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a b s t r a c t 

Background and Objectives: Age-related macular degeneration (AMD) is a degenerative disorder affect- 

ing the macula, a key area of the retina for visual acuity. Nowadays, AMD is the most frequent cause 

of blindness in developed countries. Although some promising treatments have been proposed that ef- 

fectively slow down its development, their effectiveness significantly diminishes in the advanced stages. 

This emphasizes the importance of large-scale screening programs for early detection. Nevertheless, im- 

plementing such programs for a disease like AMD is usually unfeasible, since the population at risk is 

large and the diagnosis is challenging. For the characterization of the disease, clinicians have to identify 

and localize certain retinal lesions. All this motivates the development of automatic diagnostic methods. 

In this sense, several works have achieved highly positive results for AMD detection using convolutional 

neural networks (CNNs). However, none of them incorporates explainability mechanisms linking the di- 

agnosis to its related lesions to help clinicians to better understand the decisions of the models. This is 

specially relevant, since the absence of such mechanisms limits the application of automatic methods in 

the clinical practice. In that regard, we propose an explainable deep learning approach for the diagnosis 

of AMD via the joint identification of its associated retinal lesions. 

Methods: In our proposal, a CNN with a custom architectural setting is trained end-to-end for the joint 

identification of AMD and its associated retinal lesions. With the proposed setting, the lesion identifica- 

tion is directly derived from independent lesion activation maps; then, the diagnosis is obtained from 

the identified lesions. The training is performed end-to-end using image-level labels. Thus, lesion-specific 

activation maps are learned in a weakly-supervised manner. The provided lesion information is of high 

clinical interest, as it allows clinicians to assess the developmental stage of the disease. Additionally, 

the proposed approach allows to explain the diagnosis obtained by the models directly from the iden- 

tified lesions and their corresponding activation maps. The training data necessary for the approach can 

be obtained without much extra work on the part of clinicians, since the lesion information is habitually 

present in medical records. This is an important advantage over other methods, including fully-supervised 

lesion segmentation methods, which require pixel-level labels whose acquisition is arduous. 

Results: The experiments conducted in 4 different datasets demonstrate that the proposed approach is 

able to identify AMD and its associated lesions with satisfactory performance. Moreover, the evaluation 

of the lesion activation maps shows that the models trained using the proposed approach are able to 

identify the pathological areas within the image and, in most cases, to correctly determine to which 

lesion they correspond. 

Conclusions: The proposed approach provides meaningful information—lesion identification and lesion 

activation maps—that conveniently explains and complements the diagnosis, and is of particular inter- 
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. Introduction 

Age-related macular degeneration (AMD) is a degenerative dis- 

rder affecting the macula, a small area near the center of the 

etina that plays a key role in visual acuity [1] . AMD represents 

he most frequent cause of blindness in developed countries, espe- 

ially for people over 60 years old [2,3] . Worldwide, an estimated 

.7% of blindness cases are caused by this disorder [2] . Further- 

ore, this proportion is expected to increase in the coming years 

ue to the global population aging. 

Conventionally, AMD was divided into two main types: dry 

MD and wet AMD, affecting approximately the 90% and the 10% of 

eople diagnosed with the disease, respectively [1] . This classifica- 

ion remained in force until 2013, when an expert consensus com- 

ittee provided a more precise clinical classification of AMD [4] . 

his new classification consists of 5 different classes that represent 

he various stages of development of the disease: (1) no apparent 

ging changes, (2) normal aging changes, (3) early AMD, (4) in- 

ermediate AMD and (5) late AMD. The characterization of these 

lasses is based on fundus lesions assessed within 2 optic disc di- 

meters of the macula center (of either eye) in people older than 

5 years. Following this classification system, people with no visi- 

le drusen or pigmentary abnormalities (PA) should be considered 

o have no signs of AMD; with only small drusen, normal ageing 

hanges; with medium drusen but not PA, early AM; with large 

rusen or PA, intermediate AMD; and with neovascular AMD or 

eographic atrophy (GA, or simply atrophy), late AMD. More specif- 

cally, neovascular AMD is characterized by choroidal neovascular- 

zation and pigment epithelial detachment (PED). PA include any 

yper- or hypopigmentary abnormality associated to medium and 

arge drusen but not to other known disease. Other less common 

igns of late AMD frequently mentioned in the literature are PED 

nd exudates or hemorrhages in or around the macula [5] . Fur- 

hermore, it has been reported that choroidal neovascularization, 

ith no treatment, occasionally cause fibrosis and/or a disciform 

car under the macula. Thus, the identification and assessment of 

he lesions in the eye fundus is key towards providing a reliable 

iagnosis and characterization of AMD. 

To assess the presence of these lesions, ophthalmologists com- 

only use one of the following imaging modalities, if not both: 

etinography (also called color fundus photography [CFP]) and 

ptical coherence tomography (OCT) [6] . These modalities offer 

nique and complementary information that is useful for detect- 

ng AMD [3,7–9] . Nevertheless, CFP is still the most used of the 

wo due to its affordability and widespread availability. For this 

eason, it is also the predominant modality in large-scale screen- 

ng and early detection programs. For AMD, as for so many other 

cular diseases, such programs are of great importance, since the 

etection of the disease at an early stage allows the effective ap- 

lication of certain treatments [3,10] . For example, recent works 

ave suggested that the progression from early AMD to late AMD 

an be slowed down with high-dose zinc and antioxidant vitamin 

upplements [11] . Also, it has been reported that intravitreal anti- 

ascular endothelial growth factor therapy is effective at slowing 
2 
stic process. Moreover, the data needed to train the networks using the

ly easy to obtain, what represents an important advantage in fields with

 medical imaging. 

© 2022 The Author(s). Published by Elsevier B.V. 
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own the development of neovascular AMD [11] . Notwithstanding, 

ar more research is needed, since the success of these therapies is 

imited and there is currently no effective treatment for GA, which 

epresents the most common late AMD variant by a wide margin. 

his scenario reinforces the importance of the early detection of 

he disease. 

Despite their convenience, implementing screening programs 

or AMD on a large scale is usually unfeasible, since the popu- 

ation at risk is large and the analysis of color fundus images is 

ighly challenging. The inherent difficulty of the diagnosis is com- 

ounded by the fact that AMD is characterized by many different 

esions that, in many cases, coincide with (or resemble) those of 

ther macular diseases [12] . This forces such analyses to be per- 

ormed by expert clinicians. In addition, the visual analysis of im- 

ges can be subject to interpretation, and there may be relevant 

ifferences between the diagnoses of different experts. All this mo- 

ivates the research on automatic diagnostic methods [6,9,13] . 

Of the automatic approaches proposed for AMD diagnosis from 

FP, we can distinguish various types depending on the con- 

rete problem they address. In particular, there are works fo- 

used on AMD grading [14–16] , AMD diagnosis [15,17–19] , refer- 

ble AMD diagnosis (i.e. only late and intermediate AMD, not early 

MD) [6,13,20,21] and multi-disease prediction [21,22] . Of these 

our types, this work is framed in the second: AMD diagnosis. 

In the state of the art, the predominant approach for AMD di- 

gnosis is to train a machine learning classifier to discriminate be- 

ween two classes: AMD and non-AMD. In early works, the clas- 

ifier was based on classical methods that rely on ad hoc fea- 

ure engineering, typically fully connected neural networks [13] or 

upport-vector machines [17] . In contrast, most recent works are 

ased on convolutional neural networks (CNNs) [15,18–20,22] . 

hese CNN-based approaches have explored the use of ad hoc 

NN architectures [15] , ensembles of these networks [19,21,22] , 

r standard CNN classification architectures [18–20] . Furthermore, 

hile ImageNet pretraining is common when using the standard 

NNs [6,20] , other kinds of self-supervised pretraining were also 

uccessfully applied [18,23] . 

All these works provide satisfactory performance in the diag- 

osis of AMD; in some cases, even similar or superior to those 

f clinical experts [14,16,20,21] . However, none of them incorpo- 

ates explainability mechanisms to help the experts to better un- 

erstand the predictions of the models. This issue is particularly 

elevant, since the absence of such mechanisms limits the appli- 

ation of automatic approaches in real-world scenarios [24] . In di- 

gnostic tasks, as in this case, the need for explainability is even 

ore pronounced [25] , since the decision of the model can have 

 direct impact on the life of the patient. Furthermore, an increas- 

ng number of countries are regulating the right of explanation of 

lgorithm decisions for individuals [26] . 

