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ABSTRACT

During the last years, deep learning techniques have emerged as powerful alternatives to solve biomedical
image analysis problems. However, the training of deep neural networks usually needs great amounts of labeled
data to be done effectively. This is even more critical in the case of biomedical imaging due to the added
difficulty of obtaining data labeled by experienced clinicians. To mitigate the impact of data scarcity, one of
the most commonly used strategies is transfer learning. Nevertheless, the success of this approach depends on
the effectiveness of the available pre-training techniques for leaming from little or no labeled data.

In this work, we explore the application of the Context Encoder paradigm for transfer leaming in the
domain of retinal image analysis. To this aim, we propose several approaches that allow to work with full
resolution images and improve the recognition of the retinal structures. In order to validate the proposals,
the Context Encoder pre-trained models are fine-tuned to perform two relevant tasks in the domain: vessels
segmentation and fovea localization. The experiments performed on different public datasets demonstrate that
the proposed Context Encoder approaches allow mitigating the impact of data scarcity, being superior to

previous alternatives in this domain.

1. Introduction

The observation of the eye fundus is key for the diagnosis and
treatment of important eye diseases, such as macular degeneration [1]
or glaucoma [2]. Furthermore, the eye fundus observation is also
relevant for the study of systemic diseases such as diabetes [3] or
hypertension [4]. In this context, Computer Aided Diagnosis (CAD)
methods [S] are very useful to support the work of the clinicians.
The main focus of CAD systems in ophthalmology is the automated
analysis of eye fundus images, using machine leaming techniques. In
that regard, in the last years, the use of deep learning algorithms has
been widely increased due to the advantages they offer. For instance,
these algorithms can be directly applied to raw data, without the
necessity of using hand-engineered feature extraction methods [6].

Deep learning models have usually been trained in a supervised
manner, an aspect that implies the necessity of annotated data, which
is scarce in many domains [7]. Annotated data is difficult to retrieve
because the manual labeling is a tedious and error-prone task that must
be performed by field experts. In addition, the difficulty is greater for
those cases where pixel-wise labeling is required, such is the case of
the segmentation or localization of relevant structures in the images.
This issue is even more critical in the case of biomedical imaging,

where obtaining good quality images or proper ground truth data can
be extremely challenging or even impossible in some problems.

The problem of data scarcity is well-known and, therefore, many ef-
forts have been made to propose paradigms able to mitigate its negative
consequences. In particular, it exists a kind of strategies with this aim,
called as data augmentation [8]. A common strategy is to artificially
augment the size of the original dataset using, e.g., classical data
augmentation techniques. This data augmentation typically implies
using random trivial transformations such as rotations, translations
or color-intensity changes (among others). This allows to obtain new
plausible images that are different from the original versions under
the point of view of the deep models. Nevertheless, these transfor-
mations can be insufficient to represent the great variability of the
biomedical imaging domains. Another alternative to augment the size
of the original dataset is the generation of synthetic images. In the
last years, Generative Adversarial Networks (GANs) have emerged as
powerful deep learning architectures to generate novel synthetic images
for specific domains [9]. The novel set of images generated with the
GAN models can be added to the original dataset, hence artificially
increases its dimensionality [10,11].
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In contrast with the previous strategies, other paradigms aim to
reuse the knowledge extracted from one task to complement the train-
ing of another task. This is the case of transfer leamming [12], where
the models are pre-trained in a complementary task before facing the
final target task. We can find several relevant works in this scope.
As reference, the work from [13] proposes the use of a model pre-
trained on the ImageNet dataset to solve anomaly detection tasks in the
domain of retinographic and brain imaging. Moreover, the contribution
from [14] proposes a methodology of vessel segmentation using a
transfer leaming strategy with a fully-convolutional adaption of an
AlexNet architecture. Finally, it is remarkable that the work of [15]
proposes a novel architecture to solve the tasks of vessel segmentation
and optic disk/cup segmentation, using a pre-trained model to extract
bounding boxes and restrict the region of study as a preprocessing step
in the latter case. Similarly, in multi-task leamning, several tasks are
trained simultaneously, in a way that each task can help to improve the
performance of the other tasks [16]. However, additional tasks usually
require additional annotated data and, therefore, the problem of data
scarcity may still remain unsolved.

In order to further mitigate the issue of data scarcity, many efforts
have been made to develop novel self-supervised learning tasks that
can be used in transfer or multi-task learning settings [17]. In the self-
supervised learning paradigm, the training process can be performed
without the necessity of manually labeled data because the labels are
automatically derived from the raw data. Some remarkable examples of
self-supervised learmning [18] can be seen in tasks like forecasting [19],
colorization [20] or the Context Encoder [21].

The Context Encoder is based on the prediction of a masked region
in an image using information from the surrounding pixels (ie., the
context). This self-supervised leaming strategy has demonstrated a
great potential in generic domains (using natural images), obtaining an
adequate performance for image inpainting and representation learning
without manual supervision [21,22]. However, the Context Encoder
paradigm offers an even greater potential for transfer learning in spe-
cific and restricted domains. This is due to the fact that images from
generic domains can have a greater diversity, making it difficult to
learn rich representations of the diverse image contents. In contrast, in
specific and restricted domains, as the medical imaging modalities, the
images always represent a similar reality and with a similar viewpoint,
which facilitates the leamning of useful high level abstractions of the
data. Given this premise, some works have explored the application
of the Context Encoder paradigm in particular biomedical imaging
domains, such as brain MRI [23] or ultrasound imaging [24]. However,
none of them have explored the application of transfer leaming by pre-
training solely with unlabeled images. In the same way, due to the
limitations of the original Context Encoder methodology, none of these
works use the original resolution of the images, that is needed for the
effective analysis of some clinical cases.

Regarding the use of self-supervised leaming models for trans-
fer learning in retinal image analysis, the work from [25] uses a
Multimodal Reconstruction pre-trained model (a model that converts
retinographies to angiographies) to improve the performance of differ-
ent target tasks related to the analysis of the retinal anatomy. However,
while their method offers satisfactory results, it also presents important
limitations. For instance, it requires having multimodal datasets of
paired and registered images to train the model. These limitations
could be avoided by using instead an alternative approach relying on
a single image modality such as, e.g., Context Encoders, as it eases
the construction of larger datasets for the self-supervised task, even
including challenging scenarios that could lead the registration process
to fail. However, in the case of the Context Encoder paradigm, previous
methods are designed to work exclusively with low resolution images,
hence not being valid for retinal image analysis. In that regard, in a
preliminary work [26], we explored different approaches of Context
Encoders for the reconstruction of eye fundus images at full resolution.
However, despite the promising reconstruction results presented in this
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preliminary work, the potential for transfer leamning in eye fundus
images still remained unproved.

