a seventh-order Bézier curve
as a continuous curvature path approximation, which does
not exceed the kinematic constraints of an aerial vehicle.
The authors of [18] have performed a fusion between two
heuristic methodologies, with the aim of solving the smooth
path planning problem in a mountainous environment, for
which the characteristics of B-spline curves are exploited.

The authors of [19] study curvature constraints in path
planning and solve this problem through Dubins curves.
In [20], the smooth trajectory planning problem with contin-
uous curvature is solved through an optimization algorithm
based on Pythagorean curves, which satisfies the kinematic
constraints of the UAV, in a similar approach, the authors
of [21] propose a path planning generated through a multiob-
jective optimization problem operating with standard genetic
operators. In [22] coordinated path planning for multiple
UAVs is performed, starting from an ant colony optimization
algorithm smoothed through a k-degree smoothing method.
While in [23] a Rauch-Tung-Striebel (RTS), smoothing is
used, a procedure that permits smoothing the path produced
by a Particle Swarm Optimization (PSO) algorithm, while
in [24] an RTS smoothing is also used for the control
of mobile robots with nonholonomic wheels. A particular
approach is presented in [25], where a smooth path planning
algorithm based on a Gaussian spectrum function is built,
which aims to optimize the smooth path. Finally, in [26]
model-based smooth paths are proposed for the estimation of
the optimal geometric parameters, through polynomial spline
curves, the results are used in industrial robots, with the aim
of improving the productivity.

Focusing on works with good results based on clothoid
curves, [27] solves the problem of generating continuous cur-
vature paths by composing multiple clothoids. The relevance
of clothoid curves and their application to nonholonomic
vehicles can also be appreciated in [28], [29], and [30]. In [31]
and [32], clothoids are approximated using Bézier curves to
minimize curvature profiles and thus guarantee higher-order
geometric continuity while minimizing error. In [33], smooth
paths based on clothoid curves are proposed for planning
high-speed wheeled vehicle paths, for which a numerical
optimization is performed within the constraints of convex
regions. In [34], autonomous valet parking service path plan-
ning is performed. Finally, the authors of [35] propose a path
smoothing, based on clothoid curves, parameterized by the
arc length.

The aim of this work is to generate a smooth flight path
in the context of fixed-wing UAV autonomous navigation.
A new 3D smooth curve, called Elementary Clothoid-based
3D Curve or ECb3D, is proposed, which is built by combining
two symmetric Cb3D [36]. An ECb3D is capable of reaching
an arbitrary direction in 3D space, being its curvature and
torsion profiles equal to zero at both the beginning and the
end of the curve. That property allows to build more complex
curves combining them with straight line segments or other

VOLUME 10, 2022

ECb3D curves. In this sense, a second 3D smooth curve
is introduced, coined as Double Continuous Curvature 3D
Curve (DCC3D), which is a concatenation of two ECb3D
curves and three straight line segments. A DCC3D curve can
reach any arbitrary position and orientation in 3D Euclidean
space. Finally, it should be emphasized that collision avoid-
ance is out of the scope of this paper, although the proposed
path could be used as a primitive in both global and local
planners to generate collision-free paths.

This paper is organized as follows: in section II, the for-
mulations of the preliminary works related to this article are
discussed. Section III describes the problem to be solved.
In Section IV, the methodology to design smooth curves
to reach arbitrary target orientation is explained in depth,
whereas Section V describes how to generate 3D Double
Continuous Curvature Curves that allow to reach arbitrary
position and orientation. Section VI presents the results that
validate the application of this new curve through flight simu-
lations performed on a fixed-wing UAV. Finally, conclusions
and further work are described in Section VII.

Il. PRELIMINARIES
A nonholonomic constraint cannot be expressed only in posi-
tion variables but includes the time derivative of one or several
variables. In direct reference to fixed-wing UAVs, these con-
straints are directly related to their maneuverability in flight.
There are different approaches used for the construction
of smooth paths, whether they are heuristic [37] or geo-
metrical [38], [39], [40]. Thus, this work takes a geometric
approach for constructing smooth paths as a starting point,
based on the criterion of 3D continuous curves. Thereafter,
a set of concepts necessary for the development of this article
are defined.

