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Abstract

Data gathered in the real world normally contains noise, either stemming
from inaccurate experimental measurements or introduced by human errors.
Our work deals with classification data where the attribute values were accu-
rately measured, but the categories may have been mislabeled by the human
in several sample points, resulting in unreliable training data. Genetic Pro-
gramming (GP) compares favorably with the Classification and Regression
Trees (CART) method, but it is still highly affected by these errors. Despite
consistently achieving high accuracy in both training and test sets, many
classification errors are found in a later validation phase, revealing a pre-
viously hidden overfitting to the erroneous data. Furthermore, the evolved
models frequently output raw values that are far from the expected range.
To improve the behavior of the evolved models, we extend the original train-
ing set with additional sample points where the class label is unknown, and
devise a simple way for GP to use this additional information and learn in a
semi-supervised manner. The results are surprisingly good. In the presence
of the exact same mislabeling errors, the additional unlabeled data allowed
GP to evolve models that achieved high accuracy also in the validation phase.
This is a brand new approach to semi-supervised learning that opens an ar-
ray of possibilities for making the most of the abundance of unlabeled data
available today, in a simple and inexpensive way.
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1. Introduction

This article tells a story. This story takes place in the realm of satellite
imagery. It is a story of classification methods yielding unusually bad results,
the search for the causes of such odd behavior, the discovery of human errors
in the labeling of the data, and finally, the development of a method to
overcome them. Why not simply eliminating the errors and redoing the
work, in order to achieve the typical good results on this kind of application?
Because noisy labels are very common [1, 2, 3, 4] and usually go unnoticed,
as the results seldom reveal, or even suggest, that something is wrong with
the data. And even when they do, it may not be viable to go back and
clean the data, and repeat the whole process. So we have to assume the
data contains errors, and we have to develop learning methods that can still
provide useful and reliable models under these conditions. One can state
that Genetic Programming (GP) [5, 6] is one of the most resilient learning
methods, able to cope with noisy and faulty data, and still provide good
results. But as the story will tell, even GP can be highly deceived by a very
small percentage of data mislabeling.

The next section is dedicated to reviewing previous and related work on
the subjects of data errors and semi-supervised learning. Section 3 describes
the problem tackled and the data used in this study, including a descrip-
tion of the errors. Section 4 describes the workings and parameterizations
of the two methods used in the beginning of our work, Classification and
Regression Trees, and Genetic Programming, while Section 5 specifies the
procedures used to assess their performance. Section 6 introduces the new
semi-supervised GP method, explaining the differences to standard GP, and
Section 7 reports all the results obtained with all the methods. Section 8
discusses these results at length, exploring the reasons for the success of the
semi-supervised GP method. Finally, Section 9 summarizes the contributions
of this work, and raises many additional related questions.

2. Previous and Related Work

This section reviews the literature related to both themes addressed by
this work: data errors and semi-supervised learning. Inside each theme we



begin by addressing work published in the context of the wide machine learn-
ing field, followed by work in the context of Evolutionary Algorithms (EAs)
and more specifically GP, and finally work related to remote sensing. We do
not attempt at performing an exhaustive review of all the work published on
such wide research themes, but instead we overview the amount and type of
work that has been done in different specific themes, in particular the ones
more related to our own work, providing pointers to more thorough surveys
whenever possible.

2.1. Data Errors

The objective of many learning systems is to construct a model of the
world which is completely consistent with observations, based on the as-
sumption that the data available is error-free [7|. However, this is seldom
the case. According to [7] the many sources of errors may be external or
internal. External errors are objective, like random errors (normally called
noise) and systematic errors. Random errors are introduced by the inherent
unpredictability of the world being observed, or during the transmission of
the observations to the learning system. Systematic errors are more pre-
dictable, arising for instance from a problem in the device collecting data,
like an instrument that is poorly calibrated. Internal errors are subjective
and depend mostly on the interpretation of the data. Transversal to this
classification is the concept of outlier, i.e., an observation that appears to
deviate markedly from other observations in a sample. The importance of
outliers in statistical data and machine learning can be inferred by the very
large amount of literature dealing with the subject. Interesting surveys can
be found in [8] and [9].

Strategies for learning with imperfect data can focus on data cleansing,
i.e., identifying and repairing the errors, or on developing and using learning
systems that are able to cope with them. Data mining with noisy data is
considered in [10], where the authors survey other related works and propose
their own error-aware method based on using noise knowledge to rectify the
model built from corrupted data. According to this work, data cleansing
is a limited procedure that can only be applied to certain error types from
certain data sources, may lead to information loss, and constitutes in itself a
potencial source of additional errors.

Nevertheless, data cleansing has played a critical role in ensuring data
quality, particularly with the advent of big data, where errors in data are ex-
tremely frequent. Many data cleansing algorithms have been translated into



tools to detect and to possibly repair certain classes of errors such as out-
liers, duplicates, missing values, and violations of integrity constraints [11].
In [12], various views of data cleansing were surveyed and reviewed and a
brief overview of existing data cleansing tools was given. A general frame-
work of the data cleansing process was presented, as well as a set of general
methods that can be used to address the problem. Other works followed the
same path, like [13, 14]. Some methods were specifically developed for big
data, like [15, 16]. Since different types of errors may coexist in the same
data set, it is often appropriate to run more than one kind of tool. In [11], a
systematic analysis of the existing data cleansing tools was performed, aimed
at understanding whether these tools are robust enough to capture most er-
rors in real-world data sets and what is the best strategy to run multiple
tools to optimize the error detection effort.

Oblivious to all the efforts in cleaning data, and the problems that erro-
neous data may cause to learning systems, many machine learning methods
are in fact equipped to perform reasonably well in modeling data with in-
nacuracies, as they rely on soft computing techniques to produce inexact
but robust solutions. Artificial Neural Networks (ANNs), Support Vector
Machines (SVMs) and Genetic Programming (GP) are some of them. In
classification problems, these methods can deal not only with errors in the
features, but also with errors in the labels, precisely the type addressed in
our work.

An excellent review of different types of label noise and their conse-
quences, as well as different algorithms that consider label noise, was pub-
lished some years ago [17]. Among the large body of work that is re-
viewed, semi-supervised learning appears as one of the main noise-tolerant
approaches, and a number of works on remote sensing are among the tar-
get applications. Other work not covered in this review deals with noisy
labels in image annotation [18], data factorization [19], labelling pixels in
aereal images [20], multiple kernel learning [21] and sentiment detection in
Twitter [22].

In [23] a theoretical study on risk minimization bounds is performed on
the problem of binary classification in the presence of erroneous labels, and
the results are applied in developing noise-torelant versions of SVM and
weighted logistic regression. Other applied theoretical works are presented
in [24, 25|, where the authors develop and analyse an improved logistic re-
gression classifier that is robust to label noise. More recently, [26] studies the
conditions in which a consistent classification is possible with label noise, [27]
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studies the use of importance reweighting to achieve an optimal classifier in
the presence of noisy labels, and [28] shows that loss factorization can be
directly applied on learning with poorly labeled data.

