
Journal of Computational and Applied Mathematics 425 (2023) 115041

p
J
M
C

n
A
t
p
d
r
b
a
t
t

t
i
m

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Boundary-safe PINNs extension: Application to non-linear
arabolic PDEs in counterparty credit risk
oel P. Villarino, Álvaro Leitao ∗, J.A. García Rodríguez
2NICA Research Group, University of Coruña, Spain
ITIC Research Center, Spain

a r t i c l e i n f o

Article history:
Received 30 September 2022
Received in revised form 21 December 2022

MSC:
68T07
35Q91
65M99
91G20

Keywords:
Deep learning
PDEs
PINNs
Boundary conditions
Nonlinear
Couterparty credit risk

a b s t r a c t

The goal of this work is to develop a novel strategy for the treatment of the boundary
conditions for multi-dimension nonlinear parabolic PDEs. The proposed methodology
allows to get rid of the heuristic choice of the weights for the different addends that
appear in the loss function related to the training process. It is based on defining the
losses associated to the boundaries by means of the PDEs that arise from substituting
the related conditions into the model equation itself. The approach is applied to
challenging problems appearing in quantitative finance, namely, in counterparty credit
risk management. Further, automatic differentiation is employed to obtain accurate
approximation of the partial derivatives, the so called Greeks, that are very relevant
quantities in the field.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Deep learning techniques are machine learning algorithms based on neural networks, also known as artificial neural
etworks (ANNs), and representation learning, see [1] and the references therein. From a mathematical point of view,
NNs can be interpreted as multiple chained compositions of multivariate functions, and deep neural networks is the
erm used for ANNs with several interconnected layers. Such networks are known for being universal approximators,
roperty given by the Universal Approximation Theorem, which essentially states that any continuous function in any
imension can be represented to arbitrary accuracy by means of an ANN (although the result does not provide statement
egarding the rate of convergence in accuracy). For this reason, ANNs have a wide range of application, and their use has
ecome ubiquitous in many fields: computer vision, natural language processing, autonomous vehicles, etc. Deep learning
lgorithms are usually classified according to the amount and type of supervision they get during training and, among all
he categories that can be identified, we highlight the supervised and the unsupervised algorithms. They differ in whether
hey receive the desired solutions in the training set or not.

The aforementioned universal approximation property was exploited in the seminal papers [2–4] to introduce a
echnique to solve partial differential equations (PDEs) by means of ANNs. In recent years there has been a growing interest
n approximating the solution of PDEs by means of deep neural networks. They promise to be an alternative to classical
ethods such as Finite Differences (FD), Finite Volumes (FV) or Finite Elements (FE). For example, the FE technique

∗ Corresponding author.
E-mail addresses: joel.perez.villarino@udc.es (J. P. Villarino), alvaro.leitao@udc.es (Á. Leitao), jose.garcia.rodriguez@udc.es (J.A. García Rodríguez).
https://doi.org/10.1016/j.cam.2022.115041
0377-0427/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cam.2022.115041
https://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2022.115041&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joel.perez.villarino@udc.es
mailto:alvaro.leitao@udc.es
mailto:jose.garcia.rodriguez@udc.es
https://doi.org/10.1016/j.cam.2022.115041
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041
consists in projecting the solution in some functional space, the Galerkin spaces. Then, by passing to the weak variational
formulation and taking the discrete basis, we can find a linear system of equations whose unknowns are the approximated
values of the solution as each point of the mesh. In a similar manner, the ANN can be trained to learn data from a physical
law that is given by a PDE or a system of PDEs. The idea is quite similar to the classical Galerkin methods, but instead of
representing the solution as a projection in some flavour of Galerkin space, the solution is written in terms of ANNs as
the composition of nonlinear functions depending on some network weights. As a result, instead of a high dimensional
linear system, a high dimensional nonlinear optimization problem is obtained for the ANN weights. This problem must
be solved using nonlinear optimization algorithms such as stochastic gradient descent-based methods, e.g., [5], and/or
quasi-Newton methods, e.g., L-BFGS, [6]. More recently, with the advances in automatic differentiation algorithms (AD)
and hardware (GPUs), this kind of techniques have gained more momentum in the literature and, currently, the most
promising approach is known as physics-informed neural networks (PINNs), see [7–11].

In the last few years, PINNs have shown a remarkable performance. However, there is still some room for improvements
within the methodology. One of the disadvantages of PINNs is the lack of theoretical results to control the approximation
error. Obtaining error estimates or results for the order of approximation in PINNs is a non-trivial task, much more
challenging than in classical methods. Even so, the authors in [10,12–17] (among others) have derived estimates and
bounds for the so-called generalization error considering particular models. Another drawback is the difficulty when
imposing the boundary conditions (a fact discussed further later in this section). Nevertheless the use of ANNs has several
advantages for solving PDEs: they can be used for nonlinear PDEs without any extra effort; they can be extended to
(moderate) high dimensions; and they yield accurate approximations of the partial derivatives of the solution thanks to
the AD modules provided by modern deep learning frameworks.

PINNs is not the only approach relying on ANNs to address PDE-based problems. They can be used as a complement
for classical numerical methods, for example training the neural network to obtain smoothness indicators, or WENO
reconstructions in order for them to be used inside a classical FV method, see [18]. Also ANNs are being used to solve PDE
models by means of their backward stochastic differential equation (BSDE) representation as long as the Feynman-Kàc
theorem can be applied, which is the usual situation in computational finance, for example. In [19], the authors present the
so called DeepBSDE numerical methods and their application to the solution of the nonlinear Black–Scholes equation, the
Hamilton–Jacobi–Bellman equation, and the Allen–Cahn equation in very high (hundreds of) dimensions. The connection
of such method with the recursive multilevel Picard approximations allows the authors to prove that DeepBSDEs are
capable of overcoming the so called ‘‘curse of dimensionality’’ for a certain kind of PDEs, see [20,21].

The main goal of the present work is to develop robust and stable deep learning numerical methods for solving
nonlinear parabolic PDE models by means of PINNs. The motivation arises from the difficulty of finding and numerically
imposing the boundary conditions, which are always delicate and critical tasks both in the classical FD/FV/FE setting and
thus also in the ANN setting. The common approach consists in assigning weights to the different terms involved in the
loss function, where the selection of this weights can be done heuristically or by means of optimization procedures, see,
for example, [22] and the references therein. We introduce a new idea that consists in introducing the loss terms due to
the boundary conditions by means of evaluating the PDE operator restricted to the boundaries. In this way the value of
such addends is of the same magnitude of the interior losses. Although this is non feasible in the classical PDE solving
algorithms, it is very intuitive within the PINNs framework since, by means of AD, we can evaluate this operator in the
boundary even in the case it contains normal derivatives to such a boundary. Thus, this novel treatment of the boundary
conditions in PINNs is the main contribution of this work, differing substantially from other boundary approaches such
as the presented in [23]. Both try to avoid, as far as possible, adjusting the hyperparameters that control the contribution
of each addend to the loss function, but by different mechanisms. In [23], the contribution of the Dirichlet boundaries
and initial condition are avoided in the loss function by exploiting the fact that they can be imposed as ‘‘hard constrains’’.
In our approach the boundary operators are reformulated, based on the given PDE, with the aim to get rid the choice of
such weights. In this way, our framework is more generalist since more boundary conditions fit into it and imposing hard
constrains become unfeasible as the dimension of the problem grows. Further, AD can be naturally exploited to obtain
accurate approximations of the partial derivatives of the solution with respect to the input parameters (quantities of much
interest in several fields).

Although the proposed methodology could be presented for a wide range of applications, here we will focus on the
solution of PDE models for challenging problems appearing the computational finance field. In particular, we consider
the derivative valuation problem in the presence of counterparty credit risk (CCR), which includes in its formulation the
so-called x-value adjustments (XVA). These terms refer to the different valuation adjustments that arise in the models
when the CCR is considered, i.e., when the possibility of default of the parties involved in the transaction is taking into
account. After the 2007–2009 financial crisis, CCR management became of key importance in the financial industry. A vast
literature can be found on this topic, among which we highlight [24–42].

Of course, the world of quantitative finance in general, and CCR management in particular, has not been exempt
from the advances in deep learning and, nowadays, ANNs are employed for a wide variety of tasks in the industry.
Unsupervised ANNs, in both flavours, PINNs and DeepBSDEs, have been recently used for solving financial problems.
For example, in [43] the authors apply PINNs for solving the linear one and two dimensional Black–Scholes equation,
and [44] introduces the solution of high dimensional Black–Scholes problems using BSDEs. In [45] the authors present
a novel computational framework for portfolio-wide risk management problems with a potentially large number of risk
2

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

t
X
t

2

t
Ω

G

factors that makes traditional numerical techniques ineffective. They use a coupled system of BSDEs for XVA which is
addressed by a recursive application of an ANN-based BSDE solver. Other relevant works that make use of ANNs for
computational finance problems, although not formulated as PDEs, include [46,47], or [48], for example.

The outline of this paper is as follows. In Section 2 we start by revisiting the PINNs framework for solving PDEs.
Section 3 introduces the new methodology for the treatment of the boundary conditions in the PINNs setting. In Section 4,
he XVA PDE models that we solve in this paper and the adaptation to our PINNs extension are described; more precisely,
VA problems under on Black–Scholes and Heston models. Finally, in Section 5, the numerical experiments that assess
he accuracy of the approximation for option prices and their partial derivatives (the so-called Greeks) are presented.

. PINNs

In this section we introduce the so-called PINNs methodology for solving PDEs. The illustration is carried out according
o the kind of PDEs that arise in the selected financial problems, i.e., semilinear parabolic PDEs with source terms. Thus, let
⊂ Rd, d ∈ N, be a bounded, closed and connected domain and T > 0. Consider the following boundary value problem.

iven a function f ∈ C(R) and setting d̂ = d+ 1, find u : (t, x) ∈ [0, T]×Ω ⊂ Rd̂
−→ R such that⎧⎪⎪⎨⎪⎪⎩

∂u
∂t

(t, x)+ L[u](t, x)− f (u(t, x)) = 0, ∀ (t, x) ∈ (0, T)×
◦

Ω,

B[u](t, x)− g(t, x) = 0, ∀ (t, x) ∈ (0, T)× ∂Ω,

u(0, x)− u0(x) = 0, ∀ x ∈ Ω,

(1)

where L[·] is a strongly elliptic differential operator of second order in the space variables x, and B[·] is a boundary
operator defined, for example, by a Dirichlet and/or Neumann boundary conditions. The goal is to approximate this
unknown function u by means of a feed-forward neural network, uθ (t, x) := u(t, x; θ), where θ ∈ RP are the network
parameters.

2.1. Feed-forward neural networks

A feed-forward network is a map that transforms an input y ∈ Rd̂ into an output z ∈ Rm by means of the composition of
a variable number, L, of vector-valued functions called layers. These consist of units (neurons), which are the composition
of affine-linear maps with scalar non-linear activation functions, [1]. Thus, assuming a L-layer network with βl neurons
per layer, it admits the representation

h(y; θ) := hL(· , θ L) ◦ hL−1(· , θ L−1) ◦ · · · ◦ h1(· , θ1)(y), (2)

where, for any 1 ≤ l ≤ L,

hl(zl; θ l) = σl(Wlzl + bl), Wl ∈ Rβl+1×βl , zl ∈ Rβl , bl ∈ Rβl+1 , (3)

with z1 = y, β1 = d̂ and βL = m.
Usually (and this is taken as a guideline in this paper) the activation functions are assumed to be the same in all layers

except in the last one, where we consider the identity map, σL(·) = Id(·). In addition, taking into account the nature
of the problem, it is required that the neural network fulfils the differentiability conditions imposed by (1), requiring
sufficiently smooth activation functions such as the sigmoid or the hyperbolic tangent, [49].

