
Citation: Pinto, J.; Ramos, J.R.C.;

Costa, R.S.; Oliveira, R. A General

Hybrid Modeling Framework for

Systems Biology Applications:

Combining Mechanistic Knowledge

with Deep Neural Networks under

the SBML Standard. AI 2023, 4,

303–318. https://doi.org/

10.3390/ai4010014

Academic Editors: Kenji Suzuki and

José Machado

Received: 31 January 2023

Revised: 15 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A General Hybrid Modeling Framework for Systems Biology
Applications: Combining Mechanistic Knowledge with Deep
Neural Networks under the SBML Standard
José Pinto, João R. C. Ramos , Rafael S. Costa and Rui Oliveira *

LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology,
NOVA University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal
* Correspondence: rmo@fct.unl.pt

Abstract: In this paper, a computational framework is proposed that merges mechanistic modeling
with deep neural networks obeying the Systems Biology Markup Language (SBML) standard. Over
the last 20 years, the systems biology community has developed a large number of mechanistic models
that are currently stored in public databases in SBML. With the proposed framework, existing SBML
models may be redesigned into hybrid systems through the incorporation of deep neural networks
into the model core, using a freely available python tool. The so-formed hybrid mechanistic/neural
network models are trained with a deep learning algorithm based on the adaptive moment estimation
method (ADAM), stochastic regularization and semidirect sensitivity equations. The trained hybrid
models are encoded in SBML and uploaded in model databases, where they may be further analyzed
as regular SBML models. This approach is illustrated with three well-known case studies: the
Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the Yeast
glycolytic oscillations model. The proposed framework is expected to greatly facilitate the widespread
use of hybrid modeling techniques for systems biology applications.

Keywords: hybrid modeling; deep neural networks; deep learning; SBML; systems biology; computational
modeling

1. Introduction

Hybrid modeling methods combining mechanistic knowledge with machine learning
(ML) in a common workflow have found wide application in process systems engineering
since the early 1990s (e.g., review by von Stosch et al., [1]). Psichogios and Ungar [2]
described one of the first applications of hybrid models to bioprocess engineering. The
proposed hybrid model consisted of dynamic material balance equations of biochemical
species (system of ordinary differential equations (ODEs)) connected with a shallow feed-
forward neural network in a common mathematical structure. Sensitivity equations were
derived enabling the training of the neural network by error backpropagation on indirect
training examples (e.g., measured target variables not coincident with the neural network
output variables). Thompson and Kramer [3] framed this problem as hybrid semipara-
metric modeling, as such models merge parametric functions (stemming from knowledge)
with nonparametric functions (stemming from data) in the same mathematical structure.
Schubert et al. [4] presented the first industrial application of hybrid modeling (material
balance equations combined with neural networks) to a Baker’s yeast process. Since the
early 1990s, hybrid model structure definition, parameter identification and model-based
process control have been extensively covered (e.g., [5–10]). Hybrid models were applied to
a wide array of microbial, animal cells, mixed microbial and enzyme processes in different
industries, such as wastewater treatment, clean energy, biopolymers and biopharmaceuti-
cal manufacturing (Agharafeie et al. [11]). The potential advantages of hybrid modeling
may be summarized as a more rational usage of prior knowledge (mechanistic, heuristic
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and empirical) eventually translating into more accurate, transparent and robust process
models [7,10].

With a significant lag, hybrid modeling is currently receiving a lot of attention in
the systems biology scientific community. ML has been applied for the prediction of the
function of genes [12] and proteins [13] and is gaining popularity in all fields of systems
biology [14]. Cuperlovic-Culf et al. [15] highlighted the difficulty of gathering high-quality
in vivo data to validate detailed metabolic models, and the opportunity to alternatively
apply ML and hybrid mechanistic/ML methods. Antonakoudis et al. [16] recently reviewed
the efforts to integrate GEnome-scale Models (GEMs) with supervised and unsupervised
ML. Kim et al. [17] reviewed ML applications in the construction and simulation of GEMs,
and ML applications in use of GEM-derived information. The integration of mechanistic
models and ML may be realized through a hybrid pipeline of activities, where both model-
ing frameworks participate to solve particular sub-tasks. Alternatively, mechanistic and ML
models may be “fused” in a common semiparametric mathematical structure. Following
the latter approach, hybrid metabolic flux analysis, combining metabolic networks and
principal component analysis (PCA) in semiparametric linear models, has been studied by
Carinhas et al. [18] and Isidro et al. [19]. Hybrid metabolic models combining metabolic
networks and partial least squares have been proposed by Ferreira et al. [20] and Teixeira
et al. [21]. The combination of systems of ODEs with neural networks (hybrid ODEs formal-
ism) for the modeling of biochemical networks with intrinsic time delays has been studied
by von Stosch et al. [22]. The integration of elementary flux modes (EMs) and PCA for
hybrid metabolic pathway analysis has been researched by Folch-Fortuny et al. [23] and
von Stosch et al. [24]. Hybrid dynamic models that combine ODEs, PCA and EMs have
been addressed by Folch-Fortuny et al. [23]. Lee et al. [25] developed hybrid mechanis-
tic/neural network models for partially known intracellular signaling pathways. Hybrid
modeling approaches combining neural networks and ODEs have been applied to describe
immunodeficiency virus (HIV) dynamics [26] and coronavirus disease 2019 (COVID-19)
dynamics [27]. Yang et al. [28] developed a white-box machine learning approach, leverag-
ing carefully curated biological network models to mechanistically link input and output
data, to reveal metabolic mechanisms of antibiotic lethality. Lewis and Kemp [29] applied
genome-scale flux balance analysis (FBA) to generate data to train ML classifiers to predict
tumor radiosensitivity. Vijayakumar et al. [30] developed a hybrid pipeline combining
multi-omics ML with genome-scale FBA to analyze the phenotypic potential of cyanobac-
terium. Ramos et al. [31] recently proposed a hybrid FBA technique that integrates GEMs
and PCA constraints in a common linear program with mechanistic decision variables
(fluxes) concomitantly with empirical decision variables (scores of principal components).

