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Abstract

Supply chain optimization is a widely studied field of operations research. Nevertheless,

adapting the existing solutions to the specifications of each company is an interesting

and stimulating challenge. With this in mind, the project described herein, developed

in partnership with CTT, looks to provide the company with precious tools to more

efficiently manage the labour allocated to mail delivery and increase the productivity of

the workforce as a whole.

To achieve these objectives, it follows up on a previous work by Pereira[26], where an

extension of the Vehicle Routing Problem (VRP) was proposed to optimize the last-mile

delivery step of the mail distribution procedure, but this time giving particular relevance

to the adequacy of the model developed to the intricacies imposed by the company and

exploring suitable adaptations. One of the requirements, for standardization purposes,

is the creation of segments, composed of sets of postal codes that serve as input to the

optimization model. Finally, it was necessary to merge this work with the company’s

workflow by integrating the model with SISMA, a productivity assessment tool already

used by CTT.

Keywords: combinatorial optimization, last-mile, operations research, postal service,

vehicle routing problem
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Resumo

A otimização de uma cadeia de abastecimento é um campo vastamente estudado no âm-

bito da investigação operacional. Contudo, adaptar as soluções existentes aos critérios

de cada empresa é um desafio bastante interessante e estimulante. Tendo isto em consi-

deração, este projeto, desenvolvido em parceria com os CTT – Correios de Portugal, S.A.

(CTT), procura fornecer à empresa ferramentas que permitam uma gestão eficiente da

força de trabalho afeta à distribuição de correio.

Para atingir este propósito, este trabalho teve como ponto de partida uma proposta de-

senvolvida por Pereira[26], onde uma adaptação do Vehicle Routing Problem (VRP) foi

desenvolvida para otimizar a etapa last-mile do processo de distribuição. No presente

trabalho, dá-se uma atenção redobrada à compatibilidade do modelo desenvolvido com

as complexidades impostas pela empresa e explora-se algumas melhorias consideradas

apropriadas. Um dos requisitos, para manter alguma estibilidade nos resultados, é a

introdução de segmentos, compostos por conjuntos contíguos de códigos postais, que ali-

mentam o modelo. Finalmente, para combinar este trabalho com o fluxo de trabalho da

empresa, fez-se a integração do modelo de otimização com o SISMA, uma ferramenta de

avalição de produtividade já utilizada pelos CTT.

Palavras-chave: investigação operacional, last-mile, otimização combinatória, problema

de roteamento de veículos, serviço postal
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1

Introduction

1.1 Motivation

For the last few years, there has been a paradigm shift in the field of postal services.

Digitization keeps on growing and mail delivery is steadily being replaced by e-mail

services. Numbers show that letter deliveries have shrunk substantially in the last decade.

In 2010 there were a total of approximately 1 135 million postal objects delivered in

Portugal. By 2020 that number had shrunk by 46.8% to an approximate total of 604

million postal objects [3].

According to the latest data published by ANACOM, in Portugal, there was a 5.1%

decrease in postal traffic in the last trimester of 2021 alone when compared to the same

period in 2020. On the other hand, with the rise of e-commerce, exacerbated in part by

the pandemic, parcel deliveries are picking up strength. In the last trimester of 2021, an

increase of 4.0% was verified when compared to the homologous period in 2020. The

trends are clear, and they show no sign of reversing, as can be seen in Figure 1.1.

The reduction in traffic has as consequence the cutback in human resources and in

distribution centres, which saw a decline of 5.7% and 9.4% respectively in the last decade

[3].

These changes have opened up space for much competition to emerge. This is why it’s

important for delivery/postal service companies to strive to increase their productivity

in the hopes of lowering the cost of their services and consequently attracting a greater

number of clients.

The optimization of the entire logistical process from the moment when a letter is first

dropped in a post box; is processed by a postal distribution centre; sometimes transported

hundreds of kilometres and finally dropped in a mailbox by a postman is of extreme im-

portance, not only to the companies involved in this service, which increase the efficiency

of their resource utilization, but also to society itself.

For the company CTT, this phenomenon has brought about a lot of change for a

business that is historically tied to the exchange of correspondence in all of Portugal.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Quarterly evolution of the number of letters and parcels delivered in Portugal.
(ANACOM)

1.2 Context

As mentioned before, this dissertation follows the work of Pedro Pereira, a former student

at FCT. In his work, developed in partnership with CTT, the goal was to optimize the

routes made by postmen in the last-mile delivery step of the distribution process. This op-

timization consisted of producing a model based on one of the most important problems

in the fields of supply chain management and distribution logistics: the Vehicle Routing

Problem (VRP). The VRP was introduced in 1959 by Dantzig and Ramser [10] and is

considered a generalization of the TSP. In its simplest form, the TSP asks the question of

how a vehicle can, starting and finishing at a specified location, visit every location once

at a minimal cost. The VRP generalizes this problem in that it asks the question of what

is the optimal set of routes for a fleet of vehicles to deliver goods to a set of locations at a

minimum cost. A VRP instance can be represented using a graph, in which vertices are

the locations that must be visited and edges are the paths between locations. Modelling

a VRP instance requires using a mathematical formulation to define the problem. It is

important to note that VRPs are a wide-ranging class of problems with many variants

that adapt to specific requirements.

The model proposed by Pereira in [26], referred to as MVRP, used a three-index vehicle

flow formulation (see Section 2.1.1), had the goal of minimizing the number of vehicles

or postmen (assuming that each postman is assigned to a single vehicle), and used some

additional constraints, such as limiting the amount of time a postman is allowed to work.

A VRP is an NP-hard problem, and solving relatively large VRPs can be a computa-

tional challenge [30]. This is why the decision of selecting the best strategy to solve these

2



1.3. KEY CONTRIBUTIONS

problems must be carefully considered. Firstly, if the solution returned should be accom-

panied by an optimality certificate, then an exact method must be employed. The most

interesting, widely used method is the Branch and Bound (B&B) algorithm. The B&B is

based on two principles: "branching"(splitting the search space into smaller domains)

and "bounding"(using pruning rules to eliminate suboptimal search spaces). Even if the

algorithm stops because a pre-defined time limit is exceeded, an incumbent solution is

in general returned with the indication of a bound on the optimality gap, as a measure

on how far away it is from an optimal solution. However, if it suffices to find acceptable

solutions without an optimality certificate, then the use of heuristics is a good alterna-

tive. The class of heuristic methods available is large, including well-known algorithms

like Greedy Search, Variable Neighborhood Search (VNS), Tabu Search (TS), and Genetic

Algorithms (GAs).

In the previous work, an empirical comparison was made between the two approaches

using the distribution centre of Alverca. The first one used an optimization package

(CPLEX) that uses an exact method to produce a solution with an optimality certificate.

The second one used a greedy search heuristic to reach an acceptable solution, but without

the guarantee of optimality. The exact method approach was more successful because

the results obtained in Alverca showed the greedy search method saw a 6.3% increase in

total routing time [26].

1.3 Key contributions

Although the previous work provided a valuable contribution to solving this problem, it

was just a first step towards a tool capable of being applied in real-world situations for

CTT. In this thesis, three objectives were outlined.

The first was to improve the existing model and work in unison with the CTT to reach

a definitive and more realistic model which can be applied to every distribution centre

operated by the company in Portugal. To do this, it was important to understand how

the routes created by the previous work’s optimization process relate to the ideal routes

the company is looking for. It was necessary to alter the previous model by changing the

objective function.

It is also important to make sure that a problem’s instance can be solved in a reason-

able time frame. To guarantee this, some optimizations to the model are proposed, that

attempt to reduce the size of the problem and, as a consequence, the time needed to solve

it.

The second, put forth by CTT, was to devise a way to aggregate postal codes into

segments. A segment, is a collection of sequential postal codes that must be visited jointly,

one after another, by the same postman. Since the traffic destined to postal codes changes

daily, the routes generated by the optimization model will also change, from one day to the

next, in accordance to this. Using individual postal codes in the routing procedure would

completely change the routes from one day to another and cause unwanted disturbance

3



CHAPTER 1. INTRODUCTION

to operations. Using segments for creating the routes reduces the problem’s granularity,

and these daily alterations become more manageable.

The introduction of segments also allows for a reduction in the problem size, because

the routing procedure is now done with dozens or hundreds of segments, instead of with

thousands of postal codes.

The last objective is the integration of the optimization model with SISMA. SISMA

is a spreadsheet tool, used by CTT, that contains a standardized time for each task and

subtask available to postmen and workers in the supply chain. These times are then

manipulated and aggregated to find coefficients associated to a distribution flow. A flow

is, in turn, a distribution procedure of a single postal object. For example, a valid flow

would be the procedure of delivering an untraceable small letter, to an apartment block

using a moped. After obtaining these estimates, SISMA is able to output an estimate

into how many hours of work are needed for a certain amount of objects. It does this by

aggregating the time needed to handle the objects in each kind of flow.

1.4 Document structure

This document is organized in the following manner:

1. Introduction

This chapter presents the reader with a motivation behind the project, a brief de-

scription of the problem and the goals that must be successfully achieved.

2. Literature review

This second chapter discusses some approaches proposed in the literature to deal

with the problem at hand, focusing primarily on VRPs and how to solve them.

3. Problem statement

In this chapter, several aspects of the problem are described, namely how the in-

ternal operation of CTT functions and the specifications that must be taken into

account when modelling the VRP. It also presents the previous work and SISMA.

4. Segmentation

This chapter describes the segmentation process, its motivation, how the data used

to implement it was retrieved and the two algorithms developed. It also presents

several visualizations to analyse segmentation results.

5. VRP formulation

This chapter discusses the formulation used to model the VRP and its ability to

correctly represent the modus operandi of the company. It presents the optimizations

and implications it has in reducing the problem size and how it affects the optimality

of the solution.
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6. Results and solution analysis

This is the chapter where analyses are made comparing the proposed solution with

the company’s current practice and with the previous work’s results.

7. Integration with SISMA

Here, the integration of the routing model with SISMA is explained, together with

how it can be incorporated in the company’s operational system.

8. Conclusions

This last section contains some final remarks and makes some comments regarding

the necessary follow up on this work.
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Literature Review

This chapter will provide some insights into the problems in question and the solutions

proposed in the literature to solve them. It will focus primarily on the VRP, its variants,

and methods for solving it.

2.1 Vehicle Routing Problem

According to Irnich, Toth, and Vigo [30], a Vehicle Routing Problem (VRP), in its sim-

plest form, is an optimization problem that given a set of transportation requests and

a fleet of vehicles attempts to determine a set of vehicle routes to perform all (or some)

transportation at a minimum cost.

This set of problems was first introduced in 1959 by Dantzig and Ramser, referred

then as the Truck Dispatching Problem (TDP). They proposed a way to find the optimal

routing of a fleet of delivery trucks between a terminal and a series of service stations

that are to be supplied by the terminal [10]. Since then, a plethora of variants and

generalizations of the problem have emerged to deal with specific requirements like:

1) vehicles having a limited carrying capacity (CVRP),

2) having multiple terminals or depots (MDVRP),

3) not imposing the return of the vehicles to the terminal (OVRP),

4) having both deliveries and pickup requests (VRPPD),

5) vehicles having to make all the deliveries before doing any pickups (backhauling)

(VRPB),

6) having predefined time windows for the deliveries (VRPTW).

It is important to realize that some of these characteristics can be combined to create

more complex formulations. In principle, we could have a VRP with limited carrying

capacity, multiple depots, time windows, and backhauling, for example.

A VRP is an NP-hard problem [30] and as a consequence finding an exact solution of

some instances can often be computationally expensive, especially if the instance has a
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sufficiently large number of variables. This is why the use of some heuristics is often an

alternative when it suffices to find acceptable but not optimal solutions in a reasonable

amount of time.

2.1.1 Problem formulations

To solve a specific Vehicle Routing Problem (VRP)s, one needs to create a mathematical

model that can characterize and rigorously define the problem. Three approaches exist

that attempt to do this.

Vehicle flow formulations

This kind of formulation uses binary variables to indicate whether a vehicle travels the

path between two locations. These formulations can be further subdivided into two-

index formulations and three-index formulations. In two-index formulations, only the

two locations are specified because it is assumed that all vehicles are identical and that

one needs not to differentiate between vehicles. Three-index formulations use a vehicle

index to indicate if a certain vehicle traverses a certain path. The three-index formulation

of a pure Capacitated Vehicle Routing Problem (CVRP) is the following:

Given:

V : the set of locations, with the depot at index 0;

K : the set of vehicles;

tij : the time taken to go from location i to location j, i , j, i ∈ V ,j ∈ V ;

ci : the time taken to service location i, i ∈ V ;

vi : the amount of goods to deliver in location i, i ∈ V ;

Mk : the maximum capacity of vehicle k, k ∈ K ;

T : the maximum time a vehicle is allowed to work.

