

The potential impact of cultured meat on the meat industry and the environment

Marte Wieling

Dissertation written under the supervision of professor Peter V. Rajsingh PhD

Dissertation submitted in partial fulfilment of the requirements for the MSc in International Management with Specialization in Strategy and Consulting, at the Universidade Católica Portuguesa, June 2022.

Abstract

The meat industry is facing transformation. Besides already existing plant-based substitutes, a new alternative from the laboratory is moving increasingly closer to the market. Cultured meat has emerged as a game-changing technology for the global food business, with the potential to address severe environmental, climate, global public health, and animal welfare issues.

The dissertation examines the potential of cultured meat being a substitution threat for conventionally produced meat. In addition, a scenario analysis highlights the environmental impact of cultured meat in the meat industry. To answer the research questions, a qualitative study methodology is applied in the form of semi-structured expert interviews and an examination of the secondary literature.

The results indicate that cultured meat poses a significant substitution threat for conventionally produced meat starting in 2030. Although cultured meat is a sustaining innovation, the impact on the meat industry is powerful since the phenomenon exploits its characteristics by addressing the world's driving concerns about the environment, health, and food security. Before cultured meat becomes reality, it still must surmount several challenges, such as regulatory barriers, technological progress, and the associated price parity. Nevertheless, the scenario analysis points out that cultured meat could substantially enhance the environmental footprint of the meat sector.

Title: The potential impact of cultured meat on the meat industry and the environment

Author: Marte Wieling

Keywords: Substitution, Innovation, Sustaining Innovation, Environment, Scenario Analysis, Cultured Meat, Cell-Based Meat, Meat Substitutes, Livestock Industry

Sumário

A indústria da carne está a enfrentar transformação. Para além dos substitutos à base de plantas já existentes, uma nova alternativa do laboratório está a aproximar-se cada vez mais do mercado. A carne cultivada surgiu como uma tecnologia revolucionária para a indústria alimentar global, com potencial para abordar graves questões ambientais, de sustentabilidade, de saúde pública global, e de bem-estar animal.

A dissertação examina o potencial de a carne cultivada ser uma ameaça de substituição da carne produzida convencionalmente. Além disso, uma análise de cenário destaca o impacto ambiental da carne cultivada na indústria da carne. Para responder às questões base da investigação, é aplicada uma metodologia de estudo qualitativo sob a forma de entrevistas semi-estruturadas de peritos e uma análise da literatura secundária.

Os resultados indicam que a carne cultivada representa uma ameaça significativa de substituição da carne produzida convencionalmente a partir de 2030. Embora a carne cultivada seja uma "sustaining innovation", o impacto na indústria da carne é poderoso, uma vez que o fenómeno explora as suas características ao abordar as preocupações mundiais sobre o meio ambiente, a saúde e a segurança alimentar. Até que a carne cultivada se torne realidade, tem ainda de superar vários desafios, tais como barreiras regulamentares, progresso tecnológico, e a paridade de preços associada. No entanto, a análise de cenários salienta que a carne cultivada pode melhorar substancialmente a pegada ambiental do sector da carne.

Título: O impacto potencial da carne cultivada na indústria da carne e no meio ambiente

Autor: Marte Wieling

Palavras-chave: Substituição, inovação, sustaining innovation, meio ambiente, análise de cenários, carne cultivada, carne baseada em células, substitutos de carne, indústria pecuária

Acknowledgments

First of all, I would like to express my gratitude to my supervisor Peter Rajsingh for his continued guidance, support, and constructive feedback throughout the writing of my dissertation.

I would also like to thank my industry experts for their great collaboration. Without their valuable insights, opinions, and knowledge it would not have been possible to complete my research. Your expertise in this promising study field was fundamental to consolidating the understanding of the topic covered.

Finally, I would like to show my deepest appreciation to my parents who made my studies in Lisbon possible. Thank you for making my dream of studying in Lisbon a reality.

Table of Contents

Sumário
Acknowledgments iii List of Figures vi List of Tables vi List of Abbreviations vii 1. Introduction 1 1.1. Problem statement 2 1.2. Academic and managerial relevance 3 1.3. Research questions 3 2. Literature review 4 2.1. The challenges of livestock farming 4 2.1.1. Health. 5 2.1.2. Climate change 6 2.1.3. Food security 7 2.2. Market disruptor – cultured meat 8 2.2.1. Meat from the laboratory 8 2.2.2. Current stage of development 9 2.3. An industry faces disruption 11 2.3.1. Innovation 11 2.3.2. Competitive forces in an industry. 12 3.1. Research design 13 3.1. Research design 13 3.1. Research design 13 3.3. Data collection 13
List of FiguresviList of TablesviList of Abbreviationsvii1.Introduction11.1.Problem statement21.2.Academic and managerial relevance31.3.Research questions32.Literature review42.1.The challenges of livestock farming42.1.1.Health52.1.2.Climate change62.1.3.Food security72.2.Market disruptor – cultured meat82.2.1.Meat from the laboratory82.2.2.Current stage of development92.3.An industry faces disruption112.3.1.Innovation112.3.2.Competitive forces in an industry123.Methodology133.1.Research design133.2.Data collection133.3.Data analysis154.Findings15
List of TablesviList of Abbreviationsvii1.Introduction11.1.Problem statement21.2.Academic and managerial relevance31.3.Research questions32.Literature review42.1.The challenges of livestock farming42.1.1.Health52.1.2.Climate change62.1.3.Food security72.2.Market disruptor – cultured meat82.2.1.Meat from the laboratory82.2.2.Current stage of development92.3.An industry faces disruption112.3.1.Innovation112.3.2.Competitive forces in an industry123.Methodology133.1.Research design133.3.Data analysis154.Findings15
List of Abbreviationsvii1.Introduction11.1.Problem statement21.2.Academic and managerial relevance31.3.Research questions32.Literature review42.1.The challenges of livestock farming42.1.1.Health52.1.2.Climate change62.1.3.Food security72.2.Market disruptor – cultured meat82.2.1.Meat from the laboratory82.2.2.Current stage of development92.3.An industry faces disruption112.3.1.Innovation112.3.2.Competitive forces in an industry123.Methodology133.1.Research design133.3.Data collection133.3.Data analysis154.Findings15
1. Introduction 1 1.1. Problem statement 2 1.2. Academic and managerial relevance 3 1.3. Research questions 3 2. Literature review 4 2.1. The challenges of livestock farming 4 2.1.1. Health 5 2.1.2. Climate change 6 2.1.3. Food security 7 2.2. Market disruptor – cultured meat 8 2.2.1. Meat from the laboratory 8 2.2.2. Current stage of development 9 2.3. An industry faces disruption 11 2.3.1. Innovation 11 2.3.2. Competitive forces in an industry 12 3.1. Research design 13 3.1. Research design 13 3.1. Research design 13 3.3. Data collection 13 3.4. Findings 15
1.1.Problem statement21.2.Academic and managerial relevance31.3.Research questions32.Literature review42.1.The challenges of livestock farming42.1.1.Health52.1.2.Climate change62.1.3.Food security72.2.Market disruptor – cultured meat82.2.1.Meat from the laboratory82.2.2.Current stage of development92.3.An industry faces disruption112.3.1.Innovation112.3.2.Competitive forces in an industry123.Methodology133.1.Research design133.2.Data collection133.3.Data analysis154.Findings15
1.2. Academic and managerial relevance 3 1.3. Research questions 3 2. Literature review 4 2.1. The challenges of livestock farming 4 2.1.1. Health 5 2.1.2. Climate change 6 2.1.3. Food security 7 2.2. Market disruptor – cultured meat 8 2.2.1. Meat from the laboratory 8 2.2.2. Current stage of development 9 2.3. An industry faces disruption 11 2.3.1. Innovation 11 2.3.2. Competitive forces in an industry 12 3. Methodology 13 3.1. Research design 13 3.2. Data collection 13 3.3. Data analysis 15
1.3. Research questions32. Literature review42.1. The challenges of livestock farming42.1.1. Health52.1.2. Climate change62.1.3. Food security72.2. Market disruptor – cultured meat82.2.1. Meat from the laboratory82.2.2. Current stage of development92.3. An industry faces disruption112.3.1. Innovation112.3.2. Competitive forces in an industry123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
2. Literature review 4 2.1. The challenges of livestock farming 4 2.1.1. Health 5 2.1.2. Climate change 6 2.1.3. Food security 7 2.2. Market disruptor – cultured meat 8 2.2.1. Meat from the laboratory 8 2.2.2. Current stage of development 9 2.3. An industry faces disruption 11 2.3.1. Innovation 11 2.3.2. Competitive forces in an industry 12 3. Methodology 13 3.1. Research design 13 3.2. Data collection 13 3.3. Data analysis 15 4. Findings 15
2.1. The challenges of livestock farming 4 2.1.1. Health. 5 2.1.2. Climate change 6 2.1.3. Food security 7 2.2. Market disruptor – cultured meat. 8 2.2.1. Meat from the laboratory 8 2.2.2. Current stage of development. 9 2.3. An industry faces disruption 11 2.3.1. Innovation 11 2.3.2. Competitive forces in an industry 12 3. Methodology 13 3.1. Research design 13 3.2. Data collection 13 3.3. Data analysis 15 4. Findings. 15
2.1.1. Health
2.1.2. Climate change62.1.3. Food security72.2. Market disruptor – cultured meat82.2.1. Meat from the laboratory82.2.2. Current stage of development92.3. An industry faces disruption112.3.1. Innovation112.3.2. Competitive forces in an industry123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
2.1.3. Food security72.2. Market disruptor – cultured meat82.2.1. Meat from the laboratory82.2.2. Current stage of development92.3. An industry faces disruption112.3.1. Innovation112.3.2. Competitive forces in an industry123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
2.2. Market disruptor – cultured meat.82.2.1. Meat from the laboratory82.2.2. Current stage of development.92.3. An industry faces disruption112.3.1. Innovation112.3.2. Competitive forces in an industry123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
2.2.1. Meat from the laboratory82.2.2. Current stage of development92.3. An industry faces disruption112.3.1. Innovation112.3.2. Competitive forces in an industry123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
2.2.2. Current stage of development
2.3. An industry faces disruption112.3.1. Innovation112.3.2. Competitive forces in an industry123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
2.3.1.Innovation112.3.2.Competitive forces in an industry123.Methodology133.1.Research design133.2.Data collection133.3.Data analysis154.Findings15
2.3.2. Competitive forces in an industry.123. Methodology133.1. Research design133.2. Data collection133.3. Data analysis154. Findings15
3. Methodology 13 3.1. Research design 13 3.2. Data collection 13 3.3. Data analysis 15 4. Findings 15
3.1. Research design 13 3.2. Data collection 13 3.3. Data analysis 15 4. Findings 15
3.2. Data collection
3.3. Data analysis
4. Findings15
5. Discussion and interpretation
5.1. Innovation in the meat industry
5.2. From the lab to the consumer's plate
5.2.1. Cultured meat – a serious substitution threat
5.2.2. Barriers to overcome
5.3. Substitution with environmental impact
6. Conclusion

6.2.	Limitations	34
6.3.	Further research	35
Refer	ences	36
Appe	ndix A	41
Interv	iew questionnaire template	41
Parap	hrased expert interviews	42
Appe	ndix B	61
Datab	ase	61
Scena	rio analysis	62

List of Figures

Figure 1: Worldwide crops harvest by type and consumption by use in 2020 (OECD, 2022) 1
Figure 2: Generic meat value chain (Marcy Lowe & Gary Gereffi, 2009; Novaković, Grujić,
& Vujadinović, 2015)
Figure 3: Meat consumption per capita (OECD, 2022)
Figure 4: GHG emissions by economic sector, agricultural sub-sector, and activity (FAO,
2021c; IPCC, 2014)
Figure 5: Simplified value chain of cultured meat (The Good Food Institute, 2021a; van der
Weele & Tramper, 2014; Zhang et al., 2020)
Figure 6: Market maturity of cultured meat in phases (The Good Food Institute, 2021a) 10
Figure 7: Porter's Five Forces Framework (Porter, 1979) 12
Figure 8: Interview question 1 (Appendix A)
Figure 9: Interview question 4 (Appendix A) 17
Figure 10: Interview question 5 (Appendix A)
Figure 11: Interview question 6 (Appendix A)
Figure 12: Interview question 7 (Appendix A)
Figure 13: Interview question 8 (Appendix A)
Figure 14: Interview question 9 (Appendix A)
Figure 15: Interview question 10 (Appendix A) 21
Figure 16: Interview question 12 (Appendix A)
Figure 17: Categorized barriers for cultured meat (Appendix A)
Figure 18: Global carbon footprint of the meat production in 2030, 2040, and 2050 (Appendix
B)
Figure 19: Global land use for the meat production in 2030, 2040, and 2050 (Appendix B) 32
Figure 20: Global blue water use in the meat production in 2030, 2040, and 2050 (Appendix
B)

List of Tables

Table 1: Expert roles and organization types	14
Table 2: Scenarios for environmental impact assessment	29
Table 3: Assumptions for the scenario analysis	30

List of Abbreviations

b	Billion
BCG	The Boston Consulting Group
CO ₂ eq	Carbon dioxide equivalent
EU	European Union
GHG	Greenhouse gases
m	Million
m ² a crop-eq	Land use equivalent ratio
OECD-FAO	Organisation for Economic Co-operation and Development and
	Food and Agriculture Organization of the United Nations

1. Introduction

The world population continues to grow. In 2019, 7.7b people lived on earth while in 2030 the world population is projected to reach 8.5b people (United Nations, 2019). The amount of food required to sustain all these people is enormous. The Organisation for Economic Cooperation and Development and Food and Agriculture Organization of the United Nations (OECD-FAO) identified the growing population as the main driver of demand growth for agricultural commodities. During the next decade, the global demand for agricultural products is projected to grow by 1.2% annually (OECD-FAO, 2021).

As shown in Figure 1, in 2020, 3.3b metric tons of cereals and seeds were harvested worldwide (Figure 1). However, only 43% of the grown crops remain for human food consumption while another 38% of the harvest is dedicated to feeding livestock (OECD, 2022). This is due to the huge livestock populations that make up a major part of the world's animal population. While 60% of all mammals on earth are livestock, only 4% represent wild animals (Bar-On, Phillips, & Milo, 2018). Looking at the biomass of the birds, 70% of all birds are chickens and other poultry and only 30% of the birds live in the wild (Bar-On et al., 2018).

In addition, the OECD-FAO forecasts that feed consumption will increase even faster (1.2% p.a.) than human food consumption (1.0% p.a.) over the next decade. This development is the result of the ongoing expansion of livestock farming and the increasing demand for meat (OECD-FAO, 2021). Global livestock output reached 337m metric tons in 2019, a 44 percent increase since 2000 (FAO, 2021c).

Figure 1: Worldwide crops harvest by type and consumption by use in 2020 (OECD, 2022)

Due to its high concentration of nutrients, meat and in particular animal proteins, are perceived as a superior source of energy for humans (Godfray et al., 2018). Despite the everrising consumption of meat, increasing consumer awareness in developed countries and interest in meat substitutes mainly driven by health and sustainability concerns have led to a shift in the consumption of animal proteins (Bashi, McCullough, Ong, & Ramirez, 2019). Consequently, the market landscape has changed and several companies with alternative meat products replacing conventional meat products have entered the market. These meat alternatives are diverse and range from plant-based and insect-based to cultured meat products. The terminology "cultured meat" refers to meat created in a bioreactor with muscle tissues from animal stem cells (Zhang et al., 2020). While plant-based products already represent a significant market share, cultured meat is still in its early stages (Alexander et al., 2017). This thesis explores the potential impact of cultured meat as a significant substitution threat for conventionally produced meat and the livestock industry.

1.1.Problem statement

The food industry and therefore the agricultural sector is facing many major economic, ecological, and social challenges. The most recent UNICEF report highlights the overconsumption and tremendous ecological footprint of humanity (UNICEF, 2022). If the world would live like the average people in countries of the OECD and the European Union (EU), 3.3 earths would be needed (UNICEF, 2022).

The universal and legally binding Paris Agreement adopted by 191 countries and the EU in December 2015 is the global answer to combat overconsumption and climate change (Paris Agreement to the United Nations Framework Convention on Climate Change, 2015). The agreement's central aim is to limit the rise in global temperatures to well below 2 degrees in this century and reach the peak of greenhouse gas (GHG) emissions as soon as possible (Art. 2 and Art. 4).

Agriculture holds a very special position in climate change because it is particularly affected by climate change and is also a major contributor to GHG emissions. The agricultural sector was the second-largest emitter in 2010 and GHG emissions from livestock are expected to grow by over 70% by 2050 compared to 2005 levels (FAO, 2013; IPCC, 2014). Furthermore, studies show that high meat consumption may lead to an increased risk of chronic diseases (Godfray et al., 2018). In addition, industrial livestock production significantly compromises the welfare of farmed animals (Lymbery & Oakeshott, 2014).

The foregoing reasons are driving the health and sustainability concerns of consumers. In turn, these concerns lead to changing consumer preferences accelerating the market development for alternative meat products (Bashi et al., 2019). However, global meat consumption is still rising. Current meat alternatives such as plant-based proteins, which have been on the market for years, do not seem to be stopping the rising global trend of meat-eating. Cultured meat does not only have the same texture and taste as genuine meat, but it also creates just a fraction of the adverse impact on the climate (Coggin, 2021; Sinke & Odegard, 2021). Hence, cultured meat could not only be a viable alternative to traditional meat and plant-based products but may also be the answer to the multifaceted challenges of the livestock industry.

1.2. Academic and managerial relevance

The agricultural industry faces growing demand for meat while being under pressure to transform into a more sustainable business. Instead of advancing the characteristics of meat with those of plants, cultured meat attempts to replicate conventionally produced meat without animal husbandry (Goodwin & Shoulders, 2013). Therefore, cultured meat might be a significant substitute for meat products in the future (Bashi et al., 2019).

Since the beginning of this century, research in cultured meat has intensified and major breakthroughs have been made in recent years (Goodwin & Shoulders, 2013). However, there is still a long way to go before cultured meat can be produced in large quantities and marketed to end consumers. Cultured meat has the potential to become a reality and transform the meat industry, addressing pressuring challenges of the agricultural sector. McKinsey Senior Partner Christer Tryggestad (2022) pointed out that he sees cultured meat as a viable solution for the agricultural sector to transform into a net-zero business: "If we want to continue eating genuine meat, then cultured meat is the only solution for the agriculture sector to reach net-zero" (Tryggestad, 2022).

Besides cultured meat, other solutions have the potential to disrupt the meat industry. Plantbased or insect-based meat alternatives imitating meat are solutions that already have attained market scale and are transforming the meat industry. However, due to the novelty of cultured meat, the present dissertation focuses solely on cultured meat and its potential impact on the meat industry.