Among the most recent work, a few studies deal with the identification
and correction of noisy labels. In [29] a novel L;-optimisation based sparse
learning model is used to explicitly detect noisy labels, while [30] does it
via a mutual consistency check using a Parzen window classifier. In [31] the
unreliable labels are improved using a text label refinement algorithm, while
in [32] the noisy labels are recovered as the classifier is built, using a Least-
Squares SVM. In [33], the approach of repeated labeling is used in order to
improve label quality, including a selective approach based on both labeling
and model uncertainty:.

A large and diverse body of work has also been published in the past
few years focusing on using noisy labels in such varied applications as the
detection of malicious network traffic [34], classification of historical notary
acts [35], and time-series segmentation [36].

Noisy labels are also tackled with deep learning approaches. The notion
of consistency is used in [37] to improve the predictions of a deep ANN
when the labeling is missing or is subjective. Deep learning is also used in
other works like [38, 39, 40]. A number of approaches rely on active learning
techniques [41, 42, 43, 44].

Compared to the huge effort that was dedicated to the detection and re-
pairing of data errors by the larger machine learning community, the amount
of work involving EAs, in particular GP, for these tasks is rather limited.
Indeed, to the best of our knowledge, no paper specifically dealing with GP
has ever tackled these issues directly. On the other hand, it is quite a com-
mon trend to use GP as a feature extraction process and, among the several
advantages of this approach, it is typical to show that GP is resistent to data
errors, and is often able to generate features that are more robust, more in-
sightful and less prone to errors than the ones contained in the original data.
The quality of a set of features can be quantified by using a machine learning
method to generate a data model based on those features (and thus the fit-
ness of the evolved features is given by the performance of this method), or
by using other criteria that do not depend on any machine learning method.
For instance, in [45] a measure based on information gain was employed as
fitness function.

Another trend is to incorporate techniques into GP that improve its gen-
eralization ability. This was done in [46], where symbolic regression prob-
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lems were solved by using new measures of fitness based on statistical learn-
ing theory, like for instance Akaike Information Criterium, Bayesian Infor-
mation Criterium and Structural Risk Minimization, based on the Vapnik-
Chervonenkis (VC) theory. The authors show the advantages of this type of
approach and a better ability of GP to deal with noisy data.

Finally, the GP community recently focused on the relationship between
overfitting, the size of the individuals and their functional complexity. An
observation that is common to several contributions, e.g., [47, 48, 49], is that
the functional complexity of the solutions has a much clearer impact on over-
fitting than the size of the individuals. The fact that functionally simpler
solutions have better generalization ability than complex ones could be a di-
rect consequence of the higher robustness of simple solutions to errors in data,
as discussed in [49]. Under this perspective, fostering the survival of simple
solutions in GP populations by integrating measures of functional complex-
ity in the fitness function, like the ones defined in [48], can be a method
to implicitly deal with errors in data. Indeed, the GP community tends to
ignore the available data cleansing tools, instead focusing on methods that
can implicitly deal with the errors.

In the remote sensing community there is also a wide recognition of the
problem of errors in the data and their effect on the accuracy of land cover
classifications (e.g., [1, 2, 3, 4]). Most remote sensing problems involve clas-
sification, binary or multiclass, in land cover or land use classes. Remote
sensing data is normally accurate, so the work published on data errors
is primarily focused on mislabeling errors on the reference set, or generaly
speaking, label noise. The widespread usage of the term “ground truth” to
denote the reference set has been criticized in [2], for implying the data are a
gold standard reference. As mentioned before, remote sensing work is cited
in the [17] review. For an example of recent work see [4].

2.2. Semi-Supervised Learning

Semi-supervised learning uses both labeled and unlabeled data to perform
the learning task. This approach to learning has recently grown as a promis-
ing direction in machine learning research, because of its relevance to many
practical problems where is it expensive to produce labeled data (e.g., when
human expertise is required) and at the same time it is easy and cheap to
produce unlabeled or weak-labeled data (e.g., in crowdsourcing). A rather
complete overview of semi-supervised learning is offered in [50], including
a brief history of semi-supervised learning, a taxonomy for semi-supervised
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learning methods, a detailed analysis of many of those methods, a detailed
discussion on the pros and cons/risks of learning from semi-supervised data
sets and the discussion of a set of benchmarks. Another wide set of bench-
mark data sets for semi-supervised learning can be found in [51]. On the
other hand, a critical view of semi-supervised learning is given in [52].

Normally, semi-supervised learning is used on datasets with a large amount
of unlabeled data and only a small quantity of labeled data. Self-labeled
techniques are used for enlarging the labeled data set, by labeling previously
unlabeled observations using models built on the labeled data. For a rather
complete survey of self-labeled techniques, the reader is referred to [53].

Evolutionary Algorithms have often been used for semi-supervised learn-
ing, and Genetic Algorithms (GAs) are for sure the most commonly used
flavor of EAs. The first contribution probably dates back to [54], where a
semi-supervised clustering algorithm was proposed. The approach allowed
unlabeled data with no known class to be used to improve classification ac-
curacy. The objective function took into account both the cluster dispersion
of the input attributes and a measure of cluster impurity based on the class
labels. In a similar vein, some years later a novel semi-supervised clustering
algorithm was proposed in [55], in which data were clustered using an un-
supervised learning technique, biased towards producing clusters as pure as
possible in terms of class distribution.

A different approach was presented in [56], where an EA suited to learn
interpretable fuzzy if-then classification rules from partially labeled data was
proposed. Interestingly, the feasibility of the approach was demonstrated
also using real-world image analysis and remote sensing applications that,
although different, clearly share the same nature as our own application. A
few years later, an ensemble learning approach based on EAs was proposed
in [57] to tackle semi-supervised learning problems, and the authors showed
how the iterative nature of EAs can be, in itself, beneficial to iteratively
increase the number of labeled observations. As such, this method can be
seen as an evolutionary self-labeled technique. In the same year [58] GAs
were used as a part of a wider machine learning system, to optimize the
objective function of a standard semi-supervised SVM (S*VM).

In [59] semi-supervised learning was used to improve an interactive GA-
based system. More specifically, a surrogate model built with an improved
semi-supervised learning method was employed to evaluate a part of the
individuals, in order to alleviate the work of the user in performing the
evaluation. The effectiveness of the proposed method was assessed on the
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design of sunglass lenses, a typically rather complex optimization problem.
In [60] a GA was applied for regression function semi-supervised learning.
Based on a few labeled examples and the agreement among the views on
the unlabeled examples, the error of the algorithm was optimized, striving
after minimal regularized risk, reporting excellent performance on the test
problems used.

Recently, the authors of [61] pointed out that traditional semi-supervised
learning tentatively labels the unlabeled data on the basis of the smoothness
assumption that neighboring points should have the same label. They also
observe that when this assumption is violated, unlabeled points are misla-
beled, injecting noise into the classifier. Therefore, they present an alterna-
tive approach called cluster-then-label (CTL), which partitions all the data
points (labeled and unlabeled) into clusters and creates a classifier by using
those clusters.

Also other kinds of biological and nature inspired algorithms were used
for semi-supervised learning. For instance, in [62] an Artificial Immune Sys-
tem (AIS) was used to determine which data is better to labeled in order to
get high quality data. Also, Particle Swarm Optimization (PSO) was used
for semi-supervised learning in [63]. The semi-supervised PSO simultane-
ously used limited labeled data and large amounts of unlabeled data to find
a collection of prototypes (or centroids) that were considered to precisely
represent the patterns of the whole data.