And defining the variables:

xijk =

 1 if vehicle k visits location j after i

0 otherwise
, k ∈ K,i ∈ V ,j ∈ V ,i , j.

ui : rank order in which location i is visited, i ∈ V

The objective function is to:

minimize
∑
i∈V

∑
j∈V \i

∑
k∈K

xijk(tij + ci) (2.1)

7
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subject to the following constraints

∑
i∈V \{0}

∑
k∈K

xijk = 1 ∀j ∈ V (2.2)

∑
j∈V \{0}

∑
k∈K

xijk = 1 ∀i ∈ V (2.3)

∑
i∈V

xihk −
∑
j∈V

xhjk = 0 ∀k ∈ K,∀h ∈ V \ {0} (2.4)

∑
i∈V \{0}

∑
j∈V

xijkvi ≤Mk ∀k ∈ K (2.5)

∑
i∈V

∑
j∈V

xijk(ci + tij ) ≤ T ∀k ∈ K (2.6)

∑
i∈V \{0}

x0jk ≤ 1 ∀k ∈ K (2.7)

∑
i∈V \{0}

xi0k ≤ 1 ∀k ∈ K (2.8)

subtours elimination constraint (2.9)

xijk ∈ {0,1} ∀i ∈ V ,∀j ∈ V ,∀k ∈ K (2.10)

The objective function 2.1 states that the goal is to minimize the total working time

of all vehicles. Constraints 2.2 and 2.3 state that each location is visited only once. Con-

straint 2.4 guarantees that if a vehicle enters a location, it must also exit that same location.

Constraint 2.5 guarantees that the maximum capacity of the vehicles is not exceeded, and

likewise constraint 2.6 guarantees that the maximum time a vehicle is allowed to work is

not exceeded. Constraints 2.7 and 2.8 guarantee that each vehicle can depart from and

arrive at the depot only once.

Constraint 2.9 is used to prevent the occurrence of subtours in the solution. Subtours

are infeasible routes because the nature of the problem implies that routes must start and

end at the depot. A few approaches have been proposed to tackle this problem, but the

most interesting one will be discussed further in Section 2.1.2.

Constraint 2.10 sets the flow variables of the problem to be boolean values.

Commodity flow formulations

Commodity flow formulations add a new set of continuous variables to account for com-

modity flow between locations. Given a set of locations V and locations i, j, l ∈ V the flow

variables indicate the amount of demand that flows through the arc between i and j, and

that is destined to a third location l.

8
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Figure 2.1: Example of a subtour generated within a route (AIMMS)

Set partitioning formulations

Set partitioning formulations use a possibly exponential number of binary variables to

represent every single feasible route. Every feasible route has an associated cost, and the

objective is to minimize the sum of all the costs to find the optimal solution. A major

downside of this type of formulation is that, since the number of feasible routes can be

exponentially large and there is a binary variable for each route, the number of variables

can easily surpass millions in most problems.

2.1.2 Subtours elimination

A subtour is defined as a route that doesn’t start nor end at the depot. It is infeasible

because by definition, in the context of VRPs, all routes must have the depot as a starting

point. The constraints defined in 2.9 prevent the creation of subtours and the way they

are formulated is an interesting problem because the number of constraints generated can

be very large and influence the efficiency of solving algorithms. The approach that better

solves this problem is the Miller-Tucker-Zemlin (MTZ) formulation [23]. This formulation

uses n− 1 extra variables (one for each location, except the depot) to represent the order

in which a location is visited and approximately n2/2 extra constraints. The formulation

is the following:

ui −uj +n ∗ xijk ≤ n− 1 ∀i ∈ V \ {0},∀j ∈ V \ {0}, i , j,∀k ∈ K (2.9)

The basic idea is to have a ui value for every location i except the depot. Every time a

location is visited the value of u increases, and this formulation makes it impossible for

a vehicle to travel to a location it has already visited because that location would have a

smaller u value. Using Figure 2.1 as an example, the subtour at the bottom right wouldn’t

be generated because a vehicle wouldn’t be able to travel from location 5 to location 3.

Because of this, there is a guarantee that the only way a vehicle drives in a circle is if it

starts and ends at the depot.

9
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2.2 VRP solving approaches

Determining the solution of a VRP is NP-hard [30], and because of this when it suffices to

produce approximate solutions without the need for an optimality certificate, heuristics

are often employed. The range of heuristics available is vast and some concrete examples

are discussed in Section 2.2.3.

Heuristics can provide good solutions, but they are unable to provide an optimality

certificate for the solution returned. This means that when this certificate is desired, exact

methods have to be used. The most common exact algorithm is the Branch and Bound

(B&B) method.

2.2.1 Exact Methods (Branch & Bound)

The Branch and Bound (B&B) algorithm is a widely used framework used for producing

exact solutions to NP-hard problems [5]. As the name implies, it is built upon two basic

principles: “branching” (splitting the search space into smaller domains) and “bounding”

(using rules to prune off suboptimal search spaces). The “bounding” step, also called

“pruning”, is activated when a subproblem generated by the branching mechanism is

impossible to solve or, even if it contains a feasible solution, there is the guarantee that

from that node no solution better than the incumbent can be found

The behaviour of the algorithm is illustrated in Figure 2.2 [5]. Starting from the

complete solution space, the algorithm iteratively splits and filters the search spaces until

there are no unexplored branches of the decision tree left.

If one applies the Branch and Bound method to an Integer Programming (IP) or Mixed-

integer Programming (MIP) problem, the algorithm starts by computing a solution to a

linear relaxation of the problem. If the solution found respects the integrality constraints,

the algorithm ends and the result is the solution found. Otherwise, the value of that

solution is considered a lower bound or an upper bound, depending on whether one is

dealing with a minimization or maximization problem, respectively. In this case, the

algorithm selects a variable that doesn’t respect the integrality constraints and branches

the problem into two subproblems: one in which a condition is added so that the variable

is less than or equal to ⌊xi⌋ (integer part of the value of the variable xi in the solution);

and one in which a condition is added so that the variable is greater than or equal to

⌈xi⌉ (integer ceiling value of the variable xi in the solution). A solution is then computed

for both subproblems. If any of the solutions are better than the best found so far, then

that solution becomes the incumbent solution. If it can be proven that no solution can

be found to improve the incumbent solution by expanding a certain branch, then the

search space is pruned, and the algorithm considers that subproblem as terminal [24],

meaning all subproblems in that search space are suboptimal. The pruning step prevents

unnecessary computation and lowers the time needed for the algorithm to produce a

result. This procedure is repeated iteratively until there are no unexplored branches of
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(a)

(b)

(c)

Figure 2.2: Illustration of the search space of Branch & Bound (Jens Clausen)

the decision tree or until they are all provably suboptimal. To improve the performance

of the algorithm, three aspects are of utmost importance.

Search strategy

Firstly, the search strategy has to be selected. The most common approaches used for

search strategies are: Depth-first Search (DFS), Breadth-first Search (BrFS), Best-first

Search (BFS) and Cyclic Best-first Search (CBFS) [24]. With a DFS approach, branches

are explored as far as possible before backtracking, and its implementation usually relies

on a stack data structure. In a BrFS, all nodes at a certain depth are explored before

continuing to the next depth level. It is usually implemented with a queue data structure.

Using a best-first search strategy, the next node to be explored is selected using a measure-

of-best function. The function typically used is the lower/upper bound on the value of

the best solution in the subproblem. Because BFS is not tied to exploring one specific

branch before any other, it often finds good solutions earlier in the process. A more recent

approach that has seen good results is a Cyclic Best-first Search (CBFS). The difference
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(a) Depth-first search (b) Breadth-first search

(c) Best-first search (d) Cyclic best-first search

Figure 2.3: Branch & Bound search strategies (David R. Morrison)

between CBFS and BFS is the introduction of contours. BFS uses a single heap data

structure to store all unexplored subproblems, while CBFS divides them into multiple

heaps or contours. The rule by which contours are created varie, butt an example could

be having each contour be associated with a depth level. This behaviour is illustrated in

Figure 2.3. The number inside each node is the value of the solution to that subproblem

and the number to the left of each node is the order by which nodes are visited.

Branching strategy

The second aspect to consider is the branching strategy. The branching strategy deter-

mines how children are generated from a subproblem and the approaches can be cate-

gorized into two groups: binary or non-binary, also known as wide strategies. Binary

strategies divide a problem into two mutually exclusive subproblems and are the most

common in integer programming problems. Wide branching, on the other hand, divide

problems into n different subproblems. Wide branching methods can greatly alter the

size of the search tree because it avoids having to create long sequences of subproblems

12
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(a) Binary branching (b) Wide branching

Figure 2.4: Branch & Bound branching strategies (David R. Morrison)

as be seen in Figure 2.4. Since the problem this thesis aims to solve uses mostly binary

variables and binary branching is the most employed for solving integer programming

problems, this review will emphasize this type of strategy.

The greatest impact on performance in a binary branching strategy boils down to the

choice of the branching variable. For choosing the best variable, a lot of rules have been

proposed. The easiest rule to implement is the lexicographic ordering rule, which se-

lects the variable according to the order by which they were defined (variable xk selected

before xk+1). Another commonly used and easy to implement is the most fractional rule,

which selects the variable whose fractional part is closest to 0.5. This approach, however,

has been shown in [2] to be generally no better than selecting a variable at random. An-

other widely regarded method is strong branching which selects the variable that induces

the largest change in the objective function. It involves performing a look-ahead before

branching and testing which of the candidate variables, if selected, improves the objective

function the most. A third approach worth mentioning is pseudocost branching which

uses past experience to predict the change in the objective function for each candidate

variable. Using the change induced in the objective function to select the branching vari-

able is beneficial to performance because it is more likely that the generated subproblems

can be pruned.

Pruning mechanism

The last aspect which affects performance in a B&B setting is the pruning rules used. It

is the key component of any B&B algorithm because it is the only way to reduce the size

of the search tree and greatly limit the computational effort needed to solve a certain

problem. The most basic and common way to prune is to use the lower bound (or upper

bound for maximization problems) on the objective function at each subproblem. The

subproblems which have a worse lower/upper bound than the incumbent solution are

13
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pruned. Another option is to use dominance relations. Dominance relations allow sub-

problems to be pruned if it can be proven that they are dominated by another subproblem.

Subproblem S1 dominates subproblem S2 if for any solution descending from S2 there

is a solution descending from S1 that is at least as good, and so it suffices to explore just

S1. Another great idea proposed by Gomory was the notion of cutting planes [16]. A

cutting plane is a constraint that can be added to an IP problem to tighten the feasible

region without leaving out any integer solution. Cutting planes led to the development

of a branch-and-cut algorithm by Padberg and Rinaldi[25]. At every subproblem gen-

erated, new cutting planes are added to the Linear Programming (LP) relaxation. The

question of when to generate cutting planes and when to branch is an interesting problem

when designing branch-and-cut algorithms. Finally, another pruning methodology called

branch-and-price was introduced in [27]. It combines elements of the branch-and-bound

method with an approach called column generation. In this method, instead of adding

new constraints to the generated subproblems, sets of variables (columns) are left out

and are added back as needed. This approach is especially helpful in problems where the

majority of columns are not essential for solving the problem.

2.2.2 Optimization solvers

Optimization solvers are software packages specialized in solving NP-hard problems to

optimality. Since competition is fierce in this field, commercial solvers have long striven

to provide the fastest tool using the best state-of-the-art algorithms. While free and

open-source software is often favoured in the programming community, in the case of

optimization software, open-source solvers are lagging behind commercial ones. The

most successful commercial optimization solvers in the industry nowadays are CPLEX

by IBM, Gurobi and FICO Xpress. To select the best one, it’s important to measure their

performance when faced with a problem like the one discussed. The authors of [18]

compared the performance of these three solvers using a Boolean Optimization Problem

(BOOP). A BOOP is an IP problem in which all decision variables are of the boolean

type. This problem is similar to ours because in a three-index VRP formulation most

variables are binary flow variables. The results from [18] suggest that XPRESS finds

worse solutions than the two other packages. Between the two, Gurobi is the one in which

the optimal solution appears first, but CPLEX is slightly faster in providing that solution

with an optimality certificate. Because of this last statement and because CPLEX is the

most complete, it was selected as the best to tackle this problem.

CPLEX

CPLEX is one of the most advanced and accepted optimization software packages for

solving LP, MIP, and Quadratic Programming (QP) problems [8]. It uses a branch-and-

cut method to solve IP problems like the VRP. The optimization package has been under

constant development and improvement since its conception in 1988 and, along with
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XPRESS by FICO, it is one of the few solvers capable of handling Constraint Programming

(CP) problems [4].

CPLEX allows users to parameterize its optimizer to increase performance depending

on the problem’s characteristics. For example, one can control the branching direction the

solver should take first at each node or set a time limit for finding the optimal solution.

If that time limit is reached and the algorithm still hasn’t produced the solution with the

optimality certificate, it will return the solution (if it was found), i.e. the best it has found

up to that moment. It also offers APIs for using the solver with programming languages

such as C, C++, Java, and Python.

2.2.3 Heuristics

For very large problems, when exact methods are not able to find exact solutions in a

reasonable amount of time or when enough memory is not available, it is common to use

heuristics to find acceptable solutions. Heuristic methods implement search strategies

to find good solutions in promising regions of the search space, but without guarantee-

ing the optimality of the result. The class of VRP heuristics expanded greatly when

the computational resources available were incapable of handling even average-sized

problems with hundreds of locations. At a macro-level, VRP heuristics can be classified

into four components [30]: constructive heuristics, improvement heuristics, population

mechanisms, and learning mechanisms [7].