1.3.Research questions

The meat industry is confronted with an unprecedented transformation. New meat alternatives and trends lead to a disruption in the industry. Cultured meat as a futuristic meat alternative could not only replace traditionally produced meat and transform the meat industry, but it may also pave the way to a more sustainable industry. This thesis will evaluate the potential impact of cultured meat on the meat industry and the environment. The research questions examined are:

- RQ1: Will cultured meat be a significant substitution threat for traditionally produced meat?
- RQ2: Assuming cultured meat partly replaces traditionally produced meat, how would this development affect the environmental impact of the meat industry?

2. Literature review

The first part of the literature review examines the current state of the meat industry to provide a comprehensive understanding of the challenges the industry is facing and the megatrends that are driving change in the meat sector. Subsequently, cultured meat is discussed in detail, being a possible disruptor and substitute for genuine meat in the future. In addition, an overview of the theoretical background of innovation and the industry's competitive structure forms the last part of the literature review.

2.1. The challenges of livestock farming

The conventional meat industry is a multi-billion-dollar industry valued at over 830b USdollar in 2020 (Shahbandeh, 2021). Looking at the generic meat value chain, livestock farming represents a fundamental part of the meat-producing industry (Figure 2).

Figure 2: Generic meat value chain (Marcy Lowe & Gary Gereffi, 2009; Novaković, Grujić, & Vujadinović, 2015)

The OECD-FAO forecasts an increase of almost 44m metric tons in global meat production by 2030 (OECD-FAO, 2021). The enormous expansion of the industry is mainly based on two drivers, the growing world population and the growing income and living standard in emerging developing countries (OECD-FAO, 2021).

Across the globe, there are many different animal species raised for meat consumption. However, three species account for almost 90% of meat production. While poultry meat was the most produced type accounting for 35% of the global meat production in 2019, pork made up 33% and beef represented the smallest part of the three types with 20% (FAO, 2021c).

Figure 3: Meat consumption per capita (OECD, 2022)

Although overall consumption will continue to rise, Figure 3 shows that worldwide per capita consumption will stagnate until 2030 (Figure 3) (OECD, 2022). This global development underlies the stagnation in Europe and Africa and even the declining per capita consumption in Oceania (OECD-FAO, 2021).

Notwithstanding, the factors and variables affecting meat consumption are complex and diverse. The determinants can range from rational factors like meat prices or incomes to irrational factors such as tradition, religious beliefs, cultural norms, environmental awareness, or ethical beliefs (OECD-FAO, 2021). The meat industry in particular experiences a variety of market dynamics changing the industry landscape (Bashi et al., 2019). The reasons for the dynamics are megatrends affecting the buying behavior and diet preferences of consumers over time. Megatrends are long-term shifts, irreversible, and therefore a powerful, transformative force changing businesses, industries, or whole economies (BlackRock, 2018). In the following subchapters, the megatrends health, climate change, and resource scarcity and their impact on the meat industry are explored in more detail.

2.1.1. Health

A large number of studies show that higher consumption of unprocessed and processed red meat but also pork and chicken meat can lead to increased risk of heart disease, cancers, diabetes, and premature death (Bouvard et al., 2015; Papier et al., 2021). In addition, a study highlighted that due to intensive large-scale livestock farming practices, from 2010 to 2030 the global use of antibiotics in farm animals is forecast to rise by 67% (van Boeckel et al., 2015). Extensive use of antibiotics can contribute to antibiotic resistance for both animals and humans (CDC, 2021). Consequently, developed drugs no longer have any effect on these bacteria, putting public health at risk (CDC, 2018).

These studies are being widely discussed in society and lead to increased awareness of the negative impact of meat consumption. Consequently, consumer concerns about livestock farming are rising. Health plays an increasingly significant role in food shopping for consumers (Günday, Karabon, Kooij, Moulton, & Omeñaca, 2020). Looking at stagnating meat consumption per capita in Europe, people are changing their diets. Consumer health consciousness is affecting the consumption of meat and hence the livestock industry.

2.1.2. Climate change

In this century, climate change is one of the major challenges mankind is facing. Scientists from all over the world agree that the earth's climatic system, and thus the environment and biodiversity are influenced by human activities (Pachauri & Mayer, 2015). The agriculture sector and in particular the livestock industry have a significant impact on climate change due to GHG emissions. Likewise, it negatively affects the environment in multiple ways such as land use, water use, soil erosion, biodiversity loss, and animal welfare (FAO, 2021c; IPCC, 2014; Lymbery & Oakeshott, 2014; OECD-FAO, 2021).

The agricultural sector, including forestry and other land, accounts for almost a quarter of total GHG emissions worldwide in 2010 (Figure 4). GHG emissions generated by farming activities represented approximately two-thirds of the sector in the same year (IPCC, 2014), while the FAO estimates that a major part (55%) of all farming activities derived from livestock-related activities (FAO, 2021c) (Figure 4). In absolute terms, the total agricultural emissions in 2018 amounted to more than 9.3b tons of CO_2eq , of which more than 3b tons of CO_2eq were generated by livestock-related production processes (FAO, 2021a).

Figure 4: GHG emissions by economic sector, agricultural sub-sector, and activity (FAO, 2021c; IPCC, 2014)

Due to enteric fermentation, manure left on pasture, and synthetic fertilizers, meat has a very high CO_2 intensity. Carbon dioxide and methane account for 80% of the GHG emissions in livestock farming (FAO, 2021c). Methane is a highly powerful GHG and 80 times more

warming than carbon dioxide over 20 years (FAO, 2021c; United Nations, 2021). As a result, cattle meat is the most CO₂-intensive commodity (~30kg CO₂eq/kg) in agriculture (Sinke & Odegard, 2021). In comparison to beef, producing one kilogram of cereals is equal to 0.2kg of CO₂ (FAO, 2021c). The differences in emissions highlight the severe impact of livestock farming on the climate.

Additionally, more than one-quarter of ice-free land is used for livestock grazing while one-third of the cropland is used for the production of feed for livestock (FAO, 2012b). Livestock is one of the major drivers of deforestation which not only causes soil compaction and erosion but also negatively affects CO₂ emissions from deforestation. (FAO, 2021b; IPCC, 2014).

While agriculture is the most vulnerable to water scarcity of any sector of the economy, it is also the largest consumer being responsible for 70% of worldwide freshwater withdrawals (FAO, 2012a). Furthermore, agriculture including livestock farming is dominantly polluting the water with fertilizer and pesticides in many regions all over the world which is in turn directly affecting human health and food security (FAO, 2021b).

While other sectors such as electricity and transportation already found viable sustainable substitutes such as wind power, solar power, green hydrogen, or battery electric vehicles, the agriculture industry still struggles to find an appropriate substitute for meat. Plant-based products are a solution, but do not lead to a complete replacement of meat and thus do not lead to a sector-wide reduction in environmental impact.

2.1.3. Food security

Looking at the growing population reaching almost 10b in 2050 (United Nations, 2019), agriculture and livestock farming pose not only an increasing threat to the climate and environment but also to food security. Natural resources, such as fresh water in areas with less rainfall and arable land all over the world are limited. Moreover, the industrialization of livestock and agriculture is facing their efficiency limits. Due to these circumstances, meat production will be affected by competition between food and feed. Although adult obesity is strongly growing in Northern America, Europe, and Oceania, the global number of undernourished people rises sharply (FAO, 2021c). From 2019 to 2020 the world experienced a rise of over 160 million people to 770 million undernourished people, accounting for approximately 10% of the global population (FAO, 2021c). With limited natural resources, an increasing number of people living on the planet, and only a stagnating consumption of meat

per capita, food security is a serious challenge not only for the livestock industry but also for humanity.

2.2. Market disruptor – cultured meat

The market has responded to these megatrends with various alternatives to existing animalbased meat products. While vegetarian, vegan, insect-based, or microorganism-based meat replacements are already established in the market, cultured meat is a novel technology and had its first market debut in 2013 (Bashi et al., 2019; The Good Food Institute, 2021a).

Although the texturization of the meat alternatives is continuously improving the taste and feel of these products, it seems impossible to fully mimic genuine meat. The reason for this hurdle is the raw material meat alternatives are made off. All of them are based on soy, milk proteins, wheat proteins, mycoprotein, or insect proteins and hence are mainly used for processed meat substitutions such as minced meat (Post, 2012). However, cultured meat is now trying to close this gap.

2.2.1. Meat from the laboratory

Cultured meat also described as cell-based, cultivated, in vitro, synthetic, or lab-grown meat is the use of tissue engineering to create muscle for food consumption (Stephens et al., 2018; Zhang et al., 2020). As a result, the production, as well as the whole value chain of cultured meat, differs significantly from the production of traditional meat (Figures 2 & 5). According to Figure 5, in comparison to conventional livestock farming, cultured meat skips the step of feed harvest.

Figure 5: Simplified value chain of cultured meat (The Good Food Institute, 2021a; van der Weele & Tramper, 2014; Zhang et al., 2020)

The base material of cultured meat is a stem cell obtained from the muscle tissue of a donor animal through a biopsy. The stem cell can be taken from all animal species including fish. Another key material for the production is the culture media. This media contains essential nutrients binding proteins, vitamins, enzymes, and mineral trace elements and ensures the proliferation and differentiation of the cells into muscles. For the growing process, the media and the cells are merged in a bioreactor (Figure 5). During this process, the size of the bioreactor is constantly increased until the tissue formation has reached a desired size and density. As the last production step, a centrifuge separates the tissue formation/scaffold and the media allowing harvesting of the meat and the extrusion of consumer-size portions. (Datar & Betti, 2010; van der Weele & Tramper, 2014; Zhang et al., 2020)

The production process illustrates the capabilities of biotechnology for food production and the fact that no slaughter of animals is involved (Figure 5). In addition, due to the use of an animal stem cell, the texture and taste of the meat are similar or comparable to genuine meat (Bashi et al., 2019).

2.2.2. Current stage of development

Since the early 2000s, the National Aeronautics and Space Administration has conducted research on cultured meat to establish a sustainable food supply chain for long-term flights in space. However, these investigations were still early laboratory studies (Zhang et al., 2020). In 2013, the Dutch scientist Mark Post presented the first cultured meat hamburger patty. Although it took more than three months and cost \$330,000 to produce the cultured meat patty, the presentation attracted a lot of media attention (Zhang et al., 2020). At this time, cultured meat was in the very early stages and, the technology was still in its infancy (Post, 2012).

Today, biotechnology and cultured meat have made enormous progress (Figure 6). Figure 6 illustrates the market maturity of cultured meat divided into 5 phases. During the phase of conceptualization in 2013, the costs for cultured meat were exorbitantly high (Figure 6). Within the next few years, an increasing number of startups developed bench-scale prototypes of cultured meat. After proof of concept, in 2019 the commercial era with pilot-scale facilities producing the first wave of salable products has begun (The Good Food Institute, 2021a). Already in 2021, Future Meat Technologies announced to bring down the costs for 110 grams of chicken below \$4 (Terazono, 2021). Besides Future Technologies there are 70 other startups such as Aleph Farms, BlueNalu, or Lab Farm Foods trying to win the race for future market share (Aleph Farms, 2022; BlueNalu, 2022; Lab Farm Foods; The Good Food Institute, 2021a). In 2022, the industry is forecasted to slowly transit into the demonstration-scale phase (The Good Food Institute, 2021a) (Figure 6). This stage of development underlines significantly the novelty of cultured meat and that cultured meat is still in the middle of an evolution.

Figure 6: Market maturity of cultured meat in phases (The Good Food Institute, 2021a)

Increasing market activity is also reflected by the volume of invested capital. While in 2016 investment totaled only \$6m, by 2020 this number had risen to \$366m accounting for 14% of the overall annual private-sector investment within the alternative protein sector (The Good Food Institute, 2021a). Thus, the cumulative invested capital raised from 2016 to 2020 reached almost \$500m (The Good Food Institute, 2021a). In 2021, Future Meat Technologies raised \$347m, the largest-ever funding for cultured meat, to build a large-scale production facility for cultured meat products (Paris, 2021). Financial capital and engagement are also emerging from established multinationals such as Tyson Foods and Merck KGaA (Merck Science & Technology Office, 2021; Servino, 2018). Additional public governmental funding is boosting the ramp-up of the cultured meat market and its ecosystem. Singapore, the first and only country that approved lab-grown meat in 2020, is pushing further into cultured meat (The Good Food Institute, 2021a). Its state-backed investment institution Temasek has invested \$8bn in agriculture technology and cultured meat to create a domestic food supply chain (Ruehl, 2021). Looking at the demand side, a McKinsey analysis highlights rising consumer interest in alternative proteins. Cultured meat had a 16% CAGR of internet queries from 2004 to 2019 (Bashi et al., 2019).

Although there is no efficient production of cultured meat yet since products are not fully market-ready, there are already various assumptions about the future size of the market. McKinsey predicts a huge market opportunity and estimates the market volume in 2030 at about 2.1m metric tons worldwide, while The Boston Consulting Group (BCG) forecasts the market volume in 2035 at 6m metric tons (Brennan, Katz, Quint, & Spencer, 2021; Witte et al., 2021). How cultured meat affects the meat industry will be examined in more detail in section 5 of the dissertation given its anticipated growth.

2.3. An industry faces disruption

With the increasing speed of change affecting the world, new business models or emerging technologies likely occur within an industry. Those innovations can lead to massive changes or even to disruption in the industry landscape.

2.3.1. Innovation

Innovation is associated with value creation, but it is not a one-size-fits-all proposition; it can be achieved in a variety of ways. In the mid of the '90s, Clayton Christensen coined and conceptualized the idea of disruptive innovation (2013). However, the term disruptive innovation has been widely misunderstood and co-opted by the business world (Christensen, Raynor, & McDonald, 2015) Therefore, it is essential to carefully examine and correctly understand the concept in order to determine the influence innovation has on an industry and its incumbents. Innovation is not a product, but a process, or more precisely, an evolution of a product over time (Christensen et al., 2015).

There are different types of innovation. Sustaining innovation is described by Christensen as "better products that you could sell for better profits to your best customers" (Christensen, 2013). Hence, sustaining innovation is a performance improvement of an established product targeting the most profitable customers.

In contrast, disruptive innovation is the process in which a smaller company climbs upward the market and takes on larger, more established companies (Christensen, 2013). This process is further divided into two sub-types. Low-end disruption takes place when a disruptor is focused on low-end customers and serves them with a "good enough" product at a lower price while incumbents only give attention to the most profitable customers (Christensen et al., 2015). As a result, the new disrupter gains market share over time and captures the incumbent's customers in the end. New market disruption is when a disruptor creates a new market where none existed before (Christensen, 2013). This means non-consumers are converted into consumers (Christensen et al., 2015).

Comparing both types of innovation, the differences in the market diffusion are more evident when looking at the encroachment framework (Schmidt & Druehl, 2008). The framework maps the type of innovation to the type of diffusion and suggests that sustaining innovation is a high-end encroachment while disruptive innovation is a low-end encroachment (Schmidt & Druehl, 2008). The encroachment implies that the new product is cannibalizing sales of the existing product. While a low-end encroachment can be overlooked easily since

the potential is delayed, a high-end encroachment has an immediate and striking impact on the market (Schmidt & Druehl, 2008). Consequently, a disruptive innovation's diffusion process can be less disruptive to an incumbent than a sustaining innovation due to the immediate high cannibalization of sales that leads to a fight for market share.

2.3.2. Competitive forces in an industry

The intensity of the fight for market share is rooted in the competitive nature of an industry. Michael E. Porter highlighted that competition is not only based on other players, rather it is anchored in its underlying competitive forces (1979). The state of competition in an industry is reflected by the Five Forces Framework (Porter, 1979) (Figure 7).

Figure 7: Porter's Five Forces Framework (Porter, 1979)

Using the outside-in perspective, the structure is a straightforward approach to identifying certain powers in accordance with a certain business situation (Johnson, Scholes, & Whittington, 2009). The collective strengths of the forces not only determine an organization's ability to make a profit but also call attention to the places where industry trends and dynamics have the greatest importance (Porter, 1979). Trends may affect the competitive forces and therefore the industry structure (Porter, 1979). When an industry structure including the level of rivalry alters, incumbents or new players can exploit this industry change strategically. Hence, new, and potential competitive positions may emerge. Changes in the industry's structure create new demands and new tactics to meet current ones (Porter, 2008).

Shifts in the industry's structure can occur for several reasons such as changes in technology or changes in customer needs and preferences. For example, a shift in the threat of substitution can emerge due to technological advancements (Porter, 2008). Advances in

technology create new substitutes and can lead to shifts in price-performance comparisons (Porter, 2008).

Even if an industry is usually considered relatively stable, it can undergo change affected by competitive forces. This, in turn, alters the attractiveness of the industry and the profitability of incumbents. This phenomenon will be thoroughly examined in the next chapters.

3. Methodology

In order to study a complex phenomenon in its context, a qualitative study methodology is appropriate (Baxter & Jack, 2015). While quantitative research seeks to explain a certain phenomenon by emphasizing quantification in the data collection and analysis, a qualitative approach seeks to understand the phenomenon (Hollis, 2011).

3.1.Research design

Qualitative research is concerned with "deepening of understanding a given problem" (André Queirós, Daniel Faria, & Fernando Almeida, 2017). Hence, for this dissertation, a qualitative approach is applied to understand the evolving phenomenon of cultured meat and its impact on the meat industry. This also ensures that "the issue is not explored through one lens, but rather a variety of lenses which allows for multiple facets of the phenomenon to be revealed" (Baxter & Jack, 2015). Due to the novelty of the research topic and the limited available data, an exploratory case study design was conducted aiming to reveal initial research "to tackle new problems on which little or no previous research has been done" (Brown, 2006).

3.2.Data collection

To gather primary data in the form of qualitative information, expert interviews were conducted. The interviews were semi-structured meaning only a part of the questions is predefined. This interview design offers structure but establishes also a certain degree of freedom "to explore one of the questions in greater depth" (André Queirós et al., 2017). In addition, the experts can elaborate on their points of view, opinions and experiences in more detail contributing to the data collection.

The interview guide consisted of 14 structured questions of which some can be classified as open-ended questions, and some were closed-ended questions with a ranking assessment (Appendix A). Combining both types of questions in the questionnaire provided the opportunity both to quantitatively compare responses and to obtain additional information that is not anticipated. The first 5 questions aimed to understand the cultured meat phenomenon fundamentally, meaning how it differs from other protein alternatives, for which applications, and in which regions there is a particular potential (Appendix A). The questions 6 to 11 were designed to evaluate the potential of cultured meat including opportunities and risks while the questions 12 to 14 aimed to answer the second research question of how a substitution would affect the environmental impact of the meat industry (Appendix A).

