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ABSTRACT

This paper addresses two complementary problems of spacecraft formation flying, namely space-
craft platooning and on-orbit spacecraft servicing, using Model Predictive Control (MPC). With
the proposed solutions, these space formation scenarios can be regarded as a cooperative system
composed of several spacecraft with a common goal, which may have clear advantages relative to
other approaches.

For each application scenario, a different optimization problem and MPC design is presented,
including relevant constraints to deal with physical limitations, visibility problems, and also to
guarantee a collision-free trajectory from other spacecraft or obstacles.

The proposed methods are validated with realistic simulation results, showing that all vehi-
cles demonstrate reliable performance following a given trajectory or goal in a formation, while
satisfying all the considered constraints.

Keywords: MPC; Spacecraft Formation Flying; Cooperative Control; Platooning; On-Orbit Servicing

1

mailto:pmp.pereira@campus.fct.unl.pt
mailto:bj.guerreiro@fct.unl.pt
mailto:palourenco@gmv.com


1 Introduction
Space exploration has been a much discussed topic in recent years, due to the inherent curiosity

of wanting to know more about how the Universe works, and possibly to take Human society outside
of planet Earth. Within the immense complexity of planning and implementing a spacecraft for space
navigation, some of the most important and difficult maneuvers to perform are the rendezvous and dock-
ing maneuvers [1], which make it possible to physically couple two spacecraft. These maneuvers are
essential for example to transport goods or people from one spacecraft to another, for replenishment,
assembly, maintenance, repair [2], and also for the collection of space debris [3–5] which threatens the
preservation of active spacecraft orbiting the Earth. These maneuvers need not only to perform suc-
cessfully all these tasks but also incorporate autonomy into the systems, relying as little as possible in
external human aid.

Over the years, different methods were considered for these proximity operations, but due to the
computational limitations in space [6, 7], there has been a focus on simpler and computationally lighter
methods. Recently, with the development of more robust and capable embedded systems, more complex
controllers started being considered for space operations, and among them is Model Predictive Control
(MPC). MPC was initially considered for industrial applications, to control oil refineries, power plants
and chemical processes [8], but due to its performance while allowing constraint satisfaction, the MPC
has been in recent years vastly studied for flight control, docking and rendezvous maneuvers [9–18]. One
application is spacecraft formation flying [19–22], that consists in the cooperation of several spacecraft
to achieve a specific objective, instead of sending a single, more expensive spacecraft. This topology
allows to obtain a distributed model [23–25] between all the spacecraft, but sharing at the same time a
common objective. In this case two different scenarios are proposed, that can be viewed as two different
phases of flight formation.

The first proposed strategy in this work addresses a spacecraft platooning system [26], where several
follower spacecraft converge to the leader spacecraft orbit and establish a constant relative position and
velocity between each other. This is achieved using a Distributed Model Predictive Control (DMPC)
strategy, where the system model consists of a coupled relative model between each spacecraft with
a V-bar orbital station keeping trajectory. A spacecraft platooning system can have several uses, such
as synchronization, position correction, spacecraft retention on a specific orbit and also for Earth ob-
servation, where a system of spacecraft can orbit around the Earth and retrieve soil or meteorological
information to be later analyzed and compared.

The second proposed strategy in this work addresses an on-orbit spacecraft servicing system, where
a group of spacecraft moves around an object in order to achieve a specific goal, for example, obser-
vation, repair, delivery or a synchronized docking. The spacecraft use the relative position between
themselves and the object to move around and get to the desired positions, but also considering other
spacecraft to avoid collisions. In addition to that, since observation can be one application for this sce-
nario, it is included not only the relative translational dynamics but also the relative rotational dynamics,
in order to allow the spacecraft to point to a specific coordinate in the object. For this, a Nonlinear Model
Predictive Control (NMPC) strategy is considered, with cooperative coupled constraints.