Lastly, it should be noted that a network as the one described above has d̂ + m +
∑L−1

l=2 βl neurons, with parameters
θl = {Wl, bl} per layer, yielding a total of

P =
L−1∑
l=1

(βl + 1)βl+1 (4)

parameters, which determine the network’s capacity.

2.2. Loss function and training algorithm

In order to obtain an approximation of the function u by means of a neural network, uθ , we need to find the network’s
parameters, θ ∈ RP , that yields the best approximation of (1). This leads to a global optimization problem that can be
written in terms of the minimization of a loss function, that measures how good the approximation is. The most popular
choice for PINNs is to reduce the problem (1) to an unconstrained optimization problem, [3], leading to the family of
loss functions involving the Lp, p ∈ {1, 2, . . . ,∞}, error minimization of the interior, initial and boundary residuals.
Considering the case p = 2, the loss function, J (θ), is defined as

J (θ) := λ
RI

2 + λ
RB

2 + λ
RO

2 ,
I θ L2((0,T)×Ω) B θ L2((0,T)×∂Ω) O θ L2(Ω)

3

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

w

or, equivalently,

J (θ) = λI

∫ T

0

∫
Ω

⏐⏐RI
θ (t, x)

⏐⏐2 dxdt + λB

∫ T

0

∫
∂Ω

⏐⏐RB
θ (t, x)

⏐⏐2 dσxdt + λO

∫
Ω

⏐⏐RO
θ (x)

⏐⏐2 dx, (5)

here

RI
θ (t, x) :=

∂uθ

∂t
(t, x)+ L[uθ](t, x)− f (uθ (t, x)), (t, x) ∈ (0, T)×

◦

Ω, (6)

RB
θ (t, x) := B[uθ](t, x)− g(t, x), (t, x) ∈ (0, T)× ∂Ω, (7)

RO
θ (x) := uθ (0, x)− u0(x), x ∈Ω, (8)

account for the residuals of the equation, the boundary condition and the initial condition, respectively. The λj ∈ R+, j ∈
{I,B,O}, are preset hyperparameters (or updateables during optimization) that allow to impose a weight to each addend
of the loss, as can be seen in, e.g., [50,51]. Note that, for the computation of the residuals (6), (7), it is necessary to obtain
the derivatives of the neural network with respect to the input space and time variables, well defined under the premise
of using sufficiently smooth activation functions. Numerically, they are calculated with the help of AD modules, such
those included in Tensorflow, [52], and Pytorch, [53]. Finally, the strategy followed in PINNs consists of minimizing the
loss function (5), i.e, finding θ∗ ∈ Θ such that

θ∗ = argmin
θ∈Θ

J (θ), (9)

where Θ ⊂ RP is the set of admissible parameters.
Except for the simple cases, the integrals appearing in (5) must be computed numerically by means of quadrature

rules, [10]. For this reason, we need to select a set of training points, P = PI ∪ PB ∪ PO , where

PI = {(tIi , xIi)}
NI
i=1, (tIi , xIi) ∈ (0, T)×

◦

Ω ∀i ∈ {1, 2, . . . ,NI},

PB = {(tBi , xBi)}
NB
i=1, (tBi , xBi) ∈ (0, T)× ∂Ω ∀i ∈ {1, 2, . . . ,NB},

PO = {(0, xOi)}NO
i=1, xOi ∈ Ω ∀i ∈ {1, 2, . . . ,NO},

acting as nodes in the quadrature formulas.
Clearly, the choice of the quadrature technique has a direct influence on how these points are selected, and may

correspond to, for example, a suitable mesh for a trapezoidal quadrature rule, SOBOL low-discrepancy sequences, a latin
hypercube sampling, etc. Moreover, such a choice is highly influenced by the problem’s time–space dimension, being
necessary to use random sampling in high-dimensional domains.

In general terms, we can define the quadrature rule to calculate the integral of a function φ : A ⊂ Rd̂
−→ R, as

ΦM :=

M∑
i=1

wiφ(yi) (10)

with {wi}
M
i=1 ⊂ R+ the weights and {yi}Mi=1 ⊂ A the nodes of the quadrature rule. This allows us to rewrite the loss function

(5) taking into account the chosen discretization and quadrature as follows,

Ĵ (θ) = λI

NI∑
i=1

wI
i |R

I
θ (t

I
i , x

I
i)|

2
+ λB

NB∑
i=1

wB
i |R

B
θ (t

B
i , xBi)|

2
+ λO

NO∑
i=1

wO
i |R

O
θ (xOi)|2. (11)

From now on, we will call ‘‘training’’ the process of finding the minimum of the problem (9) with the loss function
defined in (11). Even in the case of working with linear PDEs, where the defined functional would be convex, transferring
the problem to the parameter space of the neural network yields a high dimensional and highly non-convex problem, [50].
As a consequence, the uniqueness of the solution is not guaranteed, and we can only expect to reach a sufficiently low
local minima. For this reason, it is common to employ stochastic gradient descent-based methods, such as Adam, [5], or
higher-order quasi-Newton optimizers, such as L-BFGS, [54]. In practice, it also implies that a proper choice of model
hyperparameters, such as the network size or the learning rate, is essential to achieve a high degree of accuracy.
Taking into account what has been explained throughout this section, we detail the steps to find a neural network that
approximates the solution of the problem (1) in Algorithm 1.

In high dimensional problems, where the volume of the associated domain is extremely large, several modifications
to the Algorithm 1 have been proposed, many of them are related to the selection and updating of the quadrature nodes
during training. Among the most popular choices are the mini-batch sampling strategy where, at each training iteration,
the set of quadrature nodes is resampled, see e.g., [55]; or the ones known as residual-based sampling [56], where the
training set is refined based on the training losses.

Essentially, and except for some particularities, the optimization process in the case of PINNs is similar to that presented
in any other supervised or unsupervised tasks in the field of deep learning. Thus, many of the techniques developed to
4

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

E

w

d

R
m
f
s

a

w

w

a
t

Algorithm 1 PINNs’ training algorithm

Require: Select a set of training points P , a quadrature rule and an optimization procedure. Define a number of training
steps, N . Initialize a neural network , uθ0 , with initial parameters θ0.

nsure: Find an approximate local minimum θ∗ of (9)
1: for k = 0, k++, k < N do
2: uθk ← uθk (t, x) ▷ Evaluate the neural network
3: RI

θk
,RB

θk
,RO

θk
← uθk ▷ Compute the residuals

4: Ĵ (θ k)← RI
θk

,RB
θk

,RO
θk

▷ Compute the loss function
5: θ k+1

← θ k
▷ Apply the optimizer step

6: end for

improve training in such areas can be trivially applied to our case, such as regularization techniques, [1], Dropout, [57],
transfer learning, [58], or other strategies designed to improve the performance of the global optimizer. In particular, in
the experiments performed in Section 5, we employ an adaptive learning rate schedule known as inverse time decay, [58],
which follows the construction,

ϵk =
ϵ0

1+ δk/a
, (12)

here ϵ0 is the initial learning rate, ϵk the learning rate at step k, δ the decay rate and a the decay step.
Once trained, the network serves as an approximate solution to problem (1). It can be evaluated at any point in the

omain, and its derivatives can be calculated by AD in a few seconds.

emark 1. One of the most popular quadrature techniques is Monte Carlo integration. On the one hand, it is a mesh-free
ethod since the points are sampled randomly, making it suitable for high dimensional problems as it does not suffer

rom the curse of dimensionality. On the other hand, applied to the L2 error expression (11), it gives rise to the mean
quared error function, widely used in the deep learning’s world.
If we consider a random set of collocation points and define the quadrature weights as

wI
i =
|(0, T)×

◦

Ω|

NI
, wB

i =
|(0, T)× ∂Ω|

NB
, wO

i =
|Ω|

NO
, (13)

nd taking

λI =
λ̂I

|(0, T)×
◦

Ω|

, λB =
λ̂B

|(0, T)× ∂Ω|
, λO =

λ̂O

|Ω|
, (14)

ith λ̂j ∈ R+, j ∈ {I,B,O}, then we obtain

ˆJ (θ) = λ̂IMSEI + λ̂BMSEB + λ̂OMSEO,

here

MSEI =
1
NI

NI∑
i=1

|RI
θ (t

I
i , xIi)|

2
, MSEB =

1
NB

NB∑
i=1

|RB
θ (t

B
i , x

B
i)|

2
, MSEO =

1
NO

NO∑
i=1

|RO
θ (xOi)|2,

which resembles the loss function employed in most of the works in this topic.

2.3. Convergence and generalization error bounds

With the growth of these methodologies, it is of increasing interest to derive convergence results, as they exist in
the finite differences and finite elements world. There are works, such as [49], in which classical notions of consistency
and stability are exploited to prove the strongly convergence of the minimizer to the solution of the linear second-order
elliptic or parabolic problem, as the number of collocation points grows. This assumes a random discretization of the
domain together with Monte Carlo integration.

However, most of the theoretical work on PINNs is dominated by the search for generalization error bounds, where
the generalization error, EG(θ), is understood as the total error of the approximated solution, which in our case is given
by the square root of the loss function (5), i.e.,

E(θ)2G = J (θ),

nd depends on the network parameters θ ∈ Θ . As discussed in the previous section, evaluating this expression requires
he use of numerical integration methods with their respective quadrature points, P . In this sense, the square root of
5

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

t
P
s
a
s

C
t
(
t

s
t
b

T
c

the discretized version of the loss function, given in (11), serves to approximate the generalization error and is known as
training error, ET (θ,P).

Under this setting, we find several papers that attempt to bound the generalization error, for specific problems, in
erms of the training error, the chosen quadrature rule, the number of collocation points and the stability of the underlying
DE. For example, such bounds are obtained for the linear Kolmogorov equation, [12], the equation related to the viscous
calar conservation laws and the semi-linear parabolic equation, [10], among others. Thus, under existence, uniqueness
nd regularity assumptions for the semi-linear parabolic case with Lipschitz nonlinearities, the Theorem 3.1 from [10]
tates that the generalization error can be estimated as

EG ≤ C1

(
EO
T + EI

T + C2(EB
T)

1
2 + (CO

q)
1
2 N
−

αO
2

O + (CI
q)

1
2 N
−

αI
2

I + C2(CB
q)

1
4 N
−

αB
4

B

)
,

where EX
T are the training errors which verify the relationship (EX

T)2 = RX
θ , X ∈ {O, I,B}. In addition, CX

q N−αX
X are

the bounds of the quadrature error related to the initial condition, interior domain and boundary, respectively; and C1,
2 are constants that depend on the regularity of the true solution and neural network approximation on the boundary,
ogether with the temporal domain. This result is of special interest because its hypotheses fit within our general problem
1) and, furthermore, since we will work with a non-linear contractive source term, the result can be easily applied to
he particular problems presented in Section 4.