Most explainability techniques for CNNs aim to obtain a coarse 

ap indicating the areas of the input image that have been im- 

ortant for the model in making the decision [26] . Ideally, in the 

articular case of diagnosis, the coarse map should highlight the 

reas of the image which are indicative of the disease. Thus, clin- 

cians can examine the model output and the map and check the 

http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Morano, Á.S. Hervella, J. Rouco et al. Computer Methods and Programs in Biomedicine 229 (2023) 107296 

e

s

h

d

C

C

N

u

l

C  

a

t  

t

e

f

w

e

l

C

o

i

l

f

t

c

c

t

c

a

t

t

t

m

t

W

l

s

c

c

l

o

t

s

e

t

b

p

S

s

t

C

4

o

C

a

o

M

p

m

d

p

t

i

t

e

d

p

g

fi

o

t

i

i

s

(

e

s

d

p

f

t

m

c

l

a

i

s

w

o

r

f

c

t

s

i

s

b

j

c

l

s

s

t

p

w

a

c

T

i

a

c

m

c

i

r

s

i

s

l

r

n

s

c

s

xactitude of the identified pathological areas (i.e. areas with le- 

ions). In other words, they can directly check whether the model 

as used the appropriate information (features) to make the final 

iagnosis [27] . 

In medical imaging, the most commonly used techniques are 

lass Activation Maps (CAM) [28] , Gradient-weighted CAM (Grad- 

AM) [29] , and Multiple Instance Learning with Fully Convolutional 

etworks (MIL-FCN) [25,30,31] . 

CAM is a procedure for generating class activation maps (CAMs) 

sing global average pooling (GAP) in CNNs. A CAM for a particu- 

ar category indicates the discriminative image regions used by the 

NN to identify that category [28] . That is, the regions of the im-

ge which have ultimately determined the classification. In order 

o apply CAM, it is necessary for the CNN to have a GAP opera-

ion just after the last convolutional layer, as well as a single lin- 

ar layer between the GAP output and the final output. The CAM 

or a certain category is obtained by means of an element-wise 

eighted sum of the feature maps of the last convolutional lay- 

rs. The weights used in the sum correspond to the weights of the 

inear layer for the particular category. An important drawback of 

AM is that it limits the architecture of the CNN model. 

Grad-CAM is a gradient-based method that uses the gradients 

f any target concept (e.g. “AMD” in a classification network) flow- 

ng into the final convolutional layer of a CNN to produce a coarse 

ocation map that highlights the important regions of the image 

or predicting the concept [29] . The method is applied a posteriori 

o already trained CNN networks. Unlike CAM, Grad-CAM does not 

ondition the architecture of the CNN model. Given an image and a 

lass of interest as input, Grad-CAM forward propagates the image 

hrough the CNN part of the model and then through task-specific 

omputations to obtain a raw score for the category. The gradients 

re set to zero for all classes except the desired class, which is set 

o 1. This signal is then backpropagated to the rectified convolu- 

ional feature maps of interest, which are combined to compute 

he coarse Grad-CAM localization map which represents where the 

odel looks to make the particular decision. 

Lastly, MIL-FCN, as its name suggests, is a framework for mul- 

iple instance learning using fully convolutional networks [30,31] . 

ith the MIL-FCN framework, each image is cast as a bag of pixel- 

evel or region-level instances. The FCN predicts the class of all in- 

tances, and then integrates all the predictions to determine the 

lass of the bag. The typical approach consists in adding a 1 × 1 

onvolution with a single output channel at the end of the convo- 

utional trunk of the model, and then to compute the maximum 

f the resulting feature map in order to obtain the final predic- 

ion [32,33] . Originally, this approach was proposed for weakly- 

upervised object localization [30] and segmentation [31,34] . How- 

ver, recent studies show that the MIL-FCN approach can increase 

he explainability of the models in classification tasks [33] . 

Beyond AMD, there are works addressing other diagnostic tasks 

ased on CFP that have made progresses with respect to the ex- 

lainability of the learned models by applying these techniques. 

ome examples can be found for diabetic retinopathy diagno- 

is [32,33,35,36] , glaucoma diagnosis [37] , multi-disease predic- 

ion [27,38–40] and multi-disease grading [41] . Most works use 

AM over backends of standard classification CNNs [27,35,36,38–

1] to provide some sort of explainability of the predictions 

f the models. However, there are also methods using Grad- 

AM [37,39] and MIL-FCN [32,33] . In the works based on CAM 

nd Grad-CAM, the application of the method is straightforward 

n standard classification models. Additionally, works based on 

IL-FCN [32,33] propose to conform the CNNs to the MIL ap- 

roach by employing a custom architectural modification. This 

odification, based on the use of 1 × 1 convolutions, allows to 

irectly obtain a single activation map indicating the patch-level 

resence of the disease. Then, the final diagnosis is computed as 
3 
he maximum of the diagnoses of the different patches of the 

mage. 

The mechanisms incorporated by these works certainly improve 

he explainability of the models, as they allow to identify the ar- 

as of the images that are most decisive for them in making the 

iagnosis. Moreover, the results of the works demonstrate that, in 

athological images, these areas frequently coincide with the re- 

ions of the retina affected by a disease. This indicates that the 

nal diagnosis provided by the CNN models is commonly based 

n the right features. Notwithstanding, the explanatory value of 

hese approaches is limited. Despite the maps can indicate which 

ndividual pixels or areas of the input images are important, there 

s no correlation computed between these regions to more ab- 

tract concepts such as the anatomical or pathological structures 

e.g. lesions) shown in the image [24] . More importantly, the 

xplanations—in this case, the provided maps—should be under- 

tood by humans to make sense of them and to comprehend the 

ecisions of the model. Therefore, it is desirable that the models 

rovide higher-level explanations that can integrate the evidence 

rom these low-level activation maps to describe the decisions of 

he model at a more abstract level [24] . Such a model would be 

uch more humanly understandable. In the diagnosis of AMD, a 

lear example of useful higher-level explanations would be the 

inking of the different highlighted areas to specific lesions (drusen, 

trophy, etc.). As previously discussed, the identification and local- 

zation of lesions are fundamental for performing a proper diagno- 

is and characterization of AMD. However, there are currently no 

orks in the state of the art for AMD diagnosis providing that sort 

f lesion-specific activation maps. Thus, the explainability of cur- 

ent approaches is limited. 

In this work, we propose an explainable deep learning approach 

or the joint identification of AMD and its associated lesions from 

olor fundus images. For that purpose, our methodology presents 

wo main novelties with respect to previous alternatives in the 

tate of the art. First, we propose to simultaneously perform the 

dentification of AMD and its associated retinal lesions using the 

ame CNN. This is addressed by jointly training the models for 

oth tasks. To the best of our knowledge, this is the first work 

ointly addressing these tasks. Second, we propose a particular ar- 

hitectural setting that directly links the predicted diagnosis to the 

esions identified by the network, and these, to independent and 

pecific lesion activation maps . These maps are trained in a weakly- 

upervised manner using only image-level labels. Each lesion ac- 

ivation map represents the area or areas of the image where a 

articular lesion is manifested. This point clearly differentiates this 

ork from others in the state of the art [32,33,37] , in which the 

ctivation maps can include multiple different lesions; i.e. that the 

orrespondence between the maps and the lesions is not 1 to 1. 

hen, from the lesion predictions (i.e. the probabilities of present- 

ng a certain lesion), the final diagnosis is computed, so the di- 

gnosis is ultimately derived from the lesion activation maps, and 

an be explained by them. This setting is highly intuitive, as it 

imics the manual process followed by clinicians, consisting of lo- 

alizing and then classifying the retinal lesions. As in our approach, 

t is this information from which the diagnosis is ultimately de- 

ived. Furthermore, the proposed approach is architecture-agnostic, 

o it can be applied, with minor modifications, over any CNN for 

mage classification. In our case, the proposal is applied on top of a 

tandard VGG [42] and it is trained end-to-end using only image- 

evel labels. 