Constructive heuristics

The constructive heuristics class defines heuristics that start off with an empty solution

and iteratively extend the incumbent solution until it is complete. In the case of VRPs,

this would mean that all the locations have their supply met by a delivery vehicle. These

heuristics are commonly employed as a starting point for other heuristics, as is the case

of petal algorithms. Petal algorithms consist of generating a set S of feasible routes and

combining them by solving a set partitioning problem.

Another constructive heuristic, immensely popular for its simplicity, is the greedy

search algorithm. A greedy search algorithm is that which makes the locally optimal

choice at each step. In the context of a TSP, for example, the procedure starts with an

empty graph and selects the edge with the least cost. Afterwards, it will keep selecting

edges of the least cost while making sure that subtours are not generated. The algorithm

stops when a cycle passing through every vertex has been found. Figure 2.5 illustrates

the behaviour of this method in a TSP instance.

Improvement heuristics

In most classical improvement heuristics, the solution is refined until a local optimum

is reached. In metaheuristics, the same mechanism is applied with the addition of more

sophisticated search structures that allow the algorithm to escape local optimum values.
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Figure 2.5: Greedy search iterations in a general TSP example

Variable Neighborhood Search (VNS) methods, for example, build on the idea that

the local optimum incumbent solution might not be the global optimum solution. When

it finds a local minimum, it proceeds to explore other neighbourhoods of this solution,

and it moves to a new neighbourhood if it contains an improved solution. Following this,

it reapplies a local search method to arrive at a new local minimum. If it can’t find an

improvement or if the computational effort to find one is too much, the algorithm stops

and outputs the incumbent solution.

Another example, the Tabu Search (TS) method, starts with an initial feasible solution,

and it inspects solutions in its neighbourhood, choosing the best that is not "tabu". It

uses memory structures to conceive a tabu (forbidden) list, which consists, in essence,

of a set of solutions that have been recently visited, or moves related to those solutions.

A move is a rule incorporated in the definition of the neighbourhood. These memory

structures prevent the algorithm to fall into the same local optimum it had already found

and prevents the cycling behaviour present in classical improvement heuristics.

Population mechanisms

Population-based algorithms take inspiration from natural concepts like the evolution

of species. These methods implement a high-level guidance strategy using complex data

structures. The most famous class of population mechanisms is the Genetic Algorithm

(GA) class. In a GA candidate, solutions are known as individuals and their properties

are called genotypes. The decision on whether an individual survives into the next gen-

eration is dependent on its fitness level (usually the value of the objective function in

the optimization problem being solved). A selection procedure is responsible for pick-

ing a set of individuals with the best fitness values to "breed". Breeding, also called the

generation procedure, consists of creating a new generation of individuals based on the
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population resulting from the selection procedure using crossover and mutation opera-

tors. The selection and generation procedures are repeated until a stopping condition is

reached.

Learning mechanisms

Two learning mechanisms have been proposed to deal with VRP problems: neural net-

works and Ant algorithms [7]. Neural networks proved themselves unable to compete

with other VRP heuristics and are now only applied in hybrid approaches. Ant Colony Op-

timization (ACO) algorithms are population-based algorithms with a learning paradigm

derived from an analogy observed in the behaviour of ants, which lay pheromones on

their trail as they forage for food. Paths for the best food sources are identified by a

larger amount of pheromones. The algorithm can be divided into three major compo-

nents: a ConstructAntSolutions phase, where a set of artificial ants constructs solutions,

an optional ApplyLocalSearch phase where a local search is performed to improve the

solutions obtained by the ants, and an UpdatePheromones phase where the aim is to

increase the pheromone values associated with good or promising solutions and decrease

those that are associated with bad ones [12].

2.3 Clustering methods

In this section, some clustering methods are discussed because they will be used in the

construction of segments that is described in more detail in Chapter 4. The segmentation

procedure included in this work firmly resembles a cluster analysis because it consists of

grouping sets of CP7s that are close to each other into segments. However, we consider

applying such a clustering method when the proximity between CP7s is an important

and decisive factor.

There is a significant number of clustering methods available that serve multiple

purposes and can be applied in various scenarios. These methods can usually be cate-

gorized into one of the following clustering models: connectivity-based, centroid-based,

distribution-based, and density-based.

Connectivity-based models rely on the idea that objects are more related to other

objects close to them than to those further away. These models group objects based

on the distance or similarity between them. In centroid-based models, each cluster

has a representative, also called centroid, that does not need to be part of the dataset.

The k-means method is an example of a centroid-based model. In distribution-based

clustering, objects are assigned to clusters given a probability distribution model and

each object typically has a probability of belonging to a particular cluster. In density-

based clustering, regions with higher density of data points are aggregated, while objects

in sparse areas are usually considered noise.
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2.3.1 k-means

The k-means clustering method is one of the most popular centroid-based clustering

algorithms. It attempts to cluster data points in k groups by minimizing the inertia

criterion (also known as within-cluster sum-of-squares criterion) [6]. In k-means, each

cluster is assigned a centroid, which is calculated using the mean of the data points in

the cluster. The algorithm requires the number of clusters k, to be provided in advance,

which can be seen as a disadvantage when this number can’t be estimated.

The criterion is formalized in Equation 2.3.1, where C is the set of clusters and uj is

the centroid of cluster j. The minimization factor is the variance of each cluster.

n∑
i=0

min
uj∈C

(||xi −uj ||2)

Since the problem is NP-hard, the implementation itself often resorts to an approx-

imate method called Lloyd’s algorithm [21]. Starting from an initial partition set, it

repeatedly finds the centroid of each set and then re-partitions the data points according

to which of these centroids is closest to each point. The algorithm can be decomposed

into four steps:

1. Start with k points as initial centroids

2. Assign each data point to the closest centroid

3. Recalculate each centroid as the mean of the data points belonging to its cluster

4. Repeat steps 2 and 3, until convergence or a stopping criterion is met

For selecting the initial centroids, there are many alternatives. For example, the

Forgy method chooses k random observations from the data set and uses these as the

initial medoids. Another option, by the name of Random Partition method, starts with a

random assignment of data points to k clusters and then computes the initial medoids as

the mean of these random clusters.

2.3.2 k-medoids

The k-medoids problem is a clustering problem analogous to k-means, first described by

Kaufman and Rousseeuw in [19]. In similarity to k-means, it attempts to minimize the

distance between points belonging to a cluster and the cluster’s centroid, but in this case

the centroid (or medoid) is an actual data point. This means it can be used with arbitrary

dissimilarity measures between every pair of data points, which makes it more robust

to noise and outliers than its counterpart. A medoid is simply the object whose average

dissimilarity to all objects in the cluster is minimal, and it can be viewed as the most

centrally located point.
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The work in [19] proposed a heuristic solution to the problem, based on a greedy

search approach: the Partitioning Around Medoids (PAM) algorithm. The algorithm’s

goal is to minimize the average dissimilarity of objects to their medoid.

The PAM algorithm can be broken down into two phases (adapted from [29]):

1. BUILD

In this first phase, a collection of k objects are select to be initial medoids. The

selection process entails the following steps:

1. Initialize the set of initial medoids S, by adding to it the object for which the

sum of the distances to all other objects is minimal (i.e. the most centrally

located object).

2. Consider an object i ∈U (U is the set of unselected objects) as a candidate for

inclusion into S;

3. For an object j ∈U \ {i} compute Dj , the dissimilarity between j and the closest

object in S;

4. If Dj > d(i, i) (the dissimilarity between i and j) object j will contribute to the

decision to select object i; let Cij = max(Dj − d(i, j),0);

5. Compute gi , the total gain obtained by adding i to S as:

gi =
∑
j∈U

Cij

6. Choose the object i that maximizes gi and add it to S.

These steps are performed until all k initial medoids have been selected.

2. SWAP

This second phase attempts to improve upon the set of initially selected medoids.

It consists of comparing all pairs (i,h) ∈ S ×U and computing the effect Tih that

transferring i from S to U and, inversely, transferring h from U to S has on the

clustering.

To compute Tih, one has to take into account the contribution that each object

j ∈U \ {h} has on the swap between i and h. This contribution will be referred to as

Kjih.

The SWAP phase is composed of the following steps:

1. Kjih is computed, taking into account the following cases:

a) if d(j, i) > Dj , then:

i. if d(j,h) ≥Dj , then Kjih = 0;

ii. if d(j,h) < Dj , then Kjih = d(j,h)−Dj ;

In both subcases, Kjih = min {d(j,h)−Dj ,0)}.
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b) if d(j, i) = Dj , then:

i. if d(j,h) < Ej where Ej is the dissimilarity between j and the second-

closest selected object, then Kjih = d(j,h)−Dj (Kjih can be either posi-

tive or negative);

ii. if d(j,h) ≥ Ej , then Kjih = Ej −Dj (in this case Kjih > 0);

In both subcases Kjih = min {d(j,h),Ej} −Dj .

2. Compute Tih, the total effect of the swap as:

Tih =
∑
j∈U

Kjih

3. Select a pair (i,h) ∈ S ×U that minimizes Tih;

4. If Tih < 0 the swap is carried out and the process restarts from step 1 of the

SWAP phase. If minTih > 0, the value of the objective function cannot be de-

creased further and the algorithm halts.

The main drawback of this original PAM algorithm is its complexity for the BUILD

phase has a runtime complexity of O(kn2) and the SWAP phase one of O(k(n− k)2) [28].

For this reason, some alternatives that trade quality for runtime have been proposed, like

the CLARA and CLARANS algorithms.
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Problem statement

This chapter will present some technical aspects of the operations undertaken by CTT.

It will showcase the characteristics of the problem as a whole and describe the previous

work (that served as a starting point for this thesis).

3.1 CTT’s distribution process

CTT is, by far, the largest postal delivery service in Portugal by market share as it accounts

for 84.6% of the total postal traffic [3]. For this reason, there are many aspects of the whole

operation that must be taken into account for improving the efficiency of the process.

3.1.1 Postal codes

The first aspect to consider is how CTT groups postal addresses. The Portuguese territory

is divided into postal codes. A postal code is a series of digits that represent a certain

geographical area, and they are arranged hierarchically. The first subdivision is called

CP4. It comprises four digits, and it represents a certain region. The second subdivision is

CP7, which is obtained by adding three digits to a CP4, usually with a hyphen separating

the two sets of digits. A CP7 is commonly used to represent some street or a set of delivery

locations that are supplied jointly. The last and smallest division is called CP10, and it

is used to uniquely identify a delivery location and postal address. Figure 3.1 illustrates

the areas encompassed by each CP4 in the municipality of Lisbon.

3.1.2 Postal objects

The second aspect to consider is the fact that each delivery is unique and has a set of

attributes that characterize it. Some examples of such attributes are:

Traceability: the capability to trace a delivery object from source to destination.

Format: for categorizing a delivery object’s type and how it should be handled internally.

The five existing categories are LLE (letters), SP (small packages), MP (medium

packages), P (packages), and LNP (large packages).
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Figure 3.1: CP4 regions in the municipality of Lisbon (Rosa Melo Félix)

Delivery standard: the maximum time limit an object has to be in the supply chain, from

when it arrives at one of CTT’s facilities to when it reaches its final destination. The

available standards are D+0, D+1, D+2, D+3, and D+5 and the number indicates

how many days the object must be delivered in.

Upstream division level: how the postal objects are organized upon arriving at a distri-

bution centre. The existing levels are: CP10, CP7 and CP4.

Delivery point: drop points can be either be personal homes (both stand-alone houses

and apartment blocks), commercial or functional addresses, post office boxes, or

clients.

Route type: which type of vehicle is responsible for the delivery.

Proof of delivery: whether the service requires the recipient to sign a proof of delivery.

These attributes and a permutation of the different values each can have are what is

defined as a postal object flow. Objects are grouped into flows because, in theory, two

objects that have the exact same distribution flow should contribute the same amount of

time to the total working time in a distribution centre.
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3.1.3 Distribution process

The third aspect to take into account is how the distribution process is streamlined. To

explain this, some nomenclature, used internally by CTT, has to be defined. For instance,

a Postal Distribution Center (CDP) is the depot of the last mile delivery step. It is as-

signed a geographic range and is responsible for supplying CP7s within that range. Every

morning the postmen that work in that CDP are assigned to a route, formed by a set of

CP7s, and deliver the mail assigned to them in order. The routes are static and are only

updated occasionally with the help of human resources. A CDP is, in turn, supplied by a

Production Logistics Center (CPL). CPLs are large postal centres responsible for handling

a huge amount of postal objects of every kind. Inside CPLs, there are several mail sorting

machines, which are responsible for automatically sorting and organizing incoming mail.

There are two kinds of such machines: Mixed Mail Sorting (MMS) machines (for letters

and envelopes) and Rest Mail Sorting (RMS) machines (for parcels and larger packages).

The distribution steps of a postal object consists of the following phases (illustrated

in Figure 3.2):

1. Acceptance:

On this first step, mail is delivered to collection points by individual customers and

then forwarded onwards to treatment centres. However, since most traffic nowadays

comes from corporate clients, they are usually the ones responsible for delivering

the mail from the printing facilities to treatment centres.