ID	ROLE IN COMPANY	ORGANIZATION TYPE
EXPERT 1	Chief Executive Officer, Cultured Meat	Start-up
	Start-up in Israel (Funding > \$130m)	
EXPERT 2	Manager, Cultured Seafood Start-up in the	Start-up
	U.S. (Funding > \$80m)	
EXPERT 3	Chief Operating Officer, Cultured Meat	Start-up
	Start-up in the U.S. (Funding ~ \$2.5m)	
EXPERT 4	Chief Sustainability Officer, Cultured Meat	Start-up
	Start-up for Petfood in the United Kingdom	
EXPERT 5	Managing Partner, Alternative Proteins	Venture Capital Firm
	Venture Capital Firm in Switzerland	
EXPERT 6	Chief Investment Officer, Alternative	Venture Capital Firm
	Proteins Venture Capital Firm in the U.S.	
	& Singapore	
EXPERT 7	Global Agribusiness Lead, Top Tier	Consulting Firm
	Consultancy in the U.S.	
EXPERT 8	Director of Responsible Research and	Non-profit Organization
	Innovation, Nonprofit Research Institute	
	for Cultured Meat in the U.S.	
EXPERT 9	Scientist, Academic Research Institution at	Non-profit Organization
	a well-known University in Germany	

Table 1: Expert roles and organization types

Overall, 9 interviews were conducted with a wide range of cultured meat experts across different geographies to ensure a holistic and comprehensive examination of the cultured meat phenomenon (Table 1). The interviewees represented different types of organizations and therefore different stakeholders with divergent perspectives (Table 1). Furthermore, the

respondents were chosen based on their professional expertise and engagement with cultured meat.

Besides primary data collection, secondary research was conducted based on the literature review. The secondary data analysis was a comparative element in the data collection and completed the view of the phenomenon with high-quality data (Bryman & Bell, 2011). Moreover, secondary data was condensed into analyses to confirm the statements of the interview partners.

3.3.Data analysis

Two methods were used for data analysis. First, the content analysis was applied to analyze the qualitative information from open-ended questions of the interviews. Content analysis is a research technique for drawing reproducible and meaningful conclusions from texts and transcriptions of the open-ended interview data (Krippendorff, 2004). Responses were transformed into an organized conceptual structure. The interviews were transcribed verbatim, then paraphrased to condense statements and to ensure comparability (Appendix A).

Subsequently, the data obtained was processed into a scenario analysis to answer the second research question. Different scenarios were used to create a direction for future developments by observing key variables (Kosow & Gaßner, 2008). Hence, based on the answers and the secondary data such as lifecycle assessment studies, different hypothetical constructs of possible future were constructed serving as orientational knowledge.

4. Findings

The first closed question was designed to determine the extent to which the available protein alternatives pose a threat to the substitution of conventionally produced meat (Figure 8). In a second step, the interviewees were asked to provide reasons for their answers to understand their reasoning. Microorganism-based proteins have only 5 answers overall since not all experts had expertise in this area (Figure 8). Looking at the diagram, the answers showed a slightly higher potential for animal-cell-based proteins (Figure 8). The 6 interviewees representing different organizations (startups and non-profit research organizations) believed in higher potential for animal cell-based proteins. They justified their views based on superior taste and texture as well as "limitless opportunities" to substitute the whole animal-protein market (Expert 1, 2, 3, 4, 8 & 9). By contrast, the 3 interviewees forecasting higher potential

for plant-based products argued that plant-based products are market mature, approved, and price competitive (Expert 5, 6 & 7).

Figure 8: Interview question 1 (Appendix A)

The subsequent question was if cultured meat is a substitution threat for conventionally produced meat and if it is a fundamental gamechanger or rather a temporary trend in the meat industry. This question focused solely on cultured meat and its distinctive features to assess the impact of the phenomenon. The results were unambiguous, and all experts stated that cultured meat is a fundamental gamechanger for the meat industry and provided a wide range of reasons ranging from food security to environmental and health benefits (Appendix A).

Due to the novelty of the technology, question 3 aimed to determine the current state of technological development by determining whether a dominant production process already exists. All answers explicitly state the absence of a dominant production process (Appendix A). Moreover, the answers confirmed that producing meat with the help of animal cells is still in its infancy and all organizations are still exploring proper manufacturing methods. While most experts are pursuing the more popular approach of producing meat in a bioreactor (Figure 5), there are also alternative production methods such as 3D printing technology (Expert 9).

Figure 9: Interview question 4 (Appendix A)

The fourth question was closed and aimed to identify the meat application with the highest potential for substitution success (Figure 9). The question also provided insight into the different properties of meat types and rationales for substitution suitability. On average (potential on a scale of 1-5), beef and fish/seafood are the most suitable substitution applications (Figure 9). Beef has the highest environmental impact and is the most expensive product making it easier to reach price parity (Expert 1, 3, 4, 5, 6, 7 & 9). Fish/seafood instead has the second-highest potential since it is the only species that is wildly hunted leading to increasing environmental concerns of consumers (Figure 9; Expert 1, 2, 3 & 5). Furthermore, fish/seafood has technological advantages in the natural growth process (Expert 4 & 8). Although chicken meat is easier to grow (Expert 4, 5, 6, 7 & 8), the overall substitution potential is classified as low. It is the cheapest meat type and is already produced highly efficiently making it hard to reach price parity (Expert 1, 3, 4, 5, 6, 7 & 9). Cells from pork are similarly difficult to grow as cells from beef, but the price of pork is only moderately high, preventing it from being attractive as a substitute (Expert 3, 4, 5, 8 & 9). In the long term, however, the growing Asian population with a growing middle class will consume relatively large amounts of pork resulting in greater attractiveness of pork as a substitute product (Expert 6 & 7).

Figure 10: Interview question 5 (Appendix A)

While question 4 identified which type of meat is most attractive, the fifth question explored where substitution has the greatest potential for success (Figure 10). The geographic comparison is straightforward and indicates that Asia has the highest potential for a successful substitution of conventionally produced meat (Figure 10). According to the experts, Europe and the USA show moderate potential, while Southern America and Africa indicate low potential (Figure 10). 8 out of 9 experts mentioned food dependency as the regional key factor tremendously increasing the potential for cultured meat as a substitute (Appendix A). However, a strong agricultural lobby and the resulting protectionism of livestock could restrict the potential (Expert 1, 3 & 7).

Figure 11: Interview question 6 (Appendix A)

Despite all concerns about the novelty of the technology, most experts (5) consider it realistic or very realistic to reach an industrial scale in production by 2030 (Figure 11). Nonetheless, 3 experts from research and industry (Venture Capital Firm and Startup) also doubt the feasibility of achieving production volumes in millions of tons by 2030 (Figure 11). In theory, large-scale production is feasible, but in practice, the industry is still a long way off (Expert 3, 6 & 8).

Figure 12: Interview question 7 (Appendix A)

Question 7 was an open-ended question to find out general major factors influencing market adoption and the future market size. Seven out of 9 experts mentioned price parity as the key to gaining traction in the animal protein market (Figure 12). Moreover, 5 interviewees consider technological progress a crucial factor that is simultaneously influencing price parity, while regulatory openness and consumer acceptance play a minor role (Figure 12).

Figure 13: Interview question 8 (Appendix A)

Due to the novelty of the phenomenon, it was assumed that established companies in the food industry such as Fast-Moving Consumer Goods companies, food chains, or food processors might play an important role in accelerating the substitution development by adopting products in the portfolio. While 4 interviews confirm the assumption, 4 experts consider it rather unrealistic that established companies adopt cultured meat products (Figure 13). However, there is evidence that companies already cooperate with cultured meat startups (Expert 1 & 2) and invest in animal-cell-based proteins (Expert 3), but the technology is too novel to be adopted soon by a high number of established players (Expert 5, 6 & 9). Once the industry has matured to the point that firms consider it a profitable industry, the number of investments and collaborations will skyrocket (Expert 9).

Figure 14: Interview question 9 (Appendix A)

The experts were asked an open-ended question to provide the major benefits of cultured meat to assess the superior value and performance cultured meat is creating. 8 out of 9 interviewees mentioned the reduction of GHG emissions and food security (Figure 14). Additionally, more than half of the experts (5) considered cultured meat beneficial in the lower consumption of land or water resources and the absence of antibiotics (Figure 14). The treemap indicates that reduction of disease probability in the animal population, high production efficiency, and preservation of biodiversity are considered advantageous by 2 experts respectively.

Figure 15: Interview question 10 (Appendix A)

To obtain a holistic perspective on the phenomenon, in addition to the benefits, the challenges of becoming an at-scale phenomenon were asked (Figure 10). The major challenges for cultured meat to be an at-scale phenomenon are limited access to public funding, scalability of production, an enormous cost reduction, and technological progress in bioreactor manufacturing, cell-line, culture media, and scaffold materials development (Appendix A; Figure 15). Further identified hurdles are regulatory openness and political acceptance (Figure 15).

In the subsequent question, the experts provided solutions for the challenges. Due to the open question, the interviewees had the opportunity to propose a broad variety of solutions. Several experts mentioned the inclusion of governmental authorities to tackle the regulatory openness, governmental acceptance, and access to public funding (Expert 2, 3, 4, 6, 8 & 9). In addition, experts consider established companies as a solution to reach scalability and simultaneously reach price parity by reducing costs (Expert 2, 5, & 6). Finally, accelerating technological progress can be solved by startups specializing in certain value chain steps to

deepen knowledge in key areas such as bioreactor production, cell line, media, or scaffold material development (Expert 3, 4, 5, 8 & 9).

Figure 16: Interview question 12 (Appendix A)

Question 12 was a closed question to quantify the estimated market share animal cell-based proteins can gain in 2030, 2040, and 2050. One of 9 experts was not able to answer the question due to uncertainty surrounding these estimations (Expert 8). By 2030, cultured meat is estimated to account for almost 5% of the meat market. The share is expected to reach 15% by 2040 and 29% by 2050 (Figure 16).

All experts agreed that cultured meat products will not compete with plant-based products. 3 experts predicted a minimal overlap between the markets, while 6 experts forecasted no competition between the product types (Appendix A). Cultured meat will be barely or entirely indistinguishable from conventional meat, and therefore primarily cater to carnivores (Expert 1, 2, 7, & 8). In addition, the future protein market will be divided into a hybrid protein offering (Expert 3, 4, 5 & 6). Besides conventionally produced meat, plant-based and animal cell-based proteins will coexist in the market.

Finally, all interviewees strongly agreed that cultured meat can be a viable solution to reduce the carbon footprint of the agricultural sector (Appendix A). However, 8 experts pointed out that the transition is only possible if the production process is powered by renewable energies. In addition, the decision on a decentralized or centralized production system is essential since a centralized one could lead to significant additional emissions in logistics (Expert 7 & 8). Expert 6 also warns that food security is a dramatic problem for humanity making the sustainability of food supply a non-priority at present which results in the neglect of renewable energy.

5. Discussion and interpretation

The discussion and interpretation are divided into three parts. Based on the interview data and management theory, the first subchapter classifies cultured meat as innovation and thus determines the place and pattern of market diffusion. To ultimately answer the first research question, the second part elaborates on the first sub-chapter and outlines the reasons, drivers, and barriers to cultured meat being a substitution threat. The last subchapter addresses the second research question and builds scenarios based on the findings from the previous subchapters, the interviews, and secondary market data.

5.1.Innovation in the meat industry

Due to the use of a new production method by growing meat in the laboratory (Figure 5) instead of using conventional livestock (Figure 2), cultured meat can be considered an innovation that causes economic change and "creative destruction" in the meat industry (J. A. Schumpeter, 2006; J. Schumpeter & Backhaus, 2003).

In order to explore where and how cultured meat has an impact on the meat industry, one must understand the type of innovation the meat industry is facing. Although the novelty and breakthrough of cultured meat could be perceived as a disruption, cultured meat is classified as sustaining innovation. This classification is based on three key differentiators.

Firstly, the product performance relative to existing products in the market differs between sustaining and disruptive innovation. While disruptive innovations seek to create "good enough" products, sustaining innovations create products that outperform existing products on the quality and performance dimensions (Christensen et al., 2015). Cultured meat is not only healthier due to the absence of antibiotics and manure from the food system, but it is also less harmful to the environment and animal welfare (The Good Food Institute, 2021b) (Expert 1 & 3).

The second differentiator is the target audience which is also closely related to the product performance. The "good enough" product for disruptive innovation targets the lower end of the market which is associated with a lower willingness to pay and inferior performance expectations of the product. Sustaining innovation, in contrast, targets customers with a high willingness to pay for high-quality products (Christensen et al., 2015). Due to the high production costs of cultured meat, and the low production quantities, the target group is in the upper end of the market with a high willingness to pay (Expert 4 & 9). Hence, in the short term, the highest potential for market entry is high-end beef products (Figure 9; Expert 3).

Reciprocally, as of now, cultured meat startups are not able to target the least profitable portion of the market due to the high production cost.

Thirdly, the business model differs between disruptive and sustaining innovation. Disruptive innovation is based on low costs to come in at the bottom of the market, whereas sustaining innovation depends on profitable business models (Christensen et al., 2015). For this reason, a potential market entry option for cultured meat can be also a retail value-added product with a high margin to reach price parity (Expert 6).

Although the new entrants are small startups that challenge incumbents such as food processors by leveraging emerging biotechnology, the innovation process is not disruptive.

The characterization of the phenomenon as sustaining innovation provides the place for market encroachment. Sustaining innovation "encroaches on the high end of the existing market, and then diffuses downward" (Schmidt & Druehl, 2008). Hence, in the short-term, cultured meat encroaches on the market from the high end by serving the most profitable customers with beef (Figure 9). When hurdles such as technological progress, scalability, and the associated cost reduction are solved (Figure 15), cultured meat in form of fish, pork, or even low-priced chicken can move steadily down the market capturing the share of customers with a lower willingness to pay.

5.2. From the lab to the consumer's plate

After identifying the place of the encroachment and diffusion, the second step is to measure and assess the threat of substitution for conventionally produced meat to answer the first research question.

5.2.1. Cultured meat – a serious substitution threat

Porter pointed out in the 5-Forces Framework that one major force shaping the industry's competition is the threat of substitute products (Figure 7). Furthermore, he emphasized that substitute products should be given very particular attention, which are subject to trends that improve their price-performance ratio with the current products of the industry (Porter, 1979). In concrete terms, the substitution threat is particularly high when the price-performance trade-off becomes more attractive to the current product (Porter, 2008).

On the performance dimension, cultured meat exploits its characteristics and puts itself in a superior position. Looking at the megatrends, health, climate change, and food security, cultured meat addresses all of them (Figure 14). In comparison to conventional meat, cultured meat is not only healthier but also less harmful to the environment (Expert 1 & 3). Considering the continuously growing world population, land and water resources are limited making food security a serious problem. The food security conundrum can be also tackled by cultured meat. Studies show that cultured meat would use the soil 60-300% more efficiently for chicken, while for beef the efficiency increase reaches 2,000-4,000% (The Good Food Institute, 2021b). Those efficiencies can be utilized to free up land for growing crops and vegetables for a rapidly growing world population (Figure 14; Expert 2, 4, & 5). In addition, the actual product characteristics such as taste, and texture remain the same and are indistinguishable from genuine meat (Expert 3, 4, 6 & 8). Given the megatrends that are significantly influencing consumer purchasing behavior, the perceived performance of cultured meat far exceeds that of conventional meat (Bryant & Barnett, 2018). As a result, cultured meat is a significant substitution threat for conventional meat confirming the consensus among experts that it will be a fundamental gamechanger for the meat industry (Appendix A; Figure 8).

While cultured meat is superior on the performance dimension, on the price dimension it is lagging. In line with Porter, the experts consider price parity to be a key factor in gaining market share (Figure 12). Although the technology is developing rapidly leading to significant production cost reductions, the current production costs are still 100-10,000 higher than the benchmark costs of comparable conventional meat products (Vergeer, Sinke, & Odegard, 2021). The cost differential occurs because cultured meat is at the onset of commercialization (Figure 6). Likewise, all experts agree that an ideal production process does not yet exist, and companies are just starting to build their first pilot-scale productions (Figure 6; Expert 3). The majority of experts (Figure 11) and the literature state that an industrial scale is feasible by 2030 resulting in price parity with conventionally produced meat (Vergeer et al., 2021; Witte et al., 2021).

In addition, the threat of substitutes is also high if the buyer's cost of switching is low (Porter, 2008). Once production can be scaled up and cultured meat is available in supermarkets or food chains, the cost of switching is low.

Looking at the first research question (*Will cultured meat be a significant substitution threat for traditionally produced meat in the future?*), cultured meat poses a significant substitution threat to conventional meat since it offers a perceived superior performance and can reach price parity by 2030. While in the short-term more expensive beef might be a successful application, in the long term all types including fish/seafood are attractive application options. In the long term, the experts foresee an even higher substitution potential

through animal cell-based proteins since plant-based proteins are considered a "stepping stone" in the alternative protein movement (Figure 8; Expert 2). However, on the way to getting traction in the meat market, cultured meat still needs to reduce costs enormously by further advancing scalability and technology. Therefore, in the beginning, there will be a hybrid product offering consisting of conventional meat, plant-based, cell-based, and hybrid protein products (Expert 3, 4, 5, 6 & 8).

5.2.2. Barriers to overcome

On the path to a successful substitution threat for meat, several challenges still need to be overcome. Looking at the key factors determining the future market size and the hurdles, there is an overlap and key factors for success potential currently also represent a part of the hurdles of the phenomenon (Figures 12 & 15). Conversely, solving a hurdle also implies that the substitution potential of cultured meat increases at the same time.

Figure 17: Categorized barriers for cultured meat (Appendix A)

Consequently, the key factors and hurdles have been categorized by topic into four types of barriers (Figure 17). The demand barrier, including consumer acceptance, is considered by the experts to be only a key factor and not a hurdle to substitution potential. Studies show that a large proportion of consumers accept cultured meat, so demand is not a barrier. (Bryant & Barnett, 2018). However, studies also suggest that the consumer's knowledge, familiarity with cultured meat, and the wording around cultured meat would likely affect consumer acceptance (Post et al., 2020). According to a US consumer survey about acceptance conducted by one expert up to 40% of the animal protein market could be covered (Expert 1). Although

consumer acceptance is not a hurdle, it remains a determining factor for the success of cultured meat.