In this work, we study the application of the Context Encoder
paradigm for transfer learning in full resolution eye fundus images.
In order to deal with high resolution images, we propose 3 different
variants of Context Encoder, considering both patch-wise and fully-
convolutional image processing. Furthermore, and in contrast with
previous works, we also explore the use of different loss functions for
the Context Encoders. Our proposals allow exploiting the main advan-
tage that the domain we are working on poses for transfer leaming
purposes, ie., the fact that all the images represent a similar reality,
with the same structures observed from a similar viewpoint. In that
regard, we evaluate our proposals in 2 different relevant downstream
tasks, as is the case of vessels segmentation and fovea localization.
We perform all the experiments using public datasets (in particular,
Isfahan MISP, DRIVE and IDRiD) and compare the performance with
a previous state-of-the-art self-supervised learning approach in eye
fundus images. Overall, this methodology provides a method to work
with high-resolution images and proves to be useful to mitigate the
effect of data scarcity using single-modality datasets of eye-fundus
images. Furthermore, it is remarkable that the great performance of the
Context Encoder pre-trained model can be achieved with a relatively
small retinographic dataset, as is the Isfahan MISP, composed of 59
images. Additionally, the results of this work could be also extrapolated
to other medical imaging modalities and even other domains.

2. Methodology

An overview of the complete transfer leamming methodology that is
proposed in this work is depicted in Fig. 1. This methodology is divided
into 2 parts. The first part consists in the Context Encoder pre-training
using any of the three different variants that we propose. The second
part reuses the domain-specific knowledge extracted from the previous
pre-training phase to solve two important target tasks in eye fundus
images: vessels segmentation and fovea localization.

2.1. Context Encoder pre-training

The Context Encoder [21] is a self-supervised learning paradigm
that is based on predicting the content of a masked region in an image
given only its surrounding pixels (ie., the context that encloses the
masked region). This paradigm was initially proven in generic domains
(using natural images) where the mask is solely applied in a single small
region of the image. Therefore, the original methodology is meant to
be applied to low resolution images (in particular, this resolution was
of 128 x 128 pixels [21]). However, retinal images present a much
higher resolution, an aspect that makes it impossible to directly apply
the original Context Encoder approach. For this reason, we propose
different alternatives to adapt the methodology, either in a patch-wise
manner or in a fully-convolutional manner. In that regard, we propose
a single Patch-Wise approach, denoted as PW-CE, that represents the
most straightforward application of the original paradigm. On the other
side, we proposed two different fully-convolutional approaches, that
apply a Global Masking pattern to images. The first fully-convolutional
alternative applies a CheckerBoard (CB) pattern and is denoted as GM-
CE (CB). The second alternative applies instead a Center-Surround (CS)
pattern, which omits less information from the image (i.e., provides
more context to the network). This second altemative is denoted as
GM-CE (CS). Examples of both global masking patterns can be seen in
Fig. 2. For each variant, the training procedure as well as the way of
generating fully reconstructed examples are explained in detail below.
The reason to propose this type of masking patterns is because they
allow creating regular grids on the image that completely exploit the
full image size.

Patch-Wise Context Encoder (PW-CE). In order to adapt the orig-
inal method to images of higher resolution, in this first approach the
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Fig. 1. Main overview of the proposed methodology, which is divided into 2 parts. The first part is a pre-training using 3 different Context Encoder approaches, and the second

part is a fine-tuning in the final tasks of fovea localization and vessels segmentation.

()

Fig. 2. Representative examples of the masking patterns used for the GM-CE approach. (a) Checkerboard pattern (GM-CE (CB)). (b) Center surround pattern (GM-CE (CS)).

images are processed in a patch-wise fashion. In that regard, we use the
same patch size as in [26], given its proven suitability for this problem.
A schematic representation of the training procedure for the PW-CE
approach is depicted in Fig. 3. The process is as follows: firstly, a sliding
window of 96 x 96 pixels is displaced over the image, extracting all
the non-overlapping patches from the image. Then, a central square
omission mask of 32 x 32 pixels is applied on each patch. These
patches, with the central regions omitted, are used as input to the
generator network, which returns the fully reconstructed patches as
output. Then, the output of the generator is compared against the
corresponding original patches to obtain the reconstruction loss. The
training is performed by minimizing this loss.

With regard to the image reconstruction method, that is depicted in
Fig. 4, it is structured as follows: firstly, the input image is processed to
obtain a set of patches. This processing is made with a sliding window
with size 96 x 96 pixels and a stride of 32 pixels. Then, a central
omission mask of 32 x 32 pixels is applied on each input patch with
size 96 x 96 pixels. The patches with the central regions omitted are
used as input to the Context Encoder trained model, obtaining output
patches of 96 x 96 pixels too. Each output patch is then cropped to the

(b)

central region of 32 x 32 pixels, which is the one that was actually
reconstructed by the network. This is because, for the surrounding
unmasked regions, the networks can directly apply an identity mapping
from input to output. Finally, all the reconstructed central regions
are placed in their original positions obtaining, in this way, a fully
reconstructed eye fundus image.

Global Mask Context Encoder with Checkerboard Pattern (GM-
CE (CB)). Instead of processing the image in a patch-wise fashion,
in this second approach the masking pattern is applied directly over
the whole image. This fully-resolution strategy allows learning from
a global context that, given the recurrence of the reality represented
by retinographies, contributes with a greater leaming potential. In
this way, the method can be adapted to high resolution images more
effectively. As its name implies, the GM-CE (CB) applies a checkerboard
omission pattern, where the omission regions size can be adjusted.
However, in order to make a fair comparison with the PW-CE approach,
the size of the omission mask is also of 32 x 32 pixels. An example
of this masking pattern can be seen in Fig. 2(a). Given this masking
pattern, the training process is defined as can be seen in Fig. 5. Firstly,
the checkerboard pattern masking is applied on the input image. Then,
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Fig. 3. Schematic description of the procedure for training process using the PW-CE approach.
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Fig. 5. Description of the training process followed to train the reconstruction model in the case of the GM-CE (CB) approach.

this masked image is used as input of the generator network, which
returns the reconstructed image as output. Finally, the generator output
is compared against the input image, computing the reconstruction loss.
The training is performed by minimizing this loss. Additionally, as a
data augmentation strategy, a random offset is applied online to the
omission mask of each image during the training process.