In a recently published paper, [17] presents several error bounds in a more abstract framework. Taking sufficiently
mooth domains and under the assumptions: (1) there exist a neural network that can approximate the solution of the
ime-dependent PDE at time T with a prescribed tolerance ϵ; and (2) the error of the PINNs algorithm can be bounded
y means of the error related to its partial derivatives; the following theorem holds.

heorem 1 ([17]). Let r, s ∈ N, let u ∈ C(s,r)([0, T] × Ω) be the solution of the abstract time-dependent PDE with initial
ondition u0 ∈ L2(Ω) and let the above assumptions be satisfied. There exists a constant C(s, r) > 0 such that for every M ∈ N
and ϵ > 0 there exist a neural network uθ : [0, T] ×Ω −→ R, with the hyperbolic tangent as activation function, for which
it holds that,

∥uθ − u∥Lq([0,T]×Ω) ≤ C(∥u∥C0M−s + ϵ),

where M is the number of spatial intervals chosen in the discretization.

Moreover, this theorem includes an additional result in which the L2-norm of the operator applied to the neural
network is bounded. Both statements together imply that there exists a neural network for which the generalization
error and the PINN’s loss function can be made as small as possible. Since our framework is embedded within this abstract
formulation, such a result ensures a solid theoretical foundation for our work.

3. Novel treatment of boundary conditions

Ideally, the loss function correctly captures how far away we are from the exact solution of the problem and how well
the boundary restrictions are fulfilled, so that the optimization algorithm can get us close to a good local minima, at least.
However, in practice, this situation is not always reproduced when applying numerical methods. In the case of PINNs we
also have this problem and, although the reasons why this happens are poorly understood, previous works, such as [51],
point to the fact that training is focused on getting a small PDE residual in the interior domain, while leading to large
errors in the fitting of the boundary conditions. This suggest that the contribution of the some boundary errors vanishes.

In most of the works on this topic this problem is usually solved by introducing the lambda weights seen before, which
preponderate the contribution of each of the terms involved in the elaboration of the loss function (11). The optimal choice
of this weights is of paramount importance for the algorithm. The main drawback of this methodology is that the choice
of these values is problem-dependent and in most situations is carried out heuristically, [51].

We identify that the introduction of the overriding factors is mainly driven by two features. On the one hand,
we encounter the problem that the integrals involved in the loss function present different domain dimensionality,
i.e., introduce different magnitudes of volume. The integral referring to the residual in the interior of the domain involves
a d̂-volume, while the integrals associated with the initial and boundary residuals involve a (d̂− 1)-volume.

An easy solution to solve this situation is to force these lambdas to be inversely proportional to the volume of the each
integral’s domain considered (as we have shown for the Monte Carlo case). Then, taking into account (14), we rewrite the
discrete loss function (11) as

ˆJ (θ) =
λ̂I

|(0, T)×
◦

Ω|

NI∑
i=1

wI
i |R

I
θ (t

I
i , x

I
i)|

2
+

λ̂B

|(0, T)× ∂Ω|

NB∑
i=1

wB
i |R

B
θ (t

B
i , xBi)|

2
+

λ̂O

|Ω|

NO∑
i=1

wO
i |R

O
θ (xOi)|2. (15)

On the other hand, the magnitude of the contributions to the loss function can differ in several orders, i.e., there are
addends which are negligible with respect to others, leading to a worse local minima in the training or the need to extend
training time. In general, there are two possible situations that can occur simultaneously in a boundary value problem.
6

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

a

a

w

w
r

F
(

B
o
s

w
e
i

One of them is that we can find residuals with large relative losses as the beginning of training. As a consequence, they
can cause longer training times because, in the early stages of the optimization procedure, the loss function only provides
information regarding such losses. The other possibility is that we can find boundaries in which the residuals exhibit
relatively much smaller values, so their contribution to the loss function is, in many cases, negligible. As a result, such
constrains could not provide information to the training.

In order to avoid the arbitrary selection of the loss function weights it is essential to reduce the differences in magnitude
among residuals. For this reason we propose, for the first time to the best of our knowledge, a novel approach which
overcomes this issue. It is based on reformulating, whenever possible, the residuals related to Dirichlet or Neumann
(Robin, higher order derivatives) conditions. This reformulation relies on taking as a residual not the boundary condition
itself but the resulting PDE restricted to the corresponding boundary. This will produce losses of an order of magnitude
similar to that produced by the interior residual, once these quantities are dimensionless.

Thus, most of the Neumann, Robin or higher order derivative boundary residuals we will work with can be written
in this form. It suffices to substitute the condition into the PDE of the interior domain and impose the resulting equation
on the related boundary residual. However, it will only be possible to impose Dirichlet conditions in this way when they
naturally occur at the boundary, i.e., when the Dirichlet condition arises from solving the differential equation that results
at the boundary.

As an illustrative example, let us consider a particular case of the parabolic problem defined in (1), where Dirichlet
nd Neumann boundary conditions are presented. Under the spatial domain Ω =

∏d
i=1

[
xmin
i , xmax

i

]
, the upper boundaries

Γ +xi = (xmin
1 , xmax

1)× · · · × {xmax
i } × · · · × (xmin

d , xmax
d), i = 1, . . . , d,

nd the lower boundaries

Γ 0
xi = (xmin

1 , xmax
1)× · · · × {xmin

i } × · · · × (xmin
d , xmax

d), i = 1, . . . , d,

e want to find the parameters of an ANN uθ in order to make it verify⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂uθ

∂t
+

d∑
i,j=1

aij
∂2uθ

∂xi∂xj
+

d∑
i=1

bi
∂uθ

∂xi
+ f (uθ) = 0, in (0, T)×

◦

Ω,

∂uθ

∂xi
− gi = 0 in Γ +i = (0, T)× Γ +xi , i = 1, . . . d,

uθ − hi = 0 in Γ 0
i = (0, T)× Γ 0

xi , i = 1, . . . d,
uθ − u0 = 0 in Ω,

(16)

here {aij}di,j=1 ⊂ R, {bi}di=1 ⊂ R \ {0}, and gi ∈ C(Γ +i ,R), hi ∈ C(Γ 0
i ,R), i = 1, . . . d. For example, when defining the

esiduals associated with the Neumann conditions, the usual approach is to take the condition itself as the residual, i.e.

R
Γ
+

i
θ =

∂uθ

∂xi
− gi, i = 1, . . . d.

Alternatively, in our proposal, we plug the Neumann condition into the PDE and impose the resulting equation as a
residual, obtaining

R
Γ
+

i
θ =

∂uθ

∂t
+

d∑
i,j=1

aij
∂2uθ

∂xi∂xj
+

d∑
j=1
j̸=i

bj
∂uθ

∂xj
+ bigi + f (uθ), i = 1, . . . , d.

or Dirichlet conditions, the proposed strategy can only be applied when hi verifies the PDE and the initial condition of
16) at the boundary Γ 0

i . In such cases we can define the residual in the same way as the residual of the PDE, i.e.,

R
Γ 0
i

θ =
∂uθ

∂t
+

d∑
i,j=1

aij
∂2uθ

∂xi∂xj
+

d∑
i=1

bi
∂uθ

∂xi
+ f (uθ), i = 1, . . . d.

ecause of that, such kind of Dirichlet conditions does not even need to be included as boundary residuals. Depending
n the quadrature scheme employed, it would be enough to force the existence of interior domain collocation points on
uch a boundary.
Unfortunately, our proposal cannot be applied to the residual related to the initial condition, so another treatment

ill be necessary. Some possible alternatives could come from combining our technique with other boundary treatments
xisting in the literature. For example, the addition of only two hyperparameters that weight the contributions of the
nitial condition and the remaining residual-related integrals, yielding a discrete loss function of the form

ˆJ (θ) = λ̂I

(
1

◦

NI∑
wI

i |R
I
θ (t

I
i , x

I
i)|

2
+

1
|(0, T)× ∂Ω|

NB∑
wB

i |R
B
θ (t

B
i , xBi)|

2

)
+

λ̂O

|Ω|

NO∑
wO

i |R
O
θ (xOi)|2,
|(0, T)×Ω| i=1 i=1 i=1

7

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

t
i
p
h
c
r
f

R
w
s
e
c

4

s
t
t
t
t
m

4

c
p
c

A
w
d
b
(

n

w

I

4

b
S

where it is possible to find such weights by means of, for example, biobjective optimization [22]; or avoiding the initial
state-loss term by imposing such a condition as a hard constrain [23].

In our case we do not use either of these two proposals in the experiments performed in Section 5 since, in relation
o the first approach, the aim of this work is to avoid the inclusion of any optimizable weight in the loss function and,
n relation to the second approach, we work with non-differentiable initial conditions. In the one and two-dimensional
roblems treated later no additional treatment for the initial condition has been necessary but this is insufficient for
igher dimension. In such cases, we propose to perform a weakly converged pre-training of the ANN against the initial
ondition. In addition to achieving the goal of bringing the order of magnitude of the initial condition loss closer to the
emaining loss terms, we have found that it has other benefits such as improving and accelerating training by starting
rom a state closer to the desired one.

emark 2. As a summary, we have first briefly described the main problems that lead to the introduction of additional
eights in the loss function. Then we have proposed a new treatment of the boundary residuals that allows to avoid
uch weights. When we deal with derivative-based boundary conditions, the related residuals are defined by taking the
quation resulting from substituting the boundary conditions in the PDE. For residuals associated with Dirichlet boundary
onditions, we can impose the PDE itself as a boundary residual as long as it arises naturally on such boundary.

. Application to problems in computational finance

In this section we present the PDE formulation of the particular problems we will address in this work. We focus on
ome relevant (and challenging) state-of-the-art problems appearing in computational finance, specifically, in the area of
he CCR assessment. Thus, we consider the valuation of some financial derivatives when accounting for such a risk, namely
he pricing of different risky European option under the Black–Scholes and Heston models. All of them are extensions of
he risk-free derivative pricing models to a formulation that takes into account the effects of bilateral default risk and
he funding costs, i.e., which includes CVA, DVA and FVA adjustments, following the approach of [38]. We chose this
ethodology for its simplicity, but any more complex extension, such as [59], can fit into our framework.

.1. General pricing problem formulation

Let us consider a derivative contract V̂ on d ≥ 1 spot assets, S ∈ Rd
+
, between two parties, the seller B and its

ounterparty C, where both may default. We assume that the default of either B or C does not affect S. Such derivative
ays the seller B the amount H(S) ∈ R at maturity T . In addition, let V the same derivative between two parties that
annot default, i.e., the non-risky derivative value.
Under the described setting, if either the seller or the counterparty defaults, the International Swaps and Derivative

ssociation (ISDA) Master Agreement determines that the value of the derivative is fixed by a Mark-to-Market rule M ,
hich is chosen to be either V̂ or V , adjusted by means of RB, RC ∈ [0, 1], the recovery rates on M if seller or counterparty
efaults, respectively. Following [38,60] we can define the B and C’s default intensities, λB and λC , by means of the spread
etween their bond yields, rB and rC , and the risk-free interest rate, r . In addition, let sF be the funding spread, which is
1− RB)λB if the derivative cannot be used as collateral, or 0 otherwise.