The contributions of this paper include an extension of the typical problem of on-orbit spacecraft
servicing and spacecraft synchronization, resorting not only to an optimal controller like the MPC, but
also incorporating the concept of cooperation and distribution between each spacecraft, which results
in a more capable and efficient system overall. The spacecraft platooning system differs from other
approaches by linking the relative models through the control action and the spacecraft servicing system
presents a new cooperative solution. Methods that are validated through simulation results, showing
reliable performance while satisfying all the considered constraints.
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The remainder of this paper is structured as follows. Section 2 contains a brief background of
spacecraft formation flying dynamics. Section 3 outlines the MPC design for the spacecraft platooning
system, including the joint state-space model, the distributed optimal control problem and the constraints.
Section 4 outlines the MPC design for the on-orbit spacecraft servicing system, including the coupled
translational and rotational model, the nonlinear optimal control problem, the constraints and the attitude
trajectory planning. Simulation results for the systems in Sections 3 and 4 are presented in Section 5.
Conclusions and future work are discussed in Section 6.

2 Relative Motion Model of Spacecraft
This Section introduces the general notation and mathematical background for spacecraft formation

flying starting with the coordinate reference frames used throughout the paper, moving on to the relative
translational motion and finally the relative rotational motion for spacecraft.

2.1 Coordinate Reference Frames
Earth Centered Inertial (ECI) Frame, denoted as F i : {Oi, îi, ĵi, k̂i}, has its origin located in the

center of the Earth. The îi axis is directed towards the vernal equinox, k̂i is directed along the rotation
axis of the Earth towards the celestial North Pole and ĵi completes the right-handed orthogonal frame.

Spacecraft Orbit Reference Frame, denoted as F so : {Os, îso, ĵso, k̂so}, is a Local-Vertical-Local-
Horizontal (LVLH) frame with its origin located in the center of mass of the spacecraft. The îso axis is
directed along the radius vector irs ∈ R3 in the F i frame, that goes from the center of the Earth to the
spacecraft, k̂so is pointing in the orbit normal direction, parallel to the orbit momentum vector and ĵso
completes the right-handed orthogonal frame. The basis vectors of F so can be defined as

îso =
irs

‖irs‖
, ĵso = k̂so× îso, k̂so =

h
‖h‖

(1)

where h = irs×i ṙs is the angular momentum vector of the orbit and s denotes the spacecraft in question,
e.g. s = l for the leader and s = f for the follower.

Spacecraft Body Reference Frame, denoted as F sb : {Os, îsb, ĵsb, k̂sb}, has its origin located in the
center of mass of the spacecraft, with the basis vectors aligned with the principal body axes.

2.2 Relative Translational Motion
Consider a leader-follower spacecraft formation, where the position vector of the leader and the

follower expressed in F i are defined respectively as irl and ir f , as seen in Fig. 1.

Resorting to the Keplerian two-body problem, the orbital dynamics for both spacecraft can be ex-
pressed as

ir̈l =−
µ

‖irl‖3
irl,

ir̈ f =−
µ

‖ir f ‖3
ir f +

1
m f

if f (2)

where if f ∈ R3 is the actuator forces of the follower in the F i frame, m f is the follower mass, and µ is
the geocentric gravitational constant given by µ ≈ Gm⊕, where G is the universal gravitational constant
and m⊕ is the Earth mass. Orbital perturbations are neglected.

The relative position vector between the leader and the follower can therefore be expressed in the
orbital frame F lo as

p = Rlo
i (

ir f − irl) =
[
x y z

]T
(3)
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Fig. 1 Reference coordinate frames in a leader-follower formation

and the relative velocity as v= ṗ, where Rlo
i ∈ SO(3) is the rotation matrix fromF i to theF lo frame and

SO(3) is the 3D rotation group defined as SO(3) = {R ∈ R3×3 : RT R = RRT = I3, det(R) = 1}
with I3 ∈ R3×3 as the identity matrix.

From expressions (2) and (3), a nonlinear relative translational dynamics can be derived for circular
orbits [27], given by

v̇ = Ctv+Dtp+Et +Ft (4)

where

Ct =−2n

0 −1 0
1 0 0
0 0 0

 , Dt =−


µ

‖ir f ‖3 −n2 0 0

0 µ

‖ir f ‖3 −n2 0

0 0 µ

‖ir f ‖3

 , Et =−µ


‖irl‖
‖ir f ‖3 − 1

‖irl‖2

0
0

 ,

(5)
with n as the orbital rate given by

n =

√
µ

‖irl‖3 (6)

and the relative control force defined as
Ft =

1
m f

f f (7)

where f f is the actuator forces of the follower in the F lo frame.