The technological barrier is a key factor but also a hurdle and includes technological progress and scalability. Still in its infancy, four key technological areas (cell line development, cell culture media, scaffold materials, and bioreactors) have been identified that require further innovation (Expert 3, 4, 6, 8 & 9). The base material -- cell line development -- needs to be driven forward, to ensure better growth properties (Expert 4 & 9). Secondly, as another critical growth resource, the cell culture media requires advancement. So far, the culture media usually contains animal sera that are not viable for cultured meat since it is misaligned with animal welfare (Expert 4 & 9). Culture media that are free of any animal-derived material do exist but are still very expensive leading to even higher production costs (Schwartz, 2019). However, Merck KGaA as a technology enabler and one of the only active established companies, is accelerating this emerging field by providing animal-free media (Merck, 2021). Thirdly, the scaffold materials for providing the texture and mouthfeel of cultured meat face a similar issue and need to be produced without animals (Expert 6). Nevertheless, these materials are also very expensive and require further development (Post et al., 2020). In order to push the production on an industrial scale and provide market readiness, bioreactors require enormous research and development efforts (Expert 4, 5, 6 & 8). Expert 8 emphasized the importance of collaboration between all stakeholders (startups, incumbents, academia, and regulatory) including an open-access research approach to accelerate the technological progress of cultured meat.

The scalability hurdle is closely related to hurdles of the economic barrier. While price parity and the associated production cost reduction are addressed in the previous subchapter 5.2.1, the access to public funding still poses challenges for the industry (Expert 2, 3, 8 & 9). Bioreactors require significant capital (Humbird, 2020). The experts claim that private funds provided by venture capital firms or a few industry incumbents such as Tyson Food or Cargill are insufficient and access to debt capital is capped due to the limited liability of startups (Expert 6). Hence, access to public funds must be expanded to drive overall progress. Investments are not limited to the private sector, but public funding still occurs relatively rarely (Expert 8 & 9). However, a positive trend is apparent and in April 2022, the Dutch government announced €60m funding for the creation of an ecosystem around cellular agriculture representing the world's largest-ever public investment in this area (The Good Food Institute, 2022).

Lastly, to become an at-scale phenomenon cultured meat needs to overcome regulatory barriers. The regulatory framework for food differs across regions and countries. Without going into detail about individual regulations, Expert 7 pointed out that the European Union has an overall stringent food safety framework, making it more difficult for food innovations to enter the market (Expert 7). However, the novelty of the phenomenon and the fact that cultured meat is not yet produced in a standardized process, makes it very unlikely to receive market approval soon (Stephens et al., 2018). Uncertainty in both technology and regulation implies dealing with ambiguity. Looking at the factors increasing the substitution potential in a region, food dependency is a crucial factor (Appendix A; 8/9 Experts). Hence, cultured meat is anticipated to emerge first in countries whose governments are dedicated to the sector's expansion and showing openness towards cultured meat (Figure 12; Expert 7). To properly build efficient regulatory frameworks, companies and regulators are required to collaborate. Singapore's agricultural GDP is below 0.1% making the country dependent on food imports (World Bank, 2020). To tackle the dependency, Singapore's self-sufficiency goal "30 by 30" aims to strengthen food security by building an agricultural industry producing 30% of the nutritional needs locally and sustainably by 2030 (Singapore Food Agency, 2022). The strategy indicates Singapore's high ambition, support, and openness towards new food innovations such as cultured meat. For this reason, Singapore also committed \$60 million to the Agri-Food Cluster Transformation Fund (Singapore Food Agency, 2022). Furthermore, the Middle East is geographically, environmentally, and climatically very dependent on food imports (Le Mouël & Schmitt, 2018). Expert 7 points out that the combination of food dependency and high financial resources promotes political as well as regulatory openness toward cultured meat (Expert 7). The Qatar Investment Authority backed the \$200 million funding for Eat Just (Business Wire, 2021). Thereupon Est Just announced afterward to build a commercial cultured meat facility in Qatar (Just Food, 2021). Further efforts of the governments in the Middle East are confirmed by the investment (\$400m) made by the Abu Dhabi Growth Fund in Upside Foods (Yasmin, 2022).

Thus, regulatory openness also implies a certain degree of political acceptance and support, which are indispensable for cultured meat to achieve commercial scale. Based on the regulatory perspective and due to the higher food independence caused by a stronger agriculture sector, Europe and North America tend to have a lower potential than Asia (Expert 1, 6 & 7).
5.3. Substitution with environmental impact

To answer the second research question (*Assuming cultured meat partly replaces traditionally produced meat, how would this development affect the environmental impact of the meat industry?*), three scenarios are created in 2030, 2040 2050 (Table 2). While scenario 1 is the worst-case assumption, the second one represents a more likely situation. Scenario 3 underlies the assumption of the best possible development.

ID	DESCRIPTION
SCENARIO 1	Cultured meat fails to enter the market and the meat industry remains
	unchanged resulting in no encroachment.
SCENARIO 2	Cultured meat succeeds in entering the market but is operated with
	conventional energy.
SCENARIO 3	Cultured meat succeeds in entering the market and is operated with
	sustainable energy.

Table 2: Scenarios for environmental impact assessment

Energy and market share are the two identified key variables affecting the environmental impact of cultured meat substitution. 8 experts agree that energy is the key factor in the environmental impact of cultured meat as it is the largest contributor(Appendix A) (Alexander et al., 2017; Sinke & Odegard, 2021). Therefore, in Scenarios 2 and 3, the energy mix to produce cultured meat varies. In Scenario 2, power is generated based on a worldwide average policy scenario indicated in the World Energy Outlook for 2030. Whereas, in Scenario 3, the energy is sustainable and is generated using onshore wind turbines and solar modules. To reflect the variation in the second key variable, market share, Scenario 1 assumes that cultured meat does not enter the market, while Scenarios 2 and 3 assume the average value of the answers given by the experts (Appendix B; Figure 16).

Despite the barriers preventing cultured meat from becoming a widespread occurrence (Chapter 5.2.2.), the experts predicted on average a market share of 4.63% (~17m tons) by 2030, 15.38% (~65m tons) by 2040, and 28.72% (~139m tons) by 2050 (Appendix B). Looking at short-term forecasts carried out by BCG (6m tons by 2035) and McKinsey (2.1m tons by 2030), the values are lower than the 2030 result of this dissertation (Brennan et al., 2021; Witte et al., 2021). This can be explained by the following reasons. Firstly, both studies are over a year old, and the area of research is fast-changing leading to different estimations. Secondly, different calculation bases may have been used. For the scenario analysis, the average of all expert answers was taken. One answer for the year 2030 was significantly divergent from the

other answers (Expert 1). The average value is very sensitive to outliers resulting in a positive shift of the average. One could also have taken the median or excluded the outlier. However, since the topic is unexplored and novel, all responses were included in the following scenario analysis.

ID	DESCRIPTION
ASSUMPTION 1	Market share is based on the average values of the interviews and
	amounts to 4.63% for the year 2030, 15.38% for 2040, and 28.72%
	for 2050.
ASSUMPTION 2	Market share of cultured meat is evenly distributed among the meat
	types of beef, chicken, and pork.
ASSUMPTION 3	Cattle, chicken, and pork represent the meat industry, and
	fish/seafood is not included in the scenario analysis.
ASSUMPTION 4	Based on the growth rate from 2020 to 2030, global meat demand
	grows in a linear pattern (14% per decade) from 2030 to 2050.
ASSUMPTION 5	The GHG emissions, land use, and water use remain on the 2030
	levels for conventional and cultured meat and do not change over
	time.
ASSUMPTION 6	The energy mixes in Scenarios 2 and 3 remain the same for 2030,
	2040, and 2050.

Table 3: Assumptions for the scenario analysis

Regarding the scope of this paper, the scenario is subject to assumptions resulting in a simplification of the model (Table 3). To present data in a robust and comparable way, the values of all meat types are based on the life cycle assessment study of CE Delft (Sinke & Odegard, 2021).

Moreover, three indicators (GHG emissions, land use, and blue water use) were used to assess and illustrate the environmental impact of cultured meat on the meat industry. For conventional meat types, an ambitious benchmark (intensive, West-European, circular agriculture) with comparably low environmental impact was chosen to highlight the minimal benefits of cultured meat.

Figure 18: Global carbon footprint of the meat production in 2030, 2040, and 2050 (Appendix B)

Looking at the carbon footprint of Scenario 3, it is unambiguous that cultured meat produced with sustainable electricity strongly reduces carbon emissions of the meat industry (Figure 18). Despite increase in meat consumption, the Scenario even leads to a stagnation of emissions from 2040 to 2050, when 29% of the market share is attained (Figure 18). Compared to Scenario 1, the emission reduction reaches ~1.2b tons of CO₂ per annum in 2050, representing a reduction of more than 22% (Appendix B; Figure 18). Based on a business-as-usual trend with current policy projections, the overall global GHG emissions are predicted to reach 46.59b tons in 2050 (Climate Analytics and New Climate Institute, 2021). Scenario 3 would result in a reduction of 2.6% of total global CO₂ emissions (Figure 18). While in Scenario 1 GHG emissions increase by almost 30% in 20 years, in Scenario 3 the carbon footprint rises by only 4% from 2030 to 2050 despite a continuous increase in total consumption.

Although cultured meat produced with conservative energy in Scenario 2 emits only half as many GHG emissions as beef meat (Appendix B), the scenario performs the worst across all years (GHG growth rate of 36% from 2030 to 2050) since it generates twice as much as pork meat and almost 4 times as much as chicken meat. It confirms the experts' conclusion that cultured meat is highly energy-dependent and does not improve the carbon footprint on its own.

Figure 19: Global land use for the meat production in 2030, 2040, and 2050 (Appendix B)

Due to the significant land use savings of cultured meat per kg (95% reduction compared to beef, 72% reduction compared to pork, and 63% reduction compared to chicken), Scenarios 2 and 3 show enormous potential for improvement through the substitution of cultured meat (Appendix B; Figure 19). If cultured meat attains a market share of 29% in 2050, more than 140 million ha (25%) could be saved annually (Figure 19). This would be more than four times the size of Germany and illustrates the potential land that could be made available for other uses such as human food cultivation. Despite growing demand for meat, in both scenarios, the overall land use can be reduced from 2040 to 2050 (Figure 19).

Figure 20: Global blue water use in the meat production in 2030, 2040, and 2050 (Appendix B)

Finally, in the analysis of water consumption, scenarios were enhanced for if cultured meat becomes a substitute for conventionally produced meat (Figure 20). Using a conventional

energy mix results in the lowest use of blue water due to the water-intensive production of solar cells for sustainable electricity production (Sinke & Odegard, 2021). However, the use of renewable energy for cultured meat production could still result in yearly water savings of 5.6b cubic meters (12%) in 2050, which can provide immense relief, especially in highly water-stressed regions (Figure 20). Given increasing scarcity of freshwater worldwide and the fact that agriculture is the sector that consumes the most water, environmental degradation can be significantly mitigated.

Overall, the scenarios prove a significant positive environmental impact of cultured meat on the meat industry. However, using a sustainable energy mix for energy-intensive cultured meat production is crucial to achieving a positive transformation of the meat sector into a more ecologically sustainable business. Especially given the rapidly growing population and the limited natural resources, cultured meat could represent an enormous contribution to improving the efficient use of resources. Additionally, with each kg of cultured meat replacing conventionally produced meat, the livestock population can be reduced, enhancing animal welfare.

6. Conclusion

The last chapter of the dissertation summarizes results answering the research questions as well as critically examines limitations of this work and provides an outlook for further research.

6.1.General conclusion

Cultured meat is at the cusp of transforming the animal protein market. Besides already existing alternative proteins, animal cell-based proteins could become a reality. Public concern about climate change, health, and food security not only drives demand for cultured meat products but also provides further incentives for startups as well as incumbents to advance the technologies.

The dissertation aimed to answer the question of whether cultured meat can pose a significant substitution threat to conventionally produced meat. By analyzing and evaluating the phenomenon in detail, cultured meat is a sustaining innovation with the potential to encroach on the high end of the meat market. The results revealed that cultured meat has great potential to replace a significant share of the animal protein market by 2030. Due to the similarity with genuine meat and the unlimited application possibilities, cultured meat is a substitution without compromise for the consumer. In addition, cultured meat addresses the

adverse effects of livestock farming. The growing population, the increasing demand for protein-rich diets, natural resource scarcity, animal welfare, and environmental problems such as GHG emissions and biodiversity loss could be tackled comprehensively and sustainably.

However, it is a long path with pertinent challenges before cultured meat products are consumer-ready. The most critical hurdle is price parity. In order to pose a real substitution threat, production costs need to be significantly reduced. This goes along with the achievement of industrial-level production and technological progress in product and production development. In the final step, it is imperative that cultured meat receives regulatory approval from the authorities and the necessary support in the form of cross-industry collaboration from incumbents. Only under these conditions, cultured meat can pose a serious substitution threat to conventionally produced meat.

The scenario analysis explicitly indicates that cultured meat can have a substantial positive impact on the environmental footprint of the meat industry. Considering the increasing overall consumption of meat, cultured meat could compensate for additional GHG emissions, land use, or water consumption in the future. However, renewable energy sources for production are crucial to achieving a comprehensive beneficial environmental effect. Finally, the substitution of conventional meat can also simultaneously solve the animal welfare problem of livestock farming and the global food security challenge through the efficient use of resources.

6.2.Limitations

Although the dissertation contributes to its area of study, it faces limitations. First, the sample size of the experts is low which limits generalizability. Even though there is breadth and diversity due to the different organization types, the number of experts is too small (9). Moreover, the organization types are not equally distributed. While 4 out of 9 experts were from startups, 2 others represented venture capital firms, only 2 came from independent research institutions, and one was from a consulting firm. This may result in an overly positive and one-sided assessment of cultured meat as it can be assumed that the entrepreneurs and investors have more opportunistic points of view than scientists or consultants.

Secondly, the scenario analysis has a very limited prognostic value and cannot be used for a precise prediction. The assumptions made for the scenario have greatly simplified the scenario to a thought experiment and can therefore lead to inaccuracies. The scenario aims to direct the attention to both variables, energy mix and market share, and how those interact with one another. Thirdly, cultured meat is a futuristic and technologically heavy field of study since there is only one regulatory approval worldwide yet. Cutting-edge topics with this degree of novelty may lead to respondents' biased assumptions and replies.

6.3.Further research

The dissertation solely focused on cultured meat and fish for human nourishment, further applications for cultured meat such as pet food were excluded. With lower regulatory hurdles and a less complex approval process for pet food, there could be an opportunity to get to market faster. However, the market for pet food differs significantly from the meat industry resulting in a different substitution potential. Further research is required to assess the substitution potential for cultured meat for pet food.

In addition, cellular agriculture technology can be used for other meat industry by-products, such as leather. An evaluation of the substitution potential can also be carried out in this area, which requires further research.

Likewise, the energy mix plays a crucial role for cultured meat to be an environmental enhancement for the meat industry. However, there is no feasibility study showing that an operation with sustainable energy can be carried out. Further research is needed to determine how and whether this will be possible in the near future.

Finally, the dissertation did not examine the economic implications of substitution in the conventional meat market. Cultured meat could significantly affect the market power and supply chain. Depending on the centralized or decentralized approach, the supply chain of meat could drastically change to a very local production supporting food security in troubled regions or to an even more centralized production resulting in concentrated supply power. Furthermore, it could lead to an increase or mitigation of logistics efforts. The decision and the respective implications require further research.

References

Aleph Farms (2022). Meat For Earth. Retrieved from https://www.aleph-farms.com/

- Alexander, P., Brown, C., Arneth, A., Dias, C., Finnigan, J., Moran, D., & Rounsevell, M. D. (2017). Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? *Global Food Security*, 15, 22–32. https://doi.org/10.1016/j.gfs.2017.04.001
- André Queirós, Daniel Faria, & Fernando Almeida (2017). Strengths And Limitations Of Qualitative And Quantitative Research Methods. Advance online publication. https://doi.org/10.5281/zenodo.887089
- Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115
- Bashi, Z., McCullough, R., Ong, L., & Ramirez, M. (2019). *Alternative proteins: Alternative proteins: The race for marketshare is on.*
- Baxter, P., & Jack, S. (2015). Qualitative Case Study Methodology: Study Design and Implementation for Novice Researchers. *The Qualitative Report*. Advance online publication. https://doi.org/10.46743/2160-3715/2008.1573

BlackRock (2018). What are megatrends? Retrieved from https://www.blackrock.com/sg/en/investment-ideas/themes/megatrends

- BlueNalu (2022). About BlueNalu: Our Mission. Retrieved from https://www.bluenalu.com/about
- Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., Ghissassi, F. E., Benbrahim-Tallaa, L., . . . Straif, K. (2015). Carcinogenicity of consumption of red and processed meat. *The Lancet Oncology*, 16(16), 1599–1600. https://doi.org/10.1016/S1470-2045(15)00444-1
- Brennan, T., Katz, J., Quint, Y., & Spencer, B. (2021). Cultivated meat: Out of the lab, into the frying pan: Making cultivated meat a \$25 billion global industry by 2030 presents opportunities within and beyond today's food industry. Retrieved from McKinsey & Company website: https://www.mckinsey.com/industries/agriculture/ourinsights/cultivated-meat-out-of-the-lab-into-the-frying-pan

Brown, R. B. (2006). *Doing your dissertation in business and management: The reality of researching and writing. SAGE study skills.* London: Sage Publ. Retrieved from http://bvbr.bib-

bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014781326&line_numb er=0002&func_code=DB_RECORDS&service_type=MEDIA

- Bryant, C., & Barnett, J. (2018). Consumer acceptance of cultured meat: A systematic review. *Meat Science*, 143, 8–17. https://doi.org/10.1016/j.meatsci.2018.04.008
- Bryman, A., & Bell, E. (2011). *Business research methods* (3. ed.). Oxford: Oxford Univ. Press.
- Business Wire (2021, March 23). Eat Just Closes \$200 Million in New Funding to Accelerate Growth. *Business Wire*. Retrieved from https://www.businesswire.com/news/home/20210323005444/en/Eat-Just-Closes-200-Million-in-New-Funding-to-Accelerate-Growth

CDC (2018). Antibiotic Resistance: A Global Threat. Retrieved from https://www.cdc.gov/drugresistance/solutions-initiative/stories/ar-globalthreat.html#:~:text=Antibiotic%20resistance%2C%20when%20germs%20(i.e.,and%2023 %2C000%20deaths%20per%20year.