A large number of systems biology models, including GEMs, have been developed
and stored in databases (e.g., BioModels [32], JWS online [33], and KiMoSys [34]) in
the Systems Biology Markup Language (SBML) format [35]. SBML is a free and open
standard based on XML to encode computational models of biological processes with
widespread use in the systems biology scientific community. The SBML standard is,
however, not commonly adopted in ML software tools. This significantly hinders the
interlink between both modeling approaches in a hybrid workflow. Here, we propose
a hybrid modeling framework that combines both modeling approaches obeying to the
SBML standard. A previously published python package, SBML2HYB, is used to convert
existing systems biology models into hybrid models and vice versa [36]. The so-formed
hybrid models are trained with a deep learning algorithm based on ADAM, stochastic
regularization and semidirect sensitivity equations [37]. The final (trained) hybrid models
are uploaded in SBML databases, where they may be further analyzed as regular SBML
models. This procedure was applied to three well-known models: the E. coli threonine
pathway model [38], the P58IPK signal transduction pathway model [39] and the yeast
glycolytic oscillations model [40].
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2. Methods
2.1. General SBML Hybrid Model

SBML models are organized as j = 1, . . . , n compartments with size V j. Each compart-
ment contains mj species with a concentration vector cj. The species are interlinked through
qj reactions with stoichiometry Sj and reaction kinetics rj. SBML models also contain
parameters, θ, with given initial values (parameters may be local to reactions or global; for
simplicity, we assume global). In SBML, the parameter values are not necessarily fixed
as they may change over time according to predefined algebraic rules. The compartment
size may also change over time according to predefined compartment rate rules (other rate
rules were not considered here for simplicity). External time dependent stimuli may be
defined through events, giving rise to a vector of exogenous input variables, u, that may
change over time. With these elements, the dynamics of biochemical species in a generic
compartment j may be described by the following ODEs model:

d
(
cjV j)
dt

= Sj × rj
(

cj, θ, u, ϑ, t
)
×V j (1a)

dV j

dt
= zj

(
V j, cj, θ, u, ϑ, t

)
(1b)

θ = h
(

V j, cj, θ, u, ϑ, t
)

(1c)

Equation (1a) is a conservation law of mass assuming a perfectly mixed compartment.
Equation (1b) represents a generic compartment rate rule in case the compartment size
changes over time. Equation (1c) represents generic algebraic rules to compute model
parameters over time. Equations (1a)–(1c) are of a parametric nature with fixed structure
stemming from prior knowledge (e.g., mass conservation laws, reaction stoichiometry or
enzyme kinetics). Some variables may, however, lack a mechanistic basis (e.g., unknown
reaction kinetics mechanisms or unknown physicochemical properties of molecular species
such as charge or glycosylation pattern). In the general SBML hybrid model, variables
lacking a mechanistic basis are defined as loose nonparametric functions, ϑ(·), without a
fixed structure. They are computed by a deep feedforward neural network (FFNN) with
nh hidden layers as a function of species concentrations, exogenous inputs, and other
relevant variables:

H0 = g
(

V j, cj, θ, u, t
)

(2a)

Hi = σ
(

wi·Hi−1 + bi
)

, i = 1, . . . , nh (2b)

ϑ(·) = wnh+1·Hnh + bnh+1 (2c)

A non-linear pre-processing function, g(V j, cj, θ, u, t), may be used to compute the
FFNN input signals to improve the training (Equation (2a)). The input signals are forward
propagated through the hidden layers according to Equation (2b). The σ(·) represents the
nodes transfer function in the hidden layers (always the hyperbolic tangent function in this
study). Finally, the FNN outputs, ϑ, are computed by a linear output layer (Equation (2c)).
The nodes connections weights, w =

{
w1, w2, . . . , wnh+1

}
and b =

{
b1, b2, . . . , bnh+1

}
, are

calculated during the training of the model, for which an informative dataset is needed.
For a particular biological model, Equations (1)–(2) describing n compartments with

species and reactions are transformed via automatic symbolic manipulation into an equiv-
alent set of ODEs and derived sensitivity equations using the Symbolic Math toolbox
(MATLAB R2020a, MathWorks Inc.). The end result of this procedure is an automatically
generated Matlab/Octave function that computes time derivatives of all state variables,
y =

{
c1, c2, . . . , cn, V1, V2, . . . , Vn},

dy
dt

= f (y, ϑ, u, t) (3a)
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and also the semidirect sensitivity parameters obtained by the symbolic differentiation of
Equation (3a) with respect to state variables, y, and FFNN outputs, ϑ,

d
(

∂y
∂ϑ

)
dt

=

(
∂ f
∂y

)(
∂y
∂ϑ

)
+

(
∂ f
∂ϑ

)
(3b)