A. CURVES IN SPACE
A curve in space R”, can be defined as a vector function [41]
such that:

C:[a,b] > R", C(s)= (x1(5),...,xu(5) )

where, the points C(a) and C(b) are the initial and final
boundaries of the curve. In particular, a curve in the
three-dimensional space R3 can be defined as C(s) = (x(s)i+
¥(8)j+z(s)k), where i, j, K refer to the unit vectors of the global
reference frame.

Tangent, normal and binormal vectors are defined as:

o T(s) is the unit vector tangent to the curve, pointing tp
the direction of movement:

T(s) = C'(s)

= . 2
IC" @

o N(s) is the unit normal vector, given by the ratio of the
derivative of T(s) to its length:

NGs) = [C/(s) x C"(s)] x C'(s)
T IC () x C"(s)] x C' (o)l

3)
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« B(s) is the binormal unit vector, represented by the cross
product of T(s) and N(s):

C'(s) x C"(s)
IC'(s) x C"()II”
where C'(s) = dC(s)/ds, C"(s) = d*C(s)/ds?, and C"(s) =
d3C(s)/ds> are the derivatives of the position vector C(s).

On the other hand, «(s) defines the curvature of the curve,
such that:

B(s) = T(s) x N(s) = )

_ [C'(s) x C"(s)

(s) Q)
T Icer
and t(s) is the torsion, defined as:
o(s) = C'(s) - (C"(s) x C"'(s)) ©)

1C"(s)|1?

Therefore, for a continuous curve defined in R3, as the one
shown in Figure 1, T(s) is a unit vector defining the direction
of the curve, N(s) is perpendicular to T(s), while B(s) forms a
right-handed system between T(s) and N(s). Based on Frenet-
Serret frame, the derivative of equations (2)-(4) depends on
(5) and (6), and can be computed as follows:

T'(s) 0 K (s) 0 T(s)
NG) | =|-«ts) 0 | |Ns|, @
B'(s) 0 —7(5) 0 B(s)

where T'(s) = dT(s)/ds, N'(s) = dN(s)/ds and B'(s) =
dB(s)/ds are the first derivatives of such vectors.

y

FIGURE 1. Curve in the space R3, where three orthogonal local systems
are shown, which are defined by T vectors (red arrows), N vectors (green
arrows) and B vectors (blue arrows).

Then, the orthogonal basis of the system is defined as
R(s) := [T(s) N(s) B(s)], which can be integrated from (7),
based on the functions of «(s) and t(s), from an initial value,
such that, R(0) := [T(0) N(0) B(0)]. Hence, the position can
be determined by integrating the tangent vector.

Cs) == C0) + /O T ®)

B. CLOTHOID IN SPACE R? (C2D)

A planar clothoid (C2D) [42], also known as the Euler Spiral,
defined in R2 (see Figure 2), is a curve whose curvature varies
linearly with respect to the arc length, being:

K(8) := oS )

94264

X

FIGURE 2. Clothoid curve in space R2.

where, o, := dk(s)/ds is referred to as the curvature sharp-
ness, which is related to the homotopy factor K, being o, :=
7/K?. Hence, the tangent angle of the clothoid is defined as:

Ok o
B(s, 0y) = 5 (10)

The C2D is a curve that has contributed in various aspects,
both in development and construction of roads and/or rail-
roads [43], [44], and also in research [45], giving nonholo-
nomic vehicles a good tracking control, due to its various
geometric properties such as curvature and tangent angle.
Being the tangent vector computed as:

cos(B(s, m)} an
sin(B(s, o))

Consequently, a planar clothoid curve contained in the
plane XY, is defined by the equations (8), (10) and (11).
Hence, C(s, o) can be solved using the Fresnel integrals,
as follows:

T(s, 0y) = [

e o] [ Jocos(EPds
C(s, oy) := |:S(S, GK)] |:f03 Sin(%éz)dg 12)

where C(s, 0,) and S(s, o, ) are the Fresnel integrals in cosine
and sine, respectively. Finally, it should be noted that without
loss of generality, it is assumed that the clothoid starts from
the origin of coordinates, being C(0) = 0 according to the
equation (8).