2. Treatment:

Treatment centres, known as CPLs, have the role of handling and preparing mail

to be transported downstream to CDPs. Incoming mail first gets separated by for-

mat and standard. Whenever possible, LLE objects get fed into mail processing

machines, that group mail by final destination. These machines also print a bar

code into each letter to mark the date, time, and machine that processed it. After

this step, workers feed batches of objects to mail sorting machines. These machines

are responsible for arranging the mail in a specified order. This order is given by

the routes to where the objects are destined. Finally, the sorted objects are placed

in containers and loaded into trucks to be transported to their corresponding CDP.

3. Transportation:

On this step, the mail is delivered by truck from a CPL to the multiple CDPs spread

across the country.

4. Dispatch

Postal objects that arrive at CDPs can be sequenced by CP10, grouped by CP7, or

completely unorganized. This step deals with merging incoming mail and assigning

each object to a route, dependent on the object’s destination.
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5. Distribution (last-mile):

This step, commonly known as last-mile, consists of transporting mail from the

CDP to its final destination. Each postman is assigned a route, a vehicle and postal

objects at the start of each day and is responsible for delivering mail to every location

with traffic and return to the depot.

Figure 3.2: Distribution flow of CTT

3.1.4 Last-mile routing

’

Finally, it is worth discussing the way routes are set up and the two models that are

in place in the last-mile routing phase. Firstly, routes are split into an active part and

an idle part. Throughout the active part, the postmen are diligently delivering postal

objects to their addresses. Alternatively, idle parts exist at the start and at the end of the

route, where postmen are simply travelling from and to the CDP. Additionally, there is a

separation between priority mail and non-priority mail. Priority mail is mail that must

be delivered to its recipient in less than 3 business days upon being acknowledged by

CTT. Non-priority mail, on the other hand, can take 3 or more business days to reach its

final destination. It is worth mentioning that non-priority mail accounts for 82.4% of the

total traffic and priority mail accounts for 17.6% [9]. To increase efficiency, the company

has assembled two distribution approaches: the XY model and the in-trevo model.

In the XY model, every route is split into two: a fast half and a slow half. During

a certain day, the locations in the fast half only receive priority mail and the locations

present in the slow half of the route receive both kinds of mail. On the following day, the

two halves swap roles, i.e., the fast half becomes a slow half and vice versa.

Likewise, the in-trevo model follows the same mechanism, but instead of splitting a

route into two halves, a three-way division is made: with two fast sections and a single

slow section. The slow section alternates between the three in a circular fashion.

Deciding on whether to use one model or another in a CDP is done manually and

typically relates to the amount of traffic in that CDP. The simpler model, XY, is more

prevalent in rural regions and the in-trevo model is more established in urban and subur-

ban ones.

The rationale behind this process is the fact that non-priority mail needs not to be

delivered every day and so by keeping this mail in the supply chain for a longer period
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of time the company can save transportation costs and labour time, as locations with just

non-priority mail are not visited if not required.

3.2 Problem specifications

To reach a feasible solution that can be applied in a real-world context, some characteris-

tics were identified that uniquely characterize this problem.

3.2.1 Routing model

Firstly, the base of operations of the last-mile distribution step is a CDP. This means that

each CDP operates independently of all others in its vicinity and is responsible for its

own unique locations and its own VRP instance.

Secondly, the CTT has put forward the requirement that the routing solutions should

be conservative. Routes are static and, for that reason, postmen are familiarized with

the current routes and prepared to deal with unexpected problems. This means there

should be some stability in the way routes are created. The solution to this problem, as

suggested by the company, was the introduction of segments. A segment is, simply put,

an indivisible section of a route and is composed of a set of CP7s. This means that routes

are now defined as a sequence of segments instead of as a sequence of CP7s. Inevitably,

with this requirement, arise some questions of implementation like: how to best create

these segments, how large should they be and how many.

Another requirement is the balancing of workload between postmen. At the end of

the day, a postman’s working time should not differ too much from the working time of its

colleagues. Since the majority of a postman’s job is done in distribution, outside the CDP,

routes assigned to postmen should all have a similar time to completion. Furthermore,

there is a limit into how much time a postman can work, and it is set to 7.8 working hours

a day.

In addition, since the goal of this dissertation is to propose a pilot project of how to

apply the system to a CDP it focuses solely on the specific implementation in Alverca, for

which the postal code is 2615.

Finally, the model should be flexible enough to adapt to future changes imposed both

globally by the company and locally by each CDP.

3.2.2 SISMA

Beyond improving the model formulation, this work also focuses on integrating it with

SISMA.

SISMA is a recent project carried out by CTT to estimate execution times of certain

tasks and calculate productivity coefficients associated with the day-to-day operations at

the CDP level. This tool arises from a necessity to replace the obsolete model, Unidade

Equivalente de Correio (UEC), previously used by the company, which was outdated and
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unable to correctly reflect the changes imposed by the paradigm shift verified during the

last years in postal distribution.

In essence, SISMA is a dataset, stored in a spreadsheet format, that comprises several

sheets with information about various metrics of operations and time standards. The

most useful characteristic about it is the way it can output the labour time needed for

all processes of the supply chain, given the number of postal objects. For example, by

varying the number of objects of a certain kind, with SISMA, the company can analyse

the impact this variation will have in labour time and adjust its workforce accordingly.

The way it does this is by having a correspondence between a flow and a task, and

assigning a boolean value signifying whether a certain task is carried out during a certain

flow. These boolean values are disposed in a matrix format inside the document (see A.5).

In this context, a flow is a possible delivery procedure of a postal object. For example,

the delivery of a small package using a D+1 standard to a PO box is a viable flow. These

attributes are characteristics of a certain delivery and are described in further detail in

Section 3.1.2 By aggregating the time taken by each task during a flow it can evaluate a

reference time, which is estimated based on benchmarks defined in the postal deliveries’

industry, and it signifies the amount of time that each delivery flow needs. This time

includes the tasks partaken during the entire process, including both the processing and

transportation steps. The way flows relate to each other can be viewed as a tree-like

structure. A leaf of this tree corresponds to a flow with all attributes explicitly specified.

Each leaf has a “parent” flow, which is obtained by omitting one of the attributes. The

reference time of this “parent” flow is calculated by doing a weighted average using the

weight of each “child” flow. These weights are based on the volume of traffic in each flow.

After aggregating all flows, one can analyse the productivity of the deliveries made by

each distribution centre. The productivity indices are obtained from the division between

the real-time measured empirically, and the theoretical time needed based on reference

studies.

Despite being a major help, SISMA is not foolproof. Its main disadvantage resides in

the way it estimates the expected transportation time (the time spent travelling between

delivery points), which the company considers somehow unrealistic. The reason for this

is the way SISMA estimates travel times. It uses assumptions to indicate the average

speed of vehicles, distance estimates for the routes and address density values, all the

while disregarding important conditions like the terrain, speed limits, and the type of

road a postman uses.

This shortcoming cannot be taken lightly, as transportation time occupies a large

part of the labour time. In Alverca, for example, it accounts for 37.7% [9]. That’s why

solving this problem and integrating the proposed model with SISMA is one of the most

important contributions of this dissertation.
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3.3 Previous work

As mentioned previously, this dissertation will have as a starting point the work previ-

ously developed by Pedro Pereira, a former M.Sc. student. In his master thesis, the goal

was to create a framework for simulating and calculating the optimal routes for post-

men in different scenarios [26]. To do this, a variant of the VRP was created, using the

three-index vehicle flow formulation, which was referred to as MVRP.

In this model, the goal was to minimize the number of postmen needed to cover all

locations. It is a specialization of a regular VRP in two aspects. It added constraints to

ensure that each route’s duration doesn’t fail to meet the minimum time a postman is

allowed to work and that it doesn’t exceed the maximum time a postman is allowed to

work. In addition, to meet the conservative solution specification, constraints were put

in place to make sure that each generated route had at least a percentage of the locations

present in the routes already used by CTT.

For testing purposes, the proposed solution the CDP of Alverca and the CP7s that are

in its distribution range were used.

Data extraction

To solve the optimization problem, some data needs to serve as input to define the model’s

parameters and constraints.

Firstly, the delivery locations are very important. These locations were provided by

CTT and include 1018 CP7s and the depot. A problem arises due to the very large number

of locations and the exponentially large number of variables and constraints generated.

CPLEX, despite being one of the best solvers available, is unable to produce optimal

solutions in less than 3 days of computation time using so many data points. This issue

is dealt with in Section 3.3.

Secondly, the travel time between locations had to be estimated. For this, the best

approach was to use a routing service to find the fastest path between two locations. Many

services exist, but the one used was Openrouteservice [15].

Another essential datum is the time spent by a postman in each location. This data

was calculated using some data provided by the CTT. The actual data provided was the

daily average amount of mail delivered during February 2020, the percentage of total

mail delivered in each CP7 during the same month, and the routes of each postman. In

[26], these times were calculated using the number of daily objects delivered to each CP7

by multiplying the total amount of objects by the percentage delivered to it. These values

were used to estimate a productivity coefficient for each route by dividing the sum of

objects delivered per route by the average time a postman works. All the coefficients were

averaged to produce a global productivity coefficient. Finally, to get the time taken to

attend to each location, one just needs to divide the number of objects destined to each

CP7 by the productivity coefficient.
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Lastly, the model needs also the currently used routes, which were provided directly

by the CTT.

Clustering

As mentioned in Section 3.3, a way to aggregate locations was needed for CPLEX to

produce optimal solutions in a reasonable amount of time. As such, a clustering technique

was applied to reduce the number of locations. A bisecting clustering algorithm using

three different methods was chosen (K-Medoids, Agglomerative clustering, and K-Means).

The K-Means approach ended up being the chosen option, for it generated the least

number of locations (52) and because of that CPLEX was able to produce a result faster,

using only 24 postmen.

Route optimization

The optimization process is portrayed in Figure 3.3. Starting with the data retrieval step,

where the data provided by the CTT is manipulated and prepared for the next step. Next,

the locations are clustered using a bisecting K-Means algorithm. After clustering, data

has to be modified. The number of locations becomes the number of clusters plus the

depot. The time taken to deliver mail in each cluster becomes the sum of the time taken to

deliver mail in all locations belonging to that cluster. For the time taken to travel between

each pair of clusters, the maximum time between any pair of locations in both clusters

was used. In the third step, the solver comes into play, generating optimal routes and

assigning them to a postman. These routes are an ordered set of clusters, not locations.

To finalize the process, the MVRP is applied again, for each route generated and using

the actual locations instead of the clusters. At the end of this process, the result is an

optimized set of routes through every CP7 in the dataset.

Graphical user interface

Besides optimizing the routes created by way of solving a VRP, the previous work also

focused on building a Graphical User Interface (GUI) to serve as a support tool for the

company. It employed the tkinter [14] Python module, which allows for an easy way to

build functional and lightweight GUIs.

The application developed required the user to input the locations file with the coor-

dinates of every location and the duration matrix file with the time taken between every

pair of locations. In addition, it required the user to parameterize the number of postmen

available, the number of locations, and the minimum and maximum time a postman

is allowed to work. It also had some configuration options. The user could choose to

solve the problem using CPLEX (exact method) or a greedy search approach, using the

K-Means or K-Medoids clustering methods and set limits on the time taken to produce

solutions.
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Figure 3.3: Optimization process steps (Pedro Pereira)

Results

To examine the results of the MVRP, a comparison was made between these and the cur-

rent routes used by the CTT in Alverca’s distribution centre. Alverca’s CDP has 25 routes,

therefore needing at least 25 postmen. However, when applying the MVRP the solution

found needed only 24 postmen, which despite being only a 4% decrease translates to

a considerable amount of capital saved in the long run. Other than the slight decrease

in the number of postmen, the total routing time was also reduced by 11% [26]. Since

the parameters provided to the model can greatly alter the final result, an analysis was

made to compare the results by varying the time taken to travel between locations and

the coefficient of objects delivered per hour.
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Segmentation

The routing model is meant to be applied daily and generate routes taking into account

the real traffic of each day. Routing individual CP7s would generate completely different

routes from one day to the next and be too disruptive for postmen and CDP managers.

As such, the use of segments to compose routes, instead of CP7s, was a suggestion

put forth by CTT to simplify the routing model without causing too much disturbance

to the current state of operations. This chapter will describe, as thoroughly as possible,

the steps undertaken and the decisions made to arrive at a feasible segmentation that can

be applied in a real-world context. Furthermore, the chapter will focus on explaining

how the expected times to complete a CP7 and a segment were reached, the algorithms

and parameters used in the segmentation and the reasoning behind them. Finally, it will

present the results and the visualizations made to analyse them.

4.1 Data retrieval

A segment is, in essence, an ordered set of CP7s that a postman will always complete

uninterruptedly. How long a postman will take to complete a segment is not known a
priori, and this variable depends on the amount of mail destined to that segment, the

number of addresses that will be visited, and also the vehicle used. Since the first two

variables are constantly changing and segments are not supposed to, it was decided to use

reasonable estimates to determine the average time to complete a segment. This means

that this segment time may change from one day to the next, but the routing step will

make sure that the total length of a route doesn’t surpass the legal and established limit.

The time per segment can be split into time travelling between CP7s and time spent

delivering mail in a CP7. Furthermore, since a CP7 consists of a set of addresses, the time

taken delivering mail in a CP7 can be divided into time travelling between addresses and

time spent delivering mail in each address.