2.3 Relative Rotational Motion

Consider the unit quaternion qs =
[
ηs εεεT

s

]T
∈H, ηs ∈R, εεεs ∈R3, with ‖qs‖= 1, as the spacecraft

attitude representation of the frame F sb relative to F lo, q f for the follower, ql for the leader and H the
set of all quaternions. Then, the relative quaternion between the leader and the follower is given by

q = q f ⊗ q̄l =

[
η f ηl + εεεT

f εεε l

ηlεεε f −η f εεε l−S(εεε f )εεε l

]
=

[
η

εεε

]
(8)
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where q̄ =
[
ηs −εεεT

s

]T
is the quaternion conjugate, S(.) ∈R3×3 is the skew-symmetric matrix given by

S(εεε) =

 0 −εz εy

εz 0 −εx

−εy εx 0

 . (9)

Thus, the relative attitude kinematics is [28]

q̇ =

[
η̇

ε̇εε

]
=

1
2

[
−εεεT

ηI3 +S(εεε)

]
ωωω = Tωωω (10)

with ωωω = ωωω
f b
lb, f b ∈ R3 as the relative angular velocity, or the angular velocity of F f b relative to F lb,

expressed in the F f b frame.

Considering the spacecraft as rigid bodies, the rotational dynamics can the expressed by Euler’s
equations of motion for a rigid body, given by

Jsω̇ωω
sb
i,sb =−S(ωωωsb

i,sb)Jsωωω
sb
i,sb + τττsb (11)

where Js ∈ R3×3 is the spacecraft moment of inertia matrix, ωωωsb
i,sb is the angular velocity of F sb relative

to F i, expressed in the F sb frame, and τττsb ∈ R3 is the spacecraft actuator torque expressed in the F sb

frame. Therefore, considering that the relative angular velocity is given by

ωωω = ωωω
f b
i, f b−R f b

lb ωωω
lb
i,lb (12)

the relative attitude dynamics, also detailed in [27], can be expressed as

J f ω̇ωω = Crωωω +Er +Tr (13)

where
Cr =−J f S(R f b

lb ωωω
lb
i,lb)−S(R f b

lb ωωω
lb
i,lb)J f +S(J f (ωωω +R f b

lb ωωω
lb
i,lb)) (14)

is a skew-symmetric matrix,

Er =−S(R f b
lb ωωω

lb
i,lb)J f R f b

lb ωωω
lb
i,lb +J f R f b

lb J−1
l S(ωωω lb

i,lb)Jlωωω
lb
i,lb, (15)

Tr = τττ f b−J f R f b
lb J−1

l τττ lb (16)

is the relative actuator torque and R f b
lb ∈ SO(3) is the rotation matrix from the leader body frame F lb to

the follower body frame F f b, defined using the relative quaternion q as

R f b
lb = I3 +2ηS(εεε)+2S2(εεε). (17)

3 Distributed MPC for Spacecraft Platooning
Consider a system composed of λ spacecraft with masses mi, i = 1,2, ...,λ , such that, spacecraft

i 6= 1 wants to follow spacecraft i− 1 in a V-bar station keeping trajectory [29] and is followed by
spacecraft i+1 the same way, being spacecraft i = 1 the leader of the platooning system. Furthermore,
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in this Section, the leader-follower topology is considered every time the whole system is referenced,
while the target-chaser topology refers to a sub-system, composed of only 2 spacecraft.

3.1 Joint Model
Assuming that the target spacecraft is in a circular orbit about the Earth, and that the relative position

between the spacecraft is much smaller compared with the distance to the centre of the Earth, with a
maximum relative position into the tens of kilometers [30, 31], expression (4) can be linearized around
the origin of F to to get the well known Clohessy-Wiltshire (CW) equations [32], in a target-chaser
formation.

One assumption of the CW equations is that the target stays passive, meaning that the target control
force is zero. Conversely, in the proposed formulation the CW equations must be modified in order to
get a coupled relative motion between every spacecraft, where the control action acts as the link between
all the relative models.