C. CLOTHOID IN SPACE R3 (C3D)

The concept of Euler Spiral defined in R?, also known as a 3D
clothoid (C3D), was introduced by [46]. The curvature of a
C3D varies as a function of the equation (9), while its torsion
is defined as:

T(s) 1= o¢S (13)

where o; := dr/ds is the first geometric derivative (also
known as torsion sharpness). The development of this 3D
smooth curve allows arbitrary configurations to be achieved,
either in position or orientation in 3D space, but not both at
the same time.
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llIl. PROBLEM DEFINITION

Let us assume R as a UAV of nonholonomic character-
istics, such as a fixed-wing aircraft, whose state space
qr = [xr yr 7R Or YR]T € R3 x S2, is composed
of the coordinates position pr = [xg yr zr]’, and ori-
entation coordinates /qr = [fr Wgr]!, pitch and yaw
angles. Whereas the input parameters to the system are given
by the curvature sharpness o, and the torsion sharpness
Or. It is important to remark that the roll angle of the
curve is not relevant for computing the curve geometrically
and, for this reason, it is not considered as part of the
configuration.

Assuming that R can perform motions within its kinematic
boundaries of maneuverability (boundaries set by the partic-
ular aerodynamic constraints of the UAV) and that the values
of the geometric derivatives of curvature and torsion (defined
as curvature sharpness and torsion sharpness, respectively),
are within the set boundaries, being i, € [0 Ticpar | ad
O € [Urm,-n a,max]. Then, the aim is to build a new smooth
curve G' to join two arbitrary configurations in position
and orientation, starting from qs = [xs ys zs 05 Ws]! to
q¢ = [x6 yG z6 B¢ \IIG]T. In addition to this, curvature and
torsion at start and goal configurations must be zero, i.e.,
ks = kg =0and tg = g = 0.

IV. ELEMENTARY CLOTHOID-BASED 3D CURVE (ECb3D)
The aim is to construct a new three-dimensional curve, in the
space R3 x S2, able to reach an arbitrary configuration in
orientation with continuous curvature and torsion (CC). This
new curve will be composed of two segments of the Clothoid-
based 3D curve (Cb3D) [36].

The procedure starts with the description of the Cb3D
curve. Afterwards, the generation process of the new Ele-
mentary Clothoid-based 3D Curve (ECb3D), generated from
the concatenation of two symmetrical Cb3D curves is
detailed. Specifically, the ECb3D will allow reaching an
arbitrary orientation, but the position will be given accord-
ing to the shape and size of the constructive clothoid
parameters.

A. CLOTHOID-BASED 3D CURVE (Cb3D)

The authors of [36], propose a new Clothoid-based 3D Curve
(Cb3D), capable of achieving an arbitrary configuration in
position or orientation in 3D space. The Cb3D is built from
two C2D curves generated in the orthogonal XY and XZ
planes. Thus, Cb3D projects a C2D curve in the XY plane
with arc length s, while the clothoid in the orthogonal XZ
plane depends on the length of the C2D curve in the XY plane
(see Figure 3). The curve Cb3D achieves relevant results due
to its analytical solution. Moreover, the curve presents a set of
interesting properties/operations such as scalability, symme-
try, monotonicity, and smoothness along the curve. Appendix
A includes the most relevant aspects of the curve [36], which
have been included in this work to justify the computations
of the proposed methodology.
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Xy

FIGURE 3. Clothoid-based 3D Curve (Cb3D). The dotted red line shows the
C2D construction in the XY plane, the green line shows the C2D in the XZ
plane while the blue line shows the Cb3D curve. Image taken from [36].

B. ECb3D CURVE GENERATION

The concept of Elementary Curve in R?> (E2D) was intro-
duced by [47], a curve developed to build appropriate paths
for mobile wheeled vehicles. In that sense, the E2D is built
by combining two symmetric C2D curves that have the same
homotopy factor and the same length. The goal is to create
smooth trajectories that do not exceed certain physical limits
associated with comfort and safety in mobile vehicles [45],
leading to proper path following.

In particular, the ECb3D curve seeks to extend the original
concept of E2D curve to the space R>, by concatenating two
symmetric Cb3D curves [36]. Continuity and smoothness are
guaranteed due to the properties of the original Cb3D curve
(see Appendix A for a brief description of Cb3D curves).
An ECDb3D curve has zero curvature and torsion values at
start and goal configurations, thatis ks = kg = 15 = 76 = 0.