This hierarchical description can be formalized in the following manner (using Table

4.1 for guidance).

Equation 4.1 calculates the time taken to delivery mail in the CP7 p and this time
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Table 4.1: Notation for describing the decomposition of times per segments and CP7s

A Set of addresses (or CP10s)
R Set of edges connecting individual addresses
P Set of postal codes (or CP7s)
S Set of segments
Q Set of edges connecting CP7s
Ap Set of addresses belonging to postal code p
Rp Set of edges in the route that visits every address in p
P s Set of postal codes in segment s
Qs Set of edges in the route that visits every CP7 in s
Td Delivery time
Tt Travel time

results from the addition of the time taken to delivery mail in each of p’s addresses and

the time taken to travel between these addresses.

T
p
d =

∑
i∈Ap

T i
d +

∑
(i,j)∈Rp

Tt(i, j) (4.1)

Likewise, equation 4.2 calculates the time taken to deliver mail in segment s. This

time is obtained by adding the summation of the time taken to deliver mail in each CP7

in the segment (given by 4.1) and the total time spent travelling between CP7s.

T s
d =

∑
p∈P s

T
p
d +

∑
(k,l)∈Qs

Tt(k, l) (4.2)

The time travelling between two CP7s was calculated using the two closest addresses

in both CP7s. Furthermore, as will become evident in Section 4.1.1, the time taken to

deliver mail in the set of addresses in a CP7 p (first summation in Equation 4.1) was

extracted directly from SISMA as there wasn’t data regarding this time for individual

addresses.

4.1.1 Estimating delivery times

SISMA has information about the delivery times of postal objects. The summary sheet

(see A.6) contains information about the delivery times of each flow. The goal, however,

is to estimate a delivery time for every CP7 and for this the following procedure was

followed:

1. Use the traffic by CP7 sheet (A.4) to produce weightings for traffic in each CP7

SISMA has traffic data per CP7 that passed through the automated processing ma-

chines. This traffic, however, which does not constitute the entirety of traffic des-

tined to each CP7 and can’t be used directly. For this reason, this traffic data was

only used to produce weightings for each CP7 by dividing the CP7’s traffic value by
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Table 4.2: Traffic data by CP7

CP7
MMS RMS

Total
Non-priority Priority Traceable Non-priority Priority Traceable

2600002 168 20 17 1 1 0 207
2600004 53 7 12 1 0 0 73
2600005 10 1 2 1 0 0 14
2600006 23 2 3 2 1 2 33
2600007 4 0 3 0 0 0 7

the CDP’s total. The data is divided into six columns: three for the MMS machines

and three for the RMS machines (for priority, non-priority and traceable mail).

This process basically translates Table 4.2 to 4.3, which have both been cropped for

visualization. In Table 4.3, each column’s percentages must add up to 100%.

Table 4.3: CP7 traffic weights

CP7
MMS RMS

Non-priority Priority Traceable Non-priority Priority Traceable
2600002 0.04% 0.04% 0.02% 0.01% 0.01% 0.00%
2600004 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
2600005 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%
2600006 0.01% 0.00% 0.00% 0.01% 0.01% 0.03%
2600007 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2. Apply the mapping in Table 4.4 to correlate flows into one of the weightings

Using the percentages from the previous step, the real traffic data from the traffic

sheet (see A.1) and the mapping in Table 4.4 it is possible to estimate how many

objects of each flow a CP7 will receive on average.

Table 4.4: Mapping from flow to object scheme

Flow
Object scheme

Format Traceability Delivery standard

LLE w/o trace D+1 MMS Priority
LLE w/ trace D+1, D+2 MMS Traceable
LLE w/o trace D+3, D+5 MMS Non-priority
SP, MP, P w/o trace D+1 RMS Priority
SP, MP, P w/ trace D+1, D+2 RMS Traceable
SP, MP, P w/o trace D+3, D+5 RMS Non-priority

3. Multiply SISMA’s coefficients to the volume of traffic and add up the results

SISMA’s summary sheet (see A.6) contains productivity coefficients for each flow in

seconds per object. By multiplying the delivery time coefficient by the number of

objects in each flow, the time needed to deliver the objects is obtained. Finally, to

calculate the delivery time for a CP7, we just add up the delivery time values for

every flow.

Table 4.5 shows the final result of this process. In particular, the last column contains

an estimate of the delivery time for each CP7. This table contains only the first five CP7s

and some columns were omitted.
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Table 4.5: Delivery times table

CP7
w/o trace w/ trace

Total Delivery time [min]LLE SP MP P
d+1 d+3 d+5 d+1 d+3 d+5 d+1 d+2 d+1 d+2

Total 261.564 8501.518 773.225 155.481 180.016 16.373 151.879 48.348 111.372 25.488 11,848 4,406.58
2600002 0.099 3.594 0.327 0.021 0.012 0.001 0.000 0.000 0.000 0.000 4.23 0.83
2600004 0.035 1.134 0.103 0.000 0.012 0.001 0.000 0.000 0.000 0.000 1.41 0.30
2600005 0.005 0.214 0.019 0.000 0.012 0.001 0.000 0.000 0.000 0.000 0.27 0.07
2600006 0.010 0.492 0.045 0.021 0.024 0.002 0.042 0.013 0.031 0.007 0.85 0.65
2600007 0.000 0.086 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.12 0.03

4.1.2 Estimating travel times

For estimating the travel times in each CP7 CTT provided data at the CP10 level for the

objects that passed through the automated processing machines in the month of January

2022. This data is important because for estimating the travel time in each CP7, one has

to know which of its addresses will be visited and by what order a postman will visit

them.

Once an object is recognized by the machine, we can assume that it will arrive in a

CDP before dawn so that it is distributed the following day. This doesn’t happen every

time, but it’s a reasonable simplification. Considering every object has a timestamp, we

can aggregate this data and devise how much traffic the CDP had on a given date.

The simulation procedure for arriving at a travel time for a given date and CP7 was

the following:

1. Get which CP10s had some traffic

Filtering the data by date and CP7 results in a list of objects with their destination

CP10. Aggregating the objects by CP10 results in a collection of CP10 with its

respective object count.

2. Estimating the route a postman will make in each CP7

After step 1, follows a simple TSP routing problem to determine the optimal path a

postman should take, passing through every CP10 in the CP7. A TSP was employed

instead of a VRP because the goal is to simply draw the best path passing through

every CP10 and constraints like how much time these paths should incur should

not modelled. In addition, since it is expected postmen will be rational to try and

minimize their travel time in a CP7 without requiring optimality, the decision was

made to solve this routing problem using a greedy search approach. Furthermore,

the use of a greedy method is less computationally intensive.

The actual implementation required the ascertainment of several duration times

between CP10s. To determine these, the Openrouteservice [15] tool was employed.

In addition, to calculate the duration between two CP10s of the same CP7, the

assumption was made to use the currently established vehicle responsible for the

CP7.
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3. Extracting the routing time required

Following the determination of the greedy optimal path, follows the summation

of all its constituents, which results in an estimated travel time for each CP7. The

TSP greedy search method finds a cycle passing through every CP10 but since after

completing the CP7 a postman does not need to return to the first CP10 visited the

largest constituent time in the cycle was subtracted from the total travel time.

This procedure was repeated for every day in January 2022 that had an overall traffic

value of more than half the median traffic value for the month. The results were averaged

to obtain a realistic estimate on the average travel time for the month. Table 4.6 shows

these estimates, in seconds, for the first business week of January 2022.

Table 4.6: Travel times estimates for the first business week of January 2022

CP7 TravelTime (1/3/2022) TravelTime (1/4/2022) TravelTime (1/5/2022) TravelTime (1/6/2022) TravelTime (1/7/2022) AverageTime
2600010 81.73 36.8 12.2 81.74 61.4445
2600011 551.8 648.69 643.65 640.8 712.16 569.2114762
2600014 49.59 67.61 60.44 62.23 65.92 64.13333333
2600015 19.79 40.13 25.89 36.34 42.72 29.16352381
2600016 17.71 18.6 16.82 10.27 14.93380952
2600017 48.77 53.84 60.02 60.02 54.11 51.30809524
2600018 92.68 82.04 105.99 115.55 87.51 83.61238095
2600019 24.35 48.09 48.84 26.55 52.84 42.4252381

4.2 Segmentation scenarios

Having delivery and travel time estimates for each CP7 facilitates the generation of seg-

ments because the only restriction is that they can be completed in a reasonable amount

of time by a single postman.

This work focused on implementing two different scenarios for segment generation.

The first scenario was to build a hierarchical clustering algorithm that utilizes the com-

plete set of CP7s in the CDP and recursively bisect it into smaller and smaller segments

until every segment can be completed in no more than a certain time limit. The second,

more conservative, was to utilize the currently established routes and partition them

into smaller subsets of CP7s until, again, no segment takes more than a certain amount

of time to traverse. The second alternative is more conservative because it implies less

radical changes to distribution. For example, because CP7s are currently assigned to a

route, they are visited using that route’s vehicle. If two CP7s of different routes were to

be merged in the same segment, a decision would have to be made as to which vehicle

would supply them.

In both algorithms, the distance metric used between data points (CP7s) was the

duration time to go from one CP7 to another. Likewise, they both receive a parameter

which indicates the maximum segment size (i.e. the maximum time a segment is allowed

to be completed in). The values used for this parameter are: 60, 90, 120, 150 and 180

minutes.
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4.2.1 Bisecting k-medoids

The idea behind this algorithm is to provide the optimal segmentation, disregarding

the current routes. The algorithm’s starting point is the complete set of CP7s in the

CDP. From here it selects a segment with a time to completion greater than the given

parameter (the collection of CP7s in this case), and it applies a bisecting k-medoids

clustering to it. From this step result two distinct segments in terms of CP7s. The

forementioned procedure is repeated for each of these segments until no segment for

which the estimated time to completion is larger than the parameterized limit exists.

Algorithm 1 is a pseudocode implementation of this scenario.

The inner k-medoids algorithm receives a precomputed travel time matrix between

CP7s, and at each step, the selection of the initial medoids is made using the two data

points furthest in travel time from each other.

The decision to use a hierarchical algorithm instead of a simple clustering method

was because most clustering methods take as parameters the number of clusters to create

and don’t allow for a custom duration matrix between data points to be provided. The

inner clustering method used was k-medoids instead of k-means because in k-medoids

centroids of clusters are original data points, and this allows the use of a precomputed

distance matrix (durations between CP7s).

Algorithm 1 Bisecting k-medoids
segments← BisectingKMedoids([CP 7sCollection])
procedure BisectingKMedoids(S)

if exists some segment larger than time limit and with more than 1 location then
find that segment s ∈ S
s1, s2← k-medoids(data = s, clusters = 2)
return BisectingKMedoids(S \ {s} ∪ {s1, s2})

end if
return S

end procedure

4.2.2 Bisecting routes

Alternatively, an algorithm to extract segments from the current routes is proposed in

this subsection. In this case, the procedure starts from a set of routes and selects the

first that surpasses the parameterized time limit. It lays out the sequence of CP7s on a

cutting board and determines the largest duration jump from one CP7 to the next. The

sequence is split where this largest arc appears, and two subsegments are created. With

them, the procedure repeats recursively until every segment’s time to completion is valid.

Algorithm 2 provides a pseudocode implementation of this method.
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Algorithm 2 Bisecting current routes
segments← BisectingRoutes(CurrentRoutes)
procedure BisectingRoutes(S)

if exists some segment larger than time limit and with more than 1 location then
find that segment s ∈ S and get its locations {p0, ...,pi ,pi+1, ...,p|S |−1}
find i such that distance(i, i + 1) is maximum
split s into s1 = {p0, ...,pi} and s2 = {pi+1, ...,p|S |−1}
return BisectingRoutes(S \ {s} ∪ {s1, s2})

end if
return S

end procedure

4.3 Results

From the implementation of these scenarios resulted two tabular data structures stored

in a spreadsheet: one for the specification of the segments created (which CP7 compose

them) and one with information about each segment. Tables 4.7 and 4.8 are snapshots of

each of these two files, respectively.

In Table 4.7, each row corresponds to a CP7. The first two columns identify the

segment in which the CP7 was inserted and the order by which it will be visited. The

third column has information about the time taken to travel to the next CP7 in the

segment. Columns 4 and 5 have information about the routes the CP7s are currently a

part of. In particular, the route identifier and the sequence number of the CP7 in the

route. The second to last column is the algorithm used in the segmentation, and the last

one is the maximum segment size parameter.

A segment is done uninterruptedly by a single postman using only one vehicle. In the

case where a segment is composed of CP7s that are assigned to different types of vehicles,

there is a decision to be made as to which vehicle should be used in this segment. In these

cases, the vehicle used in the most CP7s seems the logical choice.