This setting has several advantages. First, it allows to incorpo- 

ate useful information that conveniently complements the diag- 

osis. The lesion presence information provided by the models (le- 

ion identification and lesion-specific activation maps) is of high 

linical interest, as it can be indicative of the presence and the 

everity of AMD. As we stated at the beginning of the Introduc- 
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Fig. 1. Proposed approach for the joint identification of lesions and AMD diagnosis (AMD+Lesions). The diagnosis is derived solely from lesion predictions, and these, directly 

from the lesion-specific activation maps via a global max-pooling operation. 
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ion, the location of lesions and its characterization is decisive for 

he diagnosis of AMD. Second, due to the direct and intuitive link 

etween the lesion activation maps, the lesion predictions and the 

iagnosis, the proposed setting helps to better understand the de- 

isions made by the automatic system, highly improving its ex- 

lainability. The proposed approach contrasts markedly with the 

lassical approach for AMD identification, whose only output is the 

robability of having AMD and does not incorporate any explain- 

bility mechanisms. 

It is also worth noting that all the extra outputs provided by 

ur approach are achieved by using only image-level labels to train 

he networks. In this regard, it should be noted that the extra la- 

els required—image-level lesion labels—are relatively easy to ob- 

ain. Given that the lesion identification is an indispensable part of 

he diagnostic process, this information can be frequently found in 

edical records. This enables the construction of training datasets 

 posteriori , avoiding the ad hoc dedication of clinicians, whose 

ime is commonly limited. This is a relevant advantage over other 

ethods, especially fully-supervised lesion segmentation methods, 

hose need for pixel-level labels makes the building of datasets 

articularly challenging. 

To validate the proposed approach, we constructed a private 

ataset of color fundus images with expert-annotated labels for the 

iagnosis of AMD and the identification of its associated retinal le- 

ions. The neural networks are first trained and evaluated on this 

ataset. Then, to avoid data bias and to be able to compare our 

pproach with other state-of-the-art methods, the same networks 

re evaluated on three additional public datasets. In total, the pro- 

osed approach is evaluated for three different tasks: the diagnosis 

f AMD, the identification of its associated lesions, and, to quanti- 

atively assess the degree of explainability provided by the lesion 

ctivation maps, the coarse segmentation of the individual lesions. 

n all cases, the models are directly evaluated against the manual 

nnotations of the experts. Furthermore, in order to validate the 

dequacy of our approach in the identification of AMD, we com- 

ared its performance with that of the traditional approach, which 

ses a standard CNN and only involves predicting the presence 

f AMD. Also, for providing a better understanding of the perfor- 

ance of the proposed approach in AMD diagnosis, we also com- 

ared its performance with that of other state-of-the-art methods 

n a reference public dataset. 

The remainder of the manuscript is organized as follows. In 

ection 2 , we present the methodology developed for the simul- 

aneous identification of AMD and its associated retinal lesions; 

his includes the description of the different approaches to be 

ompared for validating our method, the network architecture, the 

ata, the quantitative evaluation procedure and the experimental 

etails. Further on, in Section 3 , we present the results obtained 

rom the comprehensive evaluation of the approaches and their 

iscussion. Finally, in Section 4 , we present the main conclusions 

erived from the results and the potential future work. 
4 
. Materials and methods 

.1. Overview 

This work provides an explainable deep learning approach for 

he joint identification of AMD and its associated retinal lesions 

rom color fundus images. To perform this joint task, we train a 

NN end-to-end using image-level labels indicating the presence 

f AMD and retinal lesions. Following the proposed approach, the 

rained network is able to provide individual weakly-supervised 

ctivation maps for the different lesions. We refer to these maps 

s lesion activation maps. 

An overview of our approach is depicted in Fig. 1 . As can be

een in the figure, the input retinography is fed to a standard 

onvolutional trunk. Individual lesion activation maps are derived 

rom this trunk using a convolutional layer. Then, a vector of iden- 

ified lesions is obtained from the activation maps using a global 

ax-pooling (GMP) operation. Finally, the diagnosis is made from 

he vector of identified lesions. In this way, the diagnosis is ulti- 

ately derived from the lesion-specific activation maps, and can 

e easily explained by them. 

In order to evaluate the performance of the proposed approach 

AMD+Lesions or A+L) and quantify its advantages, we perform a 

omparison with the baseline classification-only approach (AMD- 

nly or A-O), which uses a standard classification network and 

oes not have any lesion identification feedback. This comparison 

llow us to assess the impact of the proposed setting, as well as of 

he lesion identification task, on the performance of the models in 

dentifying AMD. 

The A+L approach is presented in Section 2.2 , while A-O is pre- 

ented in Section 2.3 . 

.2. Proposed approach: AMD+lesions (A+L) 

To train the networks for both AMD diagnosis and lesion iden- 

ification, we use a combined loss that jointly quantifies the error 

ommitted by the models in both tasks. The different parts of this 

ombined loss are described in detail below. 

.2.1. Diagnostic loss 

For the diagnosis of AMD, two classes are considered: AMD 

nd non-AMD. Thus, during the training, the diagnostic error can 

e measured using a standard binary classification loss between 

he predicted diagnosis and the manual annotations. In this case, 

e use Binary Cross-Entropy (BCE). Formally, the diagnostic loss 

 diagnosis is defined as 

 diagnosis = L BCE ( f ( r ) d , d ) (1) 

here f ( r ) d denotes the predicted network diagnosis for retinog- 

aphy r ; d , the target AMD diagnosis; and L , the BCE loss. The 
BCE 
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Fig. 2. Proposed network architecture for the AMD+Lesions approach. 
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ormal definition of L BCE for a single prediction is the following: 

 BCE ( p, t ) = −[ t · log ( p ) + ( 1 − t ) · log ( 1 − p ) ] (2) 

here p denotes the value predicted by the model and t the cor- 

esponding target value. 

.2.2. Lesion identification loss 

Since an input sample can present more than one type of lesion, 

e use a multi-label classification loss as lesion identification loss 

 lesions . Specifically, the loss is computed as the BCE between the 

ector of lesion predictions provided by the model and the vector 

f manually annotated lesions. Formally, it is defined as 

 lesions = 

1 

N 

N ∑ 

i =1 

L BCE 

(
f ( r ) l i , l i 

)
(3) 

here f ( r ) l denotes the vector of lesions predicted by the network 

or retinography r ; l , the target lesion vector; N, the number of 

esions; and L BCE , the BCE loss defined in Eq. 2 . 

.2.3. Combined loss 

For the proposed approach (A+L), the diagnostic and lesion 

dentification losses are combined together. Thus, A+L models are 

imultaneously trained in the identification of AMD and the retinal 

esions. Specifically, the joint loss L A+L is defined as the direct sum 

f the diagnostic loss and the lesion identification loss. Its formal 

efinition is the following: 

 A+L = L diagnosis + L lesions (4) 

here L diagnosis is the diagnostic loss defined in Eq. 1 and L lesions is 

he lesion identification loss defined in Eq. 3 . 

.3. Baseline approach: AMD-Only (A-O) 

Since the baseline A-O approach focuses only on diagnosis, the 

-O loss function L A-O coincides with the diagnostic loss: 

 A-O = L diagnosis = L BCE ( f ( r ) d , d ) (5) 

here L BCE ( f ( r ) d , d ) is the loss function defined in Eq. 2 . 

.4. Network architecture 

To implement the proposed approach A+L, we propose a partic- 

lar architectural setting. This setting is applied on top of a stan- 

ard classification convolutional trunk. For the experiments con- 

ucted in this work, we use the VGG [42] network architecture. 
5 
ince its publication, numerous works have applied VGG-based ar- 

hitectures to multiple problems involving natural images [43–

6] . Furthermore, VGG has been widely applied in medical imag- 

ng [47–50] and, more specifically, ophthalmic imaging [51–53] . 

revious works on AMD identification have reported positive re- 

ults using this architecture [16] . In the baseline approach, A-O, the 

riginal VGG architecture is used as it is, without the custom set- 

ing. Differently, in the proposed approach, A+L, we use the VGG 

ackend up to the final fully-connected part, which is replaced by 

ur custom setting. 