Among the different types of EAs, GP was also used with success for semi-
supervised learning. For instance, in [64] a semi-supervised GP system called
Active Learning GP (AGP) was proposed, instantiated for the data dedu-
plication problem (a data compression technique for eliminating duplicate
copies of repeating data), and used on semi-supervised benchmarks. In [65]
a semi-supervised transductive GP algorithm, called KGP, was proposed for
classification. KGP is transductive (instead of inductive), i.e., it requires
only a training data set with labeled and unlabeled examples, which should
represent the complete data domain. The effectiveness of KGP was demon-
strated on a wide set of test problems. Finally, a novel evolutionary approach
was proposed in [66], which can be applied to supervised, semi-supervised
and unsupervised learning tasks. The method, Grammatical Evolution Ma-
chine Learning (GEML), adapts machine learning concepts from decision
tree learning and clustering methods, and integrates these into a Grammat-
ical Evolution framework. The authors state that the framework generates
human readable solutions, which explain the mechanics behind the classifi-
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cation decisions, offering a significant advantage over existing paradigms for
unsupervised and semi-supervised learning. Even though [64, 65, 66] all deal
with overfitting, and we can assume that the data errors are outliers that the
models should not (over)fit, to the best of our knowledge no work has been
published yet that is explicitly devoted to the use of GP in a semi-supervised
manner for dealing with data errors.

However, a method called Backwarding for controlling overfitting has
been used in [67] that may well be the most similar to our current work, al-
though the authors never mention erroneous labels or semi-supervised learn-
ing. During the evolutionary process, Backwarding keeps track of the best
solution on the training set (as usually done), and it also keeps track of the
best solution on the training set that is also the best solution on an inde-
pendent validation set. In the beginning of the evolution it is expected that
both best-on-training and best-on-validation are the same and updated fre-
quently, but when overfitting starts occurring the best-on-validation is not
updated because the fitness on the validation set does not improve. When
the evolution stops (based on any stopping criteria), the algorithm returns
the best-on-validation solution, not the best-on-training, thus backwarding
to a generation prior to the occurrence of overfitting. This is a slightly better
way of implementing early stopping (better in the sense that the search does
not stop at the earliest sign of overfitting, which may be premature) and
it allowed the authors to report improved results on additional unseen data
in a remote sensing application. However, when classifying real images the
results were still not good, and the blame was put on the lack of sufficient
validation data. Therefore, they have used a much larger, unlabeled, vali-
dation set, and relaxed the definition of ‘better fitness on the validation set’
to simply keeping the highest number of points within the expected range
of results. This led to drastically improved results, but the authors do not
mention the possibility that it was the extended validation set and relaxed
fitness calculation, and not the backwarding, that allowed such feat.

In remote sensing there is a vast literature about semi-supervised learn-
ing, in particular for classification tasks. A review of some methods is pre-
sented in [68]. Some methods used for dealing with noisy labels had already
been mentioned in the [17] review. Among the most recent work on semi-
supervised learning in remote sensing, SVM is regarded as the state of the
art [69], on which many variants have been proposed (e.g., [70, 71, 72, 73, 74]).
A selection of recent non-SVM based methods include a combination of
multinomial logistic regression with k-nearest neighbor [75], a co-training ap-
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proach introduced by the Tracking-Learning-Detection framework [76] and,
of course, deep learning [77].

3. The Problem and the Data

Every year, large areas of tropical savannas and woodlands burn due
to natural conditions and land management practices induced by human
activities. Given the high level of green house gas emissions produced by
biomass burning, there is the need to define historic fire regimes so that
prospective emission reduction management strategies can be well informed
and their results measured, reported, and verified. Thus, it is important to
develop tools for accurately and frequently mapping burned areas over large
extents. Satellite data from high resolution sensors Landsat TM (Thematic
Mapper), ETM+ (Enhanced Thematic Mapper Plus) and OLI (Operational
Land Imager) are a valuable source of information and have been widely used
in the development of automated and semi-automated methods to detect
burned areas (e.g.,[78, 79, 80, 81]).

In this work, a Landsat 8 OLI image over Brazil was selected, correspond-
ing to Path/Row 225/64 and freely downloaded from GLOVIS archive of the
U.S. Geological Survey (USGS) Earth Resources Observation and Science
(EROS) Center!. It corresponds to an area located in eastern Amazonian,
which lies south of the Amazon River and is drier than the central and west-
ern parts of the Amazon, with annual rainfall between 1500mm and 2000mm
and average temperatures ranging from 23°C to 30°C. Forest types range
from lowland Amazon forest (tall trees of up to 40m in height) in the north
through submontane dense and open forests in the south. This region is
subject to frequent and extensive fires. The image was acquired on February
28, 2015, thus ensuring the presence of recently burned areas. The image
contains more than 40 million pixels, where approximately 2.5 million are
burned, representing an estimated total burned area of approximately 0.6%.
Figure 1 shows the image (left) and its geographical location (right).

A Landsat OLI image consists of nine different bands?, of which band 8
is a panchromatic band (of low spectral resolution, covering most of the
visible range) and band 9 is a cirrus band (used only for cloud detection).
Therefore, we have used only the first seven bands, covering Ultra Blue,

thttp://glovis.usgs.gov/
Zhttps://landsat.usgs.gov /how-does-landsat-8-differ-previous-landsat-satellites
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Figure 1: Landsat 8 OLI image (left) used in this study. Map of Brazil with the location of
the study area and the distribution of the administrative regions (right), where the tilted
black square shows the position of the image.

Blue, Green, Red, Near Infrared (NIR) and two different Shortwave Infrared
(SWIR) spectral ranges. The image was geometrically corrected to UTM-
Zone 22 South, Datum WGS84 for a spatial resolution of 30 meters. Visual
inspection of the combination of bands 7, 5 and 4 allows depicting burned
areas very clearly [82]. This is the combination used for displaying the image
in Figure 1 and also the detail in Figure Ha.

For training and testing the methods presented here, a data set was as-
sembled from this image. A human expert manually collected several sample
points, or observations, from different burned and unburned areas. An ef-
fort was made in order to obtain a balanced data set, in order to cover not
only the different non-burned land cover types, but also a large diversity of
burn scars, as they do not all have the same spectral characteristics. Each
observation corresponds to one pixel of the image, and consists of the ob-
served DN (Digital Number) values for the seven bands (seven explanatory
variables) and the corresponding target value, or class label, 1 (burned) or
0 (unburned) (dependent variable). In total, 4872 pixels were collected and
labeled by the human expert, 2053 corresponding to class 1 (burned) and
2819 corresponding to class 0 (unburned). We call this data set the reference
set, or reference data.

Later it was discovered that some of the 4872 pixels were mislabeled. An
area of green forest was erroneously labeled by the human expert as class 1
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(burned), affecting a total of 20 pixels. This small number of pixels represents
less than 0.5% of the total amount of observations in the reference set.