- CDC (2021). Antibiotic Resistance, Food, and Food Animals. Retrieved from https://www.cdc.gov/foodsafety/challenges/antibiotic-resistance.html
- Christensen, C. M. (2013). *The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail*. Boston: Harvard Business Review Press. Retrieved from https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5181800
- Christensen, C. M., Raynor, M. E., & McDonald, R. (2015). What Is Disruptive Innovation? *Harvard Business Review*, 44–53. Retrieved from https://hbr.org/2015/12/what-is-disruptive-innovation
- Climate Analytics and New Climate Institute (2021). Climate Action Tracker: Warming Projections Global Update November 2021.
- Coggin, C. (2021, May 13). Cultured Meat Can Investors Have Their Meat and Eat It Too? Retrieved from FAIRR Initiative website: https://www.fairr.org/article/cultured-meathaving-your-meat-and-eating-it-too/
- Datar, I., & Betti, M. (2010). Possibilities for an in vitro meat production system. *Innovative Food Science & Emerging Technologies*, *11*(1), 13–22. https://doi.org/10.1016/j.ifset.2009.10.007
- FAO (2012a). Coping with water scarcity: An action framework for agriculture and food security. FAO water reports: Vol. 38. Rome: Food and Agriculture Organization of the United Nations.
- FAO (2012b). Sustainability Pathways: Livestock and Landscapes.
- FAO (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Rome: FAO. Retrieved from http://www.fao.org/docrep/018/i3437e/i3437e.pdf
- FAO (2021a). Emissions due to agriculture: FAOSTAT Analytical Brief 18. Rome.
- FAO (2021b). The State of the World's Land and Water Resources for Food and Agriculture Systems at breaking point: Synthesis report 2021. Rome: FAO. https://doi.org/10.4060/cb7654en
- FAO (2021c). *World Food and Agriculture Statistical Yearbook 2021*. Rome: FAO. https://doi.org/10.4060/cb4477en
- Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., . . . Jebb, S. A. (2018). Meat consumption, health, and the environment. *Science (New York, N.Y.)*, *361*(6399). https://doi.org/10.1126/science.aam5324
- The Good Food Institute (2021a). Cultivated Meat: 2020 State of the Industry Report.
- The Good Food Institute (2021b). *Growing Meat Sustainably: The Cultivated Meat Revolution.*
- The Good Food Institute (2022, April 14). *Netherlands to make biggest ever public investment in cellular agriculture* [Press release]. Retrieved from https://gfieurope.org/blog/netherlands-to-make-biggest-ever-public-investment-in-cellular-agriculture/#:~:text=The%20Dutch%20government%20has%20announced%20%E2%82% AC60%20million%20(%2465.4,and%20producing%20animal%2Dfree%20dairy.
- Goodwin, J. N., & Shoulders, C. W. (2013). The future of meat: A qualitative analysis of cultured meat media coverage. *Meat Science*, 95(3), 445–450. https://doi.org/10.1016/j.meatsci.2013.05.027
- Günday, G., Karabon, M., Kooij, S., Moulton, J., & Omeñaca, J. (2020). *How European* shoppers will buy groceries in the next normal. Retrieved from McKinsey & Company website: https://www.mckinsey.com/industries/retail/our-insights/how-european-shopperswill-buy-groceries-in-the-next-normal#

Hollis, M. (2011). *The philosophy of social science: An introduction* (9. printing). Cambridge: Cambridge Univ. Press.

Humbird, D. (2020). Scale-Up Economics for Cultured Meat: Techno-Economic Analysis and Due Diligence. https://doi.org/10.31224/osf.io/795su

- IPCC (2014). Climate change 2014: Mitigation of climate change; Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate change 2014: Working group 3. New York, NY: Cambridge Univ. Press. Retrieved from http://www.loc.gov/catdir/enhancements/fy1606/2014451899-d.html
- Johnson, G., Scholes, K., & Whittington, R. (2009). *Exploring corporate strategy: Text & cases* (8. ed., 3 Dr). Harlow: Financial Times Prentice Hall.

Just Food (2021, September 1). Eat Just joins partners in Qatar for cultivated-meat facility: Eat Just has been approved for an export licence to Qatar for its cultivated chicken. *Just Food*. Retrieved from https://www.just-food.com/news/eat-just-joins-partners-in-qatar-for-cultivated-meat-

facility/#:~:text=Eat%20Just%20has%20been%20approved,the%20Qatar%20Free%20Zon es%20Authority.

- Kosow, H., & Gaßner, R. (2008). Methods of future and scenario analysis: Overview, assessment, and selection criteria. Studies / Deutsches Institut für Entwicklungspolitik: Vol. 39. Bonn: Dt. Inst. für Entwicklungspolitik.
- Krippendorff, K. (2004). *Content analysis: An introduction to its methodology* (2. ed.). Thousand Oaks, Calif.: Sage. Retrieved from http://www.loc.gov/catdir/enhancements/fy0658/2003014200-d.html
- Lab Farm Foods. It looks, tastes, and feels like real meat. Becauese it is real meat. Retrieved from https://www.labfarmfoods.com/
- Le Mouël, C., & Schmitt, B. (2018). *Food Dependency in the Middle East and North Africa Region*. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-024-1563-6
- Lymbery, P., & Oakeshott, I. (2014). *Farmageddon: The true cost of cheap meat*. London: Bloomsbury Circus.
- Marcy Lowe, & Gary Gereffi (2009). A Value Chain Analysis of the U.S. Beef and Dairy Industries. Duke University Center on Globalization, Governance & Competitiveness. https://doi.org/10.13140/RG.2.1.1502.9523
- Merck (2021). Cultured Meat. Retrieved from https://www.merckgroup.com/en/research/innovation-center/innovation-fields/culturedmeat.html
- Merck Science & Technology Office (2021). *Trend Study: How Cultured Meat becomes a Game Changer*. Retrieved from Merck Science & Technology Office website: https://www.merckgroup.com/en/research/innovation-center/innovation-fields/cultured-meat/trendstudy.html
- Novaković, B., Grujić, R., & Vujadinović, D. (2015). Value chain analysis for meat and meat products. *Journal of Hygienic Engineering and Design*, *12*, 93–102. Retrieved from https://keypublishing.org/jhed/wp-content/uploads/2020/07/01.-brane-novakovi%c4%87.pdf
- OECD (2022). OECD Agriculture Statistics: OECD Agriculture Statistics (database). OECD. https://doi.org/10.1787/4bde2d83-en
- OECD-FAO (2021). OECD-FAO Agricultural Outlook 2021-2030. Paris: OECD Publishing. https://doi.org/10.1787/19428846-en

- Pachauri, R. K., & Mayer, L. (Eds.) (2015). *Climate change 2014: Synthesis report*. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
- Papier, K., Fensom, G. K., Knuppel, A., Appleby, P. N., Tong, T. Y. N., Schmidt, J. A., ...
 Perez-Cornago, A. (2021). Meat consumption and risk of 25 common conditions:
 Outcome-wide analyses in 475,000 men and women in the UK Biobank study. *BMC Medicine*, 19(1), 53. https://doi.org/10.1186/s12916-021-01922-9
- Paris, M. (2021, December 17). Future Meat Raises \$347 Million to Make Cell-Grown Meat in U.S. *Bloomberg*. Retrieved from https://www.bloomberg.com/news/articles/2021-12-17/future-meat-raises-347-million-to-make-cell-grown-meat-in-u-s
- Porter, M. E. (1979). How Competitive Forces Shape Strategy. *Harvard Business Review*, 57(2), 137–145.
- Porter, M. E. (2008). The five competitive forces that shape strategy. *Harvard Business Review*, *86*(1), 78-93, 137.
- Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. *Meat Science*, 92(3), 297–301. https://doi.org/10.1016/j.meatsci.2012.04.008
- Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., . . . Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. *Nature Food*, 1(7), 403–415. https://doi.org/10.1038/s43016-020-0112-z
- Ruehl, M. (2021, November 16). Temasek ramps up agritech investment in Singapore food security push: State-backed investment company has spent \$8bn backing lab-grown meat and alternative food start-ups. *Financial Times*. Retrieved from https://www.ft.com/content/55bf94df-f815-400f-b8e6-951dac65bbe9
- Schmidt, G. M., & Druehl, C. T. (2008). When Is a Disruptive Innovation Disruptive? Journal of Product Innovation Management, 25(4), 347–369. https://doi.org/10.1111/j.1540-5885.2008.00306.x
- Schumpeter, J., & Backhaus, U. (2003). The Theory of Economic Development. In J. Backhaus (Ed.), *The European Heritage in Economics and the Social Sciences. Joseph Alois Schumpeter* (Vol. 1, pp. 61–116). Boston: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48082-4_3
- Schumpeter, J. A. (2006). *Capitalism, socialism and democracy* (1. Harper colophon ed., [Nachdr.]). *Harper colophon books*. New York, NY: HarperPerennial.
- Schwartz, E. (2019). Meeting the Needs of the Cell-Based Meat Industry. *Chemical Engineering Progress*, 41–45.
- Servino, C. (2018, January 29). Tyson Invests In Lab-Grown Protein Startup Memphis Meats, Joining Bill Gates And Richard Branson. *Forbes*. Retrieved from https://www.forbes.com/sites/chloesorvino/2018/01/29/exclusive-interview-tyson-invests-in-lab-grown-protein-startup-memphis-meats-joining-bill-gates-and-richard-branson/?sh=3e3b29733351
- Shahbandeh, M. (2021). *Global meat products market value 2020-2025*. Retrieved from Statista website: https://www.statista.com/statistics/502286/global-meat-and-seafood-market-value/
- Singapore Food Agency (2022). 30 by 30: Strengthening our food security. Retrieved from https://www.ourfoodfuture.gov.sg/30by30
- Sinke, P., & Odegard, I. (2021). *LCA of cultivated meat: Future projections for different scenarios*. Delft.
- Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in

cellular agriculture. *Trends in Food Science & Technology*, 78, 155–166. https://doi.org/10.1016/j.tifs.2018.04.010

- Terazono, E. (2021, May 6). Lab-grown chicken start-up slashes production costs: Israel's Future Meat pulls forward timetable for reaching price parity with real poultry. *Financial Times*. Retrieved from https://www.ft.com/content/ae4dd452-f3e0-4a38-a29d-3516c5280bc7
- Tryggestad, C. (2022, February 23). Interview by M. Wieling. McKinsey Europe Open House Series.
- Paris Agreement to the United Nations Framework Convention on Climate Change (2015).
- UNICEF (2022). *Places and Spaces: Environments and children's well-being*. Innocenti Report Card 17.
- United Nations (2019). World Population Prospects 2019: Highlights. Statistical Papers -United Nations (Ser. A), Population and Vital Statistics Report. New York: United Nations. https://doi.org/10.18356/13bf5476-en
- United Nations (2021). Methane emissions are driving climate change. Here's how to reduce them. Retrieved from https://www.unep.org/news-and-stories/story/methane-emissions-are-driving-climate-change-heres-how-reduce-them
- Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., ... Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. *Proceedings* of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
- Van der Weele, C., & Tramper, J. (2014). Cultured meat: Every village its own factory? *Trends in Biotechnology*, *32*(6), 294–296. https://doi.org/10.1016/j.tibtech.2014.04.009
- Vergeer, R., Sinke, P., & Odegard, I. (2021). *TEA of cultivated meat: Future projections of different scenarios corrigendum*. Delft.
- Witte, B., Obloj, P., Koktenturk, S., Morach, B., Brigl, M., Rogg, J., . . . Grosse-Holz, F. (2021). *Food for Thought: The Protein Transformation*.
- World Bank (2020). Agriculture, forestry, and fishing, value added (% of GDP) Singapore. Retrieved from https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?end=2020&locations=SG&start= 2020
- Yasmin, M. (2022, April 21). Upside Foods valued at over \$1 bln after Temasek, Abu Dhabi Growth Fund-led funding. *Reuters*. Retrieved from https://www.reuters.com/business/upside-foods-valued-over-1-bln-after-temasek-abudhabi-growth-fund-led-funding-2022-04-21/#:~:text=April%2021%20(Reuters)%20%2D%20Upside,SoftBank%20(9984.
- Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. *Trends in Food Science & Technology*, *97*, 443–450. https://doi.org/10.1016/j.tifs.2020.01.026

Appendix A

Interview questionnaire template

Expert ID:	x Expert:	XXX					
	What are the types of	f products v	with the hig	hest poter	ntial to be a	substitutio	n threat
Q1	for traditionally produced meat in the future?						
		Animal cel	l-based			Microorgar	nism-
	Type of Alternative	proteins		Plant-base	ed proteins	based prot	eins
	Potential						
	Reason/clarification						
Answer	Further details:						
	How much potential	do you see	in cultured	meat as a	substitution	threat? Do	you see
Q2	it as a temporary trer	nd or as a fu	Indamental	game-cha	nger?		
Answer							
	Are there different m	anufacturir	ng/producti	on methoo	ls for cultur	ing meat? I	s there a
Q3	dominant scientific p	rocess?					
Answer							
	On a scale from 1-5 (1	L lowest; 5	highest), fo	r which typ	pe of meat (beef, chick	en
Q4	pork, and fish/seafoo	d) do you s	ee the grea	test /lowe	st potential	for culture	d meat?
	_			Chicken		Fish/Seaf	
	Type of meat		Beef meat	meat	Pork meat	ood	
	Potential (1 lowest; 5	highest)					
	Reason/clarification						
Answer	Further details:						
	Do you see a particula	arly high/lo	w potentia	for succes	ss for cultur	ed meat in	certain
Q5	geographic regions?	1	1 .		1	<u> </u>	
		Northern	Southern				
	Geographical region	America	America	Europe	Africa	Asia	Oceania
	Potential (Very low,						
	low, moderate, high,						
	very high)						
	Ke	ey factors		I			
	Higher potential			Lower pot	ential		
Answer							
	On a scale from 1-5 (1	L lowest; 5	highest), ho	w realistic	is it to read	h an indust:	rial scale
Q6	(millions of metric to	ns) in 2030	}		1 1)		
_	Likability of industrial	ized scale ti	II 2030 (1 lo	west; 5 hig	ghest)		
Answer	Further details:						
	What do you think ar	e the key fa	actors deter	mining the	e future pac	e of adoptio	on and
Q7	market size of culture	ed meat?					
Answer					••••		
	On a scale from 1-5 (1	L lowest; 5	highest), ho	w likely is	it that esta	blished play	/ers
	(FMCG companies, fo	od chains,	etc.) integra	te culture	d meat proc	lucts into th	neir
Q8	company/product po	rttolio?				1	
	Likability of adaption	of establish T	ed players				
Answer	Further details:						

Q9	What are the benefits of producing cultured meat instead of genuine meat?						
Answer							
Q10	What are the biggest scale phenomenon?	hurdles for the industr	y to overcome so it o	can become an at-			
Answer	Further details:						
Q11	What needs to happe	n to overcome these h	urdles?				
Answer	Further details:						
	What is your estimate of the share (in %) that cultured meat can substitute in the						
Q12	animal protein marke	t in 2030, 2040, and 20)50?				
	Year	2030	2040	2050			
	Market share of						
	animal protein						
	market in %						
Answer	Further details:						
	How will vegetarians	and vegans perceive c	ultivated meat? Do y	ou think plant-based			
Q13	proteins will compete	with cultured meat?					
Answer							
	Do you see cultured m	neat as a viable solutio	n to reaching net-ze	ro or a low carbon			
Q14	footprint in the agricu	Itural sector?	Ū				
Answer	,						

Paraphrased expert interviews

Expert ID:	1 Expert:	Chief Executive Officer, Cultured Meat Start-up in Israel					
	What are the types o	f products with the hig	shest potential to be a	substitution threat			
Q1	for traditionally prod	uced meat in the futur	re?				
		Animal cell-based		Microorganism-			
	Type of Alternative	proteins	Plant-based proteins	based proteins			
	Potential	High	Moderate	-			
		More advanced product;	Unable to reach				
		Rather another meat type	nutritional properties of				
	Reason/clarification	than substitution	genuine meat	-			
Answer	Further details:	-					
	How much potential	do you see in cultured	meat as a substitution	n threat? Do you			
Q2	see it as a temporary	trend or as a fundame	ental game-changer?				
	Fundamental gamech	anger with high potent	tial due to its better he	alth and			
	environmental footpr	int.					
	According to an own	representative consum	er survey in the USA, ι	up to 40% of the			
Answer	animal protein marke	t could be covered.	-				
	Are there different m	anufacturing/product	ion methods for cultu	ring meat? Is there			
Q3	a dominant scientific	process?					

	There is no dominant scientific production process. Due to the different end products,						roducts,	
	the processes will diff	er anyways.	. Some man	ufacturers	are already	using large	-scale	
Answor	manufacturing process	s nile most c	companies a	are still look	ang ior a su	iitable		
Allswei		S.	highogt) fo	uhioh tum	o of most /	boof chick		
04	On a scale from 1-5 ()	d) do you c	nignest), io	r which typ	e or meat (for culture	en d moot2	
Q4	pork, and fish/searoo	uj uo you s	ee the grea	Chicken	l potential	Fish/Seaf	u meatr	
	Type of meat	Beef meat	meat	Pork meat	ood			
	Potential (1 lowest: 5	highest)	5	1	2	2 4		
			High					
			environment	Cheapest				
			al impact;	meat type				
			most	(very		Increasing		
	Reason/clarification		meat-type	production)	Cheap meat	environment al concerns		
Δnswer	Further details:	_	,,		()pc			
	Do you see a particula	arly high/lo	w notentia	l for succes	s for cultur	ed meat in	certain	
05	geographic regions?		w potentia		s for cultur	cumcutin	certain	
4.5	8008.000	Northern	Southern					
	Geographical region	America	America	Europe	Africa	Asia	Oceania	
	Potential (Very low,							
	low, moderate, high,						Very	
	very high)	Moderate	Very low	Low	Very low	High	low	
	Key factors							
	Higher potential	Lower potential						
	High food dependenc	y; High cons	sumer Strong agricultural lobby					
Answer	acceptance			Protection	ism			
	On a scale from 1-5 (1	lowest; 5	highest), ho	w realistic	is it to read	ch an indust	rial	
Q6	scale (millions of met	ric tons) in	2030?			-		
	Likability of industrial	zed scale ti	ll 2030 (1 lo	west; 5 hig	hest)	4		
Answer	Further details:	-						
	What do you think ar	e the key fa	ctors deter	mining the	future pac	e of adoption	on and	
Q7	market size of culture	d meat?						
	Price parity							
	Regulatory openness							
Answer	lechnological progres	S			•- •• • • •			
	On a scale from 1-5 (1	lowest; 5	highest), ho	w likely is	it that esta	blished play	/ers	
0 0	(FMCG companies, fo	od chains, e	etc.) integra	ate cultured	d meat prod	ducts into t	neır	
Q8	company/product po	rttolio?	ad playars			A		
Anguyor	Eurthor dotails:		eu players	alroadywi	th rotailors	and food p		
Answer	Further details:	ine startu	D IS WOLKING	, already wi	thretailers	and lood p	locessors	
00	What are the benefits	of produci	ing cultured	l moat inst	and of good	uine meat?		
Q ,2	low consumption of resources: Poduction of CHC emissions: Poduction of disease							
	nrobability in the animal population: High production officiency. No use of antibiotics							
Answer	Food security		on, ingi pi		neichcy, N			
	What are the biggest	hurdles for	the indust	v to overco	ome so it ca	an become :	an at-	
Q10	scale phenomenon?			,				

	To achieve the ability t	to scale up manufactur	ing facilities efficie	ently and rapidly. To		
	customers.	ness (texture, price, an	u tastej in order to	Serve the right		
Answer	Further details:	-				
Q11	What needs to happe	n to overcome these h	urdles?			
	Companies need to be	e more consumer-centr	ic and less scientif	ic-centric. Science		
	centralism leads to a d	lisconnection from the	actual market and	its demands.		
Answer	Further details:	-				
	What is your estimate	e of the share (in %) th	at cultured meat c	an substitute in the		
Q12	animal protein marke	tein market in 2030, 2040, and 2050?				
	Year	2030	2040	2050		
	Market share of					
	animal protein					
	market in %	20	40	70		
Answer	Further details:	-				
	How will vegetarians	and vegans perceive c	ultivated meat? Do	o you think plant-		
Q13	based proteins will co	mpete with cultured r	neat?			
	There will be no comp	etition because plant-l	based products wil	l focus on vegetarians		
Answer	and vegans while cultu	ured meat will focus on	carnivores.			
	Do you see cultured m	neat as a viable solutio	n to reaching net-	zero or a low carbon		
Q14	footprint in the agricu	Itural sector?				
	Cultured meat will be	a solution to reach a lo	w carbon footprin	t due to its low		
Answer	environmental footpri	nt compared to cattle	farming.			