(
∂y
∂ϑ

)
|t=0 = 0 (3c)

Deep learning of hybrid models obeying to the system of Equations (3a)–(3c) has
been thoroughly investigated by Pinto et al. [37]. A Runge–Kutta 4th order ODE solver
was implemented in MATLAB R2020a (MathWorks Inc.) to integrate the system of
Equations (3a)–(3c). The training was performed in a weighted least squares sense by
minimizing the following loss function,

WMSE =
1
T

T

∑
t=1

(y∗t − yt)
2

σ2
t

(4)

with T the number of training examples, y∗t the measured training example at time t, yt
the corresponding model prediction and σt the measurement standard deviation. The
gradients of the loss function with respect to the neural network outputs were computed
by the equation,

∂WMSE
∂ϑ

= −2
T

∑
t=1

y∗t − yt

σ2
i

(
∂y
∂ϑ

)
t

(5)

The output layer gradients, ∂WMSE/∂ϑ, were back-propagated to the input layer via
the well-known error backpropagation algorithm (Werbos, 1974), yielding the loss function
gradients with respect to the neural network parameters,

g =

[
∂WMSE

∂ω
,

∂WMSE
∂b

]
(6)

Finally, the adaptive moment estimation algorithm (ADAM) [41] with stochastic
minibatch and weights dropout regularization was adopted to minimize the loss function
given by Equation (4), using gradients, g. For further details, the reader is referred to [25].
The code was implemented in MATLAB R2020a (MathWorks Inc.) on a computer with
Intel® CoreTM i5–8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM.

2.2. Interfacing with SBML Databases and SBML Modeling Tools

The SBML2HYB python package [36] was adopted to read SBML models, redesign
them as hybrid models and to store them in model databases. This freely available python
package converts existing systems biology models encoded in SBML into hybrid models
that combine mechanistic equations and deep neural networks (currently limited to FFNNs).
SBML is not a common format to encode ML models. An intermediate HMOD format
supports the conversion process. The HMOD format is a text-based file (ASCII) with the
list of properties defining the model (species, reactions, parameters, rates and rules) in
a similar manner to SBML, by considering any number of species with a certain initial
concentration distributed among any number of compartments. These species are then
interlinked through a list of reactions and rate rules. The user inputs the information of
the deep neural network into the HMOD file either manually or through a pre-configured
neural network in Python keras, using the SBML2HYB tool. The resulting hybrid model in
HMOD format is reconverted to SBML and uploaded in model databases. In this step, the
FFNN Equations (2a)–(2c) are mapped to assignment rules in SBML format, whereas the
network weights are mapped to global parameters in the SBML format. The resulting SBML
hybrid models may be simulated, analyzed and/or trained with existing tools such as
MATLAB (MathWorks Inc.), COPASI [42] or special purpose tools with training algorithms
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for hybrid models that are able to read SBML files. For further details, the reader is referred
to [36].

2.3. Case Studies

The SBML hybrid modeling framework was applied to three systems biology case
studies freely available in the JWS Online database (https://jjj.bio.vu.nl/models/, ac-
cessed on 31 January 2023) [33] with the accession ID given in Table 1. The first case
study is a metabolic network describing the synthesis of threonine in E. coli proposed by
Chassagnole et al. [38]. The second case study is the P58IPK signal transduction network
to study Influenza infection dynamics proposed by Goodman et al. [39]. The third case
study is a reduced yeast glycolytic model with preserved limit cycle stability proposed by
Dano et al. [40]. In order to upgrade the original mechanistic models in hybrid mechanis-
tic/neural network versions, the following pipeline of activities (Figure 1) was applied to
each of the case studies:

Table 1. Summary of the three SBML models that were redesigned to hybrid mechanistic/neural
network models in the present study.

Case Study Number of
Species

Number of
Reactions

Number of
Parameters

JWS
Online ID Reference

E. coli threonine
synthesis pathway 11 7 47 chassagnole1 [38]

P58IPK signal
transduction

pathway
9 (4 fixed) 9 10 goodman [39]

Yeast glycolytic
oscillations 7 (1 fixed) 11 31 dano1 [40]
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Figure 1. Schematic workflow for redesigning existing SBML models stored in databases into hybrid
mechanistic/neural network models. Step 1: An SBML biologic model is extracted from a model
database. Step 2: A synthetic time series dataset is generated to train the hybrid model. Step 3: A
feedforward neural network (FFNN) is inserted in the mechanistic kinetic model and converted to the
HMOD format using the SBML2HYB tool. Step 4: The hybrid mechanistic/FFNN model encoded in
the HMOD format is trained by applying the deep learning approach (Section 2.1) and the synthetic
dataset. Step 5: The trained hybrid model in the HMOD format is reconverted to SBML using the
SBML2HYB tool. Step 6: The final trained hybrid model in the SBML format is uploaded in the model
database and simulated comparatively to the original nonhybrid model.

Step 1: The original systems biology models were retrieved from the JWS database in
SBML format. The respective files are provided as Supplementary Material.