The image reconstruction procedure for this approach is depicted
in Fig. 6. Firstly, the checkerboard masking pattern is applied on the
input image. Given that the network only truly reconstructs one half
of the information using the checkerboard pattern, it is necessary to
follow two different pathways to obtain a fully reconstructed image. In
this way, the described strategy combines the outputs of the network
obtained after masking the input image with the original global mask
and its inverted version.

Global Mask Context Encoder with Center-Surround Pattern
(GM-CE (CS)). In this third approach, the masking pattern is also
directly applied over the whole image. This global masking pattern
was proposed with a similar assumption as in the previous case, ie.,
to exploit the fact that all retinographies are always representing a
very similar reality. However, in this case, we use a center-surround
masking pattern, which can be seen in Fig. 2(b). The motivation of
presenting this other masking pattern is to provide more contextual
information to the network, which is achieved by reducing the amount
of omitted information. Similarly, as in the previous case, the size of

the omitted regions is also set to 32 x 32 pixels. The training process is
depicted in Fig. 7. Firstly, the input image is masked with the center-
surround pattern. Then, this masked image is used as the input of the
generative model. After that, the output of the generative model is
compared against the corresponding original version of the image, com-
puting the reconstruction loss. The training is performed by minimizing
this loss. In this particular case, the model only reconstructs one quarter
of the information, as the model should apply an identity mapping for
the remaining regions of the sample. Moreover, similarly as with the
GM-CE (CB) approach, a random offset is applied online to the mask of
each image during the training process as a data augmentation strategy.

With regard to the image reconstruction procedure of this approach,
that is depicted in Fig. 8, the procedure is very similar to the previous
approach. The main difference is that, in this case, instead of following
2 different pathways, the procedure follows 4 different pathways. This
is due to the fact that, instead of 2 possible masking combinations
as it was the case of the checkerboard pattern, the center-surround
pattern has 4 different possibilities. Then, for each pathway, the input
image is masked with the corresponding version of the pattern. Then,
this masked image is used as the input of the generator model, whose
outputs only have a quarter of the information actually reconstructed.
To obtain only the reconstructed information, the inverted version of
the initial mask is applied to the output image. Once the 4 quarters
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Fig. 8. Schematic description of the procedure for image reconstruction using the GM-CE (CS) approach.

of the truly reconstructed information are obtained, they are finally
merged together.

Training loss. For the purposes of this work, we follow the same
approach of the original Context Encoder work [21], that defines a
reconstruction loss for the transfer leaming experiments. In this case,
the definition of an adversarial loss is unnecessary, as realistic image
inpainting is out of scope for the methodology herein proposed. To
perform a more exhaustive analysis of the problem, we explore two dif-
ferent reconstruction loss functions: Mean Squared Error (MSE), which
is used in the original Context Encoder [21], and Structural Similarity
(SSIM) [27], which we propose as an alternative. It is remarkable that,
to the best of our knowledge, this is the first work that proposes the use
of the SSIM loss to train the Context Encoder. Given these peculiarities
of our contribution, the key points, and the motivation of the use of
each loss function are extensively explained below.

With regard to MSE, this loss function first calculates the square of
the differences between the expected output and the output predicted
by the model. Then, the mean value of the squared differences is com-
puted. In this case, the MSE loss is used because it has demonstrated

its suitability for the Context Encoder in previous works [21,26]. The
MSE loss can be expressed as is stated in Eq. (1):

N
1 5 2

MSE = — E(}’, Y)Y, 6))

where N refers to the number of pixels, ¥ refers to the output predicted

by the network per color channel and ¥ to the expected output per color

channel. The final MSE loss is then calculated as the sum of the losses

for each of the 3 color channels.

However, despite the MSE function being often the preferred choice
to solve regression problems, it is not necessarily the most adequate
alternative when dealing with images. In that regard, we propose as
alternative the use of SSIM, which was specifically tailored to quantify
the similarity between two images. It was also demonstrated in pre-
vious works that SSIM can improve the quality of the reconstructed
eye-fundus images [28]. The SSIM loss considers three different com-
ponents: luminance, contrast and structure. The computation of the
metric is performed using a sliding window approach. Besides the
difference between pixel values, the windows allow taking into account
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Fig. 9. Graphical description of the vessel segmentation procedure. The white pixels refer to points that belong to a vessel structure, and the black pixels refer to any other kind

of eye fundus elements.

some additional useful information from the local neighborhood of each
pixel. Defining a set of arbitrary windows X that are compared against
another set of corresponding arbitrary windows ¥, the expression of
SSIM can be seen in Eq. (2):

(2pypy + C1) + (20, + Cq)
SSIM(X,Y)= L y oo
NXEX,JEY (ﬁx+#y+cl)(ax+°%+cz)

@

where u, refers to the mean value of the x window, u, refers to the
mean value of the y window, o, and o, refer to the variance of the
x window and y window respectively, o,, refers to the covariance
between the x window and the y window, C; and C, are 2 constants
used to stabilize the division and N refers to the number of overlapping
windows used on the image to compute the loss. Once again, similarly
as in the previous case of the MSE loss, the expression shown in the
equation refers to an individual color channel, so the final value of the
SSIM loss is computed as the sum of the losses of the 3 channels. It
is important to note that SSIM is actually a metric that measures the
similarity between 2 images and, therefore, the higher the value, the
higher the similarity. In consequence, the training must be performed
by maximizing SSIM. In order to do that, we use the expression 1 —
SSIM(X,Y) as loss function.