It is important to mention that a deeper investigation of the data revealed
other problematic pixels that are considered by the human experts a potential
source of confusion to the learning algorithms. In particular, one of the
burned areas from which pixels where collected corresponds to understory
burns which produce mixed pixels containing various degrees of green and
burned signals. All the observations from this area were correctly labeled
as class 1 (burned), but in another context some of them could have been
labeled differently. Nonetheless, even if these problematic pixels were also
to be considered erroneous (which they are not), the total amount of errors
would still amount to only 1% of the reference data.

Figure 2 shows a 7 x 7 matrix of scatter plots of the reference data, each
plot showing the relationship between two of the seven bands. The pixels
labeled as burned are represented in black, while the non-burned are repre-
sented in light green. The 20 erroneously labeled pixels are represented with
larger red markers (x) in order to be seen. The figure brings no surprises,
showing a high correlation between some of the bands, and the spectral di-
versity of both burned and non-burned classes. It also suggests that the
task of distinguishing burned from non-burned should not be a difficult one,
and reveals why the erroneous pixels can be a confounding factor for the
classifiers, as these 20 points are mostly detached from the burned pixels,
appearing much closer to the non-burned ones.

The Landsat OLI sensor records 12-bit values, which translates into 4096
potential grey levels for each band. However, the images are delivered as 16-
bit values, scaled to 55000 grey levels®. Looking at the values in the reference
set, one can observe that most values are concentrated on a very narrow
interval, in particular for bands 1-4 (see Figure 3, left). For this reason, the
values of each band were subject to a linear stretching and scaling into the
interval [0 1]. The input limits for the stretching were the minimum and
maximum values of each band, excluding the outliers, which means that in
the end the outliers fall outside the interval [0 1] (see Figure 3, right).

Finally, the reference set was randomly split into training and test sets.
This split was performed 30 times, each time obtaining a different partition,
always using 70% of the observations for training (totaling 3411 pixels), and

3https://landsat.usgs.gov/landsat-8
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Figure 2: Matrix of scatter plots of the reference data, each plot showing the relationship
between two of the seven bands. Black dots represent burned pixels, light green represents
non-burned, and the larger red markers represent the 20 erroneously labeled pixels.
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Figure 3: Boxplots of original DNs (Digital Numbers) as delivered (left) and values ob-
tained after stretching and scaling (right), on each of the Landsat OLI sensor bands.

the remaining 30% for testing (totaling 1461 pixels). The reason for using the
test set is to detect overfitting in case it occurs (more on this in Section 8.1).
The reason for using 30 different partitions is to ensure that the studied
methods produce consistent results across different data sets.

4. Methods - CART and GP

This section briefly describes the two methods used in the first part of the
work: CART and GP. CART (Classification And Regression Trees) [83] has
been a popular method in remote sensing applications for a long time now
(e.g., [84, 85, 86, 87]), providing models in the form of simple interpretable
rules. For example, it has been applied successfully to remote sensing data
for burned area mapping in Africa (e.g., [88, 89, 90]). GP is still mostly
unknown outside (and sometimes even inside!) the machine learning com-
munity, despite its success in many real world applications [6, 91]. Never-
theless, it is being used in a growing number of remote sensing applications
(e.g., [92, 93, 94, 95, 96, 97, 98]), including the identification of burned areas
in satellite imagery [99]).
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4.1. Classification And Regression Trees

Classification trees are a non-parametric, non-linear rule based classifier
that generates classification rules through an induction procedure described
in [83]. They are based on a hierarchical decision scheme where the feature
space is subject to a binary recursive partitioning that successively splits
the data. In the Classification and Regression Tree (CART) algorithm [83],
heuristic techniques are used to achieve an inverted tree type structure, start-
ing in a root node with all the data, and generating descendent nodes with
a series of splitting decisions (if-then rules) until terminals are reached.

Single tree classifiers are developed using the Gini index criteria for node
splitting [83] and assuming equal class prior probabilities for burned areas.
Equal classification error costs for burned and unburned classes are assumed,
and terminal tree nodes are required to contain a minimum of 20 observations.
Linear combinations of the variables are employed to deal more effectively
with data patterns [83]. The selection of the best tree size (optimal tree),
to avoid overfitting the training data, was performed using the technique
cost-complexity pruning based on a test sample. This technique selects the
optimal compromise between the number of tree nodes and misclassification
rate, and penalizes very large trees [83]. The best tree is chosen based on
three criteria: the best training accuracy, the best test accuracy and the best
accuracy obtained between classes given by the variable importance. Variable
importance is the sum across all nodes in the tree of the improvement scores
that the predictor yields when it performs as a splitter [83].

4.2. Genetic Programming

Genetic Programming (GP) is the automated learning of computer pro-
grams, using Darwinian selection and Mendelian genetics as sources of inspi-
ration [5, 6]. Starting from an initial population of randomly created pro-
grams representing the potential solutions to a given problem, it evaluates the
fitness of each, quantifying how well the program solves the problem. New
generations of programs are iteratively created by selecting parents based
on their fitness, and breeding them using genetic operators like crossover
and mutation, where pieces of code are swapped and modified, respectively.
Because fitter individuals are selected more often and given the chance to
pass their best characteristics to their offspring, the population tends to im-
prove in quality along successive generations. In this work, we use tree-based
GP with standard subtree crossover and no mutation, a common setting [5].
From now on we will designate it simply as StdGP.

15



Regarding the remaining settings, the population is composed of 500 in-
dividuals initialized with the Ramped Half-and-Half method [5] with depths
between 2 and 6, allowed to evolve for 200 generations. Selection for breeding
is performed with lexicographic tournaments [100] of size 10. Selection for
survival is non-elitist, meaning that each generation of offspring completely
replaces the parent population. No maximum limit is imposed on the depth
of the trees. Instead, bloat control is ensured by the Dynamic Operator
Equalisation (DynOpEq) method [101]. The function set contains only the
four basic arithmetic operators: addition, subtraction, multiplication and di-
vision, protected as in [5]. No terminals are used besides the seven variables
of the problem.

We perform the classification task by evolving a regression model and
then applying a cutoff to the raw output values, in order to interpret them
as class labels. Therefore, the fitness function is the usual RMSE used for
regression, with expected outputs 0 (not burned) and 1 (burned), and the
accuracy is only calculated offline after applying a cutoff of 0.5. The best
model is chosen based on training and test accuracy. The interesting thing
about the raw output values of the GP models is that it can be interpreted as
the level of certainty that GP has in its own classification. Outputs very close
to 0 or very close to 1 denote a high certainty of the respective classes, while
outputs close to 0.5 denote uncertainty between both classes. On the other
hand, output values that fall very far from the [0 1] interval are undesirable,
as they reveal an unstable behavior and possible asymptotes in the model.

5. Validation Procedures

The process of validation used in this work includes several procedures.
The goal of the work is not to obtain statistically significant results measured
on the 30 data partitions, but to obtain a reliable model to perform the
classification. Therefore, the first procedure is to actually choose one model
among the 30 learned models, for each of the methods tested (see 4.1 and 4.2).