From now on, we establish the Mark-to-Market rule M = V̂ and that the derivative cannot be used as collateral, so a
on-linear PDE model for V̂ is obtained. It follows the general definition⎧⎨⎩

∂V̂
∂t
+ L[V̂] + f (V̂) = 0,

V̂ (0, S)− H(S) = 0,
(17)

here t is the time to maturity variable, L the differential elliptic operator defined by the chosen problem and f the
non-linear source term given by

f (V̂) = λB(1− RB)min
{
V̂ , 0

}
+ λC (1− RC)max

{
V̂ , 0

}
+ sF max

{
V̂ , 0

}
. (18)

n addition, the derivative value without considering counterparty risk, V , obeys the PDE⎧⎨⎩
∂V
∂t
+ L[V] = 0,

V (0, S)− H(S) = 0.
(19)

.2. Specific pricing problem formulation

Having defined the general context of the financial problems to be addressed, we are in a position to present the
oundary value problems obtained in each specific case, as well as their adaptation to the methodology presented in
ection 2.
8

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

a
f

w
c
s
c

w
o

s
S
m
t

F

4.2.1. European options under the Black–Scholes model
We consider an European option driven by d ∈ N stock values S1, S2, . . . , Sd, with strike K ∈ R and maturity T > 0.

We assume that each asset Si follows a geometric Brownian motion with drift the repo rate rRi , and diffusion its volatility
σi. Further, the correlation between two assets Si and Sj is given by ρij with the constraints |ρij| ≤ 1 and ρii = 1.

Under such a setting, the option price, V̂ , is given by the d-dimensional Black–Scholes equation, defined by (17) taking
the elliptic operator as

L = −
1
2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2

∂Si∂Sj
−

d∑
i=1

rRiSi
∂

∂Si
+ rI, (20)

nd the initial condition the payoff agreed between the two parties. In particular, we work with the following contract
unctions for the multidimensional case:

• the arithmetic average basket function,

H(S1, S2, . . . , Sd) = max
{
α

(
1
d

d∑
i=1

Si − K

)
, 0
}
, (21)

• and the worst-of function,

H(S1, S2, . . . , Sd) = max
{
α

(
min

{
S1, S2, . . . , Sd

}
− K

)
, 0
}
, (22)

ith α ∈ {−1, 1} for put and call options, respectively. The choice of this contract functions is not accidental as both are
ommon in the industry. Arithmetic average basket options are often traded because they are cheaper than the total of
ingle-asset options on each particular asset, [61], while worst-of options have application in a wide variety of contingent
laims, such as option bonds, [62].
The spatial domain of our PDE is a Cartesian product of semi-infinite intervals, [0,+∞)d. In order to apply the

methodology introduced in Section 2 for the numerical resolution of the equation, each interval is truncated, obtaining
Ω =

∏d
i=1[0, Si,max]. Moreover, additional conditions must be imposed on the domain boundaries Γ 0

i = (0, T) ×∏i−1
j=1[0, Sj,max] × {0} ×

∏d
j=i+1[0, Sj,max] and Γ +i = (0, T)×

∏i−1
j=1[0, Sj,max] × {Si,max} ×

∏d
j=i+1[0, Sj,max], i ∈ {1, 2, . . . , d}.

On the one hand, it is possible to impose Dirichlet conditions for the lower boundaries since they arise naturally on
them. At each boundary Γ 0

k we substitute Sk = 0 obtaining the boundary operator

∂V̂
∂t
−

1
2

d∑
i=1
i̸=k

d∑
j=1
j̸=k

ρijσiσjSiSj
∂2V̂

∂Si∂Sj
−

d∑
i=1
i̸=k

rRiSi
∂V̂
∂Si
+ rV̂ + f (V̂) = 0, (23)

which corresponds to the (d−1)-dimensional Black–Scholes equation depending on the remaining underlying assets. For
the one-dimensional and multidimensional cases where the initial condition does not depend on the other underlyings,
(22), we can impose the following Dirichlet condition,

ϕk(t, Sk1 , . . . , Skd−1) =
|α − 1|

2
K exp

{
−(r + λB(1− rB)+ λC (1− rC)) t

}
, (24)

hereas, with the initial condition (21), we could impose the solution of the (d−1)-dimensional arithmetic average basket
ption, denoted by B̂Sd−1

k (t, Sk1 , . . . , Skd−1), which would need to be simulated numerically when d > 2.
On the other hand, the following linearity condition is verified for the considered options,

lim
Sk→∞

∂2V̂
∂S2k
= 0, (25)

o that such a condition can be imposed on the upper boundaries Γ +k , k ∈ {1, 2, . . . , d}, when the truncation value
k,max is large enough. Examples of application can be found in [63] for the risky one-dimensional case, or in [64] for the
ultidimensional risk-free case. Working with such a condition in the multidimensional risky case is not a problem since

he qualitative behaviour of the solution does not change in the limit.
Thus, the set of European options considering CCR described above verifies the following boundary value problem.

ind V̂ : [0, T] ×Ω ⊂ Rd+1
−→ R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V̂
∂t
−

1
2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V̂

∂Si∂Sj
−

d∑
i=1

rRiSi
∂V̂
∂Si
+ rV̂ + f (V̂) = 0, in (0, T)×

◦

Ω,

V̂ − hi = 0, in Γ 0
i , i ∈ {1, 2, . . . , d},

∂2V̂
∂S2i
= 0, in Γ +i , i ∈ {1, 2, . . . , d},

ˆ

(26)
V − H = 0, in {0} ×Ω,

9

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

ϕ
b

t
t

w
f
o
p

l
b
t
n
S
c
e

t

w

f
r
κ
a

i

where the initial condition H can be (21) or (22), and hi refers to the Dirichlet condition associated with the chosen payoff,
i or B̂Sd−1

i . Moreover, it is straightforward to prove that the European option without considering CCR verifies Eq. (26)
y taking λB = λC = 0 or, equivalently, f = 0.
Such formulation fits into problem (1) so we can apply everything explained in Section 2 to solve it. In order to do

his, we consider the general training set P = PI ∪ PB ∪ PO , where PI and PO admit the definition given above, while
he abstract set PB must be divided into as many subsets as boundary conditions exist, i.e.,

PB =

(
d⋃

i=1

PΓ 0
i

)⋃(
d⋃

i=1

PΓ
+

i

)
,

here PΓ 0
i
and PΓ

+

i
represent the set of training points taken on the boundary Γ 0

i and Γ +i , respectively. The mechanism
or sampling points will be given by the problem dimensionality. For one and two-dimensional problems, each subset
f training points will be a uniform mesh of the subset to which it refers while, in higher dimension, we will use a
seudo-random sampling, again for each subset of training points defined above.
To approximate the desired solution we consider a neural network, V̂θ : [0, T] × Ω ⊂ Rd+1

−→ R, with L hidden
ayers. Without loss of generality, we assume that the number of neurons per hidden layer is the same, β . Based on the
oundary value problem given in (26), we choose the network residuals taking into account the proposal given in Section 3
o solve the aforementioned training issues. Since on the boundaries Γ 0

i , i = {1, 2, . . . , d}, the Dirichlet conditions arise
aturally, we can use the boundary operator (23) as a residual. This avoid the required numerical simulation of the Black–
choles prices in (d−1)-dimensions. Moreover, on the boundaries Γ +i i = {1, 2, . . . , d}, we have a higher-order derivative
ondition, so we can substitute this condition, (25), into Eq. (17) in order to impose such residual in the same way as we
xplain in Section 3. Applying these considerations, we obtain the following residuals,

RI
θ =

∂V̂θ

∂t
−

1
2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V̂θ

∂Si∂Sj
−

d∑
i=1

rRiSi
∂V̂θ

∂Si
+ rV̂θ + f (V̂θ), in (0, T)×

◦

Ω, (27)

R
Γ 0
k

θ =
∂V̂θ

∂t
−

1
2

d∑
i=1
i̸=k

d∑
j=1
j̸=k

ρijσiσjSiSj
∂2V̂θ

∂Si∂Sj
−

d∑
i=1
i̸=k

rRiSi
∂V̂θ

∂Si
+ rV̂θ + f (V̂θ), in Γ 0

k , k = 1, . . . , d, (28)

R
Γ
+

k
θ =

∂V̂θ

∂t
−

1
2

d∑
i=1
i̸=k

d∑
j=1

ρijσiσjSiSj
∂2V̂θ

∂Si∂Sj
−

d∑
i=1

rRiSi
∂V̂θ

∂Si
+ rV̂θ + f (V̂θ), in Γ +k , k = 1, . . . , d, (29)

RO
θ = V̂θ − H, in {0} ×Ω. (30)

Using the above residuals, the loss function is defined in the same way as in (15) by taking the lambda weights equal
o one, i.e.,

ˆJ (θ) =
1

|(0, T)×
◦

Ω|

NI∑
i=1

wI
i |R

I
θ (y

I
i)|

2
+

d∑
k=1

1
|Γ 0

k |

N
Γ 0
k∑

i=1

w
Γ 0
k

i |R
Γ 0
k

θ (y
Γ 0
k

i)|2

+

d∑
k=1

1
|Γ +k |

N
Γ
+

k∑
i=1

w
Γ
+

k
i |R

Γ
+

k
θ (y

Γ
+

k
i)|2 +

1
|Ω|

NO∑
i=1

wO
i |R

O
θ (yOi)|2,

(31)

here yXi ∈ PX and NX = |PX |, X ∈ {I,O} ∪ {Γ 0
k }

d
k=1 ∪ {Γ

+

k }
d
k=1.

In the case of working with a uniformly generated training set, we will use the quadrature weights corresponding to
the trapezoidal rule while, in training sets generated by random sampling, we will apply Monte-Carlo integration with
the quadrature weights defined in (13).

4.2.2. European options under the Heston model
In order to emphasize the general applicability of our approach, we address the problem of pricing a European option

accounting for CCR, with strike K ∈ R and maturity T > 0, under the assumption that the variance of the underlying
ollows a stochastic process. Thus, let S be the underlying stock value following a geometric Brownian motion with drift
R. We define the volatility of S from its variance, ν, which follows a CIR process, [65], with η > 0 the mean variance,
> 0 the mean reversion rate, σ > 0 the volatility of the variance and ρ ∈ [−1, 1] the correlation between the asset

nd variance processes. Under this setting we obtain the Heston model, [66], which is broadly used in the industry.
The PDE problem for pricing the risky European option under the Heston model is derived in [60]. The option price V̂

s the solution of Eq. (17) taking the elliptic operator

L = −
S2ν ∂2

− ρσSν
∂2
−

σ 2ν ∂2
− rRS

∂
− κ(η − ν)

∂
+ rI, (32)
2 ∂S2 ∂S∂ν 2 ∂ν2 ∂S ∂ν

10

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

O
c

W
T

w
p
b

a

I
t
f
t

5

s
m
d

and as an initial condition the payoff (21) with d = 1.
As in the previous case, it is necessary to establish an effective domain in order to apply numerical methods. Thus,

we define our computational domain as Ω = [0, Smax] × [0, νmax] and, again, additional conditions must be imposed
over the boundaries Γ 0

S = (0, T) × {0} × [0, νmax], Γ 0
ν = (0, T) × (0, Smax] × {0}, Γ +S = (0, T) × {Smax} × (0, νmax) and

Γ +ν = (0, T)× (0, Smax] × {νmax}.
Following the boundary condition analysis carried out in [60,67], it is not necessary to impose an additional condition

on the boundary Γ 0
S . In addition, it will be only necessary to impose a condition on the boundary Γ 0

ν if the Feller condition,
2κη > σ 2, is violated. In such cases, a common choice is to impose a Dirichlet condition obtained from the numerical
resolution of the equation

∂V̂
∂t
− rRS

∂V̂
∂S
− κη

∂V̂
∂ν
+ rV̂ + f (V̂) = 0, in Γ 0

ν . (33)

n the boundary Γ +S we keep the linearity condition (25), while on the boundary Γ +ν we choose to employ the Neumann
ondition derived from the fact that

lim
ν→∞

∂V̂
∂ν

(t, S, ν) = 0. (34)

e are in position to present the boundary value problem for pricing the risky European option under the Heston model.
herefore, we must find V̂ : [0, T] ×Ω ⊂ R3