2.2. Vascular segmentation

The vascular segmentation is the first task that was selected to
demonstrate the potential of the paradigms that are being proposed in
this work. This task aims at determining the location and the extent
of the blood vessels that can be seen in the retinographic images, as is
depicted in Fig. 9. This task is performed as a prediction of pixel-level
labels. In this way, each pixel can be classified into 2 different classes,
depending on if it belongs to the retinal vasculature (positive class) or if
it belongs to the non-vascular retinal background (negative class). Re-
garding the training process, the training data consists of retinographies
and their corresponding segmentation ground truth maps. This can be
denoted as {(R,Y)y, ..., (R,Y)y } where R refers to the retinography and
Y refers to its corresponding ground truth. The target of the training
Pprocess is to obtain a transformation mapping that assigns to each pixel
the probability of belonging to the blood vessels. To train this model,
the cross-entropy loss is used, that compares the output of the network
and the actual class at the ground truth. This loss function can be seen
in Eq. (3):

N
Ls(F,Y)= - ) Y;log(¥) + (1 - ¥)(log(1 - ¥,)), ®3)
i=1
where ¥ refers to the corresponding ground truth map and ¥ refers to
the network output.

2.3. Locdlization of the fovea placement

Fovea localization is the second task that was selected to prove the
potential of the approaches that were proposed in this work. The aim
of the fovea localization task is to detect the precise location of this
relevant eye fundus structure on an image, as can be seen in Fig. 10. To
approach this task, the network is trained to obtain a distance map in
the same way as defined in [25], where the value of each pixel denotes
the distance to the target pixel that is used as reference. In order to
build the ground truth distance maps, first the distance between each
pixel and the target location is computed with the Euclidean norm as
can be seen in Eq. (4):

dr(x;, ¥;) = \/(xi —xr)? + (0 —yr), C))]

where d refers to the distance map, x; and y; refer to the coordinates
of each pixel in the image, while x4 and y; refer to the coordinates of
the target pixel. However, there are inconveniences related with using
this distance map expression as it is, because it encourages the model
to accurately predict the relative position of all the pixels in the image,
including those far from the target. This may compromise the accurate
localization of the target point. In order to avoid this issue, the distance
map is modified to measure with greater precision the distance of the
pixels that are closer to the target location and saturate for the more
distant pixels. To do so, the location map is defined as:

yp=1+ mnh(—dT%), (5)

where y; denotes the location map itself, tanh refers to the hyperbolic
tangent function, d refers to the previously defined distance map
and f§ to the saturation distance. This factor of saturation distance
allows defining the point from where the location map saturates, hence
remaining close to a constant value. In this particular case, we decided
to set g to the approximate value of the optic disk radius. Finally, the
model expected to perform the fovea localization is trained with the
loss computed when comparing the network output against the ground
truth location map y;, using the mean square error (MSE) function.

2.4. Deep network architecture

For the purposes of this work, we choose the U-Net architecture
proposed by [29] due to its demonstrated capabilities dealing with
biomedical image analysis problems [28,30,31]. In particular, we use
the exact same architecture as proposed in the original U-Net work,
thus keeping the same layers and channels settings. The only aspect
that is different from the original work is the last layer of the network,
as each target task has its specific setting in this regard. A graphical
description of this deep architecture is shown in Fig. 11. Overall, this
deep network architecture is an encoder—decoder that allows to obtain
an output image with the same width and height as the input image.
Additionally, it is worth noting that the U-Net is often trained from
scratch, unlike other architectures that are designed to use different
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Fig. 10. Graphical description of the fovea localization task. The cross indicates the placement of this relevant eye fundus structure.
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backbones pre-trained on the ImageNet dataset. It should be noted
that our proposal allows pre-training both the encoder and the de-
coder rather than only the encoder as it happens with the previously
mentioned ImageNet pre-training.

The encoder is similar to the VGG structure. In particular, it is
composed of 4 blocks that are structured in 2 convolutional layers with
a kernel size of 3 x 3 followed by a ReLU activation function and the
max pooling layer. Each block in this part of the network reduces the
resolution of the original image by a factor of 2. This forces the model
to learn the most important features from the images. The resolution
reduction is achieved with max pooling layers with a kemel size of
2 x 2 and a stride of 2. The decoder is composed of 4 different blocks
that are structured in 2 convolutional layers with the same settings as in
the encoder, followed by a transposed convolution layer with a kernel
of 2 x 2 and a stride of 2. The transposed convolutions allow recovering
the resolution of the input image. Each block increases the encoder
output resolution by a factor of 2. The last block of the architecture
is composed of 2 convolutional layers with the same characteristics
as in the encoder and the decoder, followed by a last convolution
with kernel of size 1 x 1. In this last layer, the activation function
depends on the target task to be solved. In particular, for the case of the
vessel segmentation, the considered activation function is the sigmoid
function while for the case of the fovea localization this activation
function will be the linear function.

The U-Net also includes the concept of skip connections. During the
downsampling process, the model loses the spatial information. This
compromises the upsampling part of the network, as it loses the track
of the precise location of the extracted features. To avoid this situation,
the U-Net architecture includes the above-mentioned skip connections,
which concatenate feature maps from the earlier encoder layers to
the later decoder layers. This allows to keep track of precise spatial
localizations.

2.5. Network training details

Regarding the training details, the Adam algorithm is chosen to
optimize the weights of the networks [32], using the following first-
order and second-order momentum values, f; = 0.9 and §, = 0.999,
respectively. In the case of the Context Encoder training, the learning
rate is set to an initial value of @ = le — 4 while for both the fovea
localization and vessels segmentation, this value is initially set to a =
le — 5. Moreover, we use a scheduler that reduces the learning rate

by a factor of 10 if the validation loss stops improving during more
than 2500 training steps. After this learning rate reduction, the training
process is finished when the validation loss stops improving again. In
all cases, the mini-batch size is set to 1 image at full resolution. In the
particular case of the PW-CE approach, this means that each mini-batch
has as many patches as it corresponds with a full resolution image. With
respect to the network initialization in the case of training from scratch,
the method proposed by [33] is used.

In order to avoid overfitting, we use dropout and several techniques
of classical data augmentation with the same details as stated in the
work of [25]. This applies both for the pre-training phase and for the
target tasks. In particular, we add dropout layers with a probability
of p = 0.2. These dropout layers are added at the end of the con-
volutional blocks 2, 3, 4, 5 and 6 with the same numeric labeling as
can be seen in Fig. 11. Furthermore, the mentioned data augmentation
techniques include spatial and color transformations. With regard to the
spatial augmentation strategies, we use random affine transformations,
in particular, shearing, scaling, and rotation. Talking about the color
augmentation strategies, we use a random linear transformation, which
is applied on the HSV representation of the processed image.