The second procedure is to measure the overall accuracy and Cohen’s
Kappa values [102] obtained by the chosen models on a large validation set.
Overall accuracy is expressed as the percentage of correctly classified pixels.
The Kappa coefficient is another accuracy measure, very popular with remote
sensing data, as it makes some compensation for chance agreement between
classes. A grid of 5000 equally spaced points is randomly placed over the
image. Many of these points fall outside the image limits (the black borders
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in Figure 1, right), and the remaining 3525 are interpreted and labeled by the
same human experts that provided the reference set, becoming the validation
set. Being randomly collected, these pixels are highly unbalanced between
the two classes, with only 27 of them being labeled as class 1 (burned),
representing approximately 0.8% of the entire validation set. We assume
that all validation pixels are correctly labeled. None of the burned pixels of
this grid overlaps with the burned pixels of the reference set.

Besides this numeric validation, a visual validation is also performed. The
entire image is classified by each of the chosen models, and a human expert
inspects the classifications to check if they conform to what is plausibly
expected. In reality, this procedure is normally followed by another numeric
validation based on comparing the automatic classifications with a manual
classification where the expert delineates polygons around all the burned
areas that can be visually identified. This is a lengthy global validation that
was not performed in this work, as the visual inspection of the classifications
immediately revealed a serious problem (Section 7).

Because of the revealed problem, a new GP method was developed (de-
scribed in the next section) that partially uses the large validation set during
the learning. For this reason we have built a second, much smaller validation
set, from a new grid of 250 points randomly placed over the image. The 176
points not falling outside the image limits are used to validate the quality
of the models a second time, again through the overall accuracy and Kappa
coefficient. Four of these pixels are labeled as class 1 (burned), representing
approximately 2.3% of the entire set. None of these burned pixels overlap
with the burned pixels of either the reference set or the first grid. This extra
validation, on top of the others, ensures that using information of the first
validation set during the learning does not artificially improve the results.

6. New Method - Semi-supervised GP

The new method introduced here is very similar to StdGP, except for the
fitness function. Truth be said, even the fitness function is very similar to
the one of StdGP. While StdGP uses the RMSE as fitness, the new method
also uses the RMSE as fitness. So where is the difference?! The difference is
that the new method calculates de RMSE using not only the regular labeled
data of the reference data set, but also an extended set of unlabeled data.
We naturally call this new method Semi-Supervised GP, and from now on
we will designate it simply as SSupGP.
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In this work, the extended set of unlabeled data is basically what we had
most readily available, i.e., the large validation set (after removing the labels).
Using the validation set to calculate the fitness may seem like “cheating”,
however we took special care on making sure the results are not biased by
this practice (see Sections 5 and 7). Other extended sets can be used, as
unlabeled data is normally abundant and easy to collect. For applications
where this is not the case, it is useful to know that using the validation set
without the labels is allowed.

Let us denote y; as the output value obtained on the labeled observations
t, with t=1..n, and ¢; the respective numeric class label (0 or 1). Let us also

denote z, as the output value obtained on the unlabeled observations u, with
u=1..m. The modified RMSE is calculated as

\/Zt V(G = y)? + D e (B — Zu)Q’ (1)

n—+m

where Z, is the class label (0 or 1) closest to the output z,.

It is important to say that the main motivation for this modified RMSE
fitness function was to improve the behavior of the models obtained by GP.
In this type of application, the GP models are normally well behaved, out-
putting values near the interval [0 1] (for binary classification problems where
the class labels are 0 and 1) both on training and on unseen data [99]. How-
ever, in this case the models exhibited an unusual behavior, returning an
array of out-of-range values when asked to classify unseen data. As SSupGP
was being developed in order to improve model behavior, the labeling errors
were discovered. We are not sure, but these errors are probably what caused
the wild behavior in the first place. What we know is that, by promoting a
more constrained behavior of the models, SSupGP also proved that it can
cope with such errors. Section 8 discusses the possible reasons for this.

7. Results

In this section, we first present the results obtained by both methods
CART and StdGP, and then the results obtained by the new semi-supervised
method SSupGP. We finish with an additional validation of the results ob-
tained by all three methods.
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Figure 4: Evolution of RMSE (left) and accuracy (right) on the training and test sets.

7.1. Results of CART and StdGP

The first results we show are the evolution of the fitness (measured as
the RMSE between expected and predicted values, see Section 4.2) of the
best individual on the training set and the fitness of the same individual
on the test set during the StdGP learning, as well as the evolution of the
respective overall accuracy values (Figure 4). The lines shown in the plots
report the median values calculated on the 30 runs. It can be observed that
training and test RMSE values are very similar during the entire evolution,
and therefore there was no reason to suspect the presence of overfitting. In
terms of accuracy the values are even more similar. Also CART obtained
results that did not reveal overfitting.

As described in Section 5, one model is chosen to represent each method.
In both CART and StdGP all the models have very similar and very good
accuracy values, both in the training sets (variance of 0.10 for CART and
0.12 for StdGP) and in the test sets (variance of 0.14 for CART and 0.15
for StdGP), and for each method they are also very similar in their form
and readability. For this reason the choice is both easy and difficult, and
hopefully not a very influential factor on the remainder of the work.

Despite the low RMSE and high accuracy values, the results obtained
by both of these models on the large validation set were unexpectedly bad
(Table 1). StdGP being much better than CART, it still did not reach an
acceptable Kappa value (anything below 0.4 is considered as a poor classifi-
cation [103]).

Following the procedures described in Section 5, each model was used to
classify the entire image, and its inspection revealed the reason for the bad
validation results. Both methods classified natural woodlands and regenerat-
ing patches (but not many agricultural fields) as burned areas, in particular
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Table 1: Overall accuracy and Kappa values obtained by the two models on a large
validation set.

Method Accuracy(%) Kappa

CART 95.49 0.23
StdGP 97.58 0.37

CART. Figure 5 shows an example, where only one large burned area should
have been identified (a), and yet both CART (b) and StdGP (c) classify other
large areas as burned. In the case of StdGP, in all validation procedures the
classification is obtained by applying a cutoff to the raw output values of
the model (as described in Section 4.2). The raw classified image, before
applying the cutoff, can be seen as a greyscale representation of the certainty
of the classification (d).

We found that many of the pixels wrongly classified as burned had indeed
low certainty values, closer to 0.5 than to any of the class labels. However,
many others, equally wrong, were showing high certainty. But the most
striking observation was the wild range of raw values found throughout the
entire classified image. Values very far from the interval [0 1] appear much
more frequently than in other similar work we have performed in the past [99].

7.2. Results of semi-supervised SSupGP

As we were developing a method to avoid these out-of-range raw outputs
(SSupGP, see Section 6), a rechecking of the reference data revealed misla-
beling errors in a small percentage of observations (see Section 3). For the
reasons explained earlier in the introduction, we have decided not to correct
these errors. Instead, we test the performance of SSupGP in the same faulty
data. We use as unlabeled data the large validation set without the class
labels. The size of this validation set (3525 pixels) is approximately 70% of
the size of the original reference set (4872 pixels), and more than 99% of its
observations belong to class 0 (not burned).

As with the previous methods, one model was chosen among the ones
evolved by SSupGP, and put through the validation procedures described in
Section 5. The improvement of the results is astounding. As shown in the
last row of Table 2 (we keep the previous values for comparison), on the large
validation set the overall accuracy is close to 100% for SSupGP, but the main
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Figure 5: Detail of the original image (a), classification by CART (b), classification by
StdGP (c) and raw classified image by StdGP, before applying the cutoff (d). The burned
areas appear as dark purple patches on the image (a). In the classifications (b) and (c),
white represents non-burned while black represents burned. In the raw classification (d),
the greyscale goes from low certainty (lighter) to high certainty (darker).

difference is the Kappa coefficient, that now is in the range 0.61-0.75 and
therefore is considered to be good [103]. Furthermore, the visual inspection
of the classified image revealed that the SSupGP model was not deceived by
the errors in the data (see Figure 6).
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Table 2: Overall accuracy and Kappa values obtained by the three models on a large
validation set.