Table 4.7: Segments specification results file

SegId SegSeq TimeToNextLoc RouteId RouteSeq CP7 Lat Lon DeliveryTime TravelTime Time Algorithm MaxSegmentSize
0 0 13.52 MC100 21 2615686 38.91796 -9.02806 185.6625 15.9005 201.563 BisectingKMedoids 60
0 1 94.14 MC100 22 2615683 38.91783 -9.02866 61.59787 18.13053 79.7284 BisectingKMedoids 60
0 2 MC100 24 2615706 38.9188 -9.03006 18.07985 1.8182 19.89805 BisectingKMedoids 60
1 0 6.07 UV070 30 2615737 38.91689 -9.02635 294.6412 18.09048 312.7317 BisectingKMedoids 60
1 1 24.42 UV070 31 2615687 38.91686 -9.02674 60.26986 3.763333 64.03319 BisectingKMedoids 60
1 2 6.72 UV070 35 2615704 38.91731 -9.02704 301.6779 24.5919 326.2698 BisectingKMedoids 60
1 3 8.32 UV070 34 2615690 38.9175 -9.02678 34.18931 0.66 34.84931 BisectingKMedoids 60
1 4 22.62 UV070 33 2615691 38.91733 -9.02639 66.34737 0.715 67.06237 BisectingKMedoids 60
1 5 67.59 UV070 32 2615663 38.91783 -9.02557 70.82164 9.3565 80.17814 BisectingKMedoids 60
1 6 UV070 44 2615675 38.91872 -9.02497 807.7401 53.16333 860.9035 BisectingKMedoids 60

In Table 4.8, each row relates to a segment. The first column is the segment identifier,

the second is the number of CP7s it contains, and the last two are, like the previous file,

the algorithm and maximum segment size parameter. The time attributes are in seconds.

The results of all test runs, using the two algorithms and the five parameters, were

aggregated in a single file for simplicity when importing the results to Tableau and a data

visualization tool that was used to analyse the segmentation solutions.
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Table 4.8: Segments metrics results file

SegId Size DeliveryTime TravelTime TotalTime Algorithm MaxSegmentSize
0 3 265.3403 143.5092 408.8495 BisectingKMedoids 60
1 7 1635.687 246.0805 1881.768 BisectingKMedoids 60
2 2 1660.136 157.4425 1817.579 BisectingKMedoids 60
3 2 161.7971 25.60371 187.4008 BisectingKMedoids 60
4 8 1880.085 523.4459 2403.531 BisectingKMedoids 60
5 5 1221.157 362.3598 1583.517 BisectingKMedoids 60
6 9 2377.876 877.1209 3254.997 BisectingKMedoids 60
7 2 109.0339 64.70519 173.7391 BisectingKMedoids 60
8 6 1563.675 576.8415 2140.517 BisectingKMedoids 60
9 10 3046.527 457.6 3504.127 BisectingKMedoids 60

10 19 1378.935 1307.988 2686.923 BisectingKMedoids 60

4.3.1 Segmentation visualization workbook

After a successful segmentation follows a detailed analysis of the results, methods, and

parameters. For this analysis, the suggested approach was to use Tableau for data vi-

sualization. Tableau allows its users to import data stored in a variety of formats and

intuitively create helpful visualizations to review the data and reach fitting conclusions.

This subsection attempts to showcase the main visualizations in the workbook created

for this effect.

The first visualization, shown in Figure 4.1, is a simple overview of the segments

created by each method and parameter. From it, we can directly observe that the larger

the maximum time limit per segment, the fewer segments are created and the larger the

average time and number of CP7s per segment. It is also the case that the first algorithm

(4.2.1) outputs fewer segments than its counterpart. This can be explained by the fact

that it better optimizes segments. Using the second method results in more segments

because the starting point is already a collection of segments and the procedure has to

bisect them further to make sure they all fall under the parameterized limit.

Figure 4.1: Segmentation methods and parameters overview

The next visualization is a collection of hybrid dot and box plots applied to each

segmentation scenario. In Figure 4.2, each scenario contains a clickable dot for every

segment that shows that segment’s information. The left axis reflects the respective time

dimension.

More important than a simple table is the ability to visualize segments in a geographic

map. This realization led to the addition of another visualization, seen on the right side

of Figure 4.3, which can interactively show a solution, selecting the algorithm and the

parameter, with all CP7s’ geographical positions overlaid on the region of Alverca. Each

colour corresponds to a segment, and so CP7s in the same segment have the same colour
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(a) Total segment time plot (b) Travel time plot

(c) Delivery time plot

Figure 4.2: Times per segment plots
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and a path connecting them. The left-hand side of Figure 4.3 shows a bar chart of the

estimated completion time of each segment and a floating container for selecting the

solution. The bars are decomposed into delivery time (in blue), intra-CP7 travel time (in

orange), and travel time between CP7s (in red).

Figure 4.3: Segmentation solution analysis dashboard

Other than inspecting individual solutions, it would be interesting to know the total

segmentation time of each solution. This is what is shown in Figure 4.4. Analysing it,

clearly smaller values for the maximum segment time parameter generate smaller work-

ing times. While the intra-CP7 travel and delivery times remain constant independently

of the scenario, the travel time between CP7s increases as a function of the maximum

segment size. This is because smaller segments have less CP7s, and so this travel time

diminishes.

In principle, a maximum segment size of 0 would result in a segmentation equal

to the entire collection of CP7s. These results would completely defeat the purpose

of segmentation, and so it is undesirable. Because of this and because the routing time

between segments contributes a lot more to the total working time of postmen, evaluating

segments in this way is not a rational approach.

Finally, Figure 4.5 is a helpful side-by-side comparison between the segments gen-

erated using the Bisecting Routes algorithm (on the left) and the current routes (on the

right). This visualization only makes sense using the second method because the first

does not use the current routes as a starting point.
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Figure 4.4: Total segmentation times chart

Figure 4.5: Segmentation comparison to current routes’ dashboard

40



5

VRP formulation

The mathematical modelling of a VRP and its translation into machine-readable code is

what allows a problem as complex as this one to be solved by optimization packages like

CPLEX. This task, of adapting and combining the many formulations that already exist

in the literature to arrive at a model that can reflect the process of the last-mile routing

at CTT cannot be taken lightly.

The work that precedes this project is of major help to the problem because it already

brought to light what a working formulation would look like. Like the previous one, this

model is also built on top of a three-index vehicle flow formulation (see Section 2.1.1)

using the MTZ formulation for the subtour elimination problem (see Section 2.1.2). This

time, however, some adaptations have been made to refine it and decrease the computa-

tional effort required to solve it.

The adapted formulation, with its parameters and variables specified, for this im-

proved model, which will be referred to as CTTVRP, is the following:

Parameters

n: total number of locations including depot

p: total number of available postmen

tmin: minimum working time of a postman

tmax: maximum working time of a postman

tij : time taken to go from location i to location j

wi : time taken to deliver mail in location i

Sets

K : set of postmen, K = {1, ...,p}

N : set of locations, N = {1, ...,n}

41



CHAPTER 5. VRP FORMULATION

Nc: subset of locations without the depot, Nc = {1, ...,n}

A: set of admissible arcs, A = {(0,1), ..., (n− 1,n)}

Variables

zk =

 1 if postman k is used

0 otherwise
, k ∈ K

xijk =

 1 if postman k visits location j after i

0 otherwise
, i, j ∈N,k ∈ K

ui : rank order in which location i is visited, i ∈N

The formulation is as follows

minimize
∑
i∈N

∑
j∈N\{i}

∑
k∈K

tijxijk (5.1)

subject to the following constraints

∑
k∈K

∑
j∈Nc

x1jk ≤ p (5.2)

∑
j∈Nc

x1jk = zk ∀k ∈ K (5.3)

∑
i∈Nc

xi1k = zk ∀k ∈ K (5.4)

∑
j∈Nc\{i}

∑
k∈K

xijk = 1 ∀i ∈Nc (5.5)

∑
i∈Nc\{j}

∑
k∈K

xijk = 1 ∀j ∈Nc (5.6)

∑
i∈N

∑
j∈N\{i}

(tij +wi)xijk ≤ tmax ∀k ∈ K (5.7)

∑
i∈N

∑
j∈N\{i}

(tij +wi)xijk ≥ tminzk ∀k ∈ K (5.8)

∑
i∈N\{j}

xijk −
∑
r∈N

xjrk = 0 ∀k ∈ K,∀j ∈Nc (5.9)

ui −uj +n ∗ xijk ≤ n− 1 ∀i ∈Nc,∀j ∈Nc, i , j,∀k ∈ K (5.10)

xijk = 0 if (i, j) < A ∀i ∈Nc,∀j ∈Nc,∀k ∈ K (5.11)
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xijk ∈ {0,1}, zk ∈ {0,1}, i ∈N,j ∈N,k ∈ K (5.12)

Unlike previously, the objective function 5.1 now focuses on minimizing the travel

time needed for postmen to cover all the segments. Constraint 5.2 ensures that the

number of paths leaving the depot is not greater than the number of postmen (because

each postman has to leave the depot only once in the morning and return during the

afternoon). Constraints 5.3 and 5.4 guarantee that each working postman leaves from

and arrives at the depot only once. Constraints 5.5 and 5.6 ensure that each segment is

visited only once. Constraint 5.7 guarantees that the routing time of a postman (from the

moment it leaves to when it arrives at the depot) doesn’t exceed a maximum time limit.

Similarly, constraint 5.8 guarantees that a postman’s routing time surpasses a minimum

time limit. Constraint 5.9 makes sure that each segment visited by a postman k has to

be connected to some other segment visited by k. Constraint 5.10 is the MTZ subtour

elimination constraint. Constraint 5.11 is the constraint that guarantees that the solution

only contains the arc between two segments i and j if that arc is an element of A, the set

of admissible arcs. The inclusion of this constraint greatly diminishes the problem size

and the computational time needed to reach a solution, as further explained in Section

5.1.

Objective function

The change introduced to the objective function comes from a weakness identified in the

previous solutions, which was the fact that postmen would often have to make irrational

and unnecessary journeys from one end of the map to another opposite to it, only to

go back to where they just were. The problem with using the number of postmen as

the optimization variable is that solutions will disregard the distances travelled and the

time spent by these working postmen. For example, suppose the problem we are solving

contains 10 segments and 5 postmen. Additionally, suppose that all 10 segments can

be visited in a single day by just one postman. By having the objective function be

the minimization of the number of postmen, the solver will output any route that this

postman can make, as long as it visits every segment. This is obviously a problem because

there is a multitude of routes passing through all 10 segments, but not all of them are

optimal in saving costs. The same logic applies when we increase the problem size. As

such, the proposed approach is to change the objective function to minimize the total

travel time of the entire workforce.

Tables 5.1 and 5.2 present the results obtained before and after this change to the

objective function. The tests were performed with the same exact segments in both

scenarios, and the only difference was the objective function. The tables show the average

results over five consecutive test runs. Analysing these results, it is clear that there was a

decrease in the routing time of the solutions. In addition, there does not appear to be a

large increase in the number of postmen used in the solutions.
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Table 5.1: VRP solution details minimizing the number of postmen

Segments count 5 10 15 20

Routing time (minutes) 2650.8280 4082.7600 5445.556 6358.6760
Solve time (seconds) 0.0376 0.3282 0.500 6.0124
Postmen used 1 2 2 3

Table 5.2: VRP solution details minimizing the total travel time

Segments count 5 10 15 20

Routing time (minutes) 2609.5240 3920.1420 5080.7600 5717.3900
Solve time (seconds) 0.0406 0.1998 1.0312 5.3342
Postmen used 1 2 2 3

5.1 Improvements

The main problem that comes with solving a large VRP to optimality is the computational

effort required to do so. Even top-level solvers like CPLEX, using state-of-the-art branch-

and-cut techniques, often struggle to find the optimal solution to problems with many

locations in a reasonable amount of time. This is why, for example in the previous work, a

clustering method had to be applied to reduce the number of locations used and, in turn,

the problem size. The problem with this approach is that solutions are worsened by this

clustering step because it affects the data granularity. To avoid this, two kinds of changes

to the model are discussed in this section that intend to greatly reduce the problem size

without affecting the quality of the solutions. The motivation behind both approaches is

the realization that a postman will probably never need to travel from one segment on

the map to another diametrically opposed to it without passing through an intermediate

one. This means that the arc between the two opposite segments shouldn’t need to be

considered in the solution space.

1. Using constraints to limit the xijk variables admissible in solutions

This first method introduces a new constraint to the model (Constraint 5.11). This con-

straint forces all the values of xijk variables to become 0 if the arc (i, j) is not a part of the

admissible arcs set A. The problem of defining this set is discussed in Section 5.1.1.

2. Limit the xijk variables generated by the model

This alternative limits the xijk variables that are generated when the model is defined by

only creating the variables in which the arc (i, j) is an element of A.
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(a) No optimization (b) Improvement method 1. (c) Improvement method 2.

Figure 5.1: Approaches taken to limit problem size applied to a single segment (k=4)

5.1.1 Defining the admissible arcs set

The approach taken to define A is the following: for each segment i other than the depot,

consider only its k-nearest neighbours to define the set of arcs (i, j). There is obviously

only one exception to this rule, which is the case of the depot. Every arc that originates

from or arrives at the depot must be considered by the model. When i is 1, all arcs

(i,2), ..., (i,n) have to be elements of A (equivalently, when j is 1).

This simplification greatly tightens the solution space because before with n segments

we can imagine a set A that would contain all arcs in the complete digraph of N (the set

of all segments). This set would have a size of n(n − 1). By defining A in this way, its

cardinality becomes 2(n− 1) + k(n− 1). Since k can be expected to be much smaller than,

n this results in a massive reduction in the number of xijk variables inside the solution

space.