Expert ID:	2 Expert:	Manager, Cultured Seafood Start-up in the U.S.					
	What are the types o	f products v	vith the hig	hest poten	tial to be a	substitutio	n threat
Q1	for traditionally prod	uced meat i	n the futur	e?			
		Animal cell	-based			Microorgar	nism-
	Type of Alternative	proteins		Plant-base	d proteins	based prot	eins
	Potential	High		Moderate		-	
				Only a steppi	ng stone of		
				the alternativ	e protein		
				movement; u	nable to fully		
	Poscon/clarification	Product with	out	imitate textu	re, taste, and		
		compromise		moutheet		-	
Answer	Further details:	<u> </u>					
	How much potential	do you see i	in cultured	meat as a s	ubstitution	hthreat? Do) you
Q2	see it as a temporary	trend or as	a fundame	ntal game-	changer?		
Answer	Fundamental gamech	anger with l	high potent	ial because	it is a food	security sol	ution.
	Are there different m	anufacturin	ng/producti	on method	s for cultur	ing meat? I	s there
Q3	a dominant scientific	process?					
	No, so far there is no	dominant m	nanufacturii	ng process.	Every comp	bany in the	cell-
Answer	based industry is still	trying to fin	d the "best'	' process.		-	
	On a scale from 1-5 (2	1 lowest; 5 l	highest), fo	r which typ	e of meat (beef, chick	en
Q4	pork, and fish/seafoo	d) do you s	ee the grea	test /lowes	st potential	for culture	d meat?
				Chicken		Fish/Seaf	
	Type of meat		Beef meat	meat	Pork meat	ood	

	Potential (1 lowest; 5	highest)	-	-	-	5	5
						Only species wildly; Increa	hunted asing
						environment concerns; he	al althy meat-
						type due to it high uncerta	ts nutrients; inty in the
	Reason/clarification					supply	
Answer	Further details:						
Q5	Do you see a particula geographic regions?	arly high/lo	w potentia	I for succes	s for cultur	red meat in	certain
		Northern	Southern				
	Geographical region	America	America	Europe	Africa	Asia	Oceania
	Potential (Very low,			1	1	1	1
	low, moderate, high,						
	very high)	Moderate	Low	Moderate	Very low	Very high	Low
	Ke Visbor potential	y factors		L awar not	antial		
	Higher potential High meat per capita	intake: Gov	ernmental	Lower pour	ential		
Answer	openness; countries v	with develor	ping diets	-			
	On a scale from 1-5 (1	L lowest; 5	highest), ho	ow realistic	is it to rea	ch an indus	trial
Q6	scale (millions of met	ric tons) in	2030?				
	Likability of industrial	ized scale ti	ll 2030 (1 lc	west; 5 hig	;hest)	4	
Answer	Further details:	-					
~ 7	What do you think an	e the key fa	ictors deter	mining the	future pac	ce of adoption	on and
Q/	market size of culture	d meatr					
	Technological progres	ŝS					
Answer	Price parity	-					
	On a scale from 1-5 (1	L lowest; 5	highest), ha	ow likely is	it that esta	blished pla	yers
	(FMCG companies, fo	od chains, (etc.) integra	ate culture	d meat pro	ducts into t	heir
Q8	company/product po	rtfolio?					
	Likability of adaption	of establish	ed players		""+ into	5	-feed
		Established	1 companie:	S SNOW SIGH	uficant inte	chains in Jar	eatoou
Answer	Further details:	"Food and	Life" collab	orates with	n a culturec	d seafood st	artup.
	-	1			-		<u> </u>
Q9	What are the benefits	s of produci	ing cultured	d meat inste	ead of genu	uine meat?	
Answer	Low consumption of r	esources, S	ecuring of a	ocean biodi ^r	versity, Fo	od security	
	What are the biggest	hurdles for	the indust	ry to overce	ome so it c	an become	an at-
Q10	scale phenomenon?			-			
	Scalability of producti	on processe	es to reduce	e costs and	ensure affo	ordability.	
	Access to significant a	mounts of r	public fundi	ng.			
_	Regulatory/governme	ntal openne	ess to food	innovation.	•		
Answer	Further details:	-					

Q11	What needs to happer	n to overcome these h	urdles?				
	Strategic partnering with established companies to ensure scalability.						
	Governmental/public f	unding and inclusion o	of governmental a	authorities (like in			
	Singapore).						
Answer	Further details:	-					
	What is your estimate	of the share (in %) th	at cultured meat	can substitute in the			
Q12	animal protein market	t in 2030, 2040, and 20)50?				
	Year	2030	2040	2050			
	Market share of						
	animal protein						
	market in %	5	35	50			
Answer	Further details:	-					
	How will vegetarians a	and vegans perceive c	ultivated meat? I	Do you think plant-			
Q13	based proteins will co	mpete with cultured r	neat?				
	There will be a little ov	erlap between plant-b	ased and cell-bas	sed proteins. However,			
Answer	the prime market for c	ultured meat/seafood	is for carnivores.				
	Do you see cultured m	eat as a viable solutio	on to reaching ne	t-zero or a low carbon			
Q14	footprint in the agricu	Itural sector?					
	Cell-based proteins can be a viable solution for the reduction of the environmental						
	carbon footprint and c	bon footprint and can be an important contribution to making agriculture and					
	aquaculture more sust	uaculture more sustainable. However, all manufacturing processes and resources					
Answer	that are used for cultu	red meat/seafood nee	d to be sustainab	le as well.			

Expert ID:	3 Expert:	Chief Operating Officer, Cultured Meat Start-up in the U.S.				
	What are the types o	f products with the high	ghest potential to be a	substitution threat		
Q1	for traditionally prod	uced meat in the futu	re?			
		Animal cell-based		Microorganism-		
	Type of Alternative	proteins	Plant-based proteins	based proteins		
	Potential	High	Moderate	Low		
		Unlimited opportunity to substitute meat market;				
		Healthier & tastier than	Mostly limited to	Problems with texture		
	Reason/clarification	genuine meat	vegetarians and vegans;	and taste		
		For the short term, th	nere will be hybrid proc	ducts consisting of		
		plant-based ingredier	nts and cultured meat t	o reach price parity		
	Further details:	earlier. Afterwards, p	roducts will consist of s	90-100% cultured		
Answer		meat.				
	How much potential	do you see in cultured	l meat as a substitutio	n threat? Do you		
Q2	see it as a temporary	trend or as a fundame	ental game-changer?			
	It is not a temporary	trend because consum	ers' preferences are ch	anging all over the		
Answer	world. Health, anima	l, and environmental w	elfare are serious cons	umer concerns.		
	Are there different m	nanufacturing/product	ion methods for cultu	ring meat? Is there		
Q3	a dominant scientific	process?				
	So far, there is not re	ally a standardized/dor	minant manufacturing	process since all		
	processes are in a pha	ase of a proof of conce	pt. Production process	es will continue to		
Answer	develop and change.					

	On a scale from 1-5 (1 lowest; 5 highest), for which type of meat (beef, chicken					en	
Q4	pork, and fish/seafoo	d) do you s	ee the grea	test /lowes	st potential	for culture	d meat?
				Chicken		Fish/Seaf	
	Type of meat		Beef meat	meat	Pork meat	ood	
	Potential (1 lowest; 5	highest)	5	2	2 3	3	
			High				
				Cheapest	Moderate		
			al impact;	meat type	price; substantial	Increasing	
			expensive	efficient	environment	environment	
	Reason/clarification		meat type	production)	al impact	al concerns	
		The highes	t potential	for a soon r	narket entr	y is to subst	titute
	Further details:	expensive,	high-end b	eef product	ts to reach j	orice parity	to be
Answer		competitiv	e.				
	Do you see a particula	arly high/lo	w potentia	I for succes	s for cultur	ed meat in	certain
Q5	geographic regions?	, .					
		Northern	Southern	1		1	
	Geographical region	America	America	Europe	Africa	Asia	Oceania
	Potential (Verv low.						
	low, moderate, high.						
	verv high)	Moderate	Low	Moderate	Very low	High	Low
	Ke			. ,	0		
	Higher potential		Lower pote	ential			
	Consumer awareness	about	Strong agricultural lobby				
Answer	environmental & anim	nal wellbein	g; High				
	On a scale from 1-5 (1	lowest; 5	highest), ho	w realistic	is it to read	h an indust	rial
Q6	scale (millions of met	ric tons) in	2030?				
	Likability of industriali	zed scale till 2030 (1 lowest; 5 highest) 2					
		In 2021, a	competitor	opened a p	production f	acility with	a yearly
		future out	put of 180,0	000 kg. In re	elation to gl	obal meat	
Answer	Further details:	consumpti	on, the indu	ustry is far a	away from l	arge-scale	
		productior	ı.				
	What do you think are	e the key fa	ctors deter	mining the	future pac	e of adoptio	on and
Q7	market size of culture	d meat?					
Answer	Price parity; Technolog	gical progre	ess				
	On a scale from 1-5 (1	lowest; 5	highest), ho	w likely is	it that esta	blished play	/ers
	(FMCG companies, fo	od chains, e	etc.) integra	ate cultured	d meat proo	ducts into tl	neir
Q8	company/product poi	rtfolio?			-		
	Likability of adaption of	of establish	ed players			3	
		Tyson and	Cargill for e	example are	investing i	n cultured n	neat but
	those investments represent a small amount relative to their						their
		revenue. V	Vhen the te	chnology is	market-rea	ady, the like	lihood
		that more	established	companies	s will enter	the cultivate	ed meat
Answer	Further details:	market wil	l significant	ly increase.			
			-	-			
Q9	What are the benefits	of produci	ing cultured	d meat inst	ead of genu	ine meat?	
	Low consumption of re	esources. R	eduction of	GHG emiss	sions: Prese	rvation of	
	Low consumption of resources, Reduction of GHG emissions; Preservation of						

Q10	What are the biggest hurdles for the industry to overcome so it can become an a scale phenomenon?					
	Access to public funding because VC funding is limited and needs a return on					
	investment deterring i	nvestors. Regulatory a	pproval processes in the	ne food industry.		
	Price parity and scalab	ility as interrelated hu	rdles (without scalabili	ty no price parity).		
	Technological feasibili	ty to scale up the prod	uction to an industrial	scale. Bio reactor		
	development needs to	be accelerated.				
Answer	Further details:	-				
Q11	What needs to happe	n to overcome these h	urdles?			
	Expand access to fund	ing by including goverr	nmental authorities.			
	Specialization of comp	anies in certain compe	etencies (e.g. media pro	oduction,		
	bioreactor manufacturing, and meat growth) in the overall value chain.					
Answer	Further details:	-				
	What is your estimate of the share (in %) that cultured meat can substitute in th					
Q12	animal protein marke	t in 2030, 2040, and 20	050?			
	Year	2030	2040	2050		
	Market share of					
	animal protein	1	10	30		
Answer	Further details:	-				
	How will vegetarians	and vegans perceive c	ultivated meat? Do yo	u think plant-		
Q13	based proteins will co	mpete with cultured r	neat?			
	There will be no comp	etition or overlap betw	veen plant-based meat	and cell-based		
	products because cult	ured meat is a meat-re	lated product that will	be hardly		
Answer	distinguishable from c	onventional meat.				
	Do you see cultured m	neat as a viable solution	on to reaching net-zero	o or a low carbon		
Q14	footprint in the agricu	Itural sector?				
	Cultured meat will clea	arly lead to an improve	ement in the carbon fo	otprint of the		
	agricultural sector. Ho	wever, the key factor i	s the energy used for p	production that		
Answer	needs to be renewable	2.				

_		Chief Sustainability Officer, Cultured Meat Start-up for Petfood				
Expert ID:	4 Expert:	in the United Kingdor	n			
	What are the types of	f products with the hig	shest potential to be a	substitution threat		
Q1	for traditionally prod	uced meat in the future?				
		Animal cell-based		Microorganism-		
	Type of Alternative	proteins	Plant-based proteins	based proteins		
	Potential	High	Moderate	-		
	Reason/clarification	Similar taste and texture properties	Unable to fully imitate texture, taste, and mouthfeel	-		
Answer	Eurther details:	product offering includ plant-based products references.	ding conventional due to the			
Answei	How much potential	do vou see in cultured	meat as a substitution	n threat? Do you		
Q2	see it as a temporary	trend or as a fundame	ental game-changer?			

	Fundamental gamechanger with high potential to be an integral part of the food offering. Especially interesting for pet food because the regulatory process is easier to							
Answer	overcome, and it has fewer texture requirements.							
03	Are there different manufacturing/production methods for culturing meat? Is there a dominant scientific process?							
ų,	a dominant scientific	process.						
Answer	There is no dominant production process. All active companies are trying out to find the "right" process.							
	On a scale from 1-5 (1 lowest; 5 highest), for which type of meat (beef, chicken							
Q4	pork, and fish/seafood) do you see the greatest /lowest potential for cultured meat?							
				Chicken		Fish/Seaf		
	Type of meat		Beef meat	meat	Pork meat	ood	-	
	Potential (1 lowest; 5	highest)	4	5	5 2	2 3	1	
				Cheapest		Technologic		
			N 4 a at	meat type		al ad-		
			wost expensive	(very efficient		cell growth:		
			meat type;	production):		the texture		
			Cells are	Cells are	Cells are	of fish is		
			hard to	easier to	hard to	harder to		
	Reason/clarification		grow	grow	grow	сору		
		Due to the	e technology	/, it will star	rt with mino	ed meat pr	oducts	
Answer	Further details:	that do no	t need any	texture.				
	Do you see a particula	arly high/lo	ow potentia	I for succes	s for cultur	ed meat in	certain	
Q5	geographic regions?		•	-				
		Northern	Southern					
	Geographical region	America	America	Europe	Africa	Asia	Oceania	
	Potential (Very low,							
	low, moderate, high,						Very	
	very high)	High	Low	Very high	Very low	Moderate	low	
	Ке	y factors			-			
	Higher potential			Lower potential				
	Consumers' willingnes	ss to pay; C	onsumer					
Answer	acceptance; High food	d dependen	ісу	-				
	On a scale from 1-5 (1	L lowest; 5	highest), ho	w realistic	is it to rea	ch an indust	trial	
Q6	scale (millions of met	ric tons) in	2030?					
	Likability of industrial	ized scale ti	ill 2030 (1 lo	west; 5 hig	hest)	4		
Answer	Further details:	_						
	What do you think ar	e the key fa	actors deter	mining the	future pac	e of adopti	on and	
Q7	market size of culture	d meat?		U	•	•		
Answer	Price parity							
	On a scale from 1-5 (1	lowest: 5	highest), ho	w likely is	it that esta	blished play	vers	
	(FMCG companies, fo	od chains.	etc.) integra	ate cultured	d meat pro	ducts into t	heir	
08	company/product no	rtfolio?						
	Likability of adaption	of establish	ed plavers			2		
Answer	Eurther details:					L		
Q9	What are the benefit	s of produc	ing cultured	d meat inste	ead of genu	ine meat?		

Answer	Reduction of GHG emi security	ssions, High productic	on efficiency, No use	e of antibiotics, Food		
	What are the biggest I	nurdles for the indust	ry to overcome so i	t can become an at-		
Q10	scale phenomenon?					
	Costs need to be 1000	times lower leading t	o a need for enorm	ous scale-up.		
	indefinitely.	needs to be accelerat	ed to cell quality so	that cells can grow		
	Progress in cell culture which is very cost-inte	media development nsive so far.	because media nee	ds to be animal-free		
	Further details: At the	moment the biggest	reactors have a volu	ime of 1200l		
Answer	which is way too little	to reach an industrial	scale.			
Q11	What needs to happer	n to overcome these l	nurdles?			
	Access to public fundir	ng by including govern	mental authorities.			
	Specialization of comp	anies in certain areas	to accelerate overa	ll industry		
Answer	Further details:	-				
	What is your estimate	of the share (in %) th	nat cultured meat ca	an substitute in the		
Q12	animal protein market	t in 2030, 2040, and 2	050?			
	Year	2030	2040	2050		
	Market share of					
	animal protein					
	market in %	2	10	30		
Answer	Further details:	-				
	How will vegetarians a	and vegans perceive o	ultivated meat? Do	you think plant-		
Q13	based proteins will co	mpete with cultured	meat?			
Answer	There will be little com	petition, but it will ne	eglectable.			
	Do you see cultured m	eat as a viable solution	on to reaching net-	zero or a low carbon		
Q14	footprint in the agricu	Itural sector?				
	It will contribute to rea	aching a lower enviror	nmental footprint in	the agricultural sector		
Answer	but it will consume a lo	ot of energy that need	ls to be produced ei	nvironmentally friendly.		