−→ R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V̂
∂t
−

S2ν
2

∂2V̂
∂S2
− ρσSν

∂2V̂
∂S∂ν

−
σ 2ν

2
∂2V̂
∂ν2 − rRS

∂V̂
∂S
− κ(η − ν)

∂V̂
∂ν
+ rV̂ + f (V̂) = 0, in (0, T)×

◦

Ω,

∂2V̂
∂S2
= 0, in Γ +S ,

∂V̂
∂ν
= 0, in Γ +ν ,

V̂ −max
{
α (S − K) , 0

}
= 0, in {0} ×Ω,

(35)

hen the Feller condition is satisfied. Again, the risk-free Heston boundary problem is recovered by taking the risk
arameters λB = λC = 0; and such formulation fits, again, into the problem (1), so the techniques in Section 2 can
e readily applied.
At the methodological level, the development of this problem is similar to the d-dimensional Black–Scholes boundary

value problem when d = 2. Thus, the set of training points P will be generated from a uniform sampling of each of its
subsets. We define the residuals used in the training of a neural network V̂θ : [0, T] × Ω ⊂ R3

−→ R in the task of
pproximating the solution of (35) as

RI
θ =

∂V̂θ

∂t
−

S2ν
2

∂2V̂θ

∂S2
− ρσSν

∂2V̂θ

∂S∂ν

−
σ 2ν

2
∂2V̂θ

∂ν2 − rRS
∂V̂θ

∂S
− κ(η − ν)

∂V̂θ

∂ν
+ rV̂θ + f (V̂θ),

in (0, T)×
◦

Ω, (36)

R
Γ
+

S
θ =

∂V̂θ

∂t
− ρσSν

∂2V̂θ

∂S∂ν
−

σ 2ν

2
∂2V̂θ

∂ν2 − rRS
∂V̂θ

∂S
− κ(η − ν)

∂V̂θ

∂ν
+ rV̂θ + f (V̂θ), in Γ +ν , (37)

R
Γ 0
S

θ =
∂V̂θ

∂t
−

σ 2ν

2
∂2V̂θ

∂ν2 − κ(η − ν)
∂V̂θ

∂ν
+ rV̂θ + f (V̂θ), in Γ 0

S , (38)

RΓ 0
ν

θ =
∂V̂θ

∂t
− rRS

∂V̂θ

∂S
− κη

∂V̂θ

∂ν
+ rV̂θ + f (V̂θ), in Γ 0

ν , (39)

RO
θ = V̂θ −max

{
α (S − K) , 0

}
, in {0} ×Ω. (40)

n this case, we decide to include the boundary-related residuals (38) and (39) as if they were boundary conditions, but
hey could be also considered as part of the interior of the domain straightforwardly. Then, V̂θ is trained by means of a loss
unction like the one presented in (15), taking the lambda weights equal to one and the quadrature weights corresponding
o the trapezoidal rule.

. Numerical experiments

After presenting the mathematical models and discussing how they fit under our reformulation via PINNs, in this
ection we show the results of the tests performed to assess their effectiveness. One of the main advantages of this
ethodology over traditional numerical methods is that the container of the approximate solution is an ANN, i.e., a
ifferentiable function. Thus, it is possible to compute its derivatives via AD. In this regard, for the low dimensional cases
11

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

B
B
t
e
c
s
m

5

p
t

5

p
e
c
r
T
a
a
a
d

5

a
{

i
p
t
r
t
q
a
c
4

d

Table 1
Parameters for the 2-dimensional Black–Scholes model considering counterparty risk.
Black–Scholes parameters

Domain, � [0, 200] × [0, 200]
Strike, K 50
Time to maturity, T 1
Interest rate, r 0.03
Volatilities, (σ1, σ2) (0.25, 0.15)
Repo rates, (rR1 , rR2) (0.015, 0.022)
Correlation, ρ −0.65

xVA parameters

Seller hazard rate, λB [0.0, 0.1]
Counterparty hazard rate, λC 0.07
Seller recovery rate, RB 0.5
Counterparty recovery rate, RC 0.3
Funding spread, sF (1− RB)λB

we will focus not only on how well it approximates the desired solution, but also on how accurately it approximates its
derivatives.

The section is divided into two parts. In the first one, we solve two-dimensional parabolic problem under the
lack–Scholes and Heston framework. The second one is devoted to solving high-dimensional parabolic PDEs under the
lack–Scholes model. The same pattern is followed in both. We discuss the network configuration chosen and we analyse
he predictions provided by the trained networks in the proposed problems. For this purpose, we compare them with
xtremely reliable approximations of the desired solutions computed by either FD (d = 2 cases) or Monte Carlo (d > 2
ases). In addition, the same experiments for the one-dimensional case are presented in Appendix, where exact analytical
olutions to validate the numerical methods are available. Our codes are implemented based on Tensorflow and all the
odels are trained on one NVIDIA Ampere A100 GPU with 82 GB memory.

.1. Two-asset basket options under the Black–Scholes model

In this section we present the results obtained when approximating solutions of the two-dimensional parabolic
roblem (26) with initial conditions (21) and (22), i.e., when approximating the price of arithmetic average and worst-of
wo-asset basket options under the Black–Scholes framework. The model parameters are presented in Table 1.

.1.1. Test settings
The neural network to be trained follows the description given in Section 2.1. The number of layers, L, and the units

er layer, β , is discussed below. The training loss function is given by (31) with d = 2. The integrals appearing in this
xpression are computed with the trapezoidal rule, thus the set of training points, P = PI ∪PO∪ (∪2

k=1PΓ 0
k
)∪ (∪2

k=1PΓ
+

k
),

omes from the uniform discretization of the interior domain and its boundaries. The experiments presented below are
un with |PI | = 128 000, |PO| = 6724 and |PΓ 0

k
| = |PΓ

+

k
| = 1620, k ∈ {1, 2}, yielding a total of 141 204 training points.

he optimization involves 22 500 iterations. The first 20 000 are performed with Adam taking the learning rate as 10−3,
dding the inverse time decay schedule (12) with decay rate δ = 0.75 and decay step a = 5000. The remaining ones
re performed with L-BFGS. The accuracy of the network prediction is measured by comparing its relative error with an
pproximate solution obtained via FD (Crank–Nicolson timestepping and centre differences) with a fixed point scheme to
eal with the non-linearity [63,68], ensuring a maximum error of 10−6.

.1.2. Numerical results
First of all, we are interested in finding an optimal combination of layers and neurons per layer in terms of accuracy

nd training time required. Thus, we consider all 16 possible combinations between L ∈ {2, 4, 8, 12} layers and β ∈
10, 20, 40, 60} units per layer. A sample of 10 training trials is considered per combination and the worst of them
s chosen. The pricing of a non-risky arithmetic average put option, V , is the target. We have observed that the worst
erforming combinations are those with larger number of layers, a situation probably related to problems in updating
he network’s weights due to the combination of very deep networks and bounded activation functions, [58]. For the
emaining combinations, the L2-norm relative errors are of the order of 10−3, similar to those obtained for the same
ask in [43], where the tuning of the lambda weights is performed and the Monte Carlo integration is employed as a
uadrature rule. With respect to the training time, it increases polynomially in relation to the number of units per layer
nd exponentially in relation to the number of layers. Taking into account the training time required for each case, we
hoose the combination of L = 4 layers and β = 60 units per layer. Under this setting, relative errors of 3.71 × 10−4,
.72× 10−4 and 1.12× 10−3 for the L1, L2 and L∞-norm are achieved.
In order to evaluate the performance of our training algorithm for the risky non-linear case, we consider different

efault scenarios (varying the seller hazard rate, λ) for the pricing of the two proposed products.
B

12

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

a
e
e
i
v
p

Fig. 1. Risky arithmetic average put option with parameters given in Table 1, λB = 2%.

Fig. 2. Risky worst-of put option with parameters given in Table 1, λB = 2%.

In Figs. 1(a) and 2(a) the PINN approximations for the risky arithmetic average and worst-of put options, with λB = 2%,
re plotted; while Figs. 1(b) and 2(b) show the error compared to the reference solutions. As expected, the worst relative
rrors are obtained when the value of the option tends to zero since they are below the number of significant digits we
xpect to achieve. In order to avoid such a behaviour and thus obtain an adequate visualization of the error in the area of
nterest, we only consider the relative error for option values greater than or equal to 0.01. Regions with smaller option
alues are treated in terms of the absolute error, scaled by the imposed threshold. This is sufficient for quantitative finance
urposes and it is also followed in the error plots for the following cases.
13

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

a

a

Fig. 3. Comparison between finite differences and trained networks option values with S2 = 50 fixed. Risk-free case (λB = λC = 0), case λB = 2%
nd case λB = 10% are plotted.

Fig. 4. Comparison between finite differences and trained networks option deltas with S2 = 50 fixed. Risk-free case (λB = λC = 0), case λB = 2%
nd case λB = 10% are plotted.
14

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

c

5

a
b
r
t
|

w
δ

w
1

Table 2
Relative errors for the arithmetic average and worst-of option prices and deltas. The set of parameters given in Table 1 is
considered, taking λB = λC = 0 in the risk-free case. For each scenario, an ATM, a OTM and a ITM values are taken.
Arithmetic average

Case (S1, S2) V̂ ∂V̂/∂S1 ∂V̂/∂S2

Risk-free
(50.0, 50.0) 1.19× 10−3 4.17× 10−3 4.50× 10−3

(55.0, 50.0) 4.33× 10−5 1.71× 10−4 1.09× 10−4

(50.0, 45.0) 3.39× 10−3 3.49× 10−3 3.99× 10−3

λB = 2%
(50.0, 50.0) 4.98× 10−4 3.04× 10−3 4.31× 10−3

(55.0, 50.0) 3.08× 10−3 9.87× 10−4 4.46× 10−3

(50.0, 45.0) 7.52× 10−4 3.05× 10−3 3.45× 10−3

Worst-of

Case (S1, S2) V̂ ∂V̂/∂S1 ∂V̂/∂S2

Risk-free
(50.0, 50.0) 1.34× 10−3 5.87× 10−3 1.41× 10−2

(60.0, 53.0) 4.66× 10−3 1.12× 10−2 1.06× 10−3

(57.1, 42.9) 7.42× 10−4 3.59× 10−3 1.45× 10−3

λB = 2%
(50.0, 50.0) 3.52× 10−3 1.37× 10−2 1.24× 10−2

(60.0, 53.0) 9.18× 10−3 2.30× 10−2 5.98× 10−3

(57.1, 42.9) 2.78× 10−4 2.09× 10−3 9.25× 10−3

As expected, the largest errors are observed at-the-money1 (ATM) levels and its neighbourhood, as is the case in
lassical schemes. This is because the initial conditions we are working with, (21) and (22), are non-differentiable in such
subdomains. Even so, reasonable errors are obtained, being at most of the order of 10−2.

Fig. 3 shows a comparison between reference and network approximated prices in slice S2 = K for the two proposed
derivatives. The solutions approximated by the trained ANN have an identical qualitative behaviour in the plotted cases
and there are no significant differences when working with different λB values.