Fig. 2 depicts an overview of the network architecture used in 

he proposed approach (A+L). The convolutional part, up to the 

 × 1 convolution, coincides with that of the original VGG-16 ex- 

ept for one aspect: in our version, the original max-pooling at the 

nd of this part is not included. This has been done in order to 

btain larger activation maps at the output of the convolutional 

runk. From this point onward, the rest of the original VGG was 

eplaced by our architectural setting. First, we use a 1 × 1 con- 

olution of N output channels (one per lesion) to generate the 

corresponding lesion activation maps. In the proposed architec- 

ure, these maps will have 1/16 of the resolution of the original 

mage. Then, the lesion predictions are generated by applying a 

MP operation to the maps. We use GMP because we want to 

ncode the presence of the lesions regardless of their size or po- 

ition in the image (or activation map). Lastly, to derive the di- 

gnosis from the predictions of lesions, we present two different 

lternatives. 

The first alternative, A+L FC, consists in adding a Fully Con- 

ected (FC) layer that takes the predicted vector of N lesions as 

nput and produces the diagnosis. In this way, the network can 

reely weight the lesions when determining the final diagnosis. The 

econd alternative, A+L Max, consists in obtaining the diagnosis as 

he maximum value of the predicted vector of lesions. This variant 

akes the explanation easier, since the final diagnosis is simply 

he maximum of the lesion activations. However, it is less flexible 

han the former, since it assumes that the presence of any lesion 

ndicates the presence of AMD. This characteristic does not hold for 

eal screening scenarios, where there may be patients with many 

ifferent pathologies characterized by many different lesions. In 

uch cases, it would be necessary to do a more detailed study of 

hich lesions are related to the different diagnoses. In both Max 

nd FC variants, a sigmoid function is applied to the vector of le- 

ions predictions and to the diagnosis in order to obtain the final 

utputs. 
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Fig. 3. Example retinography images from (a) AMDLesions, (b) ADAM, (c) ARIA and (d) STARE datasets. All images are from patients diagnosed with AMD. 
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In any alternative, the diagnosis is derived from the lesion 

redictions, and the lesion predictions, from the lesion activation 

aps. Thus, both outputs are ultimately derived from these maps. 

his setting highly improves the model explainability, as it allows 

o better understand the final diagnosis of the model through the 

xamination of the vector of lesion predictions and the visualiza- 

ion of the lesion activation maps. These maps can be properly vi- 

ualized as coarse lesion segmentation maps by applying the sig- 

oid function to them. Furthermore, it should be noted that the 

roposed custom setting can be applied over most CNN architec- 

ures with minor modifications, since the only requirement of the 

odule is to have an input consisting of N feature maps. 

.5. Data 

For the experiments conducted in this work, we employed 

 different datasets: Age-related Macular Degeneration Lesions 

AMDLesions), Automatic Detection challenge on Age-related Mac- 

lar degeneration (ADAM) [54] , Automated Retinal Image Analy- 

is (ARIA) [55] and STructured Analysis of the Retina (STARE) [56] . 

DAM, ARIA and STARE are public datasets. In contrast, AMDLe- 

ions is a private dataset that was constructed for the purpose of 

erforming this study. Thus, this is the first work describing the 

ataset and reporting results for it. 

Fig. 3 shows examples of retinography images from the AMDLe- 

ions, ADAM, ARIA and STARE datasets. All images are from pa- 

ients with AMD. 

.5.1. AMDLesions 

The AMDLesions dataset is composed of 980 color fundus im- 

ges from 491 different patients, with a 54%-46% proportion of fe- 

ales and males, respectively. All the images were captured be- 

ween November 2017 and April 2021 in the International Center 

or Advanced Ophthalmology (CIOA), Madrid, using a Triton (Top- 

on) fundus camera at 45 ◦ of picture angle (equivalent 30 ◦ [digital 

oom]). Poor quality images were discarded due to media opac- 

ty, as in the case of a very dense cataract or poor patient col- 

aboration. Most images (815 in total) are sized 1934 × 2576 pix- 

ls, while others (the remaining 165) are sized 1934 × 1960 pix- 

ls. All of them are macula centered, with a completely circu- 

ar region of interest (ROI). Of the 980 retinography images, 271 

re from healthy patients, and 709 are from patients with AMD. 

ll images include labels indicating the presence or absence of 

MD disease. In addition, for the positive cases, labels indicating 

hich retinal lesions are visible in the image are also available. 

oth AMD diagnosis and lesion annotations were made by a group 

f clinicians working in the field of retinal image analysis. In to- 

al, 19 different types and subtypes of lesions were identified and 

nnotated. Of these, there were several with very few examples. 

hus, for the purpose of this work, the 19 lesion types and sub- 

ypes were grouped into 9 main categories: atrophy (169 images), 
6 
rusen (374), exudates (10), fibrosis (40), hemorrhage (29), patho- 

ogical myopia (PM) (93), pigmentary abnormalities (PA) (106), 

igment epithelial detachment (PED) (34) and ‘others’ (11). The 

atrophy’ category comprises both regular atrophy and parapapil- 

ary atrophy; ‘drusen’ includes both regular drusen and calcified 

rusen; and ‘others’ comprises all the lesions that were found in 

ess than 4 samples. None of the lesions is mutually exclusive, 

o that there are multiple images that present more than one le- 

ion. In that regard, Fig. 4 depicts the coincidence matrix of the 

esions in the dataset. The diagonal values indicate the total num- 

er of samples for each type of lesion, whereas the values outside 

he diagonal indicate the co-occurrences among different types of 

esions. 

.5.2. ADAM 

The ADAM dataset [54] , also known as iChallenge-AMD, consists 

f 400 retinography images, from which 89 are from patients di- 

gnosed with AMD. The size of most images is 2124 × 2056 pixels, 

ut there are also images whose size is 14 4 4 × 14 4 4 pixels. All im-

ges have labels indicating whether or not the patient has AMD. 

he reference standard for the positive diagnosis (i.e. the pres- 

nce) of AMD is based on the retinography images themselves and 

ther complementary information, such as visual field and OCT. 

his complementary information, however, is not present in the 

ataset and was never released. In addition to the AMD diagno- 

is labels, this dataset includes coarse segmentation maps of mul- 

iple lesions. Segmentation maps are considered ‘coarse’ because 

hey do not contain a precise pixel-level segmentation of the le- 

ions, but a segmentation of the area where the lesions are lo- 

ated. Currently, this is the only public dataset that provides pixel- 

evel annotations of different AMD-associated lesions. The specific 

esions for which such maps exist are drusen (61 images), exu- 

ates (38), hemorrhage (19) and scar (13). There are also 17 images 

ith unidentified lesions labeled as ‘others’ (17). In this dataset, 

he presence of a lesion does not necessarily imply the positive 

iagnosis of AMD, and the positive diagnosis of AMD does not 

ecessarily imply the presence of an annotated lesion. Along with 

his characteristic, it is worth mentioning that the dataset con- 

ains at least 125 images which belong to the same eye as oth- 

rs present in the dataset. This circumstance is not mentioned 

n the dataset description, although it is essential when assess- 

ng the performance of the models, as images from the same 

atients should not be used both for training and for testing. 

hen partitioning the data, we have taken this circumstance into 

ccount. 

.5.3. ARIA 

The ARIA dataset [55] contains 143 retinography images from 

atients with diabetic retinopathy (59 images), with AMD (23), and 

ithout any disease (61). All images are sized 768 × 576 pixels and 

ave labels indicating to which of the above groups they belong. 
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Fig. 4. Distribution of lesion co-occurrence in the AMDLesions dataset. PA stands for Pigmentary Abnormalities; PM, for Pathological Myopia; and PED, for Pigment Epithelial 

Detachment. 
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ince we are only interested in the identification of AMD, we ex- 

lusively use the images from patients with AMD and from healthy 

atients. Thus, we use a total of 83 images, of which 23 present 

igns of AMD. From now on, when we mention ARIA, we will refer 

o this subset of the data. 