Applying the Taylor series expansion to expression (4) around the origin of F to [31, Appendix A]
and adding the target control force yields

ẍ−3n2x−2nẏ = uc,x−ut,x

ÿ+2nẋ = uc,y−ut,y

z̈+n2z = uc,z−ut,z

(18)

where uc =
1

mc
fc =

[
uc,x uc,y uc,z

]T
is the control force from the chaser and ut =

1
mt

ft =
[
ut,x ut,y ut,z

]T

is the control force from the target. Then, with expression (18) and knowing that v = ṗ, the linear state-
space model in a target-chaser formation is given by

ẋtc(t) = A′xtc(t)+B′uc(t)−B′ut(t) (19)

where xtc =
[
pT

tc vT
tc

]T
=
[
xtc ytc ztc ẋtc ẏtc żtc

]T
is the state vector,

A′ =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


, B′ =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


(20)

with n as the orbital rate of the leader.

Finally, the joint relative model is given by


ẋ12(t)
ẋ23(t)

...
ẋλ−1,λ (t)

=


A′ 0 · · · 0
0 A′ · · · 0
...

... . . . ...
0 0 · · · A′




x12(t)
x23(t)

...
xλ−1,λ (t)

+


−B′ B′ 0 · · · 0

0 −B′ B′ · · · 0
...

...
... . . . ...

0 0 0 · · · B′




u1(t)
u2(t)
u3(t)

...
uλ (t)

 (21)
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for which a Zero-Order Hold (ZOH) discretization is performed, as suggested in [33], in order to work
with the following discrete MPC design, with the position as the system output.

3.2 Distributed Model Predictive Control (DMPC)
Consider a time-invariant linear discrete-time system with sampling time Ts, state x ∈ Ra, input

u ∈ Rb and output y ∈ Rc described by

x+ = Ax+Bu (22)
y = Cx (23)

that represents a joint coupled model with M agents, such that,

x =

x1
...

xM

 ,u =

u1
...

uM

 ,U =

 u(0)
...

u(N−1)

 ,A =

A1 · · · 0
... . . . ...
0 · · · AM

 , B =

B1
...

BM

 . (24)

Consider also that these agents share a common objective, given by the cooperative cost

V(x(0),U) =
M

∑
j=1

α jV j(x j(0),U) (25)

where for each agent j, the cooperative quadratic tracking cost is

V(x(0),U) = l j(y(N)−yd(N))+
N−1

∑
k=0

s j(y(k)−yd(k),u(k)) (26)

with
s j(ye,u) = yT

e diag(α1Q1, · · · ,αMQM)ye +uT
j α jH ju j + cnst, (27)

l j(ye) = yT
e diag(α1P1, · · · ,αMPM)ye (28)

and where N is the prediction horizon, yd ∈ Rc is the desired output, α is the relative weight in the
overall objective, P is the final output error penalty, Q is the output error penalty and H is the control
action penalty.

Then, the constrained optimal control problem for each agent is defined as

min
U j

V(x(0),U)

s.t. x+ = Ax+Bu, y = Cx, ∀k=0,...,N−1,

x ∈ X , u j ∈ U j, ∀k=0,...,N−1,

x(N) ∈ X f

(29)

where U and X are the constraint sets on the control and state variables, respectively and k is the current
time step.

To ensure the convergence of the distributed algorithm, a convex step procedure is added, where the
next iterate Uγ+1

j is a convex combination of the the current optimal solution, U∗j , and the current iterate,
Uγ

j , given by [34]

Uγ+1
j = w jU∗j +(1−w j)U

γ

j , 0 < w j < 1 (30)
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where γ is the integer-valued iteration and w is the combination weight where ∑
M
j=1 w j = 1 and such

that when expanding U∗j and Uγ

j we have the contribution of the other agents. Although more realistic
distributed algorithms can be considered that take into account different network topologies, this is left
as future work.

3.3 Constraints
One of the more common and useful constraints is the control action constraint, in order to limit the

energy consumed by the thrusters, given by umin < u < umax. Relative velocity constraints are also im-
portant for spacecraft proximity operations, in order to better react to emergencies, unforeseen scenarios
that may happen or to prepare for docking, vmin < v < vmax.

