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Accurate knowledge of the nonlinear coefficient is extremely
important to make reliable predictions about optical pulses
propagating along waveguides. Nevertheless, determining
this parameter when dispersion and loss are as important as
nonlinear effects brings both theoretical and experimental
challenges that have not yet been solved. A general method
for measuring the nonlinear coefficient of waveguides under
these demanding conditions is here derived and demon-
strated experimentally in a kilometer-long standard silica
fiber pumped close to 2 µm.
© 2023 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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Nonlinear optical phenomena in guiding media are generally
studied based on the propagation of the envelopes of the electro-
magnetic field modes [1]. Consequently, the nonlinear dynamics
of these systems depend on several modal parameters such as
the nonlinear coefficient γ, the group-velocity dispersion β2, or
the linear loss α [1]. Their accurate measurement thus becomes
essential in the nonlinear modeling of fibers or integrated waveg-
uides. Although β2 and α can be precisely determined at low
powers [2], where nonlinearities can be safely neglected, γ
values suffer from uncertainties of a fundamental nature due
to dispersion or loss [3,4].

The traditional inaccuracies in γ caused by dispersive effects
have recently been overcome in Ref. [4]. The key difference of
this novel method with respect to previous techniques [5–8] is to
rely on an exact conservation law of the nonlinear Schrödinger
equation (NLSE) instead of solving it approximately, which
releases the measurement of γ from any assumption beyond
the NLSE itself. Furthermore, if this approach could be applied
to more complex systems such as waveguides where the dis-
persion slope or the loss is significant, then the lack of exact
solutions to generalized versions of the NLSE would not limit
experimental γ accuracies. Including higher-order dispersion
terms should not represent, in principle, a major constraint

since the corresponding nonlinear models fulfill extensions
of the conservation law [9]. In contrast, accounting for a
loss comparable to dispersion and nonlinearities defies the
very basis of this framework as the conservation law is then
broken [4].

Despite these envisaged issues, strong interplays between
nonlinearities, dispersion (or diffraction), and loss (or gain)
may occur in several cases with fundamental and technologi-
cal relevance including nonlinear plasmonics [10,11], nonlinear
PT -symmetric photonic systems [12], and nonlinear optics in
integrated waveguides with 2D materials [13,14] or dispersive
nonlinearities [15]. In addition, measurements of γ in lossy
waveguides can be instrumental to check experimentally the
different theoretical expressions reported to date for γ [16], as
well as an effective means to study γ in active fibers. These cur-
rent research topics call for sound solutions to the complexities
inherent to determining γ when dispersion and loss are on an
equal footing with nonlinear processes.

Here, an approach to determine β2/γ, and hence γ if β2 is
available, in lossy waveguides is developed and proved numer-
ically and experimentally using, in particular, a 1.16-km-long
Corning SMF-28e+ fiber pumped at 1.951µm, where it features
a 10.9-dB km−1 loss.

Let us consider the generalized NLSE in a lossy waveguide,

∂

∂z
A(z, T) = −

α

2
A − i

β2

2
∂2A
∂T2 + iγ |A(z, T)|2A, (1)

where A is the complex envelope of the electric field and T
denotes the time in the retarded frame [1]. Following Ref. [4],
Eq. (1) implies

−
d
dz
ρ(z) − αρ(z) =

β2

2γ
d
dz
µ2(z), (2)

where ρ(z) = (1/2)
∫ +∞
−∞

|A|4 dT/
∫ +∞
−∞

|A|2 dT and µ2(z) =
∫ +∞
−∞
Ω2

|Ã|2 dΩ/
∫ +∞
−∞

|Ã|2 dΩ, with Ã = Ã(z,Ω) being the Fourier trans-
form of A and Ω the relative angular frequency. If Eq. (2) is
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rewritten as
− e−αz d

dz
ϱ(z) =

β2

2γ
d
dz
µ2(z), (3)

where ϱ(z) = eαzρ(z), and it is integrated over a distance L where
ϱ(z) grows monotonically, then, according to the mean value
theorem,

− e−αℓ
∆ϱ =

β2

2γ
∆µ2, (4)

with 0<ℓ<L, where ∆ϱ = eαLρ(L) − ρ(0) and ∆µ2 = µ2(L) −
µ2(0). Note that, in the lossless case, e−αℓ ∆ϱ = ρ(L) − ρ(0) =
∆ρ, and thus measuring input and output values of ρ and µ2 at dif-
ferent powers suffices to determine β2/γ, as reported in Ref. [4].
In the lossy case, however, and particularly when αL>1, ℓ is
required to obtain β2/γ, as Eq. (4) shows. This fact reflects that
information of ρ along the waveguide is needed here, as seen by
integrating Eq. (2),

e−αℓ =

∆ρ + α

∫ L

0
ρ(z)dz

∆ϱ
. (5)