Step 2: Synthetic time series datasets were generated by simulating the original models
in the JWS platform. The resulting data sets are provided as Supplementary Material. These

https://jjj.bio.vu.nl/models/
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data are needed to train the hybrid models as a proof-of-concept. No experimental data
were used in this study. More details are provided in the results section.

Step 3: For each case study, a feedforward neural network (FFNN) was inserted into
the mechanistic model and converted to the HMOD format using the SBML2HYB python
tool, freely available in [36]. The size of the FFNN and interface with the mechanistic model
depended on the case study. More details are given in the results section.

Step 4: The hybrid mechanistic/FFNN models encoded in the HMOD format were
trained using the deep learning approach described in Section 2.1 and the datasets generated
in step 2. Implementation details varied in the case studies (more on this in the Results
section). The main concern was the proof-of-concept that SBML hybrid models may be
efficiently trained to a comparable performance to the original mechanistic models. The
effect of the size of the FFNN was investigated. The final trained hybrid models, with the
updated FFNN weights, were saved in the HMOD format.

Step 5: The trained hybrid models in the HMOD format were reconverted to SBML
using the SBML2HYB tool. In this step, the FFNN information is mapped to assignment
rules in the SBML format. The obtained SBML files were uploaded to the JWS online
platform and are now freely available for the community to analyze. The hybrid model
structures encoded in SBML were visualized using the freely available Cytoscape cy3sbml
tool [43]. The hybrid models SBML files are provided as Supplementary Material.

Step 6: For proof-of-concept, the original mechanistic SBML models (step 1) and
the final hybrid SBML models (step 5) were simulated and compared using the JWS
online simulator (https://jjj.bio.vu.nl/models/experiments/, accessed on 31 January 2023)
showing that their outputs are practically coincident.

As mentioned in step 5, hybrid models with different network depths and sizes were
evaluated for each case study. The “best” hybrid model was discriminated on the basis of
the Akaike Information Criterion with a second order bias correction (AICc), computed for
the training data partition as follows:

AICc = T ln + 2 nw +
2 nw (nw + 1)

T − nw− 1
(7)

with nw the total number of FFNN weights that are calculated during the training process.
AICc includes an overparameterization penalty and is commonly used to discriminate
between empirical model candidates and to select a parsimonious model for small sample
sizes [44].

3. Results and Discussion
3.1. Case Study 1: Threonine Synthesis Pathway in E. coli

The first case study is the metabolic model proposed by Chassagnole et al. [38],
describing the threonine synthesis pathway in E. coli (Table 1). This model dynamically
simulates the time course of 11 species (adp, asa, asp, aspp, atp, hs, hsp, nadp, naph, phos
and thr) in a single compartment, corresponding to 11 ODEs. It has seven reactions (with
rates vak, vasd, vatpase, vhdh, vhk, vnadph_endo and vtsy) and 47 kinetic parameters
(the names of variables were kept the same as in the original SBML model to facilitate
cross-reference; for details, the reader is referred to the JWS Online model with accession
ID ‘chassagnole’).

Hybrid models were created by combining deep FFNNs of different sizes with the
original mechanistic model, following the previously described procedure (Figure 1). The
FFNNs had 11 inputs corresponding to the concentrations of the 11 species (adp, asa, asp,
aspp, atp, hs, hsp, nadp, naph, phos, thr). The number of hidden layers and nodes in the
hidden layers varied (Table 2). The activation function in the hidden layers was always
the hyperbolic tangent function. The FFNNs had seven outputs corresponding to the
maximum reaction rate values of the seven metabolic reactions. The kinetic equations of the
original SBML model were fully kept in the hybrid models. The job of the FFNNs was thus
to describe the maximum reaction rate parameters as a function of species concentrations.

https://jjj.bio.vu.nl/models/experiments/
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Figure 2 graphically represents the hybrid model structure [11 × 5 × 5 × 7] (Table 2)
using the Cytoscape cy3sbml tool. This figure shows an heterogenous (hybrid) network
composed of nodes and edges of different nature. On the biochemical network side (left),
the large circles represent the molecular species, which have a physical concentration
associated. The small black squares and respective edges represent biochemical reactions
with a well-defined stoichiometry. The black triangles are the reaction kinetic rates. On
the feedforward neural network side (right), the blue circles represent the neural network
nodes, which have an abstract numerical value associated defining the node strength. The
green squares and respective edges represent signal propagation between nodes. The
interlink between the two sides of the network is mediated by the black triangles, which in
this case correspond to the maximum reaction rate parameters to be applied in the kinetic
law equations. An interesting analogy may be established between the neural network part
and an artificial nucleus of a cell with associated signal transduction networks and gene
regulatory networks, with the job of controlling the underlying metabolic processes.

Table 2. Training metrics of different hybrid models for the E. coli threonine synthesis pathway
case study (chassagnole1). The dataset was divided in four experiments for training (400 training
examples for each state variable) and five for testing (500 testing examples for each state variable).
The training was performed with ADAM with default hyperparameters as suggested by Kingma
(2014) (α = 0.001, =0.9, =0.999 and ζ = 1 × 10−8). The number of iterations was 5000. The minibatch
size was 78% and weight dropout probability was 0.22 as suggested by Pinto et al. (2022). The AICc
was computed on the training set only. The noise-free WSSE measures the error between noise-free
data (e.g., true process behavior) and model predictions.