Since this system consists of several spacecraft following each other, collision avoidance constraints
are fundamental in order to avoid the collision between the spacecraft or to avoid space debris in the
neighborhood. Mathematically, a collision avoidance constraint can be defined as

(x− xδ )
2 +(y− yδ )

2 +(z− zδ )
2 ≥ r2

δ
(31)

where pδ =
[
xδ yδ zδ

]T
is the position of the obstacle in the F to frame, and rδ is the minimum

distance between the chaser and the debris.

Considering the object to avoid as a sphere, expression (31) can be linearized around the point

located at po =
[
xo yo zo

]T
, determined by the intersection between the sphere surface and the imag-

inary line that goes from the center of the sphere to the chaser, which is reasonable for the considered
scales. Applying the Taylor series expansion, the collision avoidance can be rewritten as aobsx ≤ bobs
[35] with

aobs =−2
[
xo− xδ yo− yδ zo− zδ 0 0 0

]
, (32)

bobs = (xo− xδ )
2 +(yo− yδ )

2 +(zo− zδ )
2−2(xo− xδ )xo−2(yo− yδ )yo−2(zo− zδ )zo− r2

δ
. (33)

Path constraints must be also employed, to make sure the chaser spacecraft is visible all the time
from the target port dock. For that, a Line-Of-Sight (LOS) region is defined around the target port and
expressed in the F to frame, which yields [36]

alosx≤ blos⇔


0 1 0 0 0 0
cx 1 0 0 0 0
−cx 1 0 0 0 0

0 1 cz 0 0 0
0 1 −cz 0 0 0

x≤


−yρ

cxxρ

cxxρ

czzρ

czzρ

 (34)

where cx and cz are the slopes of the tetrahedral cone, and
[
xρ yρ zρ

]
are the target port dimensions,

as can be seen by the Fig. 2 along with the collision avoidance constraint.

Simulation results for this system are presented in Section 5 to analyze the performance and validate
the proposed strategy.
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Fig. 2 LOS and collision avoidance constraint representation

4 Cooperative MPC for On-Orbit Spacecraft Servicing
Consider a system composed of λ spacecraft with masses mi, i = 1,2, ...,λ , such that, every space-

craft moves around a passive object that can be bounded by a spherical region of radius rσ and acts as
the origin of F lo, therefore, every spacecraft position can be determined by the relative position between
each spacecraft and the passive object. In addition to that, consider that the F lo frame coincides with the
F lb frame.

4.1 6DOF Model
Recalling the expression for the relative translation (4) and relative rotation (13), a 6DOF (6 Degrees

of Freedom) model can be formulated for each spacecraft with the state vector x =
[
pT vT qT ωωωT

]T

which yields the following nonlinear model
ṗ = v,
v̇ = Dtp+Ctv+Ft f u f +Et ,

q̇ = Tωωω,

ω̇ωω = J−1
f Crωωω +J−1

f Fr f u f +J−1
f Er

(35)

where Ft f and Fr f are the thruster configuration matrices for the follower actuator forces and the follower
actuator torques respectively, such that Ft = Ft f u f , Tr = Fr f u f [37] with

Ft f =

0 0 1 −1 0 0
0 0 0 0 1 −1
1 −1 0 0 0 0

 , Fr f =


Ly
2

Ly
2 0 0 Lz

2
Lz
2

−Lx
2 −Lx

2
Lz
2

Lz
2 0 0

0 0 −Ly
2 −Ly

2
Lx
2

Lx
2

 (36)

being
[
Lx Ly Lz

]
the spacecraft dimensions, and u f =

[
u f 1 u f 2 u f 3 u f 4 u f 5 u f 6

]T
as can be

seen in [37].
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4.2 Nonlinear Model Predictive Control (NMPC)
Consider a nonlinear discrete-time system with sampling time Ts, state x, and input u, described by

the difference equation
x+ = g(x,u) (37)

that represents the discrete state-space relative model from expression (35), with a constrained optimal
control problem defined as

min
U

V(x(0),u)

s.t. x+ = g(x,u), ∀k=0,...,N−1,

x ∈ X , u ∈ U , ∀k=0,...,N−1.