Method  Accuracy(%) Kappa

CART 95.49 0.23
StdGP 97.58 0.37
SSupGP 99.43 0.70

Figure 6: Detail of the original image (a) and classification by SSupGP (b). The burned
areas appear as dark purple patches on the image. In the classification, white represents
non-burned while black represents burned.

7.8. Extra validation

The visual inspection of the classified image is by itself a confirmation that
SSupGP is obtaining good results overall, and not just on the pixels of the
training, test, and validation sets. However, to clear any concerns regarding
the admissibility of using the unlabeled validation pixels to help the learning,
we perform an extra validation of the three models on the second validation
set described in Section 5. The size of this extra validation set (176 pixels)
is approximately 5% of the size of the first validation set (3525 pixels), and
almost 98% of its observations belong to class 0 (not burned). The results
are shown in Table 3 for all the methods, revealing more or less the same
overall accuracy (exactly the same for SSupGP), and higher Kappa, than the
ones obtained in the first validation set. According to the suggested ranges
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for the Kappa coefficient [103], CART produces a poor classification (<0.40)
also on this set, StdGP produces a moderate classification (0.41-0.60) and
SSupGP produces an almost perfect classification (>0.81). However, more
important than these absolute values is the fact that the relative quality of
each method, observed on the first validation set, is maintained on this extra
validation set, which suggests that using the unlabeled validation data for
learning does not bias the results of SSupGP.

Table 3: Overall accuracy and Kappa values obtained by the three models on the extra
small validation set.

Method — Accuracy(%) Kappa

CART 94.88 0.38
StdGP 97.72 0.59
SSupGP 99.43 0.85

8. Discussion

We begin this section with a discussion on the concept of overfitting, and
its detection in different learning scenarios. Then we analyse the learning
dynamics of both StdGP and SSupGP, in particular the effect of the labeling
errors in the evolution of RMSE and accuracy, and the output values and
their distance to class labels. We identify key differences between them, and
finally take a closer look at the fitness function of SSupGP, discussing its
implications and proposing an explanation for the success of this method.

8.1. On the concept of overfitting

Far from surveying all the different meanings and usages given to the
concept of overfitting in the scientific literature, we do however provide a
short briefing on how we use it in this work, and how different it may be
from other works, in order to avoid misinterpretations during the discussion
of the results. First of all, overfitting is a broad concept that in some contexts
simply means unnecessary complexity, excessive fine tuning of a model to the
data, even if this model does not need to generalize to other data, and even if
the learning process is completely unsupervised. In such contexts, overfitting
is simply the violation of the principle of Occam’s razor, and assuming all
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the data is perfectly correct, the culprit is the learning algorithm. However,
in our work this is not what we mean by overfitting.

In our work, overfitting is always linked to a supervised learning process,
and always linked to either noise or outliers in the data, regardless of noisy
observations being considered outliers or not, and regardless of the outliers
being gross errors or simply exceptional (but true) observations. Overfitting
is not equivalent to lack of generalization ability. True, when there is over-
fitting, there is no generalization ability, but not being able to generalize
may simply mean there is not enough data to build a model. Overfitting im-
plies that something was learned that should not have been learned, because
learning it has resulted in a biased model that fails to explain similar but
unseen data.

Particularly on this paper, due to the characteristics of our data, we do
not focus on noise, but only on gross errors. One can argue that the learning
algorithms are not overfitting, but simply fitting the data they were given,
and that the origin of the problem is, instead, in the process of building the
reference data. Nevertheless, these errors are outliers and they should not
be learned. Therefore, we can state that the learning algorithms are indeed
overfitting, and we make no distinction of whether the problem derives from
the building of the data or from the learning process.

8.2. On the detection of overfitting

The main lesson to retain from the results section is that overfitting is
not such a straightforward phenomenon to detect, and the present work
illustrates this very well. Let us summarize the process adopted in this work:
one reference data set is provided; this set is randomly split into training and
test sets, several times, precisely to ensure that 1) the possible occurrence
of overfitting does not go undetected and 2) the results are consistent across
many independent executions of the learning method on different partitions
of the data. Consistently low RMSE and high accuracy values indicate good
learning, and the similarity of values measured on the training and test sets
indicate good generalization. Still, overfitting was present, hidden, and it
was only discovered during the validation of the models on a new data set.

There was nothing wrong with the process described in the previous para-
graph. The training and test sets were drawn from the same distribution,
as they should be, because they came from the same reference set. The
problem is, same reference set, same errors. The models that perform well
on the training data are the ones that learned the erroneous pixels, so they
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will perform equally well on the equally erroneous test data. The fact that
these models (over)fit the errors is only detected on a new data set from a
different source. This was the case in the present work, but there are two
other possible scenarios.

The first alternative scenario is the test data coming from a different
source and, unlike the training data, being free from labeling errors. In this
case, the models that perform better on the (erroneous) training data will
have a worse fitness on the (clean) test data, thus revealing overfitting. The
second alternative scenario is tricky: the training data being free from errors,
with only the test data containing erroneous data. Just like in the previous
case, the models that perform better on the (clean) training data will have
a worse fitness on the (erroneous) test data, thus revealing overfitting. Only
this time there is no overfitting! At most, there may be some amount of true
overfitting, but not in the amount suggested by the differences in the fitness
measured on the training and test sets.

In summary, we have four different scenarios and possible outcomes: 1)
clean training and test data: overfitting detected if and only if it is present;
2) erroneous training and test data (the present case): hidden overfitting
not detected; 3) erroneous training data, clean test data: true overfitting
correctly detected; 4) clean training data, erroneous test data: non-existent
overfitting falsely detected.

It is not so obvious that case 3 above (erroneous training data, clean test
data) would actually return overfitted models. We believe it would greatly
depend on the amount and magnitude of the errors, as discussed in [104, 3].
In the case of a very low percentage of errors, a robust method could be
able to learn the general pattern of the training data without overfitting the
errors (and therefore would obtain better fitness on the clean test set than
on the erroneous training set*). However, this is not what happened in our
problem. Despite a very low percentage of errors, overfitting did occur in
both CART and StdGP, even if mostly hidden. And yet, using exactly the
same faulty data sets, SSupGP was able to learn the general pattern as if
the errors were not there. In the remainder of this section we explore the
reasons why.

4In fact, many times we have observed such behavior in the past (in work not related
to satellite imagery), but never thought of pointing the finger at the training data.
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8.8. The effect of labeling errors in supervised and semi-supervised learning

First things first, we clear any doubts on whether the 20 erroneously la-
beled pixels, which represent less than 0.5% of the reference data, are indeed
the culprit of the high misclassification errors shown in the results section.
To this end, we correct the labels of these 20 pixels and perform a couple
of sample runs with both CART and StdGP. Table 4 shows the results ob-
tained by both methods on the two validation sets, with models learned with
the error-free reference set. We immediately see the excellent accuracy and
Kappa values that we were expecting in the first place. On the large valida-
tion set CART is able to outperform StdGP, and on the small validation set
the results are the same for both methods.