Hybrid Model WMSE
Train

WMSE
Test

WMSE Test
(Noise Free) AICc CPU Time

(h:m:s)
Number

of Weights

11 × 5 × 5 × 7 1.03 0.99 0.07 838 00:31:00 132

11 × 10 × 10 × 7 1.07 1.00 0.08 2510 00:29:00 307

11 × 15 × 15 × 7 1.04 0.99 0.08 2102 00:35:00 532

11 × 20 × 20 × 7 1.03 0.98 0.07 2400 00:33:00 807

11 × 5 × 5 × 5 × 7 1.03 0.99 0.07 918 00:32:00 162

11× 10× 10× 10× 7 1.05 0.98 0.07 1890 00:40:00 417

11× 15× 15× 15× 7 1.04 1.01 0.08 2659 00:36:00 772

11× 20× 20× 20× 7 1.04 1.00 0.07 3684 00:35:00 1227

The hybrid models were trained with a synthetic data set following the procedure of
Figure 1. A time series dataset was created by simulating the original SBML model directly
in the JWS platform. A two-factor central composite design of experiments (CC-DOE) was
carried out to the initial concentrations of atp between 5 and 15 (arbitrary units) and of
asp between 1 and 3 (arbitrary units) resulting in nine experiments. The data for each
experiment was recorded as a time series with 100 data points and a sampling time of
1 (arbitrary units). Gaussian noise (10%) was added to concentrations of species, thereby
simulating experimental error. This synthetic dataset is available in the Supplementary
Material (Simulation_data.xlsx; chassagnole_data sheet). From the nine experiments, four
were used for training (the star experiments of the CC-DOE corresponding to 400 training
examples for each state variable) and five were used for testing (the square plus the center
experiments of the CC-DOE corresponding to 500 training examples for each state variable).
The training was performed with ADAM with default hyperparameters (Table 2), 5000 iter-
ations, semidirect sensitivity equations and stochastic regularization with a minibatch size
of 0.78 and weights dropout of 0.22. The choice of the minibatch size and weights dropout
was based on the results by Pinto et al. [37]. Table 2 shows the overall training metrics
for different FFNNs sizes. The performances of the hybrid models in terms of training
error (WMSE train) and testing error (WMSE test) are comparable. The magnitude of the
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train and test errors are also comparable, denoting an effective training without overfitting
in all cases. This is further strengthened by the very low noise-free test error showing
that model predictions are very close to the true process behavior in all cases. The total
number of network weights varied almost 10-fold but this was not reflected in the training
performance. The best hybrid structure was chosen to be the smallest one [11 × 5 × 5 × 7]
based on the lowest AICc value (1st row in Table 2).
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Figure 2. Hybrid model structure [11 × 5 × 5 × 7] for the threonine synthesis pathway (1st row of
Table 2) visualized in the cy3sbml tool [43]. Left side: Metabolic network with physical meaning.
Large circles represent biochemical species (metabolites). Black squares and black edges represent
biochemical reactions. Black triangles represent kinetic laws. Right side: Artificial feedforward
neural network with size [11 × 5 × 5 × 7]. Small blue circles represent neural network nodes. Green
squares and gray edges represent signal propagation between neural network nodes. The first layer
receives input signals of biochemical species concentrations (Large circles). The last layer delivers
kinetic parameter values to the black triangles, which mediate the communication between both
sides of the network.

The trained hybrid models may be simulated and analyzed in any systems biology
platform complying with the SBML standard. As proof-of-concept, the best hybrid model
[11 × 5 × 5 × 7] in the SBML format was uploaded to the JWS online platform and
simulated. Figure 3 shows the JWS online simulation of the original model and of the best
hybrid model [11 × 5 × 5 × 7] for a test experiment not used for training (the center point
experiment of the CC-DOE). The results show that the hybrid model perfectly mimicked
the dynamics of the original mechanistic model.

The procedure presented in Figure 1 may result in mathematical structures that are
more detailed mechanistically and much more complex to train than previously published
hybrid models. This may raise concerns about the training feasibility of FFNNs interlinked
with complex mathematical structures. Pinto et al. [37] compared traditional shallow hybrid
modeling (using the Levenberg–Marquardt algorithm coupled with the indirect sensitivity
equations, cross-validation and a hyperbolic tangent activation function) with deep hybrid
modeling (using ADAM, semidirect sensitivity equations, stochastic regularization and
multiple hidden layers). A clear advantage of hybrid deep learning both in terms of predic-
tive power and computational cost was demonstrated. However, all experiments had a
simplistic mechanistic part. Here, case study 1 model kept the original kinetic law equations.
Seven highly complex kinetic equations with 47 parameters were “merged” with the FFNN.
Table 2 results suggest nonetheless that the previously published deep learning approach
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for hybrid models (ADAM + semidirect sensitivity equations + stochastic regularization) is
equally effective at training hybrid models with complex parametric functions.
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3.2. Case Study 2: P58IPK Signal Transduction Pathway

The second case study was based on the viral infection model proposed by Good-
man et al. [39], freely available in SBML in the JWS Online database (http://www.jjj.bio.
vu.nl, accessed on 31 January 2023) under accession ID ‘goodman’ (Table 1). The authors
studied the dynamics of the P58IPK signal transduction pathway during Influenza virus
infection. A mathematical model was developed to evaluate the effect of protein P58a acti-
vation on the P58IPK pathway dynamics, particularly on the activation of the PKR kinase
and on the phosphorylation of eIF2, both controlling viral protein expression. The model
comprehends nine species (Flu, NS1, P58a, P58total, PKRp, PKRtotal, eIF2ap, eIF2atotal
and ext) in a single compartment, of which four are fixed (P48total, PKRtotal, eIF2atotal and
ext), corresponding to five ODEs. The model further has nine reactions and 10 parameters.
The names of variables were kept the same as in the original model and are explained in
the database.