Although the magnitudes ρ and µ2 are used in this work for
experimental purposes, they turn to be very convenient to study
the NLSE analytically. In this regard, a key step forward has
been done in Ref. [17], where dynamical equations for ρ(z) and
µ2(z) have been derived in the lossless case. Interestingly, if
loss were incorporated into this theory, then ℓ, and hence β2/γ,
could be determined. This derivation has been carried out in
Appendix A and results in the following propagation equation
for f (z) = (ϱ(z)/ϱ(0))−1 even in the presence of high loss,

f 3 d2f
dz2 = 32 κ2 β2

2 µ
2
20

(︃
γ

β2

ρ0

µ20
e−αzf + 1

)︃
, (6)

where ρ0 = ρ(0), µ20 = µ2(0), and κ is a shape factor defined
in Ref. [17]. Note that Eq. (6) decouples the evolution of ρ(z)
from µ2(z) and thus it also represents significant progress with
respect to Ref. [17]. In addition, setting input powers so that
γρ0/(|β2 |µ20)e−αzf ≫ 1 holds and thus the system does not enter
the linear regime despite the loss, Eq. (6) can then be simplified
to

f 2 d2f
dz2 = sign(β2) η

2 ρ0 µ20 e−αz, (7)

where η2 = 32 κ2 |β2 | γ. It is worth remarking that the initial
conditions enter Eq. (7) via ρ0 µ20 and, attending to Eq. (4),
sign(β2) = sign(−∆ϱ/∆µ2) can be directly obtained.

Now let us discuss how Eq. (7) enables the measurement of
β2/γ via Eq. (4). For each pair of values ρ0 and µ20, η2 can be
fitted so that Eq. (7) recovers the corresponding experimental
output value f (L). Subsequently, e−αℓ (for the ρ0 and µ20 under
consideration) can be evaluated by means of Eq. (7) and Eq. (5).
Then, β2/γ, and thus γ if β2 is available, can be derived using
Eq. (4). Finally, such a γ value can serve as a seed to initiate
an iterative procedure to evaluate e−αℓ directly via Eq. (1), and
hence γ through Eq. (4), to a greater accuracy until convergence
is reached. In the next paragraph, this method is illustrated and
tested numerically using parameters values corresponding to an
SMF28 fiber pumped at 1.951µm, which is the fiber eventually
employed in our proof-of-concept experiment.

Let us consider 90-ps-long sech pulses propagating 1.16 km
along a fiber with α = 2.5 × 10−3 m−1, β2 = −75 ps2 km−1 and
γ = 0.68 W−1 km−1. Note that αL ∼ 3, which is approximately

Fig. 1. (a) Comparison between the results given by Eq. (1)
(solid lines) and Eq. (7) (dashed lines) for 10 W (black curves),
20 W (green curves), and 30 W (pink curves) of peak power. (b)
Convergence study to determine γ in the cases in panel (a).

two orders of magnitude larger than in Ref. [4]. It is worth
emphasizing that our approach is not circumscribed to sech
pulses pumped in the anomalous dispersion regime, but these
conditions will correspond to our experiment specifically. For
pulse peak powers of 10 W, 20 W, and 30 W, the evolution of
ϱ(z)/ϱ(0) predicted by Eqs. (1) and (7) (with η2 values selected
to match the output values, as explained in the previous para-
graph) are compared in Fig. 1(a). Based on the results provided
by Eq. (7), e−αℓ is found to be 0.222 for 10 W, 0.213 for 20 W,
and 0.198 for 30 W. These correction factors due to loss allow
a first approximation to γ given by γ(1) = 0.66 W−1 km−1 for
10 W, γ(1) = 0.63 W−1 km−1 for 20 W, and γ(1) = 0.58 W−1 km−1

for 30 W from Eq. (4). Once seed values for γ are available, e−αℓ

can be directly evaluated, for each input peak power, through
Eq. (1) to improve the measurement accuracy. The outcome of
each iteration is plotted in Fig. 1(b), which also shows conver-
gence to the real value, γ = 0.68 W−1 km−1, after a few iterations.
Higher input powers require more iterations because the estimate
provided by Eq. (7) is more accurate at lower input powers, as
can be seen in Fig. 1(a). These simulations support the feasibil-
ity of our approach and, as such, bring us to its experimental
test.

For our proof-of-concept experiment, ∼ 90-ps-long pulses
delivered at 1.951µm from a passively mode-locked
polarization-maintaining (PM) thulium-doped fiber (TDF) with
a repetition rate of 18.45 MHz are amplified in a PM TDF ampli-
fier and launched to a 1.16-km-long Corning SMF28e+. The
spectra, temporal waveforms, and optical powers were recorded
at both the input and output of the optical fiber under test for
different input powers. For this purpose, an optical spectrum
analyzer (50-pm resolution) and a digital sampling oscilloscope
(20-GHz bandwidth) in conjunction with a 2-µm InGaAs pho-
todetector (ET-5000F, Electro-Optics Technology, see Appendix
B for more information) were used, as sketched in Fig. 2. A vari-
able optical attenuator was also included to fix the operation of
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Fig. 2. Experimental setup, where OFC, optical fiber cou-
pler; OSA, optical spectrum analyzer; OSC, oscilloscope; and
the dashed/dotted lines mean consecutive (non-simultaneous)
measurements.