Table 4: Overall accuracy and Kappa values obtained by CART and StdGP on both
validation sets after learning with the error-free reference set.

Large validation set Small validation set
Method Accuracy(%) Kappa Method Accuracy(%) Kappa
CART 99.82 0.87 CART 99.43 0.85
StdGP 99.77 0.85 StdGP 99.43 0.85

In order to understand why the mislabeling errors undermine the success
of supervised learning while the semi-supervised approach is apparently im-
mune to them, we study the learning dynamics of both StdGP and SSupGP,
performing separate measurements on the correct (correctly labeled) and er-
roneous (erroneously labeled) pixels, thus highlighting how differently the
errors affect each of the learning methods.

Figure 7 shows the evolution of the RMSE and overall accuracy during
the StdGP evolution, for the correct and erroneous pixels separately (for this
analysis we have put training and test data all together, since their RMSE
are very similar - see Figure 4 on Section 7). The figure shows boxplots for
every 10th generation, from 0 to 200, calculated on the 30 runs. An extra
line is also drawn to highlight the median. It is immediately obvious that
the erroneous pixels are much more difficult to learn. Their median RMSE is
much higher than the RMSE of the correct pixels, and even increases at some
points of the evolution. Furthermore, there is a high variability of behavior
among different runs, resulting in many outliers with high values that are not
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Figure 7: Evolution of RMSE (left) and overall accuracy (right) during the StdGP evo-
lution, for the correct and erroneous data separately. In the left plot there are four not
shown “correct” outliers in generations 50-100 with approximate values 9, 16, 24 and 238,
and 25 not shown “erroneous” outliers spread along all generations with values between 1
and 134.
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shown “correct” outliers in generations 50-200 with values between 1 and 479, and only
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shown in the plot. In terms of the accuracy, the differences observed between
correct and erroneous pixels are even more striking, with the correct pixels
quickly reaching accuracy values close to 100% while the erroneous ones rise
unevenly from 0% to around 75%.

Figure 8 also shows the evolution of the RMSE and overall accuracy
for the correct and erroneous pixels separately, but this time for SSupGP.
The differences between correct and erroneous pixels are even larger than
previously observed for StdGP. From the beginning of the run, the RMSE on
the erroneous pixels simply does not decrease. On the contrary, as the RMSE
on the correct pixels decreases, the RMSE on the erroneous ones tends to
slightly increase. In terms of accuracy, once again the correct pixels quickly
reach values close to 100%, but unlike StdGP, in SSupGP the erroneous pixels
maintain a stubborn absolute 0% accuracy throughout the entire evolution
(except for the shown outliers). It is clear that SSupGP does not learn the
errors. Why?

8.4. Output values and distance to class labels

As mentioned earlier (Section 6), the main motivation for the SSupGP
method was to avoid “wild” models whose output values fall very far from
the interval [0 1], rewarding the well-behaved models that return values close
to either 0 or 1. The secondary effect of this method turned out to be the
apparent (and desirable) inability to learn the erroneous data. But what
about the primary, the intended effect, of avoiding wild output values?

The purpose of the next two figures, in particular the comparison between
them, is to observe whether SSupGP actually behaves substantially better
than StdGP in terms of the “wildness” of its raw output values. Figure 9
shows the dispersion of output values returned by all the 30 StdGP models
for all the 30 sets of training (left) and test (right) data. All the models
are relatively well behaved in the training data, with all output values inside
the interval [-0.5 1.5] except for 18 (loosely called) outliers that fall in the
interval [1.5 2]. Since this counting includes the output values of all 30
models, this represents less than one outlier per model. On the test data the
dispersion of values was slightly higher, with 8 values falling in the interval
[1.5 2], 7 other values falling in the interval [2 127] (not shown in the plot),
4 values in the interval [-1 -0.5] and 4 other values in the interval [-2 -1] (not
shown in the plot), therefore a total of 24 outliers, which also represents less
than one outlier per model. Figure 10 shows the dispersion of output values
returned by all the 30 SSupGP models for all the 30 sets of training (left) and
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Figure 9: Dispersion of output values returned by all the 30 StdGP models for all the 30

sets of training (left) and test (right) data. Some points are not shown in the test data,
with values 127, 21.68, 11.67, 9.09, 5.29, 2.08, 2.04, -1.08, -1.23, -1.65 and -1.82.
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Figure 10: Dispersion of output values returned by all the 30 SSupGP models for all the
30 sets of training (left) and test (right) data. Some points are not shown in the training
data, with values 2.48, 2.40 and 2.24, and in the test data with values 32920, 24.23, 11.48,

2.39, -4.04 and -6.43.
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test (right) data. Curiously enough, SSupGP did not exactly show a more
constrained behavior than StdGP. In the training data there were 10 values
falling in the interval [1.5 2] and 3 others in the interval [2 2.5] (not shown
in the plot), totaling 13 outliers (5 less than StdGP). In the test data there
were 15 values in [1.5 2], 3 values in [2 25] (not shown in the plot) and a wild
value of 32920 (not shown in the plot), plus 3 values in [-1 -0.5] and 2 values
in [-7 -1] (not shown in the plot), totalling 24 outliers (the same as StdGP).
Apart from these slight differences, for SSupGP the range of values around
0 appears to be narrower than for StdGP. Although these are very small
differences in behavior, they seem to be enough to produce a large difference
in the range of the output values produced when classifying an entire image.
However, it is still not clear how this difference affects the correctness of the
classifications.

Figure 11 shows the relationship between the distance to the (closest)
class label and the accuracy of the classifications, presented as boxplots built
with the values returned by the 30 models of StdGP (left) and SSupGP
(right) on the reference set (training and test). The x axes are labeled in
an unconventional manner: instead of completely specifying each interval
below each box, they show only the interval endpoints between the boxes.
The distances between 0 and 0.5 are grouped into 5 consecutive slots, all the
same length. The distances larger than 0.5 are grouped differently, as they
contain much fewer points. A distance larger than 0.5 means that either
the output value is outside the interval [-0.5 1.5], or it is inside the interval
and the classification is wrong. We have observed that for both StdGP and
SSupGP there are no distances in the interval [2 3], and therefore we have
grouped distances between 0.5 and 2 in one slot, and distances higher than
3 in another slot. The boxplots show that, for both StdGP and SSupGP,
for distances until 0.5 the accuracy drops as the distance increases, from a
median of almost 100% until as low as 60-65%. This was the expected be-
havior, already observed in similar studies [99]. However, for larger distances
the behavior is different. For distances in the interval [0.5 2] the accuracy is
again close or equal to 100%. This means that most of these classifications
are correct, despite the output values of the models falling outside the [-0.5
1.5] interval. For distances higher than 3, the median accuracy is still maxi-
mum in StdGP, but only 25% in SSupGP. However, the medians in this last
slot are calculated with very few points and therefore should not be used to
derive any conclusions. What we can say is that StdGP and SSupGP once
again exhibit very similar behavior in terms of output values produced by
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Figure 11: Distance of the output values to the (closest) class label versus the accuracy of
the classifications. Boxplots obtained with the values returned by the 30 models of StdGP
(left) and SSupGP (right) on all the data (training and test) of the reference set. The
unconventional x axes specify only the interval endpoints.

the models, and that the correctness of the classifications does not seem to
be negatively affected by the presence of wild output values.