Furthermore, the first order derivatives with respect to the underlying assets, known as deltas in the financial industry,
are computed by means of AD of the trained ANNs. Fig. 4 shows a comparison between reference and network deltas in
slice S2 = K for the two proposed derivatives. Both derivative approximations suffer from some slight oscillations near
the lower boundaries (behaviour also observed in the one-dimensional case, see Appendix), but such oscillations are
not observed in the rest of the domain. In addition, the predictions related to the arithmetic average case keep errors
of a similar order of magnitude to those incurred in estimating prices. In the worst-of case, the quality of the delta
approximation is influenced by the direction it follows in relation to the ATM region. Thus, better approximations are
obtained when they follow the downward direction, while the predictions deteriorate in transverse direction. The relative
errors obtained for the approximation of both prices and deltas in the neighbourhood of the ATM region are shown
in Table 2. Only the risk-free and the λB = 2% risky cases are shown since the remaining scenarios present a similar
behaviour.

5.2. Vanilla option pricing under the Heston model

We present the results related to the valuation of options using the Heston model, which is based on the description
given in Section 4.2.2. For this purpose, we work with the model data given in Table 3.

.2.1. Test settings
The same architecture used to produce the outcomes in the previous section is kept, i.e., an ANN with L = 4 layers

nd β = 60 units per layer. The loss function is similar to that provided for the two-dimensional Black–Scholes case,
ut using the residuals (36)–(40). Again, the integrals that compose this loss function are computed with the trapezoidal
ule. The set of training points, P = PI ∪ PO ∪ PΓ 0

S
∪ PΓ 0

ν
∪ PΓ

+

S
∪ PΓ

+
ν
, comes from the uniform discretization of

he interior domain and its boundaries. The experiments presented below are run with |PI | = 304 200, |PO| = 6400,
PΓ 0

S
| = |PΓ 0

ν
| = |PΓ

+

S
| = |PΓ

+
ν
| = 4000, yielding a total of 334 600 training points. The optimization procedure is kept

ith the exception of the Adam parameters. We establish 25 000 Adam iterations with learning rate 10−3, decay rate
= 0.5 and decay steps a = 10 000. The accuracy of the network prediction is measured by comparing its relative error
ith an approximate solution obtained with the aforementioned fixed point scheme, ensuring a minimum precision of
0−4.

1 The at-the-money region is the subset of the domain where the option’s strike price is identical to the price given by the combination
of the underlyings which defines the derivative contract. For example, the at-the-money region for the arithmetic average basket option is
{(S1, S2) ∈ Ω : S1 + S2 − 2K = 0}. In this way, the out-the-money region is the domain’s subset where the call (put) option’s strike price is
larger (smaller) than the price which defines the derivative contract, and the in-the-money region is its opposite.
15

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

5

m
b

Table 3
Parameters for the Heston model, adapted from [69], and risky parameters.
Heston parameters

Domain, � [0, 4] × [0, 3]
Strike, K 1
Time to maturity, T 2
Repo rate, rR 0.025
Interest rate, r 0.025
Mean reversion rate, κ 1.5
Mean variance, η 0.04
Volatility of variance, σ 0.3
Correlation, ρ −0.9

xVA parameters

Seller hazard rate, λB [0.0, 0.1]
Counterparty hazard rate, λC 0.04
Seller recovery rate, RB 0.3
Counterparty recovery rate, RC 0.3
Funding spread, sF (1− RB)λB

Fig. 5. Risky put option under the Heston model with parameters given in Table 3, λB = 2%.

.2.2. Numerical results
Fig. 5 shows, for the risky case λB = 2%, the pricing surface computed by the trained ANN (Fig. 5(a)), as well as

the errors obtained in relation with respect to the reference solution (Fig. 5(b)). Both the qualitative and quantitative
behaviour of the solution achieve the precision standards of the other two-dimensional cases studied above. However, a
different distribution of the committed error is observed. In previous cases, the error is concentrated in the ATM region,
mostly due to the non-differentiability of the payoff. Now, although we see the expected larger error in the ATM region
when the values of ν are close to zero, it becomes dominant in the OTM region. Such error pattern has also been found
in the FD algorithms employed to compute the reference solution. This fact suggests that the chosen boundary conditions
due to the truncation domain could be hampering the accuracy of the approximation.

In Fig. 6, ν-slices of the solution and its first order derivatives are shown. Such slices correspond to sections with
ν = 0.1 and ν = 0.3 (values of interest in the industry). The risk-free case and the cases with λB = 2%, 10% are considered.
Regarding the pricing approximations, we observe a similar qualitative performance to that seen in the previous examples,
particularly as we move away from ν values close to 0. For the first-order derivatives a slightly decrease in the performance
is found due to the more complex physics described by the PDE, although the obtained accuracy is sufficient for financial
purposes. Table 4 provides the errors obtained for different default scenarios considering a standard value for ν.

In the case of deltas, Figs. 6(c) and 6(d), the oscillatory behaviour near the S = 0 boundary seen before is slightly
agnified, specially for the risk-free and lower λB scenarios. However, it is able to perfectly capture its asymptotic
ehaviour as S grows. The approximations around the strike are remarkably good, with relative errors and the order of
16

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

c

Fig. 6. Comparison between finite differences and network put option prices, deltas and vegas under the Heston model. Risk-free case (λB = λC = 0),
ase λB = 2% and case λB = 10% are plotted.
17

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

u
t
t
a
b

5

a
(

Table 4
Relative errors for the put option price and first order derivatives, under the Heston model and taking ν = 0.1. The set
of parameters given in Table 3 is considered, taking λB = λC = 0 in the risk-free case, and varying λB in the others.
One ITM, one ATM and one OTM case are presented for each default scenario.

Case S V̂ ∂V̂/∂S ∂V̂/∂ν

Risk-free
0.8 7.82× 10−3 2.76× 10−2 4.46× 10−2

1.0 1.18× 10−2 5.62× 10−2 4.58× 10−2

1.2 3.33× 10−2 7.48× 10−2 1.80× 10−2

λB = 2%
0.8 5.95× 10−3 3.65× 10−2 7.60× 10−2

1.0 2.02× 10−2 4.03× 10−2 1.43× 10−2

1.2 1.11× 10−2 7.40× 10−2 5.87× 10−3

λB = 10%
0.8 1.81× 10−2 1.72× 10−2 6.38× 10−2

1.0 2.05× 10−2 5.99× 10−2 2.59× 10−2

1.2 1.87× 10−2 7.35× 10−2 1.85× 10−2

Table 5
Parameters for the d-dimensional Black–Scholes model. It is assumed that all the
underlying assets have the same volatility and drift. In addition, the correlation between
any two assets is the same.
Black Scholes parameters

Domain, � [0, 200]d
Strike, K 50
Time to maturity, T 1
Volatility, σi 0.25
Repo rate, rRi 0.03
Interest rate, r 0.03
Correlation, ρij 0.65

10−2/10−3. Figs. 6(e) and 6(f) show the vega slices, understanding vega as the derivative of the price with respect to the
nderlying’s variance.2 Regardless of the chosen default scenario, the approximations close to S = 0 are worse. Moreover,
he estimations are affected by the closeness to the boundary ν = 0, so that the closer you are to such boundary, the lower
he accuracy is. However, this effect looses intensity or directly disappears for larger values of S. Thus, the same order
s that obtained for the deltas is observed in the neighbourhood of the strike (the area of interest) and the asymptotic
ehaviour is consistent with the Neumann condition imposed on the νmax boundary.

.3. Multidimensional basket options under the Black–Scholes model

In this last section we test the performance of the ANNs trained by means of the PINNs methodology in the task of
pproximating the solutions of 5/10-dimensional3 parabolic PDEs. We focus on providing results for the risk-free problem
26) with the initial conditions (21) and (22) in order to show that the boundary treatment proposed in Section 3 is readily
applicable to high dimensional problems. The model parameters are presented in Table 5.

5.3.1. Test settings
As in the previous cases, the network is configured as set out in Section 2.1. In view of the effects observed in the

previous experiments, we are now only concern with finding a suitable number of units per layer, β , keeping the number
of layers employed before, L = 4. We perform a weakly converged pre-training of the network against the initial condition
in order to exploit the benefits discussed in Section 3. The training loss function is given by (31) with d = 5/10. Now, the
integrals that we need to calculate in each training iteration are computed by means of the Monte Carlo integration, so
that each residual-related integral approximation is given by the mean squared error function, see Remark 1. The training
set is now re-sampled every given number of iterations (mini-batch sampling), which will depend on the optimizer
employed. Thus, in each iteration with Adam a sample of 6144/32 768 random points will be taken from the domain,
where 2048/16 384 belong to the interior domain, 2048/8192 to the initial condition and 2048/8192 to the set of all
boundaries (chosen randomly between them). Every 200 L-BFGS iterations a sample of 24 576/49 152 random points
will be selected to constitute the training set, i.e., 8192/16 384 from each subset described in Adam’s case. The number
of iterations with Adam is specified later for each specific case, as well as the initial learning rate and the decay rate.
The maximum number of iterations with L-BFGS is set at 15 000. Other training considerations are discussed below. The
accuracy of the network prediction is measured by comparing its relative error with an approximate solution obtained
via Monte Carlo simulation with low discrepancy sequences, ensuring at least a maximum error of 10−6.

2 We assume an abuse of language. In reality, vega is understood as the partial derivative with respect to the square root of the variance but,
considering fixed-ν slices, both expressions only differ in being multiplied by a constant.
3 For the sake of brevity, whenever the slash notation is used, the value preceding it refers to the 5-dimensional case, while the remaining value

refers to the 10-dimensional case.
18

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

t
t
r
t
i
i
u
p
O

o
a
t
h
1
f
t
l
a
A
a

l
T
a
n
s
m
d
a
a
f

6

l
b
f
o
s

i
f
o

Table 6
Relative errors for the 5/10-dimensional arithmetic average and worst of put options. One ATM, two ITM and two OTM
cases are presented taking Si = 50, i = 3, . . . , 5/10. In addition, the average relative error achieved for 1000/10000
random values of the 5/10 assets between 40 and 60 is added.
(S1, S2) Arithmetic average Worst-of

d = 5 d = 10 d = 5 d = 10

(50, 50) 5.02× 10−3 1.07× 10−2 1.47× 10−2 2.96× 10−2

(40, 50) 3.27× 10−3 4.93× 10−4 8.25× 10−3 4.08× 10−3

(50, 40) 3.15× 10−3 1.14× 10−2 6.19× 10−3 3.58× 10−3

(60, 50) 6.96× 10−3 2.10× 10−2 1.17× 10−2 1.66× 10−2

(50, 60) 6.97× 10−3 9.29× 10−3 7.51× 10−3 2.26× 10−2

Mean from [40, 60]d 5.08× 10−3 1.15× 10−2 7.26× 10−3 1.92× 10−2

5.3.2. Numerical results
In these experiments, a different methodology has been followed to establish the number of units per layer since

he choice of optimization parameters becomes more important than in previous cases. On the one hand, pre-training
he ANN against the initial condition allows us to start from a fixed configuration of network weights, removing the
andom initialization of such parameters. To perform this step it is only necessary that the network has sufficient capacity
o adequately approximate the initial condition (in the whole domain). On the other hand, such randomness is now
ncorporated by the use of mini-batch sampling since each batch of training points is chosen in a pseudo-random way. It
s important that the ANN has sufficient degrees of freedom to ensure that the losses of each batch provide information for
pdating the network weights. Under these factors we work with L = 128/256 units per layer, which provides a suitable
re-training, a sufficient degree of freedom for updating the network parameters and a relatively moderate training time.
ther choices may work but it is probably that the given optimization parameters have to be modified.
In the arithmetic average 5-asset basket option case we have employed 30 000 Adam iterations with a linear decay