As in the previous case study, SBML hybrid models were created by combining FFNNs
of different sizes (Table 3) with the original mechanistic model following the procedure
of Figure 1. Figure 4 shows the hybrid model structure [5 × 10 × 10 × 10 × 9] (Table 3)
using the SBML-visualizing cy3sbml tool [43]. The left side of Figure 4 represents the
original mechanistic signal transduction network, whereas the right side represents the
FFNN added to the mechanistic core. The FFNN has five inputs corresponding to the
concentrations of the five dynamical species (Flu, NS1, P58a, PKRp and EIF2ap), three
hidden layers (10× 10× 10) with hyperbolic tangent activation functions, and nine outputs
corresponding to the kinetic rates (v_1r, v_2r, v_3r, v_4r, v_5r, v_6r, v_7r, v_8r, v_9r as
they are named in the original SBML implementation). In this case study, the FFNNs in
Table 3 completely replaced the kinetic laws of the original model, which were therefore
deleted in the hybrid model structures. This network may be interpreted as a hybrid signal
transduction pathway with a physical part composed of proteins and an artificial part
composed of abstract neural network nodes.

http://www.jjj.bio.vu.nl
http://www.jjj.bio.vu.nl
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Table 3. Training metrics of different hybrid models for the P58IPK signal transduction pathway case
study (goodman). The dataset was divided into four experiments for training (400 training examples
for each state variable) and five for testing (500 testing examples for each state variable). The training
was performed with ADAM with default hyperparameters as suggested by Kingma (2014) (α = 0.001,
=0.9, =0.999 and ζ = 1 × 10−8). The number of iterations was 5000. The minibatch size was 78% and
weight dropout probability was 0.22 as suggested by Pinto et al. (2022). The AICc was computed
on the training set only. The noise-free WSSE measures the error between noise-free data (e.g., true
process behavior) and model predictions.

Hybrid Model WMSE
Train

WMSE
Test

WMSE Test
(Noise Free) AICc CPU Time

(h:m:s)
Number

of Weights

5 × 5 × 5 × 9 1.60 1.51 0.54 1916 00:12:10 114

5 × 10 × 10 × 9 1.59 1.48 0.53 2181 00:11:54 269

5 × 15 × 15 × 9 1.61 1.50 0.56 2810 00:15:15 474

5 × 20 × 20 × 9 1.58 1.49 0.51 3480 00:20:48 729

5 × 5 × 5 × 5 × 9 1.45 1.50 0.48 1890 00:13:15 144

5× 10× 10× 10× 9 1.23 1.28 0.12 1430 00:16:10 379

5× 15× 15× 15× 9 1.35 1.36 0.31 2140 00:19:30 714

5× 20× 20× 20× 9 1.34 1.40 0.36 4150 00:27:12 1149
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completely deleted in the hybrid models, the training results are more heavily dependent 
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Figure 4. Hybrid model structure [5 × 10 × 10 × 10 × 9] for the P58IPK signal transduction pathway
(6th row of Table 3) visualized using the cy3sbml tool [43]. Left side: Signal transduction network
with physical meaning. Large circles represent biochemical species (proteins). Black squares and black
edges represent biochemical reactions. Black triangles represent kinetic laws. Right side: Artificial
feedforward neural network with size [5 × 10 × 10 × 10 × 9]. Small blue circles represent neural
network nodes. Green squares and gray edges represent signal propagation between neural network
nodes. The first layer receives input signals of biochemical species concentrations (Large circles). The
last layer delivers kinetic parameter values to the black triangles, which mediate the communication
between both sides of the network.
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Hybrid SBML models with varying number of hidden layers and nodes in the hidden
layers were trained using a synthetic data set. A time-series dataset was created by simu-
lating the original SBML model in the JWS platform following a similar procedure to case
study 1 (available in the Supplementary Material as Simulation_data.xlsx; goodman_data
sheet). A two-factor CC-DOE was carried out to the initial amount of Flu (overall level of
infection within the host cell) between 2 and 6 (arbitrary units) and the initial amount of
PKRp (phosphorylated PKR protein) between 0 and 2 (arbitrary units). The data for each
experiment were recorded as a time series with 100 points and sampling time of 0.05 (ar-
bitrary units). This resulted in nine experiments with 100 time points each. Additionally,
10% Gaussian noise was added to concentrations of species to simulate experimental er-
ror. As in the previous case study, four experiments were selected for training (the star
experiments of the CC-DOE corresponding to 400 training examples for each state variable)
and five experiments were used for testing (the square plus the center experiments of the
CC-DOE corresponding to 500 training examples for each state variable). The training was
performed using ADAM with default hyperparameters (Table 3), 5000 iterations, semidi-
rect sensitivity equations and stochastic regularization (minibatch size of 0.78 and weight
dropout of 0.22, as before). The overall training results for different FFNN sizes are shown
in Table 3. As opposed to the previous case study, the size of the FFNN has an effect on
the training performance. This may be explained by the smaller amount of mechanistic
knowledge embodied in the hybrid models. Since the original kinetic laws were completely
deleted in the hybrid models, the training results are more heavily dependent on the FFNN
structure. Interestingly, the larger networks with a higher depth (three hidden layers)
outperformed the smaller networks, particularly in the extrapolation experiments (test
WMSE). Overall, the structure [5 × 10 × 10 × 10 × 9] stands out as the best-performing
model with the lowest training error (WMSE train) and lowest testing error (WMSE test).
This is further reinforced by the lowest noise-free test error and the lowest AICc. This
structure was uploaded to the JWS online platform and simulated comparatively to the
original mechanistic model (Figure 5). As in the previous case study, the best-performing
hybrid SBML model [5 × 10 × 10 × 10 × 9] was able to perfectly mimic the dynamics of
the original mechanistic model.
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3.3. Case Study 3: Yeast Glycolytic Oscillations