Figure 4 shows an example of ECb3D curve, where
C(s, u, p) (in solid blue) is the first Cb3D curve,

g6 = [0c Va)"

— C(s;1,p)
“mmT Ci(smp)
— Ci(s,5,,p)

FIGURE 4. ECb3D curve generation from the symmetry of two
concatenated Cb3D curves, through an intermediate deflection angle
/q. It is assumes an initial orientation configuration

/qs = [0s \ps]T =1[0 0]”, while the goal orientation configuration is
Lq6 =106 ¥cl"-
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C*(s, u, p) = C(—s, 1, p) (in dashed red) is symmetrical to
C, and CT(s, S, L, p) (in solid red) is the second Cb3D curve,
which is C* rotated and translated. Consequently, the curve
C' starts at configuration qy; and ends at configuration qg.
Note that in Figure 4 the start configuration qg is at the origin
of coordinates aligned with x-axis, so /qs = [0s Ws]! =
[00)7. In a generic case, where start configuration with
respect to the global frame is different from zero, that is,
qu # [0 017, we can compute the local tangent vector of
/qg, by considering the following rotation:

cos(fg) cos(Yg)
cos(6g) sin(Wg)
—sin(6g)
cos(Gg) cos(\IJg)
x | cos(82) sin(W3) (14)
— sin(62)

Tg = :=R7(0, 69, w)

with qu = [98 \Ilg]T and Zq% = [Og \I/?;]T being start
and goal angles expressed with respect to a global frame and
R is a rotation matrix

R(¢, 0, V) := R, (V)Ry(6)R: () 15)

where Ry (o), Ry(e) and R;(e) are basic rotation matrices
around each axis of the global reference frame; being roll ¢,
pitch 6 and yaw W the Euler angles.

Then, the deflection angle Zqg = [6g W;)T can be com-
puted from (14) as follows

TG, .

6 = arctan (16)
JT6.7? +(Tg )2
T

Vs = arctan( G’y) (17)
TG,x

where subscripts x, y and z refer to each component of the
tangent vector Tg.

On the other hand, for the computation of the intermediate
deflection angle Zqyy, the following rotations must be applied
to ensure that the curve is continuous (in position, curvature
and torsion):

[TG, NG, BGl = R:(War) - Ry(Oy) - Ry(Our) - R (W)

2 cos2(Byr) cos2(Wyy) — 1
2 cos2(9M) cos(Wy)sin(Wy) | . (18)
—2cos(Oyr) cos(Wyy) sin(Byy)

Tg =

where the first column of the right-side expression corre-
sponds to the symbolic expression for computing T¢. Thus,
with equations (14) and (18) we can compute the intermediate
deflection angle Zqu = [0y Y1 :

(tan(ég) sin(\I/M)>
Oy := arctan | ——
sin(Wg)
Wy = arctan( cos(¥g) sin(Vg) ) . (19)
cos(fg) cos(Wg) + 1
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Therefore, the parameters necessary to build Cb3D curves
are computed by means of the following expressions (see
Appendix):

20}
pri= =t (20)
N
pA\ Ly
pho= @D
C=G, p*)

being 5 the length of one Cb3D, that is, the half length of the
ECb3D curve.

On the other hand, the transformation governing the
rotation and translation of the curve C*(s, i, p) to obtain
CT(s, W, p) (see Figure 4) is expressed as:

~ - T
_ ZT(S’ ", /O)TT(S’ M, 10)_1 OT
2TG, . PTG, , p)CG, . p) 1

) } B T
] [c (s,sl,u,p)}:H.[C( S’IM"”] o)

where, it can be seen that, as the C' curve has been defined,
when s = 0 the curve is in the qps configuration, while when
s = 5, the curve ends in the qg configuration.

Finally, as a result of the concatenation of the curves C and
CT, the ECb3D curve is defined as:
C(s, u, p) ifs <5

o @)
C'(2s —s,5, u, p) otherwise

E(s, 5, 1, p) = !

Hence, the ECb3D curve is evaluated for s € [0 25], with no
discontinuity.