(38)

This optimal control problem is a nonlinear programming (NLP) optimization problem with the cost
function

V(x(0),u) =
N−1

∑
k=0

(p−pd)
T Qp(p−pd)+(v−vd)

T Qv(v−vd)+

+

[
1− η̃

ε̃εε

]T

Qq

[
1− η̃

ε̃εε

]
+(ωωω−ωωωd)

T Qw(ωωω−ωωωd)+uT Hu

(39)

where pd , vd and ωωωd are respectively the desired position, velocity and angular velocity, q̃ =
[
η̃ ε̃εε

T
]T

is the quaternion error and Qp ∈ R3×3, Qv ∈ R3×3, Qq ∈ R4×4 and Qw ∈ R3×3 the position, velocity,
quaternion and angular velocity penalties respectively.

4.3 Constraints
Regarding the constraints, some can be reused for this scenario, namely the control action constraint,

the velocity constraint and the quadratic collision avoidance constraint expressed in sub Section 3.3. For
the collision avoidance constraint there will be considered two different scenarios, first a constraint to
avoid the object located at the origin of F lo, resulting in the constraint

x2 + y2 + z2 ≥ (rσ + rs)
2 (40)

where rσ is the spherical radius that bounds the object and rs is the spacecraft maximum radius. In
addition to that, a coupled collision avoidance constraint must be considered in order to prevent the
collision between the spacecraft that are moving around the object, that can be defined as

(xi− x j)
2 +(yi− y j)

2 +(zi− z j)
2 ≥ (ri + r j)

2 (41)

where spacecraft i 6= j. Finally, a angular velocity constraint can be incorporated, defined as

ωωωmin < ωωω < ωωωmax. (42)

4.4 Attitude Trajectory Planning
Consider a fixed point with position t in the F lo frame, in such a way that the spacecraft changes its

attitude in order to point directly to t, resorting only to relative attitude dynamics. For that, a vector must
be assigned, that goes from the spacecraft to t in the F f o frame, which yields

t f o = R f o
lo (−p+ t). (43)
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So, a desired reference frame F d : {O f , îd, ĵd, k̂d} can be defined as

k̂d = t f o/‖t f o‖, ĵd = k̂d×p/‖k̂d×p‖, îd = ĵd× k̂d (44)

in order to point to t but also to fix the spacecraft orientation, for mathematical convenience. Reference
frame that allows to obtain the desired angular velocity [38]

ωωω
d
f o,d =

[
− ṫ f o·ĵd
‖t f o‖

ṫ f o·îd
‖t f o‖ 0

]T
(45)

where
ṫ f o

= S(ωωω f o
f o,lo)t

f o +R f o
lo (−ṗ+ ṫ) (46)

but, considering that F lo is parallel to F f o, since the distance between the spacecraft is much closer than
the orbit radius, an approximation can be made, with ωωω

f o
f o,lo ≈ 0 and R f o

lo ≈ I3, such that

ṫ f o
=−ṗ. (47)

The expression (45) allows to obtain the relative angular velocity error defined as

ω̃ωω = ωωω−ωωωd = ωωω
f b
lb, f b−ωωω

f b
lb,d (48)

with
ωωωd = ωωω−ωωω

f b
f o, f b +R f b

d ωωω
d
f o,d =−R f b

lb ωωω
lb
i,lb +R f b

f o(ωωω
f o
i, f o +R f o

d ωωω
d
f o,d) (49)

where ωωω lb
i,lb =

[
0 0 nl

]T
and since it is assumed that F lo coincides with F lb, R f b

f o can be determined

from q f . Also, ωωω
f o
i, f o =

[
0 0 n f

]T
and R f o

d can be determined from the basis vectors of F d (44). On

the other hand, the quaternion error is defined as q̃ = q f ⊗ q̄d where qd can be obtained from Rd
f o.

Simulation results for this system are presented in Section 5 to analyze the performance and validate
the proposed strategy.

5 Simulation Results
This Section describes the simulation details and presents the results for both control strategies

presented in Sections 3 and 4, followed by the discussion of these results. All simulations have been
performed in MATLAB® R2019A, considering Ts = 0.1s and ‖irl‖= 6621km.