		Managing Partner, A	Managing Partner, Alternative Proteins Venture Capital Firm in				
Expert ID:	5 Expert:	Switzerland					
	What are the types o	f products with the hig	shest potential to be a	substitution threat			
Q1	for traditionally prod	uced meat in the futur	·e?				
		Animal cell-based		Microorganism-			
	Type of Alternative	proteins	Plant-based proteins	based proteins			
	Potential	Moderate	High	Low			
		Still in the	Competitive price; texture				
		experimental/proof of	is missing; already existing	Problems with texture			
	Reason/clarification	concept phase	on the market	and taste			
		Cultured meat will be	an additional food solu	tion besides plant-			
Answer	Further details:	based proteins and co	onventionally produced	meat.			
	How much potential	do you see in cultured	meat as a substitution	threat? Do you			
Q2	see it as a temporary	trend or as a fundame	ental game-changer?				

	It is not a temporary t	rend becau	ise 10 billior	n people car	nnot be fed	with only c	one	
	plant at the Western	diet level. F	Producing m	eat convent	tionally is to	oo inefficier	nt (25	
Answer	calories are required t	to create 1	calorie of be	eef 25:1 rati	io)			
	Are there different manufacturing/production methods for culturing meat? Is there							
Q3	a dominant scientific	process?						
		_	-					
Answer	There is no dominant	scientific m	nanufacturin	g process.				
	On a scale from 1-5 (2	L lowest; 5	highest), fo	r which typ	e of meat (beef, chick	en	
Q4	pork, and fish/seafood) do you see the greatest /lowest potential for cultured meat?							
	Trunce of monot		Deefweet	Chicken		Fish/Seaf		
	Type of meat	h * - h + N	Beef meat	meat	Pork meat	000	-	
	Potential (1 lowest; 5	nignest)	5	4	2	. 3	-	
				Cheapest				
			liab	meat type				
			environment	efficient				
			al impact;	production);	Moderate			
			most	Cells are	price; Cells	Increasing		
	Descen / clarification		expensive meat type	easier to	are harder	environment		
	Reason/clarification	1	meat type	5101	to grow	al concerns		
Answer	Further details:	<u> </u>			6 1.			
or	Do you see a particul	arly high/lo	ow potentia	I for succes	s for cultur	ed meat in	certain	
QS	geographic regions?	ht		1	1	r	1	
	Coographical region	Northern	Southern	Furana	Africa	Acia	Occania	
	Detential (Van Jaw	America	America	Europe	AIIICa	Asid	Oceania	
	low moderate high							
	very high)	High	Very low	Moderate	Very low	High	low	
	Ke	v factors	Very low	Woderate	veryiow	1.1.8.1	2011	
	Higher potential	y lucions		l ower notential				
	High food dependenc	v: develoni	ng		potential			
Answer	countries with develo	ping diets		-				
	On a scale from 1-5 (2	L lowest: 5	highest), ho	w realistic	is it to read	h an indust	trial	
Q6	scale (millions of met	ric tons) in	2030?					
	Likability of industrial	ized scale t	ill 2030 (1 lo	west; 5 hig	hest)	5		
Answer	Further details:	-						
	What do vou think ar	e the key f	actors deter	mining the	future pac	e of adopti	on and	
Q7	market size of culture	ed meat?		0.10				
Answer	Technological progres	S						
	On a scale from 1-5 (2	L lowest; 5	highest), ho	w likely is	it that esta	blished play	/ers	
	(FMCG companies, fo	od chains,	etc.) integra	ate cultured	l meat prod	ducts into t	heir	
Q8	company/product po	rtfolio?	, 0		•			
	Likability of adaption	of establish	ned players			2		
		It will still	take more t	ime that a s	ignificant n	umber of		
Answer	Further details:	establishe	d companie	s to enter t	he cultured	meat mark	et.	
Q9	What are the benefit	s of produc	ing cultured	l meat inste	ead of genu	ine meat?		

Answer	Reduction of GHG emi	ssions, No use of antib	iotics; Food security		
010	What are the biggest l	hurdles for the industr	y to overcome so it ca	in become an at-	
Q10	scale phenomenon?				
	Progress in technological development to be competitive with conventional meat or				
	alternatives (tech-cost	curve).			
_	Scalability of the produ	uction process.			
Answer	Further details:	-			
011	What needs to happen	n to overcome these h	urdles?		
-	Advancement of proce	ess engineering.			
	Industrial-scale availab	pility of raw materials.			
	Industrial-scale availab	pility of manufacturing	production machines	(bioreactor).	
	Established companies	such as Merck or Anh	euser-Busch InBev will	help to take the	
	cost out of the process	5.			
Answer	Further details:	-			
	What is your estimate	of the share (in %) th	at cultured meat can s	ubstitute in the	
Q12	animal protein marke	t in 2030, 2040, and 20)50?		
	Year	2030	2040	2050	
	Market share of				
	animal protein				
	market in %	5	10	20	
Answer	Further details:	-			
	How will vegetarians a	and vegans perceive c	ultivated meat? Do yo	u think plant-	
Q13	based proteins will co	mpete with cultured r	neat?		
	There will be no comp	etition with plant-base	d proteins. Cultured m	neat targets	
	carnivores and will be	an additional source o	f food and will coexist	with other protein	
Answer	alternatives.				
	Do you see cultured m	neat as a viable solution	on to reaching net-zero	or a low carbon	
Q14	footprint in the agricu	Itural sector?			
	Cultured meat is clearl	y a way to reduce gree	enhouse gas emissions	in the agricultural	
_	sector. However, the v	vhole value chain neec	Is to be considered. M	eaning, that the	
Answer	electricity for the man	ufacturing process nee	ds to come from rene	wables.	

		Chief Investment Officer, Alternative Proteins Venture Capital						
Expert ID:	6 Expert:	Firm						
	What are the types o	of products with the hig	shest potential to be a	substitution threat				
Q1	for traditionally produced meat in the future?							
		Animal cell-based		Microorganism-				
	Type of Alternative	proteins	Plant-based proteins	based proteins				
	Potential	Moderate	Moderate	Low				
	Reason/clarification	Not fully technologically approved yet; as of now only minced meat	Limited to a certain amount of consumers as not all carnivores can be converted into plant- based protein consumers	Problems with texture and taste				

Answer	Further details:	The future of all anim products.	e future mix of the protein market will be a hybrid consisting all animal-cell-based, plant-based, and animal-based meat oducts.				
	How much potential	do you see i	in cultured	meat as a s	ubstitution	threat? Do	you
Q2	see it as a temporary	trend or as	a fundame	ntal game-	changer?		
	It is a long-lasting trer	nd with a fu	ndamental	impact on t	he meat se	ctor. Cultur	ed meat
Answer	will disrupt the meat i	market but	only locally	where the	product is i	ndispensabl	e.
	Are there different m	anufacturir	ng/producti	on method	s for cultur	ing meat? I	s there
Q3	a dominant scientific	process?					
	There is not a domina	nt manufac	turing proc	ess yet. Hov	wever, there	e are consta	antly
Answer	new production and n	nanufacturi	ng processe	es develope	d.		
	On a scale from 1-5 (1	L lowest; 5	highest), fo	r which typ	e of meat (beef, chicke	en
Q4	pork, and fish/seafoo	d) do you s	ee the grea	test /lowes	st potential	for culture	d meat?
				Chicken		Fish/Seaf	
	Type of meat		Beef meat	meat	Pork meat	ood	
	Potential (1 lowest; 5	highest)	4	1	. 3	-	
			High environment	Cheapest meat type (very efficient	Popular		
			al impact; most	production); Cells are	meat type in		
expensive easier to growing							
	Reason/clarification		meat type	grow	middle class	-	
Answer	Further details:	cultured m products is bone steak this scaffol	eat becaus no texture () needs a so d is the bot	e the margi needed. Fu caffold. Fro tleneck.	ns are highe urthermore, m a technol	er and for th real meat (logical pers)	iose [e.g., tie pective,
	Do you see a particula	arly high/lo	w potentia	I for succes	s for cultur	ed meat in	certain
Q5	geographic regions?						
	Geographical region	Northern America	Southern America	Europe	Africa	Asia	Oceania
	Potential (Very low,						
	low, moderate, high,						
	very high)	Low	Very low	Low	Moderate	High	Low
	Ke	y factors		. .			
	Higher potential			Lower pote	ential		
A	High tood dependenc	y; developir ning diote	ıg				
Answer			hishast) ha		:. :	المراجعة المراجع	wiel
06	On a scale from 1-5 (1	L IOWEST; 5 ric tons) in	nignest), no	ow realistic	is it to read	in an Indust	riai
QU	Likability of industrial	ized scale ti		west 5 hig	hast)	2	
		Thoro is a l	$\frac{112030}{200}$	go in term	s of technol		rmore
		there is a c	anacity cha	Bo III territi llenge The	market nee	ogy. Fuillie ods compan	ies to
		nroduce th	e manufact	uring mach	ines on a la	rge scale w	hich is
		verv dema	nding verv	high invostr	ments Now	there is a i	Chicken
		or egg nrol	hlem herau	se the solut	tion of prod	ucing cultur	red
Δnswer	Further details:	meat on a	large scale i	is also the c	ause of the	problem.	
	ruitiner uctuils.					P. 00.0111	

Q7	What do you think are market size of culture	e the key factors deter d meat?	mining the future pa	ce of adoption and			
	Price parity	Price parity					
Answer	Regulatory openness	S					
	On a scale from 1-5 (1	cale from 1-5 (1 lowest; 5 highest), how likely is it that established players					
	(FMCG companies, for	s, food chains, etc.) integrate cultured meat products into their					
Q8	company/product por	tfolio?					
	Likability of adaption of	of established players		2			
		Food chains took a ver	ry long time to introd	uce plant-based			
		products into their pro	oduct portfolio becaus	se the first thing that			
		must be secured for a	food chain is the supp	oly chain and			
		production. From a tee	chnological perspective	ve, cultured meat is			
Answer	Further details:	still too far away from	being adopted soon I	oy a food chain.			
Q9	What are the benefits	of producing cultured	meat instead of gen	uine meat?			
Answer	Low consumption of re	esources, Reduction of	GHG emissions, Food	security			
	What are the biggest	hurdles for the industr	y to overcome so it c	an become an at-			
Q10	scale phenomenon?						
	Enormous cost reducti	ion to reach price parit	y. Technological adva	ncement to reach			
	scalability in scaffold n	naterials. Regulatory o	penness.				
Answer	Further details:	-					
Q11	What needs to happen	n to overcome these h	urdles?				
	Changing the manufac	turing process to chea	per one (production o	of texture less meat).			
	Access to public fundir	ng by including governi	nental authorities.	· · · · · · · · · · · · · · · · · · ·			
A	Further details: Techn	ology and production a	are very capital intens	ive and			
Answer		ossible for startups.					
012	what is your estimate	e of the share (in %) the	at cultured meat can	substitute in the			
QIZ	Vear		2040	2050			
	Market share of	2030	2040	2050			
	animal protein						
	market in %	1	1.5	2.25			
Answer	Further details:	-					
	How will vegetarians	and vegans perceive c	ultivated meat? Do y	ou think plant-			
Q13	based proteins will co	mpete with cultured n	neat?				
	There will be no comp	etition because culture	ed meat will be percei	ved as normal meat			
Answer	due to its similarities w	vith conventional meat					
	Do you see cultured m	eat as a viable solutio	n to reaching net-zer	o or a low carbon			
Q14	footprint in the agricu	Itural sector?					
	It will be only partly a s	solution and now it is n	ot realistic because to	o achieve a low-			
	carbon footprint the er	nergy for production n	eeds to be 100% rene	wable. This will not			
	be possible soon. Food	security will be a more	e challenging problem	n for humanity than			
Answer	making food productio	n completely environn	nentally sustainable.				

Expert ID:	7 Expert:	Global Ag	ribusiness Lo	ead, Top Tie	er Consultar	ncy in the U	.S.
	What are the types of products with the highest potential to be a substitution threat						
Q1	for traditionally produced meat in the future?						
		Animal cel	l-based			Microorgar	nism-
	Type of Alternative	proteins		Plant-base	d proteins	based prot	eins
	Potential	Moderate		High		Low	
		Still in the					
		experimental	l/proof of				
	Descen/algrification	concept phas	se; price	Competitive p	price; already	Problems with	า texture
	Reason/clarification	parity		existing on th	ie market	and taste	
Answer	Further details:	-	••••••••••••••••••••••••••••••••••••••			1 h	
~~	How much potential c	10 you see	In culturea	meat as a s		threat? Do	you
QZ	see it as a temporary	trenu or as	a Tunuame	ntal game-	changer :	avaluar and	l tha
	theoretical concept be		1 De a game		+boro is a li	evolves and	i trie
	theoretical concept be	Comes a pr		. HOwever,			
	technology will not sur		all after a u	ouple of ye	ars when in	Vestments	are too
Answer	high to continue the a	evelopmen	it.				
	Are there different ma	anufacturir	ng/producti	on method	s for cultur	ing meat? I	s there
Q3	a dominant scientific	process?			the teals	La ser la abil	
	There is no dominant i	manutactur	ring process	yet becaus	Se the techn	IOlOgy IS Stil	l in its
_	infancy. There might b	e different	production	processes	evolving. ir	ie industry a	and
Answer	startups are constantly	y looking to	or new manu	ufacturing p	processes.		
	On a scale from 1-5 (1	lowest; 5	highest), for	r which typ	e of meat (beef, chicke	en
Q4	pork, and fish/seafoor	d) do you s	ee the grea	test /lowes	st potential	for culture	d meat?
1				Chicken		Fish/Seat	
	Type of meat	<u> </u>	Beet meat	meat	Pork meat	ood	
	Potential (1 lowest; 5	highest)	4	2	3	-	
				Ch-support			
			High	Cheapesi meat type:			
			environment	Cells are	Popular		
			al impact;	easier to	meat type in		
			most	grow; Most	Asia with a		
			expensive	popular	growing middle class		
	Reason/clarification		теат туре	meat type	miluule class	-	
Answer	Further details:	- <u> </u>					
	Do you see a particula	arly high/lo	w potentia	I for succes	s for cultur	ed meat in	certain
Q5	geographic regions?						
		Northern	Southern				
	Geographical region	America	America	Europe	Africa	Asia	Oceania
	Potential (Very low.						
	low. moderate, high.						Modera
	verv high)	low	Verv low	Moderate	low	High	te
	Ke [,]	v factors	ver, .e	111040.012			
	Higher notential	y luciois		l ower note	ontial		
			ernmental				
Ancwor	financial resources: G	/, nuge gov		Strong agri	icultural loh	hy	
Answei	Or a scale from 1 E /1		di hishast) ha			Uy han induct	vial
~	On a scale from 1-5 (1	lowest; 5	hignest), no	w realistic	IS IT to read	n an indust	riai
Цb	Scale (millions of met		20301	ur -t. Г big	·+ \		
	LIKADIIILY OF INDUSTRIAII	zeu scale li	11 ZU30 (1 10	west; 5 mg	nest)	4	

Answer	Further details:	-					
	What do you think ar	e the key factors deter	mining the future pac	e of adoption and			
Q7	market size of culture	ed meat?					
	Price parity						
	Regulatory openness						
Answer	Technological progres	S					
	On a scale from 1-5 (1	l lowest; 5 highest), ho	w likely is it that esta	blished players			
	(FMCG companies, fo	(FMCG companies, food chains, etc.) integrate cultured meat products into their					
Q8	company/product portfolio?						
	Likability of adaption of established players 4						
		It will happen that est	ablished companies sta	art to integrate			
		cultivated meat produ	icts into their portfolio	. However, it is also			
		essential that upstrea	m established compan	ies such as Cargill			
Answer	Further details:	will adopt this product	t to push and increase	scalability.			
Q9	What are the benefits	s of producing cultured	I meat instead of genu	ine meat?			
	Reduction of GHG em	issions, reduction of di	sease probability in the	e animal			
Answer	population, No use of	antibiotics, Food secur	ity				
	What are the biggest	hurdles for the industr	ry to overcome so it ca	in become an at-			
Q10	scale phenomenon?						
	Regulatory openness i	in the food industry.					
	Political acceptance in	countries with a stron	g meat industry.				
	Price parity with conv	entionally produced me	eat.				
	Further details: Howe	ver, the regulatory hur	dles in GMOs, for exan	nple, are also very			
	high.There are conflic	ting goals such as food	safety and sustainabili	ty.			
Answer							
Q11	What needs to happe	n to overcome these h	urdles?				
	Established companie	s entering the market a	and making significant	investments.			
Answer	Further details:	-					
	What is your estimate	e of the share (in %) th	at cultured meat can s	ubstitute in the			
Q12	animal protein marke	t in 2030, 2040, and 20	050?				
	Year	2030	2040	2050			
	Market share of	2.5	15	20			
Answer	Further details:	-					
	How will vegetarians	and vegans perceive c	ultivated meat? Do yo	u think plant-			
Q13	based proteins will co	ompete with cultured r	neat?				
	There will be no comp	etition within the prot	ein market because cu	Itured meat does			
•	not target vegetarians	s/vegans but carnivores	s who want to achieve	a healthier dietwith			
Answer	a less damaging enviro	onmental footprint.					
~	Do you see cultured n	neat as a viable solutio	on to reaching net-zero	or a low carbon			
Q14	footprint in the agricu	iltural sector?					
	it will nelp contribute	to reaching a lower en	vironmental tootprint.	However,			
	hubrid mix of oning all		and convertionally real	uny. There will be a			
	Turthorno to animal-C	en-based, plant-based,	, and conventionally pr	ouuceu meat.			
A	Furthermore, to reach	i economies of scale, a	centralized production	i will be required			
Answer	leading to emissions o	iue to logistics.					