Figure 5, shows a comparative example of the ECb3D
curve (blue line) and the Cb3D curve (dashed red line), both
of which point to a goal orientation of g = —m/4 and
Vs = w/2 with § = 0.5. In Figure 5(b), the variation of
the pitch 8 and yaw W Euler angles is displayed, while in
Figures 5(c) and 5(d) the behavior in the curvature profiles
and their sharpness in the orthogonal XY and XZ planes can
be appreciated. It can be highlighted that the ECb3D curve
starts and ends with curvature and torsion equal to zero (k =
t = 0), characteristic that allows the ECb3D to link with
another curve without loss of continuity, a property lacking
in the Cb3D.

V. DOUBLE CONTINUOUS CURVATURE
3D CURVE (DCC3D)
This section defines a curve that reaches an arbitrary config-
uration in position and orientation in the 3D Euclidean space.
The new Double Continuous Curvature 3D Curve (DCC3D)
is built by three straight line segments and two ECb3D curves,
as can be seen in Figure 6.

In this sense, since there are two ECb3D paths ina DCC3D,
a subscript has been added in order to refer to the corre-
sponding ECb3D. Therefore, configurations qs, qy and qg
of an ECb3D have been renamed as qs;, qu,; and qg,;,
respectively, where i = 1 refers to the first ECb3D, E;, and
i = 2 to the second one, E>. Thus, the following equalities
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k [rad/m]
N
1
1

yu
W

o

1 [rad/m 2]
A N o v b

o 02 0.4 06 08 1
s [m]

(c)

0(s) [rad]

0 0.2 0.4 0.6 0.8 1

o 0.2 0.4 06 0.8 1
s [m]

(d)

FIGURE 5. Case study with final orientation g = —n /4 rad and ¥ =r/2 rad, with §=0.5. ECb3D (blue) vs. Cb3D
(dashed red): (a) position, (b) Euler angles, (c) curvature profile and its sharpness in the orthogonal plane XY,
(d) curvature profile and its sharpness in the orthogonal plane XZ.

A
- 0dc = [ ye ¢ 0 Va]”
—>

ine GG

(L3)
«—— 4*"Clothoid | Elementary
(Cy) Clothoid-based
qm,2 3D Curve
. 3"¢Clothoid (E2)
(C3)
‘ 4s,2
2" Line—»
z y (L2)

> \“ .
qs.-g's) Ly 2"Clothoid| Elementary
s (C2) Clothoid-based
T /_1%tClothoid [ 3D Curve
E
qs.1 (€ ( 1)
4s = [zs ys zs Os Vs]”
FIGURE 6. Double continuous curvature 3D curve (DCC3D).
relative to configurations’ orientations hold: /qs = /Zqs,,

Zqu = quz, Zqu = Zq(;.
Since there are multiple solutions to the problem, the
deflection angle /qg,1 is assumed to be known, which allows
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determining the straight lines and clothoids’ lengths. That
is possible because derivatives of curvature and torsion are
performed at the maximum admissible sharpness, that is
[l < tmar and |p| < Pmax- This allows to obtain the
shortest path for the given deflection angle in a preliminary
step. Thus, this states a numerical optimization problem that
aims to obtain the shortest curve by finding the intermediate
orientation /qg,; that minimizes the overall length, while
ensuring that the path satisfies some constraints to avoid
abrupt changes in curvature and torsion. As shown later on,
the lengths of the first and third straight lines act as relax-
ation variables in order to satisfy position constraints for a
given /qg,1.

A. DCC3D CURVE GENERATION

Let us assume that the intermediate orientation of the DCC3D
curve is given, that is, Zqg,1. Let us also assume that in
order to satisfy position constraints imposed by q¢, we allow
maneuvers, that is, changes in the direction of the curve that
would force a robot stop to avoid abrupt changes in curvature
and torsion. The steps to generate the DCC3D curve are
described next.

1) Compute the first ECb3D: the intermediate deflection
angle Zqu.1 = [0m.1 \IlMgl]T is determined from
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3)
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equation (19) using the orientation of the goal config-
uration 2qg,1 = [06,1 ‘-IJG,l]T (assuming that the start
configuration Zqs,;; = [0 O]T). Otherwise, a rotation
must be applied to compute Zqg,; with respect to the
local frame of Zqs.1, as in equation (14).