Fig. 3. (a) Raw results obtained directly from experimental data.
(b) Processed results including correction factors due to loss (see
details in the text).

the PM amplifier to a single point. Input mean powers between
27 mW and 72 mW were considered. The bare values measured
in this experiment are shown in Fig. 3(a). Processing these data
following the steps outlined above (and considering a 6% error
due to the precision of power measurements in the ρ values),
β2/γ = −102 ± 13 ps2 W is derived from Fig. 3(b).

To check our result, on the one hand, β2 = −75 ± 4 ps2 km−1

was measured using an optical-fiber version of a standard inter-
ferometric technique [2]. On the other hand, the value of γ
measured at 1550 nm using our method for low-loss fibers [4]
was scaled according to our numerical simulations (which were
in line with Ref. [18]) and obtained γ = 0.68 ± 0.06 W−1 km−1.
Consequently, β2/γ = −110 ± 6 ps2 km−1, which is compati-
ble with our direct measurement and validates our approach
experimentally. Taking into account the error margins of this
proof-of-concept experiment, no further iterations were carried
out.

Finally, it is worth pointing out error sources that do not
intrinsically limit our approach, but are related to the specific
conditions of the setup where this measurement has been carried

out. Having employed ∼ 90-ps-long pulses, relatively small ∆ϱ
are produced so that ϱ uncertainties become more relevant when
measuring β2/γ. Moreover, under anomalous dispersion, such
long pulses can be more sensitive to instabilities if too high
powers are employed [1].

In conclusion, a successful measurement of β2/γ, and hence γ
if β2 is available, has been demonstrated in guiding media where
nonlinearities, dispersion, and loss play an equally important
role. Our approach is built upon the extension of a conser-
vation law of the NLSE to lossy waveguides. As such, this
method can be very useful in current areas of nonlinear optics
exploiting plasmons, PT -symmetry, 2D materials, or disper-
sive nonlinearities, even to discriminate competing nonlinear
theories.

APPENDIX A: NONLINEAR PROPAGATION
EQUATION FOR ϱ
The derivation of Eq. (6) is outlined in this section. On the
one hand, the dynamical equation for the inverse generalized
dispersive length, L−1

D (z) = (β2/2)µ2(z), in lossy waveguides is
obtained including the exponential decay of the pulse energy
along z in the procedure described in the appendix of Ref. [17].
This modification turns into

dL−1
D

dz
= 8 κ sign(β2)eαz LNL

LD
(L−1

NL)
2

×

(︃
4 sign(β2)LDL

−1
D − 8 e2αz L2

NL(L
−1
NL)

2

)︃1/2

,
(8)

where L−1
NL(z) = γρ(z) corresponds to the inverse generalized

nonlinear length [4,9,17], and LNL and LD denote the classical
nonlinear and dispersive length parameters, respectively [1].

Let us now define ϱ̂(z) = ϱ(z)/ϱ(0) and µ̂2(z) = µ2(z)/µ2(0),
and rewrite Eqs. (3) and (8) as

d ϱ̂
dz
= −

1
2
µ20

ρ0

β2

γ
eαz dµ̂2

dz
, (9)

dµ̂2

dz
= 8

√
2 κ γ ρ0 e−αz ϱ̂2 (µ̂2 − ϱ̂

2)1/2, (10)

respectively. Using Eq. (10), Eq. (9) implies(︃
1
ϱ̂2

d ϱ̂
dz

)︃2

= 32 κ2β2
2 µ

2
20 (µ̂2 − ϱ̂

2). (11)

Finally, Eq. (6) is obtained deriving Eq. (11) and writing
dµ̂2/dz in terms of d ϱ̂/dz employing Eq. (9), which decouples
the propagation equation for ϱ̂ from µ̂2.

APPENDIX B: PHOTODETECTOR RESPONSE
FUNCTION
Relying on second harmonic generation, autocorrelators typ-
ically require a power level that might not be reachable at
the output in this context of high loss, and consequently ρ
would have to be determined through direct photodetection.
Indeed, this has been the case here. Attending to the intensity
values below the offset observed in the oscillograms plotted in
Fig. 4(a), photodetectors can distort the optical pulse shapes due
to the so-called ringing when they are optimized for frequency-
domain applications [19]. At first sight, this technical issue could
severely hinder accurate measurements of ∆ϱ and, as such,
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Fig. 4. (a) Normalized photodetected intensity profiles at the
input (solid line) and output (dashed line). (b) Spectrum of the
photodetector response function.

must be carefully analyzed. Let us express ρ in terms of the
photodetector output B(t) =

∫ +∞
−∞

R(τ)|A(t − τ)|2 dτ,

ρ(z) =
1

4π

∫ +∞

−∞

|R̃(Ω)|−2 |B̃(z,Ω)|2 dΩ∫ +∞

−∞

B(z, t) dt
, (12)

where R is the response function of the photodetector satisfying∫ +∞
−∞

R(τ) dτ = 1. Based on Eq. (12), a precise measurement of
ρ employing distorted pulses due to the photodetection is still
possible provided the spectrum of the photodetector response
function, |R̃(Ω)|2, is known. Accordingly, |R̃(Ω)|2 was also char-
acterized experimentally, see Fig. 4(b), to process our data
correctly.
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