3. Experimental settings
3.1. Datasets

The experimental validation was performed using 3 of the most
representative publicly available retinographies datasets. They are de-
scribed in detail below:

« Isfahan MISP dataset [34]: The Isfahan MISP dataset is com-
posed of 59 retinography-angiography image pairs, where 50
images are used for training and 9 images are used for validation.
Despite the fact that angiographies are out of interest for this
work, this dataset was chosen to make a fair comparison with the
state-of-the-art Multimodal Reconstruction pre-training [25]. The
images have a resolution of 720 x 576 pixels. This dataset can
be divided into 2 different classes. The first class is composed of
images obtained from patients that were diagnosed with diabetic
retinopathy, and corresponds with half of the dataset. The second
class is composed of images from patients without evidences of
diabetic retinopathy and corresponds with the other half of the
dataset. The retinographies in this dataset are used to train the
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U-Net models for Context Encoding, that will be then used as
pre-trained models of the target tasks. This means that training
process is performed without considering the available manual
labels.

Digital Retinal Images for Vessel Extraction (DRIVE)
dataset [35]: The DRIVE dataset is composed of 40 images
(having 20 images for training and 20 images for test) and was
specifically designed for the development of vessels segmentation
methods. These images were obtained as the result of a diabetic
retinopathy program from the Netherlands. Each image has a
resolution of 584 x 565 pixels. This dataset is used to solve the
task of vessels segmentation.

Indian Diabetic Retinopathy Image Dataset (IDRiD) [36]:
IDRIiD is a publicly available dataset composed of 516 retino-
graphic images (with 413 images for training and 103 for test),
that can be divided into 2 different classes. The first class contains
retinal images that can present diabetic retinopathy (DR), diabetic
macular edema (DME) or both of them. The second class is com-
posed of normal retinal images, ie., samples without evidences of
both of the previously mentioned pathologies. These images have
a resolution of 4288 x 2848 pixels. This dataset is used to solve
the task of fovea localization. It is important to note that, in order
to make a fair comparison with the other methods of the state-of-
the-art, it was necessary to rescale the images to 858 x 570 pixels
in this dataset, the same resolution that is used in [25].

3.2. Experiments and alternative methods

Overall, the experimental validation is designed to assess the ben-
efits of the Context Encoder pre-training in scenarios that are affected
by data scarcity. To do so, we conducted several experiments with a
variable amount of training images in the target tasks. In particular,
we train with only 1 sample, with half of the training set and with
the whole training set, having the same holdout test set in the 3 cases.
Moreover, it is important to point out that the training process with
1 image is repeated 5 times (with 5 different images) in order to
avoid the impact that the arbitrary image selection can make in such
scenario. Therefore, in these cases, we report the mean values of the
5 repetitions. For the remaining cases, we assume that the number of
samples is sufficient to be representative of the whole dataset. In these
cases, the training process is only performed once.

In both the experiments with 1 image and with half the training set,
the remaining images of the training set are always used as validation
subset for the early stopping and leamning rate schedule. Meanwhile, in
the experiments with the whole training set, there is no validation sub-
set. In this case, we apply the early stopping and learning rate reduction
points resulting from the experiments with half of the training set, so
that the number of times each image is seen by the network remains
the same.

Following the described settings, we perform a comparison among
the 3 proposed Context Encoder paradigms and 2 different loss func-
tions, making a total of 6 different scenarios. Moreover, we also per-
form a comparison of our proposed method with 2 reference ap-
proaches: training from scratch and training from a Multimodal Re-
construction pre-trained model. The reason to make a comparison
against training from scratch is to assess the improvement that the pre-
training implies over a baseline approach, while the reason to compare
our method with the Multimodal Reconstruction is to contrast the
performance of the proposed pre-training strategy against a relevant
pre-training alternative in the literature. With regard to this latter case,
it is important to take into account that Multimodal Reconstruction is
one of the most powerful pre-training strategies present in the state-
of-the-art for retinal image analysis. Finally, it should be noted that,
in order to perform a fair comparison among all the methodologies
in our experiments, we used the same random training subsets for the
refinement of the downstream tasks.
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+ Training the models from scratch (random initialization):
In this case, the network is trained from scratch, with the la-
beled data of each target task (vessels segmentation and fovea
localization).

Multimodal Reconstruction pre-trained model: For this sce-
nario, the model is trained to convert a retinographic image to
its corresponding angiography. To do so, it is necessary to have a
dataset of pairs retinography—angiography that must be properly
aligned. Finally, the pre-trained model can be fine-tuned to solve
the target tasks.

Context-Encoder pre-trained models: The models are trained to
solve the task of inpainting in retinographic images, using each
of the 3 proposed masking approaches (PW-CE, GM-CE (CB) and
GM-CE (CS)). This allows the models to be pre-trained without
the necessity of additional manually annotated data. Then, these
pre-trained models are fine-tuned to solve the target task.

It is important to remark that both the Multimodal Reconstruction
and the Context-Encoder models are trained with the Isfahan MISP
dataset, making a total of 50 images for training and 9 images for
validation. In order to make a comparison in equal conditions, the
deep network architecture and the training strategy were the same
in all cases. However, there are slight differences between vascular
segmentation and fovea localization with regard to the output layer of
the network as well as to the training loss as specified in Sections 2.2
and 2.3.

3.3. Evaluation metrics

With regard to the pre-training task, first we perform a qualitative
evaluation of the images that were reconstructed by the Context En-
coder approaches. In addition, we also perform a quantitative analysis,
using 3 different reconstruction loss metrics that compare the original
images with their corresponding reconstructed versions. These 3 loss
metrics are the following ones: MAE (Mean Absolute FError, ie., the
mean value of the absolute differences between the reconstructed
image and its correspondent target image), MSE and 1-SSIM. MAE and
MSE were considered as both are usual metrics in the state-of-the-art
to measure differences (in particular, the absolute differences and the
squared differences, respectively) while SSIM is also considered due
to the fact that this metric better represents the structural similarity
between 2 given images.