Performing a deeper exploration of the closeness of the output values to
class labels, Figure 12 shows boxplots of the maximum and minimum output
values obtained during the evolution of the 30 models of StdGP (left) and
SSupGP (right) for every 10th generation between 0 and 200. Extra lines
highlight the evolution of the median values. Correct and erroneous pixels are
treated separately. For the correct pixels, the behavior of StdGP and SSupGP
is similar. In the first 10 generations the initial output values drift farther
apart from each other, and then quickly stabilize for the rest of the evolution,
around values that are slightly higher than 1 (for the maximum) and slightly
lower than 0 (for the minimum). For the erroneous pixels the behavior is
different, as expected. As StdGP learns part of them, the maximum output
values approximate the ones of the correct pixels, while the minimum output
values remain slightly higher than 0 (therefore higher than the minimum
output values of the correct pixels). On the contrary, with SSupGP the
maximum and minimum values of the erroneous pixels remain very close to
0 during the entire evolution (and also higher than the minimum values of the
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Figure 12: Evolution of minimum and maximum output values obtained by the StdGP
(left) and SSupGP (right) models, on the correct and erroneous data separately. For both
StdGP and SSupGP there are additional outliers not shown in the plot, with values as low
as -36 (StdGP) and -19 (SSupGP), and as high as 16586 (StdGP) and 33318 (SSupGP).

correct pixels), as these pixels actually belong to class 0. Besides this obvious
difference between StdGP and SSupGP, SSupGP tends to concentrate its
values in narrower ranges and produce a lower number of outliers than StdGP.
This was expected, and Figures 9 and 10 had already partially revealed it.
However, it is still a modest result that does not explain why SSupGP is so
much better than StdGP.

8.5. The fitness function

At this point, we must assume that the general behavior of the models,
in terms of output values and their distance to the class labels, is not related
to the ability or inability to learn the erroneous data. We now look closely at
the implications of the fitness function introduced by SSupGP, the modified
RMSE (described in Section 6), with the goal of explaining why this fitness
function does not lead the evolution into learning the erroneous data.

The first idea that comes to mind is that, by adding data to the calculation
of the RMSE, the errors in the reference set are being diluted. This is only
partially true. As the additional pixels do not contain any labels, they are
not doing anything to contradict the erroneous information provided by the
reference set. As far as labeled samples go, both StdGP and SSupGP are
given the exact same percentage of errors. However, adding the unlabeled
pixels to the calculation of the RMSE introduces a new way to improve
fitness, which is minimizing the distance to any class label. As specified
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Figure 13: Histogram of the shortest distances (0 to 0.1) to the class labels, calculated
on the reference data using the output values of all the 30 models of each method. The
unconventional x axes specify only the interval endpoints.

before (Section 7) the additional data represents around 70% of the amount
of observations in the reference set. Considering that in each run 30% of
the observations are taken for the test set, this means that the amount of
training data is roughly the same as the amount of additional unlabeled data.
Therefore, minimizing the distance to any class label becomes as important,
and as influential to fitness, as minimizing the distance to a specific class
label. It is well known that GP chooses the easiest way to improve fitness.
In this case, we believe that the easiest way is to reduce the RMSE on the
correct (and unlabeled) pixels, instead of forcefully learning a few pixels that
obviously contradict the evolved models. Figure 13 is an histogram of the
shortest distances (0 to 0.1) to the class labels, calculated on the reference
(labeled) data only, using the output values of all the 30 models evolved by
each method. The unconventional = axes specify only the interval endpoints
(as in Figure 11). It clearly shows that the shortest distances are more
frequent in the SSupGP models. In fact, more than half (52%) of the values
returned by SSupGP models are closer than 0.02 from a class label (correct
or incorrect), against only 38% of the values returned by StdGP.

We seem to have found the explanation for the success of SSupGP. Yet,
one question still remains. If SSupGP improves fitness by minimizing the
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distances to class labels, why is it that StdGP does not do the same? The
answer is, it does. Looking at Figure 7 (right), one can see that for the
first 30 generations the median accuracy on the erroneous data remains 0%.
But StdGP has less data to work with, less possibilities of easily improving
fitness without making the effort of fitting the errors, so eventually it starts
learning them. A striking observation is that already in generation 0 the
random population of initial models finds it very difficult to fit the erroneous
pixels, while easily fitting most of the correct ones. This observation is valid
for both StdGP and SSupGP, and may have deep implications in future work
(see Section 9).

9. Conclusions and Future Work

The story of this paper was very simple. Unusually bad results were
obtained by two different methods, CART and GP, on a simple classification
problem. A deeper look into the reference data used for learning revealed
a small percentage of labeling errors, exposing and explaining a problem
of hidden overfitting. At the same time, a modified fitness function was
used in the GP method in order to promote a more constrained behavior
of the evolved models, in terms of their range of raw output values. This
new approach used extra unlabeled data, together with the original reference
data, in a semi-supervised manner. The modified fitness function measures
the error in the same way for both labeled and unlabeled data, but for the
unlabeled points the class label is assumed to be the one closest to the raw
output value. The models evolved with semi-supervised learning exhibited a
very similar behavior to standard GP, and yet they did not learn the errors,
completely avoiding overfitting.

This is the end of the story, but not the end of the work. This study
has raised more questions than the ones it answered. The success of this
semi-supervised GP approach is reasonably explained, but would it still hold
if this classification problem was not so easy to solve? Or if the labeling
errors affected more than just a tiny percentage of the reference data? In the
absence of any errors, will this approach harm the learning process? This
is a very important point, as we may not know beforehand if the reference
data contains errors or not. We need to know if we should always use the
semi-supervised method, in case of doubt.

If we do not possess extra data to implement this method, can we use
synthetic data built on the same characteristics as the reference data? Can
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we even use the exact same reference data, as extra unlabeled data? This
would be a kind of regularization. How much unlabeled data do we need in
order to make the method work? And how much labeled data? Can a method
be instructed to request more (labeled or unlabeled) data during the learning
process, in case the models are not considered robust enough? This would
enter the field of active learning. Can a method be instructed to request
confirmation of the labels, in doubtful cases? Should the method simply
discard the doubtful cases, assuming the labels are unreliable? Or should
the method assume the existence of (and try to make the most of) fuzzy
labels? Can we develop new fuzzy-supervised learning methods, where each
label of the reference data has a confidence level attached? This confidence
level could be either given by the human supervisor (in cases where there is no
certainty, but only an educated guess) or resulting from a reasonable doubt
regarding the given label, due to difficulties in learning (like in the present
work). Would a well-thought method like this work better or worse than
our very simple method, that simply relies on accepting what the evolving
models see as more plausible?

Adding to the list of questions, can we expect this approach to be suc-
cessful also in multiclass classification problems? Also when coupled with
non-standard GP systems? Can it be adapted to regression problems? And
finally, can we use the knowledge gained from this work in improving other
machine learning methods?
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