Figure 5.1 illustrates what this behaviour would look like for a segment i that is not

the depot and k = 4. In Subfigure 5.1(a) all arcs are defined. In Subfigure 5.1(b) all xijk
variables are created but half of them are preconditioned to be 0. In the last, Subfigure

5.1(c), only the arcs (1, j) where j is one of the 4 closest neighbours of i are rendered.

Finding the best value for k

The decision on which value of k should be used in a particular instance is not one to

be taken lightly. If k is too small, the ultimate optimal solution might not fall in the

diminished solution space. If it is too large, then the benefits of the optimizations are not

reaped as much.

It seems intuitive that the more segments exists, the larger k should be. This is why,

the heuristic chosen to determine k was k = ⌊
√
n⌉, where n is the cardinality of N (the set

of segments). For example, if N were to contain 150 segments, the value for k would be

set to 12. While this approach is not a theoretical one, it was employed because its use

45



CHAPTER 5. VRP FORMULATION

has seen good results in practice and because it satisfies the strong consistency condition

for selecting k [1].

5.1.2 Improvement techniques comparison

For comparing the two forementioned techniques and evaluating the increase in perfor-

mance relative to the previous model, it is important to analyse the results on two fronts:

the solving time needed for CPLEX to output the optimality certificate and the impact

these optimizations have on the value of the solution.

With this in mind, an experiment was put forward to see how the three methods

compare as the problem size (number of segments) increases. Several VRP instances were

defined and solved using CPLEX on a personal machine. The locations, i.e. segments,

used in each VRP were sampled from the segmentation process.

Figure 5.2 shows the time (in seconds) needed to solve an instance of a problem using

each solving method.

Figure 5.2: Improvements solving time comparison

For this experiment, the set of locations used was the same for each location count and

five consecutive tests were performed for each location count and method to produce a

median time. The shaded region corresponds to the 95% confidence interval around the

median. The approach without reducing the problem size was stopped after a location

count of just 8 because the solving time rapidly exploded upwards.

From 5.2, we can conclude that there was a large decrease in the time needed to solve

the VRP after applying the improvements in 5.1. Furthermore, the second method, i.e.

generating only the variables xijk that belong to the k-neighbourhood of i, saw the best

results and produced solutions faster than the first method.

Other than evaluating the performance improvement, it is also important to evaluate

the decrease in the quality of the solution after making these improvements.
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Figure 5.3: Optimization routing time comparison

Figure 5.3 shows how the quality of the solution is affected by the use of this k-nearest

neighbour optimization. The experiment was run up to 15 locations only because solving

a VRP with more than this number of locations became computationally too expensive.

As expected, there is an increase in routing time with the problem size pruning.

However, the argument made herein is that the decline in quality is compensated by

the increase in performance. This decline is not significant enough and there is reason

to believe, although it cannot be proven empirically, that for even larger problems the

solution quality decrease is even less relevant.
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Experimentation and solution

analysis

The analyses and comparisons made in this chapter attempt to reach definitive conclu-

sions on the optimal segmentation scenario and routing model. For each analysis, there

is a detailed explanation of how the results were attained.

In addition to this, the solutions that were produced by this work are also compared

to the currently established routes and the routing solution of the previous work.

6.1 Experiments overview

The experiments in this chapter were conducted by having CPLEX (v20.1.0) solve the

model with the segments created by each scenario. The CDP used in these experiments

was Alverca, for which the CP4 is 2615.

The execution itself was performed in Turing 1, a workstation used by the Department

of Mathematics at FCT for solving computationally difficult problems, like this one.

The model requires one to define the time taken to go from any segment to every

other segment. Determining this time was performed by calculating the minimum of

time required to go from every CP7 in one segment to any other CP7 in the other segment,

using the vehicle assigned to both segments. Due to the fact that a segment is supplied

by only one vehicle and that these vehicles have to be determined before solving the VRP,

it should not be possible to connect two segments that are supplied by a different vehicle

type in the same route. This realization leads to the question of how to best model this

scenario.

On one hand, solving a single VRP using all vehicles means that in the duration matrix

between every pair of segments, the time required to go from two segments supplied by

the same vehicle type should be calculated using the shared vehicle type. Additionally,

whenever two segments are supplied by a different vehicle type, the time between them

was set to be infinite, for they should never be connected. There is an exception in case

12×CPU: AMD EPYC™ 7702 (64 Cores 256MB Cache, 2.0GHz to 3.35GHz GHz), 512GB RAM @ 3,200GHz
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of the depot (or CDP). The depot isn’t assigned a vehicle, and so it has to be possible

for a postman to go from the depot to any other segment. The time between the depot

and any other segment, and vice-versa, is estimated using the vehicle profile of this other

segment.

Alternatively, the VRP with the total set of segments can be divided into smaller VRPs,

one corresponding to each vehicle type. In the case of Alverca, three sets of routes exist:

walking routes, scooter routes and driving routes. This would lead to three distinct VRPs

with its own exclusive set of segments to supply. The only segment in common between

the three would be the depot, which is the starting point for all three.

At first glance, it is not clear which approach is better, so this chapter contemplates

both approaches.

The estimated time between CP7s was determined with Openrouteservice, the routing

service used throughout this project.

There is one limitation common to these approaches, which is the fact that postmen

in walking routes can use public transportation to go from the depot to their starting

segment. Up-to-date public transit services are very limited outside large metropolitan

areas and while some data sources exist that include routes by Rodoviária de Lisboa, the

public transport bus service inside Alverca, there wasn’t any data regarding Boa Viagem,

which has routes passing through Vila Franca de Xira, also within the Alverca’s delivery

zone.

Finally, the parameterization of the model was set to use a minimum time of 2 hours

and a maximum of 6.5 hours for each route. The number of postmen corresponds to

the actual size of the workforce in Alverca (28 postmen). The solutions were obtained

with the k-nearest neighbours optimization that saw best results in Section 5.1.2. Every

segmentation scenario (combination of algorithm and maximum segment size) was tested

for comparison.

6.2 Segmentation solutions

Given these assumptions, the first experiment was meant to compare routing solutions

using the segments created by the segmentation step without partitioning the VRP into

three subproblems (one for each transportation mode). Table 6.1 shows some metrics

about the routing solutions found by CPLEX after one hour of solving time. In just one

hour, CPLEX was unable to find any solution for problems with more than 75 to 80

segments, and so for segmentation scenarios that surpass this number of segments the

solution metrics are empty.

For those it was able to find routing solutions, the best performing actor (using the

working time metric) was the segmentation using the bisecting k-medoids algorithm

(see 4.2.1) and a maximum time per segment of 150 minutes. On the other hand, there

was a segmentation scenario (bisecting k-medoids with a maximum segment size of 180

minutes) in which a less number of routes were produced. The decision on whether it is
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Table 6.1: Routing results by segmentation scenario after 1h of solving time

Algorithm
Maximum

segment size (min)
Segments Routing time (s) Working time (s)

Inter-segment
distance (m)

Routes Gap

Bisecting
k-medoids

60 163 - - - - -
90 118 - - - - -

120 86 - - - - -
150 67 56 276 364 844 220 527 18 46.6%
180 57 55 709 367 017 211 642 17 36.7%

Bisecting
Routes

60 180 - - - - -
90 118 - - - - -

120 89 - - - - -
150 75 57 245 371 302 221 333 18 80.9%
180 60 56 984 374 357 216 360 18 74.3%

preferable to have more postmen working fewer hours or fewer postmen working more

hours in total has to be made by CTT. Another useful observation to make is the fact that

the bisecting k-medoids algorithm performs better than the bisecting routes. This has to

do with the fact that in the former, segments are more optimized.

The routing time metric is the time travelled by postmen between segments and

including the depot. The working time metric is the summation of all segments’ times

with the solution routing time between them. The distance metric is the length of road

travelled by postmen between segments (it does not include the intra-segment distance)

and the gap values indicate the difference between the incumbent solution found after

one hour and the best bound (the best objective value a solution could have).

As an alternative to using all the segments in the same VRP, the decision was made to

partition the problem into three distinct subproblems, one for each transportation mode.

In this case, CPLEX was given just 20 minutes for each subproblem to output the best

solution it finds. As shown in 6.2, using this approach, CPLEX is able to solve almost all

the smaller subproblems. However, if we compare the solutions produced in table 6.1

with these results, we see that the total working time of the three VRPs is greater than the

single working time of the VRP containing all segments and that the number of routes

created is also greater.

Regarding Table 6.3 (bisecting routes), the results were very similar to Table 6.2. There

is a tendency for the working time to increase as the number of segments decreases and

they become more dissimilar. However, with a maximum segment size of 180 minutes,

the solution returned by CPLEX was better than with smaller maximum segment sizes.

Globally, the best segmentation scenario is still up to debate. On one hand, the

working time of the workforce should be minimized. On the other, if some solution is

found that requires fewer postmen than the minimal working time solution, should it be

applied instead?

Furthermore, comparing the two solutions of the bisecting k-medoids method from

Table 6.1 we can suppose that since a workforce of 17 postmen can work 367 017 seconds

in a day (averaging 6 hours per postman), then these same postmen should also be able to

work only 364 844 seconds. This means one could try and reduce the maximum number
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Table 6.2: Routing results with partition by mode of transport (bisecting k-medoids)

Maximum
segment size (min)

Transportation
mode

Segments Routing time (s) Working time (s) Routes CPLEX gap

60

Walking 52 20 570 116 334 6 59.7%
Scooter - - - - -
Van 19 7 036 46 178 3 0%
Total 163 - - - -

90

Walking 32 14 944 106 410 6 21.8%
Scooter 68 37 880 209 434 11 70.9%
Van 18 6 747 44 544 3 0%
Total 118 59 571 360 388 20 -

120

Walking 23 16 313 111 627 6 0%
Scooter 52 44 170 209 768 11 73.5%
Van 11 6 906 52 106 4 0%
Total 86 67 389 373 501 21 -

150

Walking 17 15 633 114 272 7 0%
Scooter 42 43 058 210 356 11 26.9%
Van 8 6 105 48 735 3 0%
Total 67 64 796 373 363 21 -

180

Walking 14 15 068 112 531 6 0%
Scooter 36 45 009 225 918 11 30.3%
Van 7 5 270 38 206 3 0%
Total 57 65 347 376 655 20 -

Table 6.3: Routing results with partition by mode of transport (bisecting routes)

Maximum
segment size (min)

Transportation
mode

Segments Routing time (s) Working time (s) Routes CPLEX gap

60

Walking 57 30 258 135 207 7 18.5%
Scooter - - - - -
Van 28 13 205 54 599 4 0%
Total 180 - - - -

90

Walking 37 19 346 127 429 7 14.7%
Scooter 64 34 180 189 173 9 30.6%
Van 17 10 150 52 630 4 0%
Total 118 63 676 369 232 20 -

120

Walking 29 26 818 136 663 8 6.0%
Scooter 46 34 682 193 014 10 33.7%
Van 13 9 389 52 637 3 0%
Total 88 70 889 382 314 21 -

150

Walking 25 26 119 136 668 7 5.7%
Scooter 38 30 291 190 129 10 29.4%
Van 11 4 920 48 591 3 0%
Total 74 61 330 375 388 20 -

180

Walking 22 16 104 127 283 6 0%
Scooter 28 28 740 190 796 10 10.5%
Van 10 4 100 48 236 3 0%
Total 60 48 944 366 315 19 -
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of postmen and execute the VRP a second time changing this parameter or assess whether

two routes from the optimized solution can be joined into a single route.

These metrics are useful for evaluating segmentation scenarios, but tell us nothing

about the effect the model can have in improving the current state of operations.

6.3 Comparison to the current routes

For comparing the solutions obtained by way of the routing procedure, some metrics

about the current routes were estimated. These metrics were calculated using the CP7

times estimated by the segmentation step and the order by which they are traversed in

the current routes. The data used for the segments’ times was the same throughout the

experiments.

Table 6.4 shows the total working time and distance travelled by the postmen in a day

using the average delivery and travel times per CP7 in Alverca.

Table 6.4: Total metrics of current routes

Routes 25
Total working time (s) 380889.16
Total distance travelled (m) 638088.8

Comparing these results with Table 6.1, we can see that there is a clear decrease in

the working time by postmen during the last-mile stage. In the best case scenario, using

the segmentation from the bisecting k-medoids algorithm with a maximum segment size

of 150 minutes, there is a 4.21% decrease in labour time. A 4.21% decrease in labour

time saves 16 045 seconds or approximately 4.46 hours every day divided by all postmen.

Saving 4.46 hours every day in Alverca means a considerable amount of labour time and

money saved in the long run.

If instead we analyse the number of routes created, the optimized scenario performs

even better. It shows that CTT would need not 25 but 17 or 18 postmen to supply every

segment in this hypothetical day using the average time per segment.

6.4 Comparison with previous work

Other than comparing the results with the current routes, it is important to analyse the

effect of the optimizations proposed. To do this, the previous model was executed using

the times estimated in this work. Table 6.5 shows the results obtained using the segments

generated in this work, but applying the model of the previous work.