Assuming that the curve is computed with the max-
imum allowable torsion sharpness p; = Oy, the
arc-length of each Cb3D curve (of the ECb3D), and the
curvature sharpness to reach the deflection angle Zquy
can be obtained from (20) and (21) as follows:

2Wpr 1

5 = 216,11 =
' Pmax ' ’ Cz(gls Pmax)

If ;1] > Wmax, then it means that the assumption
of the previous point was incorrect and, therefore, the
curve with the maximum admissible curvature sharp-
ness i1 := Umax Must be computed as:

[21¥m 1
~ Mmax

S = ———,
LT e 210w D)

(24)

29M,1
p1i=—=
5t

(25)

Compute the second ECb3D: repeat the previous step
to obtain curvature p, and torsion p, sharpness param-
eters, as well as the arc-length 5, based on deflection
angle between /qs > = Zqg,1 and LqG2 = LqgG.

Compute line segments: it is interesting to remark that
the resulting curve, as a consequence of concatenating
the two ECb3D, satisfies orientation constraints, but it
does not satisfy position constraints. Indeed, the posi-
tion displacement imposed by the clothoid arcs is:

PE,.E = E1(251) + E2(257) (26)

Thus, line segments must generate the remainder
position displacement in order to satisfy position
constraints:

Ap = PG — Ps — PE.E, 27

As a consequence, lengths of line segments can be
computed as:

L =[Ts Tg, To]' Ap (28)

where § denotes the Moore-Penrose pseudo-inverse,
Ts :=[100]” and

cos(6g,1) cos(Wg, 1)
cos(0g,1) sin(Wg,1)
—sin(60g,1)

TG,l = (29)

Obviously, when the rank of [Tg Tg1 Tg] isnot 3, i.e.,
the matrix has one or two singular values close to zero,
it implies that line segments are redundant. In those
cases, we can force to zero one of the line segments and
compute the others. In particular, we propose to force
to zero L1 and L3 before forcing to zero L, details left
to the reader.

B. SHORTEST CURVE
The aim now is to compute the curve with the shortest length,
being Zqg,1 decision variables of an optimization process:

an] =arg min Lj + 25, + Ly + 25, + L3,
qG.1

subjectto Ly, Lo, L3z >0 30)

Note that values of Ly, Ly, L3, 5; and 5> depend on the
deflection angle as discussed in the previous section. Since
this procedure looks for solutions of maximum sharpness in
torsion or curvature of the clothoid arcs, the curve resulting
after solving (30) will produce the shortest length that joins
the initial and goal configurations without discontinuities.
Also note that the positiveness constraints imposed to Lp,
Lr and L3 ensure that the obtained curve will imply no
maneuvers, and thus are suitable for fixed-wing UAVs.

Lemma 1: The optimal solution will imply that lengths for
the first and third lines are zero.

Proof: For the unbounded problem, where ppq = 00
and pmax = 00, the clothoid lengths have zero length, i.e.:
51 = 0 and 5, = 0, which implies an instantaneous change of
orientation between the line segments. In that case, it is obvi-
ous that the optimal solution joining two points in the Carte-

. . Apy —Ap,
sian space is /qf ; = [arctan( Ag‘) arctan(—=e )|,
’ X

Ap2+Ap2

which implies that the lengths of the line segments are L} =
0, L, = |Ap| and Lz = 0. The optimal solution of the
bounded problem will generate clothoids with the shortest
possible length such as the angle between T, 1 and Ap is
minimum, which implies that numerically L; — 0 and
L3 — 0, details left for brevity. |

C. COMPUTATION TIME

In order to test the computational effort to generate a DCC3D
curve, a total of 10* arbitrary goal positions and orientations
have been used to analyse time performance. The compu-
tational time has been divided into two stages. In the first
stage, the optimization process to find the intermediate con-
figuration angle Zq*G’l that minimizes the overall length,
obtaining an average time of ;‘12.1 = 0.110 s. The second
timing analysis focuses on determining the computational
time to get w and p values for each Elementary segment,
E1 and E2. The mean time to compute such parameters is
g = 0.0024 s.

The computer used for this analysis has the following
specifications: CPU Intel i5-9400F 4.100GHz, GPU NVIDIA
GeForce GT 610 and 8 GB DDR4 memory, under an Ubuntu
18.04.4 LTS x86_64 OS with Kernel 5.4.0-120-generic.