On the other hand, to evaluate the 2 target tasks (vessels segmen-
tation and fovea localization) we have taken into account the usual
strategies that are considered in the state-of-the-art such as in [25]. As
segmentation and localization are different tasks, different evaluation
metrics are used for each case. For vessels segmentation, we use both
the Area Under the Curve of the ROC curve (AUC-ROC) and the
Precision-Recall curve (AUC-PR) that measure how accurately the U-
Net model is able to segment these structures. The reason to use both
metrics is to assess the performance of the segmentation more precisely.
For the problem of vessels segmentation, where the number of nega-
tive samples is much higher than the number of positive samples (as
there are much more fundus points than vessels points) the difference
between the ROC curve and the PR curve can be important, as the PR
curve can be more sensitive for this kind of unbalanced problems. Other
reason to use these metrics instead of other usual metrics like Dice
score is because AUC-ROC and AUC-PR allow evaluating all the possible
operation points of the method. This avoids the problematic of choosing
a specific operation point that could lead to non-comparable operation
points between different methods. With regard to the fovea localization,
we define the metric of distance error, which is obtained computing the
Euclidean distance between the ground truth and the predicted loca-
tion. Thus, the quantitative evaluation can be done directly comparing
these values.
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Table 1

Reconstruction loss results for the 3 approaches, and the 2 considered training losses. The shadowed

cells correspond to the best performance using MSE and 1-SSIM as the loss function, respectively,

considering different reconstruction loss functions.

Approach Training loss  Reconstruction metric

MAE MSE 1-S5IM
PW-CE MSE 0.1249 + 0.0925 0.0241 + 0.0322 0.3704 + 0.0168
GM-CE (CB) MSE 0.1252 + 0.0823 0.0224 + 0.0295 0.3068 + 0.0310
GM-CE (CS) MSE 0.1261 + 0.0849 0.0231 + 0.0295 0.3043 + 0.0285
PW-CE SSIM 0.1214 + 0.0947 0.0237 + 0.0329 0.3591 + 0.0234
GM-CE (CB)  SSIM 0.1097 + 0.0866 0.0195 + 0.0306 0.2562 + 0.0364

GM-CE (CS) SS5IM 0.1124 + 0.0860 0.0200 + 0.0292 0.2667 + 0.0328

4. Experimental results and discussion
4.1. Context Encoder pre-training results

Firstly, with regard to the image reconstruction process, we perform
a qualitative analysis. Some representative reconstructed samples can
be seen in Fig. 12 where the most representative differences are high-
lighted with boxes. There, it can be seen that, independently of the used
approach and loss function, the image reconstruction process obtains
satisfactory results, with reconstructed retinographies that present the
most important structures of the eye-fundus, as is the case of the optic
disk, the macula or the vessels tree. The major differences between
methods can be found in vessel structures (specially with regard to
small vasculature) and other structures like bright or dark retinal
lesions.

On the other hand, Table 1 depicts the quantitative analysis of the
reconstructed images represented by means of the reconstruction loss
metrics. From these results, some conclusions can be extracted. Firstly,
given the losses obtained using the MAE and MSE metrics, it can be seen
that the performance among the 3 approaches is very similar, being the
GM-CE approaches slightly better than PW-CE. However, when using
the 1-SSIM metric, the differences between PW-CE and both GM-CE
approaches are much noticeable. Meanwhile, between the 2 GM-CE
approaches themselves, the performances are very similar, even tough
GM-CE (CS) is slightly better when taking 1-SSIM as the reconstruction
metric. In that regard, it can be seen that the mean value of 1-SSIM
is 0.3704 for PW-CE using MSE as the loss function while the mean
values of the same reconstruction metric are 0.3068 and 0.3043 for GM-
CE (CB) and GM-CE (CS), respectively, meaning an important drop in
terms of reconstruction loss. This improvement is even more noticeable
when using SSIM as the loss function for the training. Particularly, it
can be seen that the mean value of 1-SSIM for PW-CE is 0.3591 while
for GM-CE (CB) and GM-CE (CS) is 0.2562 and 0.2667, respectively.
Then, it can be concluded that the images reconstructed using the
GM-CE approaches present a better structural similarity with respect
to their corresponding original versions. In the same way, it can be
concluded that using the SSIM loss function for the training improves
the quality of the reconstructed images for all the proposed approaches.
In general, this demonstrates that GM-CE strategies take advantage of
the global context to better reconstruct the main eye-fundus structures.
These results are even better when training with the SSIM loss function,
reinforcing the idea that SSIM is a more appropriate loss function than
MSE for image reconstruction.

4.2. Transfer learning results

The results of the vascular segmentation are depicted in Table 2.
Firstly, as expected, the overall performance of the segmentation mod-
els tend to increase as the amount of images also increases. This can
be seen in terms of AUC-ROC but, most notably, in terms of AUC-PR.
In fact, none of the Context Encoder approaches achieve an AUC-PR
higher than 90% when fine-tuning with only 1 image. The experiments
with 10 images demonstrate a greater performance with an AUC-PR
always higher than 90% except in 2 cases. Finally, with 20 images, the

performance increases slightly and all the approaches obtain AUC-PR
values higher than 90%.

Other important aspect that can be extracted from the results of
vascular segmentation is that the PW-CE approach using the SSIM
loss always obtains the highest value of AUC-ROC and AUC-PR for
each number of images (1, 10, and 20). In the best case, the PW-CE
with SSIM loss trained with 20 images obtains a value of 97.94% of
AUC-ROC and a 91.17% of AUC-PR. The graphic results of the vessel
segmentation using the best approach (the PW-CE approach training
with the SSIM loss) can be seen in Fig. 13. The examples depicted
show that the model is able to perform a satisfactory segmentation
with only 1 sample, but the model output continues to improve as
the number of samples is higher, especially in the smallest vessels
structures. Particularly, training with 1 image is enough to find the
main vessel structures, but the smallest vessels are more well-defined
when training with a higher amount of images.

Overall, it can be seen that training with the SSIM loss implies a
better performance than training with the MSE loss, as values of AUC-
ROC and AUC-PR are slightly greater with this training loss for each
approach. Moreover, the PW-CE is consistently better than both GM-CE
approaches when training with MSE and SSIM. Finally, it is remarkable
that the performance of the two GM-CE approaches is very similar, as
none of them is consistently better than the other.