.5.4. STARE 

The STARE dataset [56] is composed of 397 color fundus im- 

ges from both healthy people and people with a medical condi- 

ion. The size of all images is 700 × 605 pixels. Each image have 

ext annotations indicating its diagnosis, as well as annotations of 

9 possible manifestations (mainly lesions) visible in the image. 

ther expert annotations, such as blood vessel segmentation maps, 

rtery/vein labels, and the image coordinates of the optic nerve, 

re available for some images. Similarly as for ARIA, we only use 

 subset of the dataset: the 36 images labeled as ‘normal’ and the 

6 images labeled as AMD. As with ARIA, when we mention STARE, 

e are referring to this subset. 

.6. Quantitative evaluation 

To evaluate the potential and advantages of the proposed ap- 

roach, we perform an evaluation consisting of three parts. The 

rst part is focused on assessing the performance of the proposed 

pproach (A+L) and the baseline approach (A-O) in the identifica- 

ion of AMD. This comparison allow us to assess the impact of the 

roposed setting, as well as of the lesion identification task, on the 

erformance of the models in the identification of AMD. The sec- 

nd part of the evaluation is focused on assessing the performance 

f the A+L models in the identification of lesions. This part has the 

dded utility of assessing how accurate is the explanation of the 

iagnosis via the identified lesions. Finally, the third part of the 

valuation is focused on measuring the capability of the A+L mod- 

ls to explain, via the lesion activation maps, the lesion identifica- 

ion and the final diagnosis. For this end, A+L models are evaluated 

n the coarse segmentation of lesions, a task for which they have 

ot been directly trained. 

In the following paragraphs we describe in more detail how 

hese different evaluations are performed. 
7 
1. Identification of AMD The quantitative evaluation of the differ- 

nt models in the identification of AMD is performed by directly 

omparing the predicted diagnosis with the manual annotations of 

he clinicians. For each model, we compute the Receiver Operat- 

ng Characteristic (ROC) curve, which plots True Positive Rate (TPR) 

gainst False Positive Rate (FPR). This curve is built by computing 

he TPR and FPR at different values of the decision threshold. In 

his way, it is not necessary to select a specific threshold for the 

valuation, which would hinder the analysis of the results. Also, 

o summarize the ROC curve, we compute the Area Under Curve 

AUC) value in each case. We will refer to the AUC of the ROC curve

s AUC-ROC. 

2. Identification of lesions This evaluation is included only for the 

odels that were trained using the A+L approach, and it is focused 

n assessing their performance in the identification of lesions as- 

ociated to AMD. The evaluation procedure is similar to the one for 

he identification of AMD. Specifically, we compute the ROC curve 

and its corresponding AUC-ROC value) by directly comparing the 

redicted lesions with the image-level lesion annotations created 

y the clinicians. 

3. Coarse segmentation of lesions The lesion segmentation evalu- 

tion, as evaluation #2, is only intended for A+L models. Its main 

bjective is to quantify how accurate the explanations provided 

y the lesion activation maps are. Specifically, the evaluation as- 

esses the similarity of the coarse lesion segmentation maps ob- 

ained by the models (directly derived from the lesion activation 

aps) with the coarse segmentation maps of the lesions provided 

y the experts. As mentioned in Section 2.5.2 , a coarse segmenta- 

ion does not provide a precise pixel-level segmentation of an ele- 

ent, but the area where the element is located. Similarly to pre- 

ious evaluation methods, we build the ROC curves (and compute 

heir AUC-ROC value) by comparing the predictions of the model 

ith the manual segmentation maps of the experts. Given the dif- 

erence between the resolution of the manual segmentation maps 

nd the lesion activation maps, we downscaled the manual seg- 

entation maps to perform the evaluation. Fig. 5 shows an exam- 

le ADAM retinography with the contours of the original manual 

nnotation (in green) and the downscaled annotation (in magenta) 

verlaid. 
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Fig. 5. Example ADAM retinography with the contours of the original manual annotation (in green) and the downscaled annotation (in magenta) overlaid. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Mapping between AMDLesions and ADAM lesions. 
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Table 1 

Mean AUC-ROC values in AMD identification of the A+L and A-O 

approaches in AMDLesions, ARIA, ADAM and STARE. Bold denotes 

the best mean value for each dataset. 

Dataset AUC-ROC (%) 

A + L Max A + L FC A-O Original 

AMDLesions 95 . 59 ± 2 . 03 95 . 45 ± 0 . 89 95 . 35 ± 0 . 69 

ARIA ∗ 85 . 82 ± 0 . 88 86 . 87 ± 2 . 38 86 . 72 ± 0 . 97 

ADAM 

∗ 80 . 17 ± 1 . 95 72 . 79 ± 5 . 75 72 . 70 ± 4 . 21 

STARE ∗ 86 . 28 ± 4 . 28 79 . 51 ± 9 . 66 87 . 62 ± 2 . 87 

ARIA 93 . 60 ± 4 . 92 95 . 77 ± 2 . 50 92 . 48 ± 5 . 43 

ADAM 93 . 62 ± 2 . 89 93 . 29 ± 3 . 07 92 . 97 ± 1 . 87 

STARE 97 . 64 ± 1 . 81 95 . 94 ± 3 . 28 98 . 71 ± 1 . 39 

∗Cross-dataset evaluation: trained on AMDLesions. 
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In line with the segmentation challenge associated to the ADAM 

ataset [54] , the coarse segmentation of lesions is evaluated only 

n those cases where manual segmentation maps exist. 

.7. Experimental details 

All the models were trained and evaluated in the AMDLe- 

ions dataset. Additionally, to reduce data bias, the models were 

lso evaluated on three different public datasets: ADAM, ARIA and 

TARE. To measure the robustness of the proposed approach in 

MD identification, we evaluated the A+L models in a cross-dataset 
8 
ay, without fine-tuning, on the 3 public datasets; i.e. these whole 

atasets were treated as held out test data. However, in order 

he comparison with other methods to be fair, we further evalu- 

ted the models after being fine-tuned in the corresponding target 

ataset. In order to consider the stochasticity of training deep neu- 

al networks and the data variability of the different datasets, we 

erformed 4-fold cross-validation both for training and fine-tuning. 

olds were created randomly, yet ensuring that all the samples of 

 patient are in the same fold and that all the folds had a similar

umber of samples of each class. 

Once trained, the models were evaluated in AMDLesions it- 

elf as well as in ADAM, ARIA and STARE. Due to the different 

abel availability, we used different datasets for each evaluation. 

o evaluate the models in the identification of AMD, we used all 

he datasets. To evaluate them in the identification of lesions, we 

sed AMDLesions and ADAM. And lastly, to evaluate them in the 

oarse segmentation of lesions, we used ADAM. For fine-tuned 

odels, only evaluation #1 (identification of AMD) is performed 

n each dataset. The results of these models resulting from eval- 

ation #1 in the ADAM dataset are compared with other state-of- 

he-art works in AMD identification. As no state-of-the-art method 

n AMD diagnosis provides lesion-specific activation maps, we do 
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Fig. 7. Mean ROC curves in AMD identification for the different A+L and baseline (A-O) approaches in AMDLesions, ADAM, ARIA and STARE datasets. 
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ot include a comparison with other methods concerning explain- 

bility. 

Since we use 4-fold cross-validation, we obtained the mean 

UC-ROC as the mean of the AUC-ROCs of the folds. In each case, 

e also computed the standard deviation. To depict the curves, we 

uilt the mean ROC curve of each alternative by merging the oper- 

ting points of the curves of the different folds. 

Furthermore, in some cases, for determining if the difference 

etween the results of the presented approaches was statistically 

ignificant, we performed a two-tailed Student’s t -test. 

.7.1. Training details 

Both for training and for testing, we rescale the images from 

MDLesions and ADAM to a fixed width of 720 pixels, similar to 

he original width of ARIA and STARE. Thus, all images have a sim- 

lar resolution. 

In order to mitigate data scarcity, we artificially increase the 

ariability of the training samples through online data augmenta- 

ion. Thus, in each training epoch, random transformations are ap- 

lied to the original input images. These transformations include 

ertical and horizontal flipping, subtle random intensity and color 

ariations and slight affine transformations, namely shearing, scal- 

ng and rotation. 