Also in this case, after 1 hour of computation, CPLEX was unable to find solutions

for larger problems. Furthermore, because the number of flow variables in the previous

model is much larger, the solver can’t reduce the gap between the incumbent solution

and the best bound. This means that, even though there are solutions that use 18 and
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even 17 postmen to supply the given segments (as proven in 6.2), with this formulation

CPLEX wasn’t able to find them because of to its inefficiency.

Table 6.5: Routing results with the previous work’s model after 1h of solving time

Algorithm
Maximum

segment size (min)
Segments Routing time (s) Working time (s) Routes CPLEX gap

Bisecting k-medoids

60 163 - - - -
90 118 - - - -

120 86 - - - -
150 67 97122 405690 19 100%
180 57 86821 398129 19 100%

Bisecting Routes

60 180 - - - -
90 118 - - - -

120 89 - - - -
150 75 111365 425422 21 100%
180 60 91939 409311 19 100%

In every segmentation scenario, the working time of the new formulation was less

than that of the previous model. This is because the routing time between segments is

much larger when minimizing for postmen, instead of for routing time.

Using the best segmentation of the new formulation (bisecting k-medoids with a

maximum time per segment of 150 minutes), there was a 10.1% decrease in working time,

when comparing to the previous model. In absolute terms, this is a difference of 11.35

hours every day.
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Integration with SISMA

Finally, this work wouldn’t be complete if it didn’t merge itself onto the company’s work-

flow, i.e., the tools already used by CTT to assess productivity levels. The intent of this

chapter is to explain how the routing model can be integrated into SISMA and showcase

the advancements made in this regard.

For the integration itself, there is a clear need to separate the machine where the

model is solved from SISMA. CPLEX needs a computationally powerful machine in order

to solve large real-life problems like these and SISMA is merely a spreadsheet tool, meant

to be used by anyone at the company, without any hardware requirements.

This is why the decision was made, early on, to have CPLEX running on a centralized

server and it is this server that receives requests from SISMA via an API call to solve a

particular routing problem. At the SISMA level, there needs to be a VBA macro that makes

these requests and prints the solution in a tabular format after receiving the response.

The integration architecture is shown very simply in Figure 7.1. SISMA clients are

the end-users. They simply use their SISMA spreadsheet client to make requests to the

VRP application server about the routing problem they wish to solve and get back results

containing, among other information, the solution to the problem. The VRP application

server is the component responsible for receiving routing problems, solving them, and

forwarding the results to a database. It is also responsible for retrieving these results

whenever a client asks for them. The database is where routing problems are stored

for later examination. Since a VRP takes a long time to solve with CPLEX it would be

impractical to solve them on demand. A simple document-oriented database system for

storing solution files for later review is indispensable.

Figure 7.1: Integration architecture diagram
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7.1 Integration components

7.1.1 Application server

The application server is the component which does all the hard work. It is responsible

for two separate tasks: handling incoming routing requests which trigger the solving pro-

cedure and returning routing results to clients. As such, it needs at least two endpoints:

1. POST: Create routing problem job

To not overload the system, this has to be a reserved endpoint, in which the job is

only executed if the client that called it is authenticated and is allowed to create

routing jobs. It receives the data intrinsic to the routing problem, i.e., the segments

and model parameters in the request’s body. If the application server has enough

resources to handle multiple solving processes, it can be parallelized and could, in

theory, run multiple jobs at the same time. If not, then there would have to be a

queue data structure for saving routing requests. A successful call to this endpoint

would just return an OK response, indicating the job was added to the solving

queue.

2. GET: Get routing solution

This endpoint is available to all SISMA clients in CTT. It is responsible for com-

municating with the database and retrieving the requested routing solution when

available. If a client asks for a problem that wasn’t yet solved, a file not found error

is returned.

3. GET: Check system status

Since solving a routing job can take a long time, there should be a way for clients to

check the status of the problems being solved and also which are still pending.

This server needs to communicate with a container hosting Openrouteservice to cal-

culate a variety of directions between locations (for calculating the travel time matrix

between every two locations, for example). As such, the container needs to be created and

hosted either on the machine hosting the application server or in a second system, which

doesn’t need to have the hardware requirements of the first.

7.1.2 SISMA client

SISMA is a spreadsheet tool built with Microsoft Excel. This means that one is forced

to use a Visual Basic for Applications (VBA) macro to establish a connection to the ap-

plication server. This connection is made through Hypertext Transfer Protocol (HTTP)

requests using the Microsoft WinHTTP Services reference built into Excel.

The macro should also be responsible for parsing the server’s response and write it to

a new spreadsheet with the solution details and metrics. The first piece of information

that should be displayed is the ordered sequence of segments and/or CP7s in each route.
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Then, it is also important to show metrics on the routes generated like how much time

it will take for a postman to complete it, the distance travelled, the vehicle assigned to it

and how many segments and/or CP7s are in it.

7.2 Integration prototype

Given the time frame, it was not possible to produce a fully-fledged integration system

and build all working components. What did, however, get built was a sample project

showing how it is possible to make this integration and have the routing solutions incor-

porated into SISMA.

With regard to the application server, a simple application using flask [17], a lightweight

Python web framework, was created to accommodate the routing model. The server was

hosted on a personal machine, just like the Openrouteservice container. The two end-

points were created, but the solution files were saved locally instead of in the CTT’s

database.

In SISMA two macros were created: one for triggering the solving of a VRP and one

for getting the results. The first just uses the WinHTTP service to call the first endpoint’s

URL and returns a message simply stating that the problem was added to the list of jobs

being solved. The second macro makes a call to the second endpoint and, if a solution

is received successfully, creates a table containing information about which segments

compose each route. Table 7.1 shows what such a table looks like in SISMA.

Microsoft Excel and VBA, in particular, do not have an inbuilt tool for handling JSON

data like the API’s response content type. VBA-JSON, a community tool for JSON conver-

sion and parsing, had to be used for this.

Table 7.1: Routing solutions displayed in SISMA

RouteId Segments

2 0, 52, 5, 47, 0
3 0, 17, 28, 0
5 0, 21, 38, 0
6 0, 8, 63, 44, 51, 0
8 0, 48, 43, 56, 0
11 0, 2, 15, 27, 33, 55, 16, 0
... ...
21 0, 49, 20, 37, 67, 0
22 0, 39, 0
24 0, 46, 54, 42, 45, 0
25 0, 41, 30, 0
27 0, 12, 19, 23, 0
28 0, 58, 25, 50, 1, 10, 60, 0
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Conclusions

The work described in this document aimed to give CTT a new routing mechanism that

they could use to optimize the routes done by postmen on any given day. This is an

extremely complex task, but it can bring immense rewards for the company and its clients.

The optimization model in Chapter 5 based itself on the work of Pedro Pereira in

[26], but this time the objective function was changed to attempt to minimize labour time

instead of assigned postmen. In addition, an optimization was made to the formulation

using a k-nearest neighbours approach to minimize the number of flow variables and the

computational effort required for CPLEX to solve the model.

Moreover, CTT set out the challenge of creating segments to be used in the routing

model. This was put forth for stability purposes, for it would be a struggle for postmen

to completely revamp their routes from one day to the next. A segment is a collection

of CP7s, preferably close to each other, attended to uninterruptedly, and the routing

procedure uses these segments for composing routes. The use of segments greatly helps

in solving the VRP because using all the CP7s for routing would be infeasible, from a

computational standpoint.

The combination of the segmentation and routing procedures experimented led to a

significant decrease in the labour time when compared to the routes currently at play and

to the routes created using the previous model in Pereira’s work, as exposed in Chapter 6.

Lastly, the integration of the optimization model with SISMA, the principal produc-

tivity assessment tool at CTT, is important to make sure the landing of this model goes

smoothly. In Chapter 7, a proposal is made on how to make this integration and the

advancements made in this regard. For time constraints, it was not possible to completely

build the system, but hopefully it can be implemented in the future.

8.1 Future work

Given the importance behind the development of this project and the implications that

it can have in the long run to improve the company’s service and customer satisfaction,

while lowering operating costs, it is worth advancing the research and development to
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find even better solutions to the problem of optimizing last-mile routing at CTT.

At first glance, there should be more work put into the conception of several Tableau

visualization sheets that can better analyse the routing solutions.

Secondly, there is a research opportunity to find a heuristic method that is capable of

finding as optimal solutions as the ones found by the exact method used in this project.

This is not an easy task, in any way, because the heuristic must also come to terms with

the routing requirements, and it should be flexible enough to allow for changes to these

requirements with minimal effort.

In the routing step, there is an opportunity to define an assignment problem to dele-

gate each postman to a route, given the postman’s familiarity with the locations visited in

said route. This would result in a decrease in working time and an increase in worker’s

satisfaction.

As for the solving of the VRP model, CPLEX allows for a great deal of customization

and parametrization to its IP solver in order to adapt it to this problem’s characteristics

and improve the time needed to reach a solution and produce an optimality certificate.

This parametrization can be a major help in improving the system’s performance.

For the integration of this system at CTT there is still much work to be done. Building

the components which make the integration functional from a regular user’s perspective

is a full project in itself. The SISMA client spreadsheet needs a lot of work put in to

produce useful reports for analyzing routes. The VRP application server needs to ex-

pand to become the hub for solving the company’s routing problems, and the database

implementation needs a go-ahead.

Finally, once the system is able to provide meaningful routing insight in Alverca it is

time to expand and apply it incrementally to all CDPs in Portugal.
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A

SISMA showcase

The aim of this appendix is to bring clarity to the reader about the SISMA spreadsheet

tool. It is intended to present the sheets which were used at some point during this

project and give them a visual representation. All the images are purely snapshots taken

at version 20 of SISMA, released in May 2022, and do not convey the entire dataset.

A.1 Traffic overview sheet

The traffic overview sheet shows the traffic of each CDP discriminated by traceability,

object format and delivery standard, the three main attributes of a postal object. Each

row corresponds to a CDP and each cell represents the average amount of postal objects

for each flow (columns) on any given day.

Figure A.1: Traffic overview

A.2 Productivity coefficients sheet

The productivity coefficients sheet is the first step for estimating productivity levels. It

contains the benchmarked reference times for each task and subtask when available.
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A.3. TRAFFIC IN ROUTES SHEET

Figure A.2: Productivity coefficients

A.3 Traffic in routes sheet

This sheet showcases the routes used by CTT and how much traffic they have on an

average day. It does not list which specific postal codes make up the routes. The table is

filtered to show only the routes used in the CDP of Alverca.

Figure A.3: Traffic in routes
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APPENDIX A. SISMA SHOWCASE

A.4 Traffic by CP7 sheet

This sheet uses the data extracted from the automated processing machines to produce

a view into how many objects each CP7 receives. Since not all traffic passes through the

machines, the data does not reflect the entire traffic of the CDP. In addition, the values

are a compilation for the month of November 2021.

Figure A.4: Traffic by CP7

A.5 Flows sheet

This sheet specifies the base flows and which tasks are associated to each one. Some flow

attributes were omitted for convenience purposes.

Figure A.5: Flows sheet

A.6 Summary sheet

The summary sheet is the main sheet in SISMA. Each row corresponds to a flow with

only the three principal attributes specified (traceability, format and delivery standard).
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A.6. SUMMARY SHEET

In addition, each flow has a reference time for each category of tasks. These times are

calculated by aggregating the times from the flows sheet (see A.5)

Figure A.6: Summary sheet
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I

k-nearest neighbours algorithm

The k-Nearest Neighbours (k-NN) paradigm was first introduced in 1951 by Fix and

Hodges in [13]. It can be used for classification or regression, and the main principle

behind it is to consider only the k closest neighbours when computing some property

about a single object. In the case of classification, the output is a class membership and

for regression it is a property value.

In detail, the algorithm is divided into a training phase and a classification phase. The

training phase consists of only storing the features and the class labels of the training

sample. In the classification phase, an unlabelled test point is classified by assigning to

it the label which is most frequent among the k training samples nearest to this point.

This rule for classification is simply called the k-nearest neighbour rule, and it is the

most popular among researchers. Formally, it can be defined by Equation I.1 [11], where

wni = 1/k if Xi is among the k-nearest neighbours of x and wni = 0 elsewhere.

gn(x) =

 1 if
∑n

i=1wniI{Yi=1} >
∑n

i=1wniI{Yi=0}

0 otherwise,
(I.1)

Xi is said to be among the k-nearest neighbors of x if its distance to x is among the k

smallest distances.

The distance metric commonly used for continuous variables is the Euclidean distance,

but any metric can be employed in practice. For discrete variables, the overlap metric is

often used.

Taking Figure I.1 as an example, let’s consider we have the data set displayed. The

blue squares belong to class 1 and the red triangles to class 2. Additionally, let’s suppose

we want to know to which class would the green circle be most closely related and most

likely to belong to. Using a neighbourhood of k = 3 (region inside the solid circle), there

are two objects belonging to class 2 and only to class 1. Thus, using the simple k-nearest

neighbour rule as defined in [13], the object would be assigned to class 2. The rule is

essentially a majority vote between the k neighbours.

Alternatively, let’s now consider a neighbourhood of k = 5 (region inside the dashed

circle). In this scenario, there are now three objects belonging to class 1 and only two
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Figure I.1: k-nearest neighbours example (Antti Ajanki)

belonging to class 2. As such, the object in question would be assigned to class 1. This

example serves to demonstrate how the selection of an appropriate value for k is of great

importance.
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