The results obtained for the vessel segmentation can be explained
due to 2 main reasons. Firstly, the PW-CE happened to be advantageous
for the vessel segmentation task. This is probably due to the fact that
this approach encourages the network to rely on the local context, an
aspect that is known to be important for this task. Secondly, using the
SSIM loss should be advantageous because SSIM was specifically de-
signed for computing the structural differences between images. Thus,
in relative terms, SSIM should give more importance to the vascular
structures than to the uniform background.

The results of the fovea localization can be seen in Table 3. As
expected, the mean distance error of the model decreases as the number
of training images increases. In general terms, it can be seen that
the best performance obtained when training with only 1 image is
achieved by the GM-CE (CB) approach using the SSIM loss function,
with a mean distance error value of 75.11. In the case of training with
200 images and 413 images, the best performance is achieved by the
PW-CE approach using the MSE loss, with the mean distance error
values of 15.92 and 14.76, respectively. Apart from that, none of the
Context Encoder approaches nor any of the training losses provide a
consistently better performance than others. In that regard, given the
good results that are achieved by PW-CE, it seems that the analysis of
the local context may be enough to successfully localize the fovea in
most of the images. However, it must also be considered that the GM-CE
approaches may not be necessarily taking advantage of all the available
global context. Additionally, in comparison to vessels segmentation, the
good results that are achieved using MSE loss indicate that the fine
structural details are not as important for the localization of the fovea.
Finally, Fig. 14 depicts the evolution of the model output using the
best approach with 413 images (PW-CE and the loss MSE) with respect
to the number of training samples. There, it can be seen that, as this
number increases, the distance map gets more precise. In fact, for both
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(a) Original image.

(b) PW-CE with MSE loss. (c) PW-CE with SSIM loss.

(d) GM-CE (CB) with MSE loss. (e) GM-CE (CB) with SSIM loss.

(f) GM-CE (CS) with MSE loss. (g) GM-CE (CS) with SSIM loss.

Fig. 12. Examples of images reconstructed by the Context Encoder approaches. The regions with the most significant differences are highlighted with blue boxes.

Table 2
Quantitative results obtained for the vascular segmentation task in terms of AUC-ROC and AUC-PR. The results of
the best approach (PW-CE with SSIM loss) correspond with the shadowed cells.

Approach Training loss AUC-ROC (%) AUC-PR (%)
1 image 10 images 20 images 1 image 10 images 20 images

PW-CE MSE 96.38 97.58 97.87 87.65 90.27 90.99
GM-CE (CB) MSE 95.86 97.43 97.78 86.60 89.85 90.79
GM-CE (CS) MSE 96.11 97.45 97.77 87.11 89.93 90.75
PW-CE SSIM 96.94 97.73 97.94 88.75 90.54 91.17
GM-CE (CB) SSIM 96.81 97 .67 97.88 88.63 90.44 91.06
GM-CE (CS) SSIM 96.75 97 .67 97.90 88.35 90.41 91.06

10
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Table 3

Quantitative results of the fovea localization task, given the number of
samples used for the training process. The shadowed cells point out the
best result for each amount of used images.

Approach Training loss ~ Mean distance error
1 image 200 images 413 images

PW-CE MSE 89.47 15.92 14.76
GM-CE (CB) MSE 80.21 20.52 18.85
GM-CE (CS) MSE 82.19 16.54 17.51
PW-CE SSIM 86.91 17.80 18.20
GM-CE (CB) SSIM 75.11 19.26 15.69
GM-CE (CS) SSIM 85.33 17.50 16.53

retinographic images, the distance map shows noticeable background
noise that tends to decrease as the number of training images increases.
It is remarkable that the bottom image also shows a considerable
amount of false candidate detections, that also tend to disappear as
the number of training images increases. This is due to the fact that
this second image shows a great amount of dark lesions that can be
confused with the macular area by the model.

In general, the overall idea that can be extracted from the results of
both transfer learning tasks is that the PW-CE approach performs better
in almost all cases. However, all the 3 approaches of Context Encoding
demonstrate a very similar performance. Therefore, even if the perfor-
mance achieved by the GM-CE approaches seems to be slightly lower in
many cases, this is compensated with the advantages that this kind of
approaches offer. In particular, the fully-convolutional fashion allows
applying the methodology to full resolution retinographies without the
necessity of patch-wise processing, an aspect that simplifies both the
training and the inference processes. Finally, a point that can be made
regarding the loss function is that the two losses achieve a similar
overall performance for the task of the fovea localization. However,

training with a prog

1 2 3
- . .
Training with Training with Training with
Ground truth 1 pl 200 samples 413 pl
1 2 3
- - .
Training with Training with Training with
Ground truth 1 pl 200 samples 413 samples
4 5 6
- - -
4 5 [
.
. . .
*

Fig. 14. Results of the fovea localization that depict the evolution of the distance maps
as the number of training ples inc Some remarkable regions of the images
where notable difference can be seen are highlighted with boxes.

SSIM always achieves a higher performance for the task of vessels
segmentation.
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Table 4
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Comparison of the method herein proposed with the best configuration against the random initialization and the
Multimodal Reconstruction for the vessel segmentation task. The highlighted cells remark, for each amount of

images, which is the best obtained performance.

Method AUC-ROC (%)

AUC-PR (%)

1 image 10 images

20 images

1 image 10 images 20 images

Random
initialization

95.97 97.36

97.51

86.72 89.83 90.44

Multimodal
Reconstruction [25]

97.02 97.70

97.82

89.14 90.52 91.02

Ours 96.94 97.73

97.94

88.75 90.54 91.17

4.3. Comparison with alternative methodologies

As part of the experimental validation, we also compare the per-
formance obtained by our method in vascular segmentation and fovea
localization against training from random initialization and from the
Multimodal Reconstruction pre-training proposed by [25]. This latter
work was considered for the comparison given that the nature of the
proposed pre-training is very similar to the one that is proposed here,
(as it uses a self-supervised learning task to pre-train the models and the
same network architecture). It is important to note that, for our method,
we are taking as reference the PW-CE paradigm training with the SSIM
loss as this is the scenario with the best overall performance. The reason
to compare this methodology with those 2 scenarios (random initializa-
tion and Multimodal Reconstruction) is to contrast the results obtained
against a baseline approach without any kind of pre-training (random
initialization) and a pre-training approach (Multimodal Reconstruction)
that represents one of the most powerful strategies of the retinal image
analysis state-of-the-art.