The third case study consisted of the reduced dynamical model of yeast glycolysis
proposed by Dano et al. [40]. This model is a reduced version of a more detailed yeast
glycolysis model. Both the original and reduced models exhibit limit cycle stability, with
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a certain number of species showing stable oscillations over time. It comprehends eight
species (ADP, AMP, ATP, BPG, DHAP, FBP, GAP and sink) in a single compartment. The
dynamic variable ‘sink’ was the only one that was fixed, thus translating to a system of
seven ODEs. The model further comprehends 11 metabolic reactions and 31 parameters.
This model is freely available in SBML format on the JWS Online database (http://www.jjj.
bio.vu.nl, accessed on 31 January 2023) with accession ID ‘dano1′.

SBML hybrid models were created by combining FFNNs of different sizes with the original
mechanistic model. Figure 6 illustrates this process for the structure [7 × 10 × 10 × 10 × 11]
with 421 weights (6th row of Table 4). The right side of Figure 6 represents the original
metabolic network, whereas the left side represents the incorporated FFNN. In this example,
the FFNN has seven inputs corresponding to the concentrations of the seven species (ADP,
AMP, ATP, BPG, DHAP, FBP, GAP), three hidden layers (10 × 10 × 10) with hyperbolic
tangent activation functions, and 11 outputs corresponding to the kinetic rates (v_1r, v_2r,
v_3r, v_4r, v_5r, v_6r, v_7r, v_8r, v_9r, v_10r, v_11r as they are named in the original
SBML model). As in case study 2, the original kinetic laws were completely deleted in the
hybrid models.
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Hybrid SBML models of different sizes were trained with a synthetic dataset follow-
ing a similar process to the previous case studies. A two-factor CC-DOE was carried out 
by varying the amount of initial ADP concentration between 1 and 2 (arbitrary units) and 
the initial ATP concentration between 1 and 2 (arbitrary units), resulting in nine experi-
ments. Each experiment was simulated on the JWS Online platform with the resulting 
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Figure 6. Hybrid model structure [7 × 10 × 10 × 10 × 11] for the yeast glycolysis pathway (6th
row of Table 3) visualized in the cy3sbml tool [43]. Left side: Reduced glycolysis network with
physical meaning. Large circles represent biochemical species (metabolites). Black squares and black
edges represent biochemical reactions. Black triangles represent kinetic laws. Right side: Artificial
feedforward neural network with size [7 × 10 × 10 × 10 × 11]. Small blue circles represent neural
network nodes. Green squares and gray edges represent signal propagation between neural network
nodes. The first layer receives input signals of biochemical species concentrations (Large circles). The
last layer delivers kinetic parameter values to the black triangles, which mediate the communication
between both sides of the network.
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Table 4. Training metrics of different hybrid models for the yeast glycolytic oscillations case study
(Dano1). The dataset was divided into four experiments for training (400 training examples for each
state variable) and five for testing (500 testing examples for each state variable). The training was
performed with ADAM with default hyperparameters as suggested by Kingma (2014) (α = 0.001,
=0.9, =0.999 and ζ = 1 × 10−8). The number of iterations was 10000. The minibatch size was 78%
and weight dropout probability was 0.22 as suggested by Pinto et al. (2022). The AICc was computed
on the training set only. The noise-free WSSE measures the error between noise-free data (e.g., true
process behavior) and model predictions.