5.1 Distributed MPC for Spacecraft Platooning

Consider a simulation scenario with p12(0) =
[
30 −50 40

]T
m, p23(0) =

[
15 −46 −30

]T
m,

vtc(0) = 03×1ms−1, yd =
[
0 −10 0

]T
m, P = 25I3, Q = 8I3, H = 0.1I3, pδ = 03×1m,

[
α1 α2

]
=[

2 1.5
]
,
[
cx cz

]
=

[
1 1

]
,
[
xρ yρ zρ

]
=

[
2 2 4

]
m,

[
w1 w2

]
=

[
0.6 0.4

]
, rδ = 6m, γ = 2,

umax = 6ms−2, vmax = 20ms−1 and N = 40. Given the parameters presented, the simulation can be seen
in Fig. 3, for a system composed by 3 spacecraft where the leader remains passive. From Fig. 3 it
is showcased that each spacecraft is able to perform the approximation and maintain a constant V-Bar
position between each other while satisfying all the constraints considered for this scenario at all times.
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(a) (b)

Fig. 3 DMPC spacecraft platooning simulation results

5.2 Cooperative MPC for On-Orbit Spacecraft Servicing

Consider a simulation scenario with J f =

10 2.5 3.5
2.5 10 4.5
3.5 4.5 10

 kgm2, Jl = diag(10,10,10) kgm2, N =

30, p1(0) =
[
0 −15 0

]T
m, p2(0) =

[
0 0 −15

]T
m, q(0) =

[
0.37 −0.43 0.66 0.47

]T
, v(0) =

03×1ms−1, ωωω(0) =
[
0.01 −0.02 0.01

]T
rads−1, vd = 03×1 ms−1, H = 2I6, Qp = 10I3, Qv = 0.5I3,

Qq = 15I4, Qw = 0.5I3,
[
Lx Ly Lz

]
=
[
2 2 2

]
m, umax = 3ms−2, vmax = 5ms−1, ωmax = 0.7rads−1,

rσ = 12m and rs = 3m. Given the parameters presented, the simulation results can be seen in Fig. 4
and 5, for a system composed by 2 spacecraft that point to a central object, resorting to the open-source
tool for nonlinear optimization, CasADi [39]. For the simulation, consider also the Euler angles as
the attitude representation, such that the quaternion results are converted to Euler angles through XYZ
rotation. From Fig. 4 and 5 it is showcased not only that each spacecraft is able to follow the re-planned
flight trajectory but at the same time point to the desired attitude while satisfying all the constraints
considered in this scenario. It is necessary also to take into account the circular path that is carried out
for each spacecraft in order to get around the central object, which results in a substantial overshoot
for the relative position, but from Fig. 5 a smooth trajectory can be seen around the object such as the
collision constraint between the spacecraft and the object, constraint that is always satisfied.

(a) (b)

Fig. 4 NMPC on-orbit servicing simulation results for both spacecraft
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pd1 =



[
0 15 0

]T
for t ≤ 40,[

0 0 15
]T

for 40 < t ≤ 80,[
0 15 0

]T
for t > 80

, pd2 =



[
0 0 15

]T
for t ≤ 40,[

15 0 0
]T

for 40 < t ≤ 80,[
0 −15 0

]T
for t > 80

. (50)

Fig. 5 NMPC on-orbit servicing simulation results for both spacecraft positions

6 Conclusion
The goal of this paper was to design and rethink the rendezvous problem, in a more cooperative

and optimal solution for two different scenarios, spacecraft synchronization and on-orbit spacecraft ser-
vicing. For spacecraft synchronization, it was considered a distributed platooning system where an op-
timization problem was formulated with collision avoidance, LOS, and physical limitations constraints
in order to generate better and safer trajectories. On the other hand, for on-orbit spacecraft servicing, a
nonlinear optimization problem was formulated with two different collision avoidance constraints and
capable of changing its attitude in order to point directly to the object. In a second stage, both systems
were validated through simulated tests in MATLAB®, where different maneuvers are efficiently performed
while satisfying all the constraints considered.

In terms of future work, there are some work directions that can be pursued. For the spacecraft
platooning system, a network topology can be added and other distributed algorithms can be explored,
together with more complex constraints and disturbances. For the on-orbit spacecraft servicing sys-
tem, more advanced trajectory planning strategies can be incorporated, including a distributed network
topology.
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