Regarding the vessel segmentation, the comparison can be seen in
Table 4, where the best performance is obtained by our method in
terms of both AUC-ROC and AUC-PR while using the best configu-
ration of Context Encoding. Additionally, Fig. 15 depicts graphically
the evolution of the performance in both AUC-ROC and AUC-PR with
regard to the number of images used to refine the model. There, it
is clearly noticeable that the performance of the random initializa-
tion is considerably lower in comparison with both transfer learning
approaches. In that regard, both the Context Encoding and the Multi-
modal Reconstruction offer very similar results, being the Multimodal
Reconstruction slightly better when training with 1 image, but slightly
worse for 10 and 20 images for both metrics. It is important to note
that, in general, despite the fact PW-CE with SSIM loss is the approach
with the best results, the GM-CE approaches show a very similar per-
formance, considerably better than random initialization and close to
the performance obtained by the Multimodal Reconstruction approach.

With respect to the fovea localization, the comparison is shown in
Table 5. It can be seen that the Context Encoding pre-training provides
a considerable improvement with respect to the random initialization,
as the mean distance error decreases from 22.47 to 14.76 when training
with 413 images. In the same way, there is also a slight improvement
when comparing our method against the Multimodal Reconstruction.
Moreover, Fig. 16 depicts the performance improvement with respect
to the number of images, showing a very similar scenario to the
vascular segmentation. Firstly, the mean distance error of the random
initialization is always noticeably higher, specially when training with
only 1 image. In the case of the transfer leamning approaches, it can
be seen that, when training with 1 image, the performance of Con-
text Encoding is closer to random initialization than to Multimodal
Reconstruction. However, when training with 200 and 413 images,
the Context Encoder experiences a notorious improvement, producing
a slightly better performance than the Multimodal Reconstruction for
both cases. In a similar line as in the vessel segmentation, the GM-
CE approaches obtain similar results to Multimodal Reconstruction and
the PW-CE approach trained with MSE loss (the best Context Encoder
approach for this task).

AUC-ROC results for the vessels segmentation
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Fig. 15. Comparison among the results obtained by the random initialization, the
Multimodal Reconstruction and the best approach of Context Encoding for vessels
segmentation (PW-CE with SSIM loss). (a) AUC-ROC results. (b) AUC-PR. results.

With these results, it can be seen that the Context Encoder clearly
improves the performance in comparison with a random initialization
approach. Additionally, in comparison with the Multimodal Recon-
struction, the previous state-of-the-art transfer learning methodology
for retinal images that represents one of the most powerful approaches
currently available in the field, the performances are very similar.
However, the Context Encoder offers important advantages, mainly
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Table 5

Comparison of the method proposed in this work given the best
configuration with the random initialization results and the method
of Multimodal Reconstruction for the fovea localization task. The
highlighted cells show the best performance obtained for each
amount of images.

Method Mean distance error
1 image 200 images 413 images
Random 113.25 36.38 22.47
initialization
Multimodal 43.23 16.45 14.86
Reconstruction [25]
Qurs 89.47 15.92 14.76
Mean distance error results for the fovea localization task
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Fig. 16. Results of mean di e error obtained for the fovea localization task. In this

case, the lower the values, the better the results.

due to the wider availability of single-modality eye fundus datasets.
In contrast, the Multimodal Reconstruction requires more complex
datasets composed of simultaneous multimodal images obtained from
the same patient, an aspect that makes the data gathering much more
challenging. Another limitation of this pre-training strategy is that the
images of the same patient must be paired and registered, an aspect that
makes it necessary to develop more complex methodologies (includ-
ing the challenging task of registering images of different modalities
rather than images of the same modality). Therefore, despite all the
Multimodal Reconstruction strengths, the proposed Context Encoder
transfer learning approach emerges as a powerful alternative strategy
to mitigate the problem of data scarcity in this biomedical imaging
domain. In that regard, we would like to point out that the methodology
herein proposed could be adapted conveniently to perform other tasks
as well, such as image classification and disease diagnosis. The potential
of our proposal for these applications could be explored in future works.

5. Conclusions

Despite the great capabilities that deep learning algorithms provide,
data scarcity is still a very common issue that limits their application
in biomedical image domains. In that regard, in this work, we propose
the application of the Context Encoder paradigm for transfer learning
in retinal imaging. To this end, we propose 3 different approaches
to adapt the original low-resolution Context Encoder methodology to
the full resolution eye fundus images. The first approach considers
a patch-wise processing, while the remaining 2 approaches consider
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a fully-convolutional processing. Additionally, in contrast to previous
works, we also propose the use of the SSIM index for the loss function
of the Context Encoder. This has the potential to facilitate the learning
of the different structures in the images. Finally, we aim at demon-
strating the advantages of the proposed approaches by solving, using
transfer leamning, two relevant tasks in retinal image analysis: vessel
segmentation and fovea localization.

To validate the proposals, we conducted an exhaustive experi-
mentation on different publicly available datasets. Overall, the results
demonstrate that all the proposed Context Encoder approaches are able
to recognize the most relevant structures of the eye fundus images
without the necessity of manually labeled data. The results also demon-
strate that the knowledge extracted from this self-supervised task can
be reused to improve the performance of 2 relevant finalist tasks in
the context of retinographic images: vessels segmentation and fovea
localization. These tasks were chosen as they are often used as reference
in the state-of-the-art, but this pre-training could be generalized to solve
any kind of task within the application domain. Thus, the methodology
herein proposed emerges as a powerful strategy to mitigate the data
scarcity issue using single-image modality datasets for pre-training.
This is a more powerful strategy in comparison with the previous
state-of-the-art approach of Multimodal Reconstruction, as in this lat-
ter case paired and registered multimodal data is needed. Finally,
it must be noticed that the developments made in this work could
be extrapolated to other relevant tasks in the field as, for example,
optic disk segmentation and localization, pathology detection, and even
to different biomedical imaging domains where the analysis of full
resolution images is also required. This also applies to other relevant
experiments, such as training with bigger datasets to evaluate how
this impacts on performance. Additionally, different paradigms of self-
supervised leaming, other types of pre-training and other architectures
could be studied in independent works to compare their performance
with the Context Encoder. These ideas should be explored in future
works.
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