Hybrid Model WMSE
Train

WMSE
Test

WMSE Test
(Noise Free) AICc CPU Time

(h:m:s)
Number

of Weights

7 × 5 × 5 × 11 20.12 21.05 20.14 5730 01:05:00 136

7 × 10 × 10 × 11 1.87 1.99 1.67 3818 01:20:00 311

7 × 15 × 15 × 11 1.74 1.78 1.56 4120 01:15:00 536

7 × 20 × 20 × 11 1.16 1.43 0.98 2740 01:24:00 811

7 × 5 × 5 × 5 × 11 5.33 5.84 5.14 3930 01:33:00 166

7× 10× 10× 10× 11 0.93 0.94 0.11 −41 01:31:00 421

7× 15× 15× 15× 11 0.98 0.97 0.21 784 01:20:00 776

7× 20× 20× 20× 11 0.97 0.97 0.17 2213 01:40:00 1231

Hybrid SBML models of different sizes were trained with a synthetic dataset following
a similar process to the previous case studies. A two-factor CC-DOE was carried out by
varying the amount of initial ADP concentration between 1 and 2 (arbitrary units) and the
initial ATP concentration between 1 and 2 (arbitrary units), resulting in nine experiments.
Each experiment was simulated on the JWS Online platform with the resulting time-series
data (100 time points) recorded with a sampling time of 0.05 (arbitrary units). Gaussian
noise (10%) was added to the concentrations of species. This synthetic dataset is available as
Supplementary Material (Simulation_data.xlsx; dano1_data sheet). Four experiments were
selected for training (the star experiments of the CC-DOE corresponding to 400 training
examples for each state variable) and five were used for testing (the square plus the center
experiments of the CC-DOE corresponding to 500 training examples for each state variable).
The hybrid models were trained with this data using ADAM with default hyperparameters
(10,000 iterations, semidirect sensitivity equations, stochastic regularization with minibatch
size of 0.78 and weight dropout of 0.22). The overall training results for different FFNNs
sizes are shown in Table 4. Unsurprisingly, limit cycle stability is a more challenging prob-
lem for hybrid model development. The effect of the FFNN depth and size was much more
pronounced than in the previous example. The smaller networks were not able to exhibit
stable oscillations even for the training examples. Only models with three hidden layers
were able to accurately capture the oscillatory dynamics. The three largest structures show
a comparable training and testing error. However, the structure [7 × 10 × 10 × 10 × 11]
clearly stands out as the best-performing model with the lowest training error (WMSE train)
and the lowest testing error (WMSE test). This is further accentuated by the significantly
lower noise-free test error and lower AICc. This hybrid SBML model was uploaded to the
JWS online platform and simulated comparatively to the original metabolic model for the
center point test experiment (not used for training) of the CC-DOE (Figure 7). Remarkably,
the best hybrid model structure [7 × 10 × 10 × 10 × 11] was able to reproduce very faith-
fully the oscillatory behavior of the original metabolic model when exposed to different
initial conditions than those applied in the training experiments.
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comparatively to the original metabolic model for the center point test experiment (not 
used for training) of the CC-DOE (Figure 7). Remarkably, the best hybrid model structure 
[7 × 10 × 10 × 10 × 11] was able to reproduce very faithfully the oscillatory behavior of the 
original metabolic model when exposed to different initial conditions than those applied 
in the training experiments. 
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platform. Simulations were performed for the center point experiment of the CC-DOE (not used for 
training). Full lines represent species concentrations over time. Left panel: Original SBML model 
simulation. Right panel: Best hybrid model simulation with structure [7 × 10 × 10 × 10 × 11] (Sixth 
row of Table 4). 
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Figure 7. Comparison between original model and best hybrid model for case study 3 (yeast glycolysis
model). Dynamic profiles were simulated based on the respective SBML files on the JWS Online
platform. Simulations were performed for the center point experiment of the CC-DOE (not used for
training). Full lines represent species concentrations over time. Left panel: Original SBML model
simulation. Right panel: Best hybrid model simulation with structure [7 × 10 × 10 × 10 × 11] (Sixth
row of Table 4).

4. Conclusions

SBML is an open standard based on XML currently adopted by the systems biology
community to encode computational models of biological processes. An extensive body
of research has produced a large number of such SBML models that are currently stored
in public databases. The SBML standard is, however, not commonly adopted to encode
ML models. The main novelty of the present study is the combination of both model-
ing formalisms in a common hybrid workflow obeying the SBML standard. With few
exceptions, previously published hybrid models embodied relatively simple mechanistic
models (mechanistic scale-gap) and relatively simple ML models (ML scale-gap). With the
proposed SBML hybrid modeling framework, the mechanistic scale-gap may be signifi-
cantly narrowed. It is shown with three simple examples how publicly available SBML
models may be easily upgraded to hybrid mechanistic/neural network models obeying
the SBML standard. Such hybrid models may be trained with state-of-the-art deep learning
algorithms to either mimic, improve or extend existing SBML models. They may be further
uploaded, trained and analyzed in SBML compatible software tools. Even if the presented
examples are relatively simple, the proposed framework is, in principle, directly scalable
to larger whole organism models, eventually at the genome-scale. All in all, we expect
this framework to greatly facilitate the adoption of hybrid mechanistic/ML techniques to
develop computational models of biological systems.
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www.mdpi.com/article/10.3390/ai4010014/s1, Synthetic datasets for the 3 case studies: Simula-
tion_data.xlsx. Case study 1: threonine synthesis model in E. coli: SBML file of original mechanistic
model: chassagnole1.xml, SBML file of hybrid mechanistic/FFNN model: chassagnole1hyb.xml, JWS
Online ID of hybrid mechanistic/FFNN model: pinto1; Case study 2: P58IPK signal transduction
pathway: SBML file of original mechanistic model: goodman.xml, SBML file of hybrid mechanis-
tic/FFNN model: goodmanhyb.xml, JWS Online ID of hybrid mechanistic/FFNN model: pinto2;
Case study 3: Yeast glycolytic oscillations: SBML file of original mechanistic model: dano1.xml, SBML
file of hybrid mechanistic/FFNN model: dano1hyb.xml, JWS Online ID of hybrid mechanistic/FFNN
model: pinto3.
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