Valorization of lignin from sugarcane by-products: Review

Filipa Antunes ^a, Inês F. Mota ^b, João da Silva Burgal ^b, Manuela Esteves Pintado^b, Patrícia Santos Costa^b

^b Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal ^a Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal

Background

The valorization of sugarcane industry by-products is fundamental to increase competitiveness on a circular

PORTO

economy point of view. Straw and bagasse are byproducts with huge potential as source of added value ingredients. Lignin is an abundant component found in these by-products with proved biological activity, particularly antimicrobial, antioxidant and UV protection. Additionally, recent applications on materials have been reported for lignin-based products.

Literature survey

Extraction processes

Main extraction / precipitation / drying conditions

1-7% sodium hydroxide; 80-130 °C; 2h or other Liquid/solid ratio 20-50; in some studies H2O2 is added up to 2-4%;

Lignin extracts physico-chemical properties

92-96% lignin purity and 0.71-2.6% inorganics content; polydispersity 2.03-8.39 and 0.15-0.43 mmol/g of total hydroxyl groups

Precipitation with mineral acids (HCl or H2SO4) Oven drying at 40-60°C

Organosolv

50-80 % aqueous organic solvent solution (e.g. ethanol, dioxane); acid or base –catalyzed; 20-30 bar; 85-190 °C, 0.75-4 h; Liquid-solid ratio of 10 or other;

Precipitation with water or acidified water Oven drying at 40°C or freeze drying

In the majority of studies lignin characterization was not specified. When mentioned, the main properties were: 95% lignin purity and 0.92% inorganics content; polydispersity 2.51 and 0.60-0.75 mmol/g of total hydroxyl groups

Green solvents

Only one studies was found employing ionic liquid extraction carried out at 140°C, 120 min, liquid-solid ratio of 20; afterwards, the solid is mixed in acetone /water, filtered and the permeate recovered, vacuum filtered in order to obtain an enriched lignin fraction.

Polydispersity 1.61; Lignin characterization was not specified for the remaining properties

Conclusions and Future Perspectives

- Sugarcane bagasse and sugarcane straw possess distinct chemical properties.
- The source and pretreatment selection strongly influence sugarcane lignin applications. lacksquare
- The most studied applications for sugarcane lignin are in cosmetics and materials, but the potential for other areas is \bullet tremendous. Clearly, further work is necessary on this subject.

References

107, 612–621. Ratanasumarn, N.; Chitprasert, P. Int. J. Biol. Macromol. 2020, 153, 138–145. Saha, K. et al. Biotech 2018, 8, 374. Sudheer, R. et al. J. Polym. Mater. 2017, 34, 171–183. Sun, X.-F. et al. J. Appl. Polym. Sci. 2011, 120, 3587–3595. Sunthornvarabhas, J. et al. Ind. Crops Prod. 2017, 109, 857–861. Xu, C. et al. Int. J. Biol. Macromol. 2019, 141, 484–492.

Acknowledgements

This research was funded by Amyris Bio Products Portugal Unipessoal Lda and Escola Superior de Biotecnologia – Universidade Católica Portuguesa through Alchemy project-CATOLICA Capturing high value from industrial fermentation bio products (POCI-01-0247-FEDER-027578). We would also like to thank the scientific collaboration under the Fundação para a Ciência e a Tecnologia (FCT) project UIDB/50016/2020. PORTO