f the learning rate from 5× 10−3 to 5× 10−5. Together with the corresponding L-BFGS iterations we have achieved an
verage relative error in the ATM neighbourhood between 8.87 × 10−3 and 5.08 × 10−3 for all training converged. The
raining measures have not been shown to be as robust as for the two-dimensional case when applying L-BFGS. There
ave been training samples that, once converged with Adam (we are talking about relative errors between 3.74×10−2 and
.01×10−2), L-BFGS has ruined them. Most of these cases share a common pattern, the loss related to the initial condition
all significantly below the total observed loss during the L-BFGS procedure. It is likely that the cause of this pathology is
he mixing of L-BFGS with mini-batch sampling, in the sense that some training sample may drive the optimizer to a bad
ocal minima. For the 10-dimensional related option we have kept the number of Adam iterations used before, imposing
linear decay of the learning rate from 1×10−3 to 5×10−5 and dispensing with the use of L-BFGS as it has not improved
dam’s metrics in any sample. Under this setting, a stable training is achieved, with average errors between 2.52× 10−2
nd 1.15× 10−2.
For the worst-of options it has been necessary to extend the number of Adam iteration to 10 000 while maintaining a

inear decay of the learning rate with the initial and final values given for the arithmetic case with the same dimension.
he average relative errors measured in the neighbourhood of the ATM region ranges between 2.19× 10−2/2.83× 10−2
nd 7.26×10−3/1.92×10−2 for the 5/10-dimensional case. In contrast to the previous product, the L-BFGS application is
ow stable and improves predictions by an order of magnitude. The error patterns for the four products presented in this
ection are similar to that observed in the 2-dimensional examples. There is a deterioration of the approximation as we
ove further into the OTM region, which is expected as the values are closer to zero; and the worst-of option shows more
ifficulties in the ATM region than the arithmetic option. Table 6 shows the relative errors obtained for specific points,
s well as the average errors given above. In addition, surface slices of the 5/10-dimensional option value predictions
re plotted in Fig. 7. In general, the results are rather satisfactory and sufficient for the practical applications within the
inancial industry.

. Conclusions

Thanks to the universal approximation property of ANNs and the dramatic increase of computing power of deep
earning hardware, PINNs methods have become a serious alternative for solving complex PDE problems. Maybe, the
iggest weakness of PINNs is the imposition of the boundary conditions, as they enter as addends into the loss function
or the network calibration, and the user must choose heuristically the magnitude of the addends that depend, of course,
n the type of problem and the type of boundary conditions. These weights are not known a priori, as they depend of the
olution itself, and must be estimated in some way, which is also problem dependent.
In this work a novel technique for the treatment of the boundary conditions in the PINNs framework has been

ntroduced. It allows to get ride the heuristic selection of the weights of the boundary addends that appear in the loss
unction of the ANN that approximates the solution. The strategy is based on the direct evaluation of the differential

perator at the boundaries taking into account the imposed boundary conditions. This yields an addend for the boundary

19

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

t
w
v

i
e
r
u
m
s
i

w

Fig. 7. Arithmetic average and worst-of put options driven by 5/10 assets with parameters given in Table 5. Slice with Si = 50, i = 3, . . . , 10.

hat is in the same magnitude of the loss in the interior of the domain, avoiding to deal with the arbitrary choice of the
eights. To the best of our knowledge, this procedure is introduced in this paper for the first time, and we feel that is a
ery interesting contribution that makes PINNs much more powerful and easier to use.
The new approach has been applied to several non-linear PDE problems that arise in computational finance when CCR

s taking into account, although it is general enough and non problem-dependent to be applied in other fields, like for
xample fluid dynamics or solid mechanics. In particular, it has been employed to solve the boundary value problems
elated to the pricing of risky European options under the one and two-dimensional Black–Scholes model, as well as
nder the Heston model. In addition, the valuation of risk-free European 5 and 10-assets options under the Black–Scholes
odel is included in order to show the robustness of the proposed method for higher dimensional tasks. The obtained
olutions yield a good accuracy when compared with reference solutions. Furthermore, embedding the obtained solution
nto an ANN has allowed us to compute their relevant partial derivatives by means of AD.

All in all, the partial derivatives computation in the PINNs framework is so far a generally unexplored avenue and
e believe it may have a lot of potential, being one of the main advantages of PINNs over other deep-learning based
20

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

A

E

1

A

Table A.7
Parameters for Black–Scholes model considering counterparty risk.
Source: Obtained from [63].
Black Scholes parameters

Domain, � [0, 60]
Strike, K 15
Time to maturity, T 5
Volatility, σ 0.25
Repo rate, rR 0.015
Interest rate, r 0.03

xVA parameters

Seller hazard rate, λB [0.0, 0.1]
Counterparty hazard rate, λC 0.05
Seller recovery rate, RB 0.4
Counterparty recovery rate, RC 0.4
Funding spread, sF (1− RB)λB

methodologies. The optimization procedure takes these quantities into account since they are implicitly part of the loss
function, so that under the assumption of having an ideal optimizer, there would be a perfect fit of both the solution and
the derivatives that conform the PDE. Another of the most notables advantages is in terms of interpretability. Compared to
other techniques, this methodology is closer to the classical PDE schemes, in the sense that the PDE solution is projected
onto a space formed by the ANN weights.

Data availability

No data was used for the research described in the article.

cknowledgements

All the authors thank to the support received from the CITIC research center, funded by Xunta de Galicia and the
uropean Union (European Regional Development Fund - Galicia Program, Spain), by grant ED431G 2019/01.
A.L and J.A.G.R. acknowledge the support received by the Spanish MINECO under research project number PDI2019-

08584RB-I00, and by the Xunta de Galicia, Spain under grant ED431C 2018/33.

ppendix. Numerical experiments for the one-dimensional Black–Scholes equation

Numerical experiments for the one-dimensional Black–Scholes boundary value problem (26) with the initial condi-
tion (21) and the model parameters given in Table A.7 are presented.

A.1. Test settings

The neural network to be trained follows the description given in Section 2.1. The number of layers, l, and the units per
layer, β , is discussed below. The training loss function is given by (31) for d = 1. The integrals appearing in this expression
are computed with the trapezoidal rule, thus the set of training points, P = PI∪PO∪PΓ 0∪PΓ+ , comes from the uniform
discretization of the interior domain and its boundaries. The experiments presented below are run with |PI | = 10 692,
|PO| = 110 and |PΓ 0 | = |PΓ+ | = 99, yielding a total of 11,000 training points, which falls within the reference values
that can be found in other works, such as [8]. The optimization involves 12 500 iterations. The first 10 000 are performed
with Adam taking the learning rate as 10−3, while the remaining ones are performed with L-BFGS. The accuracy of the
approximation is measured by comparing its relative error with the analytic solution given in [63].

A.2. Numerical results

First, we check how the network’s training behaves when varying its number of layers and neurons per layer. For
this purpose, all 16 possible combinations between l ∈ {2, 4, 8, 16} layers and β ∈ {10, 20, 40, 80} units per layer are
considered. For each combination, a sample of 10 training is made and the worst of them is chosen. The pricing of an
European put option, V , is the target.

Most combinations give L2 relative errors of the order of 10−3/10−4, the worst ones being those where the number
of layers is high, as the convergence of the method fails for some trials. Finding a balance between accuracy, robustness
and execution time, we decide to work with l = 4 layers and β = 40 units per layer, where we have achieved relative

−4 −4 −4 1 2 ∞
errors of 2.33× 10 , 2.90× 10 and 5.13× 10 for the L , L and L -norms, respectively.

21

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041

s

Fig. A.8. Comparison between analytical and approximated put option values for each default scenario.

Fig. A.9. Comparison between analytical and approximated put option deltas and gammas for each default scenario.

Once the size of our network has been selected, we show some results on its performance considering different default
cenarios based on varying the seller hazard rate, λB.
Fig. A.8 shows the comparison between the analytical and PINNs approximated solution for each λB considered. The

risk-free option is added for completeness. Regardless of the default scenario chosen, the quantitative behaviour of our
approximation is identical to that given by the analytical solution. The accuracy of the approximation is particularly good
in the neighbourhood of the strike (of the order of 10−4), an area of interest in our pricing task.

By means of the AD, we can compute the derivative of the option price with respect to its related quantities. In
Figs. A.9(a) and A.9(b) we observe the same comparison made for the price, now for delta and gamma Greeks, respectively.
In the delta case, a slight decrease in accuracy is observed near the boundary S = 0, which also transfers to the gamma
case, as expected. In the rest of the domain there is not a loss of accuracy with respect to the pricing case. The errors
achieved for the second derivative are of the order of 10−3. It is a solid performance since such a derivative presents
numerical instabilities that makes it more difficult to compute. The Table A.8 presents the relative errors achieved in the
neighbourhood of the strike for the risk-free case and the cases λB = 2%, λB = 10%. The remaining cases present a similar
performance.
22

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041
Table A.8
Relative errors for the put option price, delta and gamma, with S near the strike, for some default
scenarios. Risk-free case (λB = λC = 0) is added for completeness.

Case S V̂ ∂V̂/∂S ∂2V̂/∂S2

Risk-free
12.5 5.55× 10−4 8.87× 10−5 1.39× 10−4

15.0 6.99× 10−4 4.51× 10−4 2.22× 10−3

17.5 6.71× 10−4 8.82× 10−4 2.36× 10−3

λB = 2%
12.5 2.28× 10−4 5.92× 10−4 2.42× 10−3

15.0 1.79× 10−4 2.60× 10−4 2.57× 10−3

17.5 3.48× 10−4 1.43× 10−5 2.07× 10−3

λB = 10%
12.5 1.01× 10−4 4.82× 10−4 8.89× 10−4

15.0 1.67× 10−5 1.17× 10−4 2.40× 10−3

17.5 4.51× 10−6 6.86× 10−5 1.21× 10−3

References

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[2] A.J. Meade, A.A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math. Comput.

Modelling 19 (12) (1994) 1–25.
[3] M. Dissanayake, N. Phan-Thien, Neural network-based approximations for solving partial differential equations, Commun. Numer. Methods. Eng.

10 (3) (1994) 195–201.
[4] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9

(5) (1998) 987–1000.
[5] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv:1412.6980.
[6] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2) (2018) 223–311.
[7] X. Meng, Z. Li, D. Zhang, G.E. Karniadakis, PPINN: Parallel physics-informed neural network for time-dependent PDEs, Comput. Methods Appl.

Mech. Engrg. 370 (2020) 113250.
[8] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[9] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: A deep learning library for solving differential equations, SIAM Rev. 63 (1) (2021) 208–228.

[10] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal.
(2022).

[11] M. De Florio, E. Schiassi, R. Furfaro, Physics-informed neural networks and functional interpolation for stiff chemical kinetics, Chaos 32 (6)
(2022) 063107.

[12] T. De Ryck, S. Mishra, Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs, 2021, arXiv:2106.14473.
[13] G. Bai, U. Koley, S. Mishra, R. Molinaro, Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs, J. Comput.