		Director of	f Responsib	le Research	and Innova	ation, Nonp	rofit	
Expert ID:	8 Expert: Research Institute for Cultured Meat in the U.S.							
	What are the types of	f products v	vith the hig	hest poten	tial to be a	substitutio	n threat	
Q1	for traditionally prod	uced meat i	in the futur	e?				
		Animal cel	l-based			Microorgar	nism-	
	Type of Alternative	proteins		Plant-base	d proteins	based prote	eins	
	Potential	High		High		-		
		Superior tast	e and texture	Unable to full	y imitate			
		experimental	/proof of	mouthfeel; al	ready			
	Reason/clarification	concept phas	e	existing on th	e market	-		
		There will	be a high pr	obability of	f a mixed pr	oduct portf	olio for	
		proteins in	cluding plar	nt-based pr	oteins, cult	ured meat,	and,	
Answer	Further details:	conventior	nally produc	ed meat.				
	How much potential	do you see i	in cultured	meat as a s	ubstitution	threat? Do	you	
Q2	see it as a temporary	trend or as	a fundame	ntal game-	changer?			
Answer	Fundamental gamech	anger that v	will transfor	m the way	of food pro	duction.		
	Are there different manufacturing/production methods for culturing meat? Is there							
Q3	a dominant scientific process?							
	There is no dominant scientific process since the technology is still in a proof-of-							
Answer	concept phase. The manufacturing process is also depending on the end product.							
	On a scale from 1-5 (1 lowest; 5 highest), for which type of meat (beef, chicken							
Q4	pork, and fish/seatoo	d) do you s	ee the grea	test /lowes	st potential	for culture	d meat?	
	Type of most		Poof most	Chicken	Dork most	Fish/Seat		
	Retential (1 lowest: F	highost)	Deel meat	illeat E	r ork meat	000 /		
		ingliest			2	Tashnalagia		
						al		
					Cells are	advantages		
					hard to	in cell growth		
			Cells are	Cells are	grow;	(low-		
	Peacon/clarification		hard to	easier to	ivioderate price	growth)		
Answor	Further details:		510W	BIOW	price	8 ,	<u> </u>	
Allower	Do you soo a particul	vrly high /lo	w notontia	for succes	c for cultur	ad most in	cortain	
05	geographic regions?		w potentia	i ioi succes	s ioi cultur	eu meat m	certain	
45		Northern	Southern					
	Geographical region	America	America	Furope	Africa	Asia	Oceania	
	Potential (Very low			241090		1010	occania	
	low, moderate, high,							
	verv high)	Moderate	Low	Moderate	Verv low	High	Low	
	Ke	v factors	1		- 1.50			
	Higher potential	,		Lower pote	ential			
	High food dependenc	y; Governm	ental	1.2.0				
Answer	openness	,,		-				
	On a scale from 1-5 (1	lowest; 5	highest), ho	w realistic	is it to read	h an indust	rial	
Q6	scale (millions of met	ric tons) in	2030?					
	Likability of industrialized scale till 2030 (1 lowest; 5 highest) 2							

		The problem is not o	only to have the machi	nery and the					
Answer	Further details:	equipment ready. It	is also crucial to have	, a secure supply chain.					
	What do you think a	re the key factors det	ermining the future pa	ace of adoption and					
Q7	, market size of cultur	market size of cultured meat?							
Answer	Price parity								
	On a scale from 1-5 (1 lowest; 5 highest),	now likely is it that est	tablished players					
	(FMCG companies, for	ood chains, etc.) integ	rate cultured meat pr	oducts into their					
Q8	company/product po	ortfolio?							
	Likability of adaption	of established players	5	2					
Answer	Further details:	-							
09	What are the benefit	ts of producing cultur	ed meat instead of ge	nuine meat?					
4.5	Low consumption of	resources. Reduction	of GHG emissions. No	use of antibiotics.					
Answer	Food security								
	What are the biggest	t hurdles for the indus	stry to overcome so it	can become an at-					
Q10	scale phenomenon?		•						
	Technological progre	ss in production proce	esses and production n	nachines					
	(bioreactors). Access	to public/governmen	tal funding. Closed and	l capitalistic					
	innovation attitude								
	Further details: Every	Further details: Every company is developing processes on its own which makes							
Answer	development very co	development very costly and inefficient.							
Q11	What needs to happ	en to overcome these	hurdles?						
	Governmental interv	ention with public and	governmental fundin	g.					
	A mature supply chai	n for all raw materials	is needed because wi	thout any secure					
	supply chain, the pro	duction cannot be exe	ecuted properly on a la	rge scale.					
	Further details: On 1	4.04.2022, the Dutch	government started to	fund cultured					
Answer	meat with €60m.								
	What is your estimat	te of the share (in %)	that cultured meat car	n substitute in the					
Q12	animal protein mark	et in 2030, 2040, and	2050?						
	Year	2030	2040	2050					
	Market share of	-	-	-					
		This question canno	t be answered from a s	scientific point of					
		view. The technolog	y and market are way	too novel and in their					
		infancy. The assump	tions of potential mar	ket share to predict					
Answer	Further details:	potential savings in	GHG are vague.						
	How will vegetarians	and vegans perceive	cultivated meat? Do	you think plant-					
Q13	based proteins will c	ompete with cultured	l meat?						
	There will be no com	petition between those	se two alternatives. Ve	getarians and vegans					
Answer	would not choose to	eat cultured meat pro	ducts.						
	Do you see cultured	meat as a viable solut	ion to reaching net-ze	ero or a low carbon					
Q14	footprint in the agric	ultural sector?							
	Cultured meat has th	e potential to be a via	ble solution to reaching	ig a low-carbon					
	footprint. However, t	he technology alone i	s not sufficient enough	because the whole					
	value chain of culture	ed meat production is	a critical pillar. If the s	ourcing and the					
	production of raw ma	aterials need high logi	stics effort, the techno	logy is not					
	environmentally sust	ainable. Hence, the qu	uestion that also needs	s to be answered is if					
	the production is dec	entralized or centraliz	ed. Centralized produc	ction would lead to to					
Answer	adverse effects as we	ell.							

	-							
F	0 -	Scientist, A	Academic Ro	esearch Inst	itution at a	well-know	n	
Expert ID:	9 Expert:	University	in Germany	/				
	What are the types of	f products	with the hig	ghest poten	tial to be a	substitutio	n threat	
Q1	for traditionally prod	uced meat	in the futu	re?				
		Animal cel	I-based			Microorga	nism-	
	Type of Alternative	proteins		Plant-base	d proteins	based proteins		
	Potential	High		Moderate		-		
		Origin of the	animal and					
		is, therefore,	possible to					
		reproduce;		Already exist	ing but			
		Structures ca	in be vithout	technological	lly limited to			
	Reason/clarification	limitation	without	terms of tast	e and texture	-		
Answer	Further details:	-						
	How much potential	do you see	in cultured	meat as a s	substitutior	n threat? Do	o you	
Q2	see it as a temporary	trend or as	a fundame	ental game-	changer?			
-	It is no temporary tre	nd. and it is	iust startin	g. Looking a	at the rising	demand fo	or	
Answer	proteins. it is very att	ractive to fi	nd and esta	blish new a	nd sustaina	ble meat so	ources.	
	Are there different m	anufacturi	ng/product	ion method	ls for cultur	ing meat?	s there	
03	a dominant scientific	nrocess?	ng/product			ing mean	stricic	
43	a use main scientific process. It is dependent on the end product. For							
	mining more the manufacturing process is quite similar. However, for products with							
	a texture like a steak	the process	sos varv (o	2D printi	ng or scaffe	d mothod)		
	a lexiule like a sleak,	ine process	ses vary (e.	s, SD printi se heth fet	and most o		. 50	
	printing has some pot	ential beca	use it can u	se both fat	and meat c	ens while in	d	
Answer	bioreactor there can b	be only one	cell type us	sed.				
	On a scale from 1-5 (1	lowest; 5 l	nighest), fo	r which typ	e of meat (beef, chicke	en	
Q4	pork, and fish/seafoo	d) do you s	see the grea	atest /lowes	st potentia	for culture	d meat?	
	- c .			Chicken	.	Fish/Seaf		
	Type of meat		Beef meat	meat	Pork meat	00d		
	Potential (1 lowest; 5	highest)	5	3	3	3		
						Technologic		
						ally different		
			High			production		
			environment		Limited by	(DNA		
			al impact;		, cultural	sequences		
			most		beliefs;	cannot be		
			expensive	Cheapest	moderate	applied so		
	Reason/clarification		meat type	meat type	price	well)		
Answer	Further details:	-						
	Do you see a particul	arly high/lo	ow potentia	I for succes	s for cultur	ed meat in	certain	
Q5	geographic regions?							
		Northern	Southern					
	Geographical region	America	America	Europe	Africa	Asia	Oceania	
	Potential (Verv low.							
	low, moderate. high.							
	verv high)	High	Low	Verv high	Verv low	Moderate	Low	
	- ,	0	Kev fa	ctors	- ,		-	
	Rey factors							

	Higher potential		Lower potential					
	Governmental openne	ess; High willingness						
	to pay; High food dep	endency; High meat	Strong agricultural lob	by				
Answer	per capita consumptio	on	Protectionism					
	On a scale from 1-5 (1	L lowest; 5 highest), he	ow realistic is it to read	ch an industrial				
Q6	scale (millions of met	ric tons) in 2030?						
	Likability of industriali	zed scale till 2030 (1 lo	owest; 5 highest)	3				
Answer	Further details:	-						
	What do you think ar	e the key factors dete	rmining the future pac	e of adoption and				
Q7	market size of cultured meat?							
Answer	Technological progres	S						
	On a scale from 1-5 (1	L lowest; 5 highest), ho	ow likely is it that esta	blished players				
	(FMCG companies, fo	od chains, etc.) integra	ate cultured meat pro	ducts into their				
Q8	company/product po	rtfolio?	•					
	Likability of adaption	of established players		4				
	, ,	Once the industry is d	leveloped to the point	where companies				
		, can confidently consid	der it a potential busine	ess, the number of				
		investments and collaborations will increase rapidly. For now,						
Answer	Further details:	these are just occasio	nal first movers.					
Q9	What are the benefits of producing cultured meat instead of genuine meat?							
Answer	Reduction of GHG emissions: Food security							
	What are the biggest hurdles for the industry to overcome so it can become an at-							
Q10	scale phenomenon?							
	Technological progres	s in cell-line developm	ent with genetic modi	fication and in				
	culture media serum o	development (animal-f	free).					
	Low level of collabora	tion within the industr	īy.					
	Access to public fundi	ng.	-					
Answer	Further details:	-						
Q11	What needs to happe	n to overcome these h	nurdles?					
	Collaboration with all	stakeholders (governn	nent, research institute	es, and companies).				
Answer	Further details:	-		-				
	What is your estimate	e of the share (in %) th	nat cultured meat can	substitute in the				
Q12	animal protein marke	et in 2030, 2040, and 2	050?					
	Year	2030	2040	2050				
	Market share of							
	animal protein							
	market in %	0.5	1.5	7.5				
Answer	Further details:	-						
	How will vegetarians	and vegans perceive of	cultivated meat? Do yo	ou think plant-				
Q13	based proteins will co	mpete with cultured	meat?					
	There is only a little co	ompetition. However,	vegetarians and vegans	s aren't a target				
Answer	group. Hence compet	ition with plant-based	proteins is neglectable					
	Do you see cultured n	neat as a viable solution	on to reaching net-zero	o or a low carbon				
Q14	footprint in the agricu	ultural sector?						

It is a viable solution, and it will lead to a reduction in emissions. However, the wholesupply chain needs to be sustainable including the energy used for the production.

Appendix B

Answer

Database

Global meat producti	n including	growth rate
----------------------	-------------	-------------

Year	Tons (millions)	Growth rate	:
:	2020	328	14%
:	2030	373	14%
:	2040	424	14%
:	2050	482	

Global market share of cultured meat

Year	Market meat	share cultured
	2030	4.63%
	2040	15.38%
	2050	28.72%

Source: OECD-FAO Agricultural Outlook 2021-2030

Global meat type distribution in 2030

Meat type	Tons (millions) Share	
Beef meat*	93	25%
Chicken meat	153	41%
Pork meat	127	34%
Sum	373	100%

Source: Expert interviews (Appendix A)

*Including sheep meat due to a similar environmental footprint Source: OECD-FAO Agricultural Outlook 2021-2030

GHG emissions on the 2030 benchmark

Meat type	kg CO2eq/kg
Beef meat	30.5
Chicken meat	3.5
Pork meat	6
Cultured meat (sustainable)	2.5
Cultured meat (conventional)	13.6

Source: CE Delft lifecycle assessment study

Blue water use on the 2030 benchmark

Meat type	liter/kg
Beef meat	258
Chicken meat	46
Pork meat	40
Cultured meat (sustainable)	56
Cultured meat (conventional)	42

Source: CE Delft lifecycle assessment study

Land use on the 2030 benchmark

Meat type	m² a crop-eq./kg
Beef meat	31.6
Chicken meat	4.6
Pork meat	6
Cultured meat (sustainable)	1.7
Cultured meat (conventional)	1.8

Source: CE Delft lifecycle assessment study

Scenario analysis

2030

Scenario 1 Cultured meat fails to enter the market

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m ² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	93.25	0.00%	0	93.25	30,500	2,844,125,000,000	2,844,125,000	31,600	294,670,000	258,000	24,058,500,000
Chicken meat	41%	152.93	0.00%	0	152.93	3,500	535,255,000,000	535,255,000	4,600	70,347,800	46,000	7,034,780,000
Pork meat	34%	126.82	0.00%	0	126.82	6,000	760,920,000,000	760,920,000	6,000	76,092,000	40,000	5,072,800,000
Cultured meat												
TOTAL		373		-	373		4,140,300,000,000	4,140,300,000		441,109,800		36,166,080,000

Scenario 2 Cultured meat succeeds in entering the market but is operated with conventional energy

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	93.25	4.63%	4	89	30,500	2,712,442,012,500	2,712,442,013	31,600	281,026,779	258,000	22,944,591,450
Chicken meat	41%	152.93	4.63%	7	146	3,500	510,472,693,500	510,472,694	4,600	67,090,697	46,000	6,709,069,686
Pork meat	34%	126.82	4.63%	6	121	6,000	725,689,404,000	725,689,404	6,000	72,568,940	40,000	4,837,929,360
Cultured meat						13,600	234,870,640,000	234,870,640	1,800	3,108,582	42,000	725,335,800
TOTAL		373		17	356		4,183,474,750,000	4,183,474,750		423,794,998		35,216,926,296

Scenario 3 Cultured meat succeeds in entering the market and is operated with sustainable energy

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	93.25	4.63%	4	89	30,500	2,712,442,012,500	2,712,442,013	31,600	281,026,779	258,000	22,944,591,450
Chicken meat	41%	152.93	4.63%	7	146	3,500	510,472,693,500	510,472,694	4,600	67,090,697	46,000	6,709,069,686
Pork meat	34%	126.82	4.63%	6	121	6,000	725,689,404,000	725,689,404	6,000	72,568,940	40,000	4,837,929,360
Cultured meat						2,500	43,174,750,000	43,174,750	1,700	2,935,883	56,000	967,114,400
TOTAL		373		17	356		3,991,778,860,000	3,991,778,860		423,622,299		35,458,704,896

2040

Scenario 1 Cultured meat fails to enter the market

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	106	0.00%	0	106	30,500	3,234,325,076,220	3,234,325,076	31,600	335,097,287	258,000	27,359,208,841
Chicken meat	41%	174	0.00%	0	174	3,500	608,689,375,000	608,689,375	4,600	79,999,175	46,000	7,999,917,500
Pork meat	34%	144	0.00%	0	144	6,000	865,314,512,195	865,314,512	6,000	86,531,451	40,000	5,768,763,415
Cultured meat												
TOTAL		424		-	424		4,708,328,963,415	4,708,328,963		501,627,913		41,127,889,756

Scenario 2 Cultured meat succeeds in entering the market but is operated with conventional energy

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	106	15.38%	16	90	30,500	2,736,885,879,497	2,736,885,879	31,600	283,559,324	258,000	23,151,362,522
Chicken meat	41%	174	15.38%	27	147	3,500	515,072,949,125	515,072,949	4,600	67,695,302	46,000	6,769,530,189
Pork meat	34%	144	15.38%	22	122	6,000	732,229,140,220	732,229,140	6,000	73,222,914	40,000	4,881,527,601
Cultured meat						13,600	887,235,813,171	887,235,813	1,800	11,742,827	42,000	2,739,992,952
TOTAL		424		65	359		4,871,423,782,012	4,871,423,782		436,220,367		37,542,413,264

Scenario 3 Cultured meat succeeds in entering the market and is operated with sustainable energy

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	106	15.38%	16	90	30,500	2,736,885,879,497	2,736,885,879	31,600	283,559,324	258,000	23,151,362,522
Chicken meat	41%	174	15.38%	27	147	3,500	515,072,949,125	515,072,949	4,600	67,695,302	46,000	6,769,530,189
Pork meat	34%	144	15.38%	22	122	6,000	732,229,140,220	732,229,140	6,000	73,222,914	40,000	4,881,527,601
Cultured meat						2,500	163,094,818,598	163,094,819	1,700	11,090,448	56,000	3,653,323,937
TOTAL		424		65	359		4,147,282,787,439	4,147,282,787		435,567,987		38,455,744,248

2050

Scenario 1 Cultured meat fails to enter the market

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m ² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	121	0.00%	0	121	30,500	3,678,058,699,481	3,678,058,699	31,600	381,071,000	258,000	31,112,758,835
Chicken meat	41%	198	0.00%	0	198	3,500	692,198,588,034	692,198,588	4,600	90,974,672	46,000	9,097,467,157
Pork meat	34%	164	0.00%	0	164	6,000	984,031,442,222	984,031,442	6,000	98,403,144	40,000	6,560,209,615
Cultured meat												
TOTAL		482		-	482		5,354,288,729,737	5,354,288,730		570,448,815		46,770,435,607

Scenario 2 Cultured meat succeeds in entering the market but is operated with conventional energy

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m ² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	121	28.72%	35	86	30,500	2,621,720,240,990	2,621,720,241	31,600	271,627,409	258,000	22,177,174,498
Chicken meat	41%	198	28.72%	57	141	3,500	493,399,153,550	493,399,154	4,600	64,846,746	46,000	6,484,674,590
Pork meat	34%	164	28.72%	47	117	6,000	701,417,612,016	701,417,612	6,000	70,141,761	40,000	4,676,117,413
Cultured meat						13,600	1,884,092,201,374	1,884,092,201	1,800	24936514.43	42,000	5,818,520,034
TOTAL		482		139	344		5,700,629,207,931	5,700,629,208		431,552,430		39,156,486,534

Scenario 3 Cultured meat succeeds in entering the market and is operated with sustainable energy

				Volume	Market volume	kg GHG			Land use		Water	
	Meat	Volume in	Market share	cultured meat	(conv.) meat in	emissions	Total GHG (CO2eq in	Total GHG	m ² a crop-	Total land use	footprint	Total Water footprint
Meat type	distribution	million tons	cultured meat	in million tons	million tons	CO2eq/t	kg)	CO2eq in t	eq./t	in ha	liter/t	in m³
Beef meat	25%	121	. 28.72%	35	86	30,500	2,621,720,240,990	2,621,720,241	31,600	271,627,409	258,000	22,177,174,498
Chicken meat	41%	198	8 28.72%	57	141	3,500	493,399,153,550	493,399,154	4,600	64,846,746	46,000	6,484,674,590
Pork meat	34%	164	28.72%	47	117	6,000	701,417,612,016	701,417,612	6,000	70,141,761	40,000	4,676,117,413
Cultured meat						2,500	346,340,478,194	346,340,478	1,700	23,551,153	56,000	7,758,026,712
TOTAL		482		139	344		4,162,877,484,750	4,162,877,485		430,167,068		41,095,993,212