To optimize the loss functions used to train the models, we 

se the Adam optimization algorithm [57] . The values of the dif- 

erent parameters of the algorithm were set as follows. The initial 

earning rate ( α) was set to α = 1 × 10 −5 , and the decay rates for
9 
rst ( β1 ) and second order moments ( β2 ) were set to β1 = 0 . 9 and

2 = 0 . 999 , respectively. The values for β1 and β2 are the same as 

hose proposed by Kingma and Ba in [57] . The learning rate α re- 

ains constant throughout the entire training, which has a fixed 

uration of 100 epochs. This value was set by taking into con- 

ideration the evolution of the learning curves during training. To 

ne-tune the networks in the target datasets, we use the same 

yperparameters except for the number of epochs, which is set 

o 15. 

For training, the parameters of the original convolutional layers 

f the networks are initialized to the parameter values of their cor- 

esponding ImageNet-pretrained model. In this case, added convo- 

utional and linear layers are initialized using the He et al. [58] ini- 

ialization method with Uniform distribution. Differently, for fine- 

uning, the parameters are initialized to the parameter values of 

he corresponding AMDLesions-trained model. 

.7.2. Cross-dataset evaluation details 

All the datasets have labels indicating the presence of AMD. 

hus, cross-dataset evaluation regarding the identification of AMD 

s straightforward. Distinctly, the set of available lesion labels is 

ifferent in each dataset. In particular, AMDLesions has labels for 

 different lesions, ADAM, for 5, and ARIA and STARE, for none. 

urthermore, only 3 lesions of AMDLesions and ADAM coincide. 

his causes the outputs of the models trained in AMDLesions to 

e different from the classes available in ADAM. Thus, to evalu- 

te the models trained on AMDLesions in ADAM, it is necessary to 
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Fig. 8. Mean ROC curves in AMD identification for the A+L and baseline (A-O) approaches in ADAM, ARIA and STARE datasets. All models were fine-tuned on the target 

datasets. 

Table 2 

AMD identification results of the proposed A+L models and the top 5 methods of 

the ADAM challenge [19] in the ADAM dataset. Note that all the results are in 

ADAM, but not exactly in the same data, as the challenge test set is not public. 

For our method, the results correspond to the 4-fold evaluation on the training set, 

while those of the other methods to the evaluation in the final test set of the chal- 

lenge. Bold denotes the highest mean AUC-ROC value. 

Method AUC-ROC (%) 

VUNO EYE TEAM 97.14 

ForbiddenFruit 95.92 

Zasti_AI 95.81 

Muenai_Tim 93.99 

A + L Max 93 . 62 ± 2 . 89 

A + L FC 93 . 29 ± 3 . 07 

ADAM-TEAM 92.87 
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efine a mapping between the lesions of this dataset and AMDLe- 

ions. The mapping we have defined is depicted in Fig. 6 . As can

e seen in the figure, the matching of drusen, exudates and hem- 

rrhage is direct. Furthermore, all the lesions of AMDLesions that 

re not in ADAM are added to the ‘others’ group, and vice versa. 

hus, when evaluating in ADAM, the prediction for ‘others’ is com- 

uted as the maximum of the predictions of the model for fibrosis, 

trophy, PM, PA, PED and ‘others’ itself. Similarly, the ground truth 

alue for ‘others’ is calculated as the maximum of the ground truth 

alues of ADAM for scar and ‘others’. 
10 
. Results and discussion 

.1. Identification of AMD 

Fig. 7 depicts the mean ROC curves for AMD identification for 

oth the A+L approach and the baseline A-O approach, without 

ne-tuning, in AMDLesions, ADAM, ARIA and STARE datasets. 

None of the models were fine-tuned on the target datasets. 

imilarly, Fig. 8 depicts the mean ROC curves for AMD identifi- 

ation for both the baseline and the A+L approaches, with fine- 

uning, in AMDLesions, ADAM, ARIA and STARE datasets. 

Complementarily, Table 1 shows the mean AUC-ROC values of 

ll the models in those datasets. 

The table shows the results of the models both with and with- 

ut fine-tuning on the target datasets. 

As can be seen both in Figs. 7 and 8 and Table 1 , the results of

he A+L models are very similar to those of the baseline approach 

ith the original VGG-16 architecture. Given the mean AUC-ROC 

alues and the standard deviations provided in Table 1 , no alter- 

ative can be said to be significantly superior to others. The only 

xception is the A+L Max alternative without fine-tuning, which, 

n ADAM, is significantly better than the other two non-fine-tuned 

odels ( p < 0 . 02 ). 

The results from Figs. 7 and 8 and Table 1 also show that the 

MD identification performance of all fine-tuned models greatly 

urpasses the performance of their non-fine-tuned counterparts. 
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Fig. 9. Mean ROC curves in lesion identification for the different A+L approaches in AMDLesions. 
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his improvement occurs for all models in all the datasets for 

hich cross-dataset evaluation was performed: ADAM, ARIA and 

TARE. The large gain in performance of fine-tuned models can be 

xplained by the significant differences in the appearance of the 

mages from the 3 datasets. These differences can be seen at a 

lance in Fig. 3 ( Section 2.5 ). This issue—the performance drop in 

 cross-dataset scenario—is not unique to our work, but a known 

imitation of deep learning-based methodologies facing training 

nd test data with dissimilar statistics [59–62] . In medical imaging, 

ue to the acute data scarcity, this problem is particularly com- 

on [59] . Still, most AUC-ROC values of the non-fine-tuned mod- 

ls in ADAM, ARIA and STARE are above 80%. Taking into account 

he inherent limitations of the datasets and the models, the results 

re satisfactory. 

Looking at the results in Table 1 , A+L Max seems to be the most

table A+L alternative, particularly in the cross-dataset scenario. 

In light of the results, it can be stated that the proposed ap- 

roach, particularly using the A+L Max variant, equals or surpasses 

he baseline approach (A-O) in AMD identification, despite being 

ocused on additional valuable tasks related to diagnosis. 

.1.1. Comparison with the state of the art 

Table 2 shows the AMD identification results of the proposed 

+L models and several state-of-the-art methods in the ADAM 

ataset. In particular, the state-of-the-art methods are the top 5 

ethods of the ADAM challenge [19] . 
11 
Since the final test set of the challenge is not public, we fine- 

uned and evaluated our model solely in the ADAM training set. 

pecifically, we performed 4-fold cross-validation in this set with 

andomly created folds. Thus, provided AUC-ROC values corre- 

pond to the mean AUC-ROC values of the 4 folds. For the rest of 

he methods, we show the AUC-ROC values they obtained in the 

efinitive test set of the challenge finals [19] . 

As can be seen in Table 2 , our method obtains competitive re- 

ults in the identification of AMD in the ADAM dataset. Specifically, 

n this task, the A+L Max and A+L FC approaches rank 4th and 5th, 

espectively, among the methods of the 11 teams invited to the 

nals (out of 610 participating teams). It is worth noting that all 

he challenge methods are focused solely on the identification of 

MD. Differently, the main aim of the A+L approach is to provide 

n explainable method that, along with the identification of AMD, 

rovides the identification of AMD-associated lesions and their cor- 

esponding lesion activation maps, without the need of pixel-level 

nnotations. The explainability and the extra information provided 

y the A+L models further emphasizes the value of their results 

nd the adequacy of the proposed approach. 

.2. Identification of lesions 

In Fig. 9 , we depict the mean ROC curves for the identification 

f lesions in the AMDLesions dataset for the A+L models. 
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Fig. 10. Mean ROC curves in lesion identification of the A+L alternatives in the ADAM dataset. Models were trained on AMDLesions. 

Table 3 

Mean AUC-ROC values and standard deviations for 

lesion identification in AMDLesions. Bold denotes 

the best mean value for each lesion. 

Lesion AUC-ROC (%) 

A + L Max A + L FC 

atrophy 91 . 75 ± 2 . 67 90 . 39 ± 1 . 42 

drusen 91 . 65 ± 0 . 98 91 . 40 ± 2 . 65 

exudates 96 . 34 ± 4 . 57 95 . 42 ± 3 . 58 

fibrosis 90 . 07 ± 5 . 34 81 . 08 ± 19 . 88 

hemorrhage 90 . 65 ± 3 . 85 85 . 83 ± 3 . 95 

PM 85 . 60 ± 3 . 04 81 . 77 ± 5 . 11 

PA 87 . 15 ± 1 . 93 82 . 82 ± 3 . 30 

PED 82 . 90 ± 2 . 71 74 . 96 ± 13 . 56 

others 62 . 67 ± 18 . 24 60 . 54 ± 8 . 40 

Table 4 

Mean AUC-ROC values and standard deviations for 

lesion identification in ADAM. Bold denotes the 

best mean value for each lesion. 