D. CASE STUDY

To achieve a better understanding of the results obtained,
a specific case study with three variants is described next.
Figure 7 shows an example of DCC3D curves joining the
initial configuration qs = [00000]7 with a goal config-
uration qg = [170 120 90 7 /4 /6]” . The aim is to describe
the behavior of the DCC3D curve by setting three different

VOLUME 10, 2022



G. Vanegas et al.: Smooth Three-Dimensional Route Planning for Fixed-Wing Unmanned Aerial Vehicles

IEEE Access

100 +

z [m]

50 4

100 0
. [m] 150 y [m]
(a)
_. 001} ‘ ‘
£
B 0
<001 | ‘ ‘
0 100 200 300
%1074
-
== —
® L__l
S5
0 100 200 300
s [m]
(c)

g0
=

0 100 200 300

15
g 1r
S
Z05 ¢ 57 -
0 L L
0 100 200 300
s [m]
(b)
0.02
€
g 0 A
J:Q
-0.02 - -
0 100 200 300
-3
1 x10
[s\)
] I
€
£o | I |
© ]
:—1
0 100 200 300
s [m]
(d)

FIGURE 7. DCC3D curve with final orientation 6 = =/4 rad and V¢ = /6 rad, final position pg = [170 120 90]7 m,
with pmax = tmax = 0.001 (blue), pmax = max = 0.0005 (red), and pmax = max = 0.00025 (green). (a) Smooth path
3D, (b) Euler angles, (c) curvature profile and its sharpness in the orthogonal plane XY, (d) Curvature profile and its

sharpness in the orthogonal plane XZ.

values for the maximum curvature sharpness and torsion
sharpness. Figure 7(a) shows the curves obtained in 3D space.
In Figure 7(b), the Euler orientation angles along the curves
length are shown, while in Figures 7(c) and 7(d), the cur-
vature and torsion profiles together with their sharpness are
depicted.

As expected, lower values of maximum curvature sharp-
ness and torsion sharpness yield longer and smoother ECb3D
curves. That implies shorter straight lines and, consequently,
longer DCC3D curves. It is interesting to remark that, reach-
ing positions too close would imply curvy trajectories with
a very pronounced S shape (or even an 8 shape) or a com-
plete loop, i.e. turning to the opposite direction. If we do
not seek for such type of curves, then the target config-
uration must be consistent with the sharpness constraints

and the initial deflection angle can be set to Zq’é”"f“l
[arctan(2¢) arctan(—=25—)].
¢ GG

VI. FLIGHT SIMULATION EXPERIMENTS AND RESULTS

In order to realistically reproduce the Kadett 2400 fixed-wing
UAV dynamic model, a setup with the Flight-Gear 2019 sim-
ulator and Matlab R2020b has been used for the low-level

VOLUME 10, 2022

control of the different subsystems shown in Figure 8. For
this experimentation the same computer as in Section V-B
has been used.

The UAV has four actuators . (elevation), 8, (aileron),
8y (rudder) and &y, (throttle), which are controlled by three
PID regulators implementing low-level control of the yaw
W* and pitch 6* angles, as well as the ground speed vel™.
The yaw and pitch references are obtained from the yaw and
pitch angles of the designed smooth curve, while the forward
velocity reference is kept constant at vel* = 18 m/s throughout
the simulation. Notice that in our implementation the aileron
and rudder angles are actuated by the same controller, which
directly affects the yaw orientation.

As mentioned before in the article, a nice characteristic of
the DCC3D curve is to maintain zero curvature and torsion
values, both at the beginning and at the end of the path.
Therefore, a concatenation of DCC3D curves can be eas-
ily performed, producing a smooth flight path without any
in-flight lift loss. Figure 9 shows an example of a smooth
flight, where three DCC3D paths have been concatenated,
being the maximum values of Cb3D sharpness parameters
tmax =0.001 rad/m? and 4, =0.001 rad/m?. Without loss
of generality, the path begins at initial configuration qg (the
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FIGURE 9. DCC3D curve and flight simulation with four concatenated
configurations.