Math. 39 (6) (2021) 816–847.
[14] T. De Ryck, S. Mishra, R. Molinaro, wPINNs: Weak physics informed neural networks for approximating entropy solutions of hyperbolic

conservation laws, 2022, arXiv:2207.08483.
[15] T. De Ryck, S. Mishra, Error analysis for deep neural network approximations of parametric hyperbolic conservation laws, 2022, arXiv:

2207.07362.
[16] T. De Ryck, A.D. Jagtap, S. Mishra, Error estimates for physics informed neural networks approximating the Navier-Stokes equations, 2022,

arXiv:2203.09346.
[17] T. De Ryck, S. Mishra, Generic bounds on the approximation error for physics-informed (and) operator learning, 2022, arXiv:2205.11393.
[18] T. Kossaczká, M. Ehrhardt, M. Günther, A neural network enhanced WENO method for nonlinear degenerate parabolic equations, Phys. Fluids

34 (2022).
[19] J. Han, A. Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018)

8505–8510.
[20] E. Weinan, M. Hutzenthaler, A. Jentzen, T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, Partial

Differ. Equ. Appl. 2 (6) (2021).
[21] M. Hutzenthaler, A. Jentzen, T. Kruse, T. Anh Nguyen, P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical

approximation of semilinear parabolic partial differential equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 476 (2020).
[22] F. Heldmann, S. Treibert, M. Ehrhardt, K. Klamroth, PINN training using biobjective optimization: The trade-off between data loss and residual

loss, SSRN Electron. J. (2022).
[23] J. Yu, L. Lu, X. Meng, G.M. Karniadakis, Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, Comput.

Methods Appl. Mech. Engrg. 393 (2022) 114823.
[24] D. Duffie, M. Huang, Swap rates and credit quality, J. Finance 51 (3) (1996) 921–949.
[25] D. Brigo, M. Masetti, in: Pykhtin (Ed.), Risk-neutral pricing of counterparty risk, Risk Books, London, 2005.
[26] U. Cherubini, Counterparty risk in derivatives and collateral policies: The replicating portfolio approach, in: L. Tilman (Ed.), ALM of Financial

Institutions, institutional Investor Books, 2005.
[27] D. Brigo, A. Pallavicini, V. Papatheodorou, Arbitrage-free valuation of bilateral counterparty risk for interest-rate products: impact of volatilities

and correlations, Int. J. Theor. Appl. Finance 14 (06) (2011) 773–802.
[28] D. Brigo, A. Capponi, A. Pallavicini, Arbitrage-free bilateral counterparty risk valuation under collateralization and application to credit default

swaps, Math. Finance 24 (1) (2014) 125–146.
[29] V. Piterbarg, Funding beyond discounting: collateral agreements and derivatives pricing, Risk Mag. 23 (02) (2010) 97–102.
[30] V. Piterbarg, Cooking with collateral, Risk Mag. 23 (02) (2012) 58–63.
[31] M. Fujii, Y. Shimada, A. Takahashi, Note on construction of multiple swap curves with and without collateral, SSRN Electron. J. 23 (02) (2010).
[32] M. Fujii, Y. Shimada, A. Takahashi, A market model of interest rates with dynamic basis spreads in the presence of collateral and multiple

currencies, Wilmott J. 54 (2011) 61–73.
[33] A. Gnoatto, N. Seiffert, Cross currency valuation and hedging in the multiple curve framework, SIAM J. Financial Math. 12 (3) (2021) 967–1012.
23

http://refhub.elsevier.com/S0377-0427(22)00639-2/sb1
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb2
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb2
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb2
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb3
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb3
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb3
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb4
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb4
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb4
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb6
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb7
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb7
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb7
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb8
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb8
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb8
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb9
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb10
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb10
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb10
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb11
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb11
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb11
http://arxiv.org/abs/2106.14473
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb13
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb13
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb13
http://arxiv.org/abs/2207.08483
http://arxiv.org/abs/2207.07362
http://arxiv.org/abs/2207.07362
http://arxiv.org/abs/2207.07362
http://arxiv.org/abs/2203.09346
http://arxiv.org/abs/2205.11393
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb18
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb18
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb18
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb19
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb19
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb19
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb20
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb20
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb20
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb21
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb21
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb21
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb22
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb22
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb22
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb23
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb23
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb23
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb24
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb25
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb26
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb26
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb26
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb27
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb27
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb27
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb28
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb28
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb28
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb29
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb30
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb31
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb32
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb32
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb32
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb33

J. P. Villarino, Á. Leitao and J.A. García Rodríguez Journal of Computational and Applied Mathematics 425 (2023) 115041
[34] C. Cuchiero, C. Fontana, A. Gnoatto, Affine multiple yield curve models, Math. Finance 29 (2) (2019) 568–611.
[35] A. Pallavicini, D. Perini, D. Brigo, Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and

re-hypothecation, SSRN Electron. J. (2011).
[36] D. Brigo, A. Pallavicini, Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and

wrong-way risks, J. Financ. Eng. 01 (01) (2014) 1450001.
[37] D. Brigo, C. Buescu, M. Francischello, A. Pallavicini, M. Rutkowski, Risk-neutral valuation under differential funding costs, defaults and

collateralization, Risk Manag. Anal. Financ. Inst. eJ. (2018).
[38] C. Burgard, M. Kjaer, Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs, J. Credit Risk

7 (3) (2011) 1–19.
[39] C. Burgard, M. Kjaer, In the balance, Risk J. (2011) 72–75.
[40] S. Crépey, Bilateral counterparty risk under funding constraints-part II: CVA, Math. Finance 25 (1) (2015) 23–50.
[41] S. Crépey, Gaussian process regression for derivative portfolio modelling and application to credit valuation adjustment computations, Risk J.

24 (1) (2020) 47–81.
[42] M. Bichuch, A. Capponi, S. Sturm, Arbitrage-free pricing of XVA - Part II: PDE representation and numerical analysis, SSRN Electron. J. (2015).
[43] B. Salvador, C.W. Oosterlee, R. van der Meer, Financial option valuation by unsupervised learning with artificial neural networks, Mathematics

9 (1) (2021).
[44] E. Weinan, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward

stochastic differential equations, Commun. Math. Stat. 5 (2017) 349–380.
[45] A. Gnoatto, A. Picarelli, C. Reisinger, Deep xVA solver – A neural network based counterparty credit risk management framework, SSRN Electron.

J. (2020).
[46] B. Horvath, A. Muguruza, M. Tomas, Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility

models, Quant. Finance 21 (1) (2021) 11–27.
[47] B. Huge, A. Savine, Differential machine learning, 2020, arXiv:2005.02347.
[48] S. Liu, A. Leitao, A. Borovykh, C.W. Oosterlee, On a neural network to extract implied information from American options, Appl. Math. Finance

28 (5) (2021) 449–475.
[49] Y. Shin, J. Darbon, G.E. Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type

PDEs, Commun. Comput. Phys. 28 (5) (2020) 2042–2074.
[50] R. van der Meer, C.W. Oosterlee, A. Borovykh, Optimally weighted loss functions for solving PDEs with neural networks, J. Comput. Appl. Math.

405 (2022).
[51] A. Karpatne, R. Kannan, V. Kumar, Knowledge-guided machine learning: Accelerating discovery using scientific knowledge and data, first ed.,

Chapman and Hall/CRC, 2022.
[52] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., TensorFlow: A system for large-scale

Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.
[53] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Automatic differentiation in PyTorch, in: Neural Information Processing Systems, Tech. Rep,

2017.
[54] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1) (1989) 503–528.
[55] C. Wang, S. Li, D. He, L. Wang, Is L2 physics-informed loss always suitable for training physics-informed neural network? 2022.
[56] C. Wu, M. Zhu, Q. Tan, Y. Kartha, L. Lu, A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed

neural networks, Comput. Methods Appl. Mech. Engrg. 403 (2023) 115671.
[57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J.

Mach. Learn. Res. 15 (1) (2014) 1929–1958.
[58] A. Geron, Hands-on machine learning with Scikit-Learn and TensorFlow : Concepts, tools, and techniques to build intelligent systems, O’Reilly

Media, Sebastopol, CA, 2017.
[59] D. Brigo, M. Francischello, A. Pallavicini, Nonlinear valuation under credit, funding, and margins: Existence, uniqueness, invariance, and

disentanglement, European J. Oper. Res. 274 (2) (2019) 788–805.
[60] B. Salvador, C.W. Oosterlee, Total value adjustment for a stochastic volatility model. A comparison with the Black-Scholes model, Appl. Math.

Comput. 391 (2021) 125489.
[61] C.C.W. Leentvaar, Pricing multi-asset options with sparse grids (Ph.D. thesis), Electrical Engineering, Mathematics and Computer Science,

University of Delft, 2008.
[62] R.M. Stulz, Options on the minimum or the maximum of two risky assets: Analysis and applications, J. Financ. Econ. 10 (2) (1982) 161–185.
[63] Y. Chen, C. Christara, Penalty methods for bilateral XVA pricing in European and American contingent claims by a partial differential equation

model, J. Comput. Finance 24 (4) (2021) 41–70.
[64] C. Randall, D.A. Tavella, Pricing financial instruments: The finite difference method, Wiley, 2000.
[65] J.C. Cox, J.E. Ingersoll, S.A. Ross, A theory of the term structure of interest rates, Econometrica 53 (2) (1985) 385–407.
[66] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6

(2) (1993) 327–343.
[67] D. Castillo, A.M. Ferreiro, J.A. García-Rodríguez, C. Vázquez, Numerical methods to solve PDE models for pricing business companies in different

regimes and implementation in GPUs, Appl. Math. Comput. 219 (24) (2013) 11233–11257.
[68] I. Arregui, B. Salvador, C. Vázquez, PDE models and numerical methods for total value adjustment in European and American options with

counterparty risk, Appl. Math. Comput. 308 (2017) 31–53.
[69] K.J. In ’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Model. 7

(2) (2010) 303–320.
24

http://refhub.elsevier.com/S0377-0427(22)00639-2/sb34
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb35
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb35
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb35
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb36
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb36
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb36
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb37
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb37
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb37
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb38
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb38
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb38
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb39
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb40
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb41
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb41
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb41
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb42
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb43
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb43
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb43
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb44
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb44
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb44
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb45
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb45
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb45
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb46
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb46
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb46
http://arxiv.org/abs/2005.02347
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb48
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb48
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb48
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb49
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb49
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb49
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb50
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb50
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb50
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb51
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb51
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb51
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb52
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb52
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb52
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb53
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb53
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb53
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb54
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb55
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb56
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb56
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb56
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb57
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb57
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb57
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb58
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb58
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb58
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb59
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb59
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb59
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb60
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb60
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb60
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb61
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb61
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb61
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb62
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb63
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb63
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb63
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb64
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb65
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb66
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb66
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb66
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb67
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb67
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb67
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb68
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb68
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb68
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb69
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb69
http://refhub.elsevier.com/S0377-0427(22)00639-2/sb69

	Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk
	Introduction
	PINNs
	Feed-forward neural networks
	Loss function and training algorithm
	Convergence and generalization error bounds

	Novel treatment of boundary conditions
	Application to problems in computational finance
	General pricing problem formulation
	Specific pricing problem formulation
	European options under the Black–Scholes model
	European options under the Heston model

	Numerical experiments
	Two-asset basket options under the Black–Scholes model
	Test settings
	Numerical results

	Vanilla option pricing under the Heston model
	Test settings
	Numerical results

	Multidimensional basket options under the Black–Scholes model
	Test settings
	Numerical results

	Conclusions
	Data availability
	Acknowledgements
	Appendix. Numerical experiments for the one-dimensional Black–Scholes equation
	Test settings
	Numerical results

	References