Lesion AUC-ROC (%) 

A + L Max A + L FC 

drusen 88 . 61 ± 3 . 46 86 . 26 ± 3 . 90 

exudates 66 . 42 ± 3 . 78 63 . 01 ± 11 . 49 

hemorrhage 80 . 76 ± 3 . 50 80 . 70 ± 2 . 47 

others 65 . 21 ± 3 . 23 64 . 50 ± 2 . 44 
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Table 5 

Mean AUC-ROC values and standard deviations 

for lesion segmentation in ADAM. Bold denotes 

the best mean value for each lesion. 

Lesion AUC-ROC (%) 

A + L Max A + L FC 

drusen 93 . 87 ± 1 . 83 95 . 03 ± 0 . 40 

exudates 86 . 80 ± 1 . 18 84 . 28 ± 4 . 71 

hemorrhage 78 . 72 ± 1 . 25 79 . 37 ± 3 . 18 

others 86 . 30 ± 2 . 05 85 . 23 ± 2 . 01 

v

h

l

t

o

r

c

i

e

t

t  

A

e

c

t

f

t

d

n

s

(

h

s

s

In addition, Table 3 reports the mean AUC-ROC values and the 

tandard deviations of the models in the same task. 

Fig. 10 depicts the mean ROC curves of the A+L models trained 

n AMDLesions for lesion identification in the ADAM dataset, while 

able 4 reports the corresponding mean AUC-ROC values. The de- 

ails for this cross-dataset evaluation are described in Section 2.7.2 . 

As can be observed in Fig. 9 and Table 3 , the proposed approach

llows the identification of most lesions in AMDLesions. In that re- 

ard, both A+L Max and A+L FC provide particularly accurate re- 

ults for drusen, atrophy and exudates, whereas A+L Max also pro- 
12 
ides similarly good results for fibrosis and hemorrhage. This is 

ighly convenient, since the clinicians particularly focus on these 

esions during the diagnostic process. This is because the localiza- 

ion and quantification of drusen determines the grade of devel- 

pment of the disease, while the presence of atrophy is directly 

elated to 90% of cases of late AMD [4] . Moreover, exudates are a 

ommon sign of neovascular AMD [5] . In contrast with these sat- 

sfactory results, we found that the mean AUC-ROC for the ‘oth- 

rs’ group does not surpass the 65%, and that the performance for 

his class highly depends on the evaluated fold (as indicated by 

he high standard deviations [ σ ]: σ > 8 for A+L FC and σ > 18 for

+L Max). This lower performance can be explained by the limited 

xamples that are available for this class as well as the high intra- 

lass variability (11 images containing 5 different types of lesions 

o be distributed in 4 folds). With so few examples, it is difficult 

or the models to be able to learn the representative features of 

he lesions. Even more so in cases where these features are very 

iverse—as is the case of ‘others’. It is probable that increasing the 

umber of examples of these under-represented classes would re- 

ult in a significant gain in the identification performance. 

In ADAM, the mean AUC-ROC values for drusen and ‘others’ 

see Table 4 ) are similar to those of AMDLesions. Regarding 

emorrhage, the AUC-ROC values are slightly lower. However, con- 

idering that it is a cross-dataset evaluation, the results are also 

atisfactory. Conversely, the results for exudates show a more sig- 
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Fig. 11. Mean ROC curves in coarse lesion segmentation of the A+L alternatives in the ADAM dataset. Models were trained on AMDLesions. 

Fig. 12. Examples of lesion activation maps provided by the A+L FC models for multiple ADAM images. In each case, left image depicts the activation map of the lesion 

from the caption over the original retinography, as well as the contour of the corresponding segmentation ground truth employed in the evaluation (in magenta). Both the 

activation map (top) and the ground truth (bottom) are depicted separately on the right. 

13 
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Fig. 13. Examples of lesion activation maps provided by the A+L Max models for multiple ADAM images. In each case, left image depicts the activation map of the lesion 

from the caption over the original retinography, as well as the contour of the corresponding segmentation ground truth employed in the evaluation (in magenta). Both the 

activation map (top) and the ground truth (bottom) are depicted separately on the right. 
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ificant drop in performance with respect to AMDLesions. In this 

ase, the small number of samples available in AMDLesions (only 

0) seems to compromise the generalization ability of the model. 

his may be due to the limited diversity that is provided by only 

 few samples of exudates. As was the case with other lesions, it 

s very likely that a larger number of examples for ‘exudates’ in 

he training datasets would make the results improve significantly. 

Looking at the results of A+L models separately, the Max vari- 

nt performs better in most cases. However, the differences are not 

ignificant. In any case, allowing the models to freely weight the 

esion predictions to obtain the diagnosis (FC variant) has no ob- 

ervable benefit in these tasks. 

In sum, both A+L variants provide an adequate performance in 

he identification of most lesions, even in a cross-dataset scenario. 

oreover, lesions for which a low performance has been observed 

lways present a very low number of training samples (e.g. exu- 

ates) and, in the case of ‘others’, a substantial intra-class variabil- 

ty. In these cases, it is expected that the addition of more training 

amples would significantly enhance the performance of the mod- 

ls. 

In contrast to the traditional A-O approach, the lesion infor- 

ation provided by A+L helps to better understand the decisions 
14 
ade by the model. In this case, the diagnosis can be explained 

y examining the lesion predictions. Furthermore, this information 

lso complements the diagnosis by allowing the clinicians to eas- 

ly assess the severity of the disease. As indicated in Section 1 , the

istinction between lesions is crucial in determining the develop- 

ental stage of AMD. For example, it is very different to be af- 

ected by AMD and have only drusen than to present both drusen 

nd atrophy. In the former case, the disease is either at the early 

tage or at the intermediate stage, while in the latter it is very 

ikely to be at the late stage. This difference com pletely changes 

he clinical approach to the disease. 

As a possible drawback of our proposal, it can be pointed out 

hat image-level lesion labels are necessary for training the net- 

orks. However, the collection of these labels would be, in most 

ases, quite straightforward, as the information is usually present 

n medical records. This is because the lesion identification is 

n indispensable part of the diagnostic and monitoring processes. 

hus, in contrast to other tasks, such as lesion segmentation, the 

dentification of lesions does not require a great effort on the part 

f the clinicians. In some cases, the datasets could even be con- 

tructed a posteriori , avoiding the common ad hoc implication of 

xperts in the labeling process. 
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Fig. 14. Examples of lesion activation maps provided by the A+L FC models for various AMDLesions, ARIA and STARE images. In each case, left image depicts the activation 

map of the lesion from the caption over the original retinography. Both the activation map (top) and the original image (bottom) are depicted separately on the right. 
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.3. Coarse lesion segmentation 

Fig. 11 depicts the mean ROC curves of A+L models for the 

oarse segmentation of lesions in the AMDLesions dataset. 

Complementarily, Table 5 reports the mean AUC-ROC values 

nd the standard deviations of the models in the same task. 