UAV in horizontal flight), passes through two intermediate
configurations q4 and qp, and finishes at goal configura-
tion qg:

gs=[00 00 00 00 00 00]"

aa = [480.0 2000 200 00 —04 03]
as = [1000.0 4400 280 00 02 02]
g = [1400.0 6000 560 0.0 0.6 0.1]

Figure 9(a) shows the reference path followed by the UAV.
Figure 9(b) shows the Euler angles, where the reference
angles of the DCC3D curve are the blue lines, and the UAV
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angles generated by the in-flight tracking system are the
dashed red lines. In Figure 9 it can also be seen that the
errors during the curve tracking in yaw and pitch angles are
small, being the mean square error of €y = 0.00042 rad and
ey = 0.006 rad, respectively, where, €y = # o (0% — 0)ds
and ey = # o (W* — W)ds. Finally, it is important to
mention that the flight time is = 86.68 s with a full flight
path of s7 =1560.28 m.

VIl. CONCLUSION

The work developed in this paper presents a novel 3D smooth
path planner based on a concatenation of Clothoid-based 3D
curves (Cb3D) and straight line segments. The planner solves
the problem of joining two arbitrary configurations (position
and orientation) in 3D space (without loss of continuity and
smoothness), making it suitable for navigation of fixed-wing
UAVs.

To generate DCC3D paths, a new 3D smooth curve called
Elementary Clothoid-based 3D Curve (ECb3D) has been
presented. An ECb3D can achieve any orientation with zero
curvature and torsion values both at initial and final con-
figurations. That feature allows ECb3D paths to be used as
primitives for path generation, since it is possible to smoothly
concatenate several ECb3D paths and straight lines without
loss of curvature and torsion continuity.

The computational time of the curve, including finding
the curve with the shortest distance takes, in average about
0.1 on an Intel i5 (seed details in section 5). Hence, the fast
computation of the proposed DCC3D, allows to generate 3D
smooth paths in real-time.

As further work, we aim to include the proposed trajectory
in global planners such as Randomized Path Planner (RPP),
Probabilistic Road Map Method (PRM), Rapidly Exploring
Random Tree (RRT). A different use of DCC3D curve would
be the development of a local path planner for obstacle
avoidance in 3D maneuvers. Finally, the same methodology
could be implemented using other transition curves in order
to compare the performance against the Cb3D curves used in
this work.

APPENDIX
A. CLOTHOID-BASED 3D CURVE
Without loss of generality it is assumed that the Cb3D starts
from the origin, therefore, the generic parameterization of
the curve is defined by the vector p, being C(s, p). Thus, p
contains the vector of design parameters of the curve, such
that p := {u, p} represent the sharpness parameters of the 2D
clothoids contained in the XY and XZ planes. Therefore, the
objective is to compute p* := {u*, p*} given a target tangent
vector T* to be achieved.

Specifically, the curve C2D contained in the XY plane is
computed as:

Ci(q. p) = [f;igg ’;ﬂ e R 31)
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where, ¢ is the arc length, while:

Cw, p) 2
Cor(w, p) := eR
2(w, p) [ S(w. p)
corresponds to the second C2D, contained in the XZ-plane,
where the arc length is defined by @ with sharpness p. Con-
sequently, the curve Cb3D presents a solution combining both
clothoids, such that:

(32)

C(C(s, p), 1)
S(C(s, p), )
_S(Sv 10)

The orientation angles of the reference system associated
to the Cb3D curve are given by:

Cis,p)=Cs, p, ) := (33)

0(s, p) := gsz (34)
Vs, . p) = 5C(s. p) (35)
&(s, ., p) := — arcsin oG p) (36)

Vals, . p)* +6'(s, p)?

being, w(s, u, p) = cos(@(s, P)V'(s, w, p), 0'(s, p) =
do(s, p)/dsand W' (s, u, p) := dW¥(s, u, p) /ds. Similarly, the
tangent, normal and binormal vectors of the reference frame
associated to the curve are defined by:

ccos(W(s, i, p)) cos(6(s, p))

T(s, o, p) :=| sin(W(s, wu, p))cos(d(s, p)) 37
—sin(f(s, p))
T'(s, 1, p)
NGs, w, p) = —— 27 38
1 P 3= s, )l (%)
B(s, w, p) := T(s, , p) X N(s, p, p). (39)

Consequently, the target tangent vector T*, is defined by
the angles 6* € [—n/2, /2] rad, and V* € [—m, 7] rad,
so that, for a given value of arc length s > 0, the clothoid
parameters will be computed from (34) and (35):

20* 2w
=T ur=———. 40
o 2 iz 6. o) (40)
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