Along with the quantitative results, we present several exam- 

les of the lesion activation maps provided by the A+L models for 

he different datasets. Figs. 12 and 13 present some examples from 

DAM for A+L FC and A+L Max, respectively. Additionally, Figs. 14 

nd 15 present some examples from AMDLesions, ARIA and STARE 

or both variants—FC and Max, respectively. 
15 
The quantitative results from Fig. 11 and Table 5 show that, in 

eneral, the models present a satisfactory performance. Also, they 

learly show that the best results in coarse segmentation are al- 

ays achieved for drusen. As in the case of lesion identification, 

t is very likely that the difference in performance between drusen 

nd the rest of the lesions is due to the scarcity of training data for

he latter. In particular, in the training dataset (AMDLesions) there 

re 374 images for drusen, while there are only 10, 29 and 11 im- 

ges for exudates, hemorrhage and ‘others’, respectively. Moreover, 

t is worth noting that we use 4-fold cross validation, so that the 

umber of effective training samples is even more reduced. Re- 

arding the high intra-class variability of ‘others’, in this case it 
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Fig. 15. Examples of lesion activation maps provided by the A+L Max models for various AMDLesions, ARIA and STARE images. In each case, left image depicts the activation map provided by the model for the lesion from the 

caption over the original retinography. Both the activation map (top) and the original image (bottom) are depicted separately on the right. 
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Fig. 16. Examples of lesion activation maps provided by the A+L Max models for 2 ADAM images. In each case, left image depicts the activation map of the lesion from the 

caption over the original retinography, as well as the contour of the corresponding segmentation ground truth employed in the evaluation (in magenta). Both the activation 

map (top) and the ground truth (bottom) are depicted separately on the right. Additionally, we include the same retinography with the contour of the original lesion 

segmentation ground truth overlaid. 

d

p

c

i

t

t

o

a

o

m

F

F

n

b

i

c

fi

w

c

t

t

o

i

s

d

m

a

i

p

a

a

oes not seem to penalize the performance of this class in com- 

arison to exudates or hemorrhage. In fact, the lowest AUC-ROC in 

oarse segmentation is achieved for hemorrhage instead. 

Lastly, there is one additional factor that can potentially penal- 

ze all the lesions in the segmentation evaluation: the low exac- 

itude of the manual annotations of ADAM. Fig. 16 depicts fur- 

her examples from ADAM of the coarse lesion activation maps 

btained by the A+L Max variant, along with the original manual 

nnotations. 

For the top image, the A+L model has detected many lesions 

utside the manually annotated areas. However, despite not being 

arked in the ground truth, these detections are arguably correct. 

urther examples of this type can be seen in the left images of 

ig. 12 . The bottom example of Fig. 16 represents the opposite sce- 

ario. In this case, the entire area near the macula has been la- 

eled as hemorrhage. However, there are a large number of pixels 

n that area where the lesion is not really discernible. Thus, the 
17 
oarse segmentation map predicted by the A+L model does not 

ll the area specified in the ground truth. This is also the case 

ith the bottom-right images of Figs. 12 and 13 . These two cir- 

umstances are found in several images of the dataset, penalizing 

he quantitative results herein presented. 

Notwithstanding, the qualitative evaluation of the lesion activa- 

ion maps proves that the models are able to locate lesion areas 

f several images in an approximate way. This is achieved by us- 

ng only image-level labels. Some examples of satisfactory weakly- 

upervised segmentation maps are shown in Figs. 12 and 13 . Ad- 

itionally, these figures also reflect a limitation of the proposed 

ethod. Given that the lesion predictions are directly generated by 

pplying a GMP operation on the activation maps, a high activation 

n one single point of a map is enough to successfully mark the 

resence of the corresponding lesion. Consequently, a single high 

ctivation can significantly reduce the lesion identification error for 

 positive sample. This means that the network is not guided to 
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etect complete lesion areas during training. This effect is clearly 

isible in the bottom images of Fig. 13 . Although the identification 

rror for these images is low, the lesion area that is activated is far 

rom complete. This effect is more frequent for lesions with few 

raining examples. 

In AMDLesions, ARIA and STARE, since there is no available le- 

ion segmentation ground truth, a quantitative evaluation is not 

ossible. However, the qualitative analysis of the lesion activation 

aps provided by the A+L models (see Figs. 14 and 15 ) show that

he lesion areas detected by these models are habitually correct. 

In summary, the experiments and the evaluations conducted 

emonstrate that the proposed A+L approach enables the identi- 

cation of AMD and its associated lesions with satisfactory per- 

ormance. Furthermore, the evaluation of the coarse segmentation 

aps of the individual lesions—directly derived from the lesion ac- 

ivation maps—clearly indicate that the explanations provided by 

he models are meaningful, as they usually locate the pathological 

reas within the image correctly. All these outputs are achieved us- 

ng only image-level lesion labels relatively easy to obtain. This is 

articularly convenient, since in medical imaging, due to the dif- 

culty of annotations, the scarcity of annotated data is especially 

ronounced. Also, with the proposed setting, the AMD diagnosis is 

irectly derived from the identified lesions, and these, from the le- 

ion activation maps, which highly enhances the explainability of 

he learned model. 

. Conclusions 

In this work, we have proposed an explainable deep learning 

pproach for the simultaneous identification of AMD and its associ- 

ted retinal lesions in color fundus images. The proposed approach 

ses an slightly adapted CNN that directly links the predicted diag- 

osis to the identified lesions and allows the generation of weakly- 

upervised lesion activation maps. With the proposed setting, the 

esion predictions derive directly from the lesion activation maps, 

nd therefore also the final diagnosis. Thus, both the lesion pre- 

ictions and the diagnosis can be explained by the lesion activa- 

ion maps. This setting is highly intuitive, as it mimics the man- 

al process followed by clinicians, consisting of localizing and then 

lassifying the retinal lesions. Furthermore, it is not dependent on 

he network architecture, and can be applied, with minor modifi- 

ations, over any CNN for image classification. 

The complementary lesion information, in addition to provide 

n explanation for the decisions of the model, can also be used 

y the clinicians to assess the severity of AMD, as it provides the 

ocation and classification of the retinal lesions. This approach rep- 

esents an important advance with respect to the current state-of- 

he-art approaches for AMD diagnosis, which are focused solely on 

creening and do not incorporate any explainability mechanisms. 

his highly limits the applicability of previous methods. Addition- 

lly, the proposed method is the first that simultaneously obtains 

esion predictions, diagnostic predictions and lesion-specific activa- 

ion maps using only image-level labels. In this regard, in contrast 

o previous works exploring explainability mechanisms for the di- 

gnosis of retinal diseases, our proposal presents the advantage of 

roviding lesion-specific activation maps instead of global activa- 

ion maps. 

To validate our proposal, we collected a private dataset of color 

undus images with expert-annotated labels for the diagnosis of 

MD and the presence of its associated retinal lesions (AMDLe- 

ions). We performed an exhaustive experimentation in this and 

ther three additional public datasets: ADAM, ARIA and STARE. The 

rained networks were evaluated for three different tasks: diagno- 

is of AMD, lesion identification and coarse lesion segmentation. 

his last evaluation aimed to validate the quality of the visual ex- 

lanations provided by the lesion activation maps. For the diag- 
18 
osis of AMD, we compared our approach (A+L) with the base- 

ine approach (A-O), which is solely focused on the identification 

f AMD and uses a standard classification CNN. In addition, we 

ompared the AMD identification performance of the proposed ap- 

roach with that of several state-of-the-art methods in the ADAM 

eference dataset. The methods that were compared are focused 

olely on AMD identification. The evaluation in the four different 

atasets demonstrates that the proposed approach provides satis- 

actory results in the identification of AMD and its associated le- 

ions. Furthermore, the comparison with the state-of-the-art meth- 

ds in AMD identification shows that the results of A+L models are 

ighly competitive, while the models are much more explainable 

nd provide extra useful outputs. The information resulting from 

esion identification, along with the lesion activation maps, conve- 

iently complements the diagnosis, and it is useful to better un- 

erstand the decision made by the model. What is also relevant, 

he collection of the training data that is needed for the approach 

oes not imply much extra effort from clinicians, since the identi- 

cation of lesions can be habitually found in the medical records. 

his is because the lesion identification is part of the diagnostic 

rocess in the clinical practice. In light of the results herein pre- 

ented, we think that the proposed methodology makes relevant 

dvances in terms of explainability, and that it could be success- 

ully applied in several diagnostic scenarios. An example could be 

he diagnosis of diabetic retinopathy. This disease, like AMD, is also 

requently diagnosed by color fundus imaging, and it is character- 

zed by the presence of multiple lesions of different types. 

Notwithstanding, our approach presents two main points for 

urther improvement. First, the generation of the activation maps. 

ith the proposed approach, the network has no incentive to ac- 

ivate large lesion areas, resulting in incomplete activation maps. 

t is very likely that the addition of such an incentive would 

reatly mitigate this issue. Second, the computation of the diag- 

osis from the lesions. The proposed setting is valid for single- 

athology studies. However, it would be interesting to extend it to 

ulti-pathology studies, more similar to real screening scenarios. 

oth issues represent interesting fields for further research. 
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