
DEPARTMENT OF
COMPUTER SCIENCE

DAVID MARIA ALMEIDA AMORIM DA COSTA

Bachelor in Computer Science

SESSION KOTLIN
A HYBRID SESSION TYPE EMBEDDING IN KOTLIN

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
September, 2022

DEPARTMENT OF
COMPUTER SCIENCE

SESSION KOTLIN
A HYBRID SESSION TYPE EMBEDDING IN KOTLIN

DAVID MARIA ALMEIDA AMORIM DA COSTA

Bachelor in Computer Science

Adviser: Bernardo Toninho
Assistant Professor, NOVA University Lisbon

Examination Committee:

Chair: Doctor Hervé Miguel Cordeiro Paulino
Associate Professor, NOVA University Lisbon

Rapporteur: Doctor Francisco Cipriano da Cunha Martins
Associate Professor, University of the Azores

Adviser: Doctor Bernardo Parente Coutinho Fernandes Toninho
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
September, 2022

Session Kotlin

Copyright © David Maria Almeida Amorim da Costa, NOVA School of Science and Tech-

nology, NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template,

developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [43]

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco

Acknowledgements

I would like to thank my adviser, Bernardo Toninho, for his guidance throughout the

development of this thesis. His incredible support and patience made for an almost

stress-free experience.

Special thanks to my undergrate final project mentor, professor Vítor Duarte, who

taught me much about project development and maintenance, and to professor João

Lourenço for developing the present thesis template, which no doubt spared me countless

hours of work.

To my family, thank you for the constant support and patience; you made this possible.

iv

Abstract

Concurrency and distribution have become essential for building modern applications.

However, developing and maintaining these apps is not an easy task. Communication

errors are a common source of problems: unexpected messages cause runtime errors, and

mutual dependencies lead to deadlocks. To address these issues, developers can define

communication protocols that detail the structure and order of the transmitted messages,

but maintaining protocol fidelity can be complex if carried out manually. Session types

formalize this concept by materializing the communication protocol as a type that can be

enforced by the language’s type system. In this thesis we present the first embedding of

session types in Kotlin: we propose a Domain-Specific Language (DSL) for multiparty ses-

sion types that lets developers write safe concurrent applications, with built-in validation

and integrating code generation in the language’s framework.

Keywords: Session types, Concurrency, Kotlin, Domain-specific languages

v

Resumo

A concorrência e a distribuição têm-se tornado essenciais na construção de aplicações

modernas. No entanto, desenvolver e manter estas aplicações não é tarefa fácil. Erros de

comunicação são uma fonte comum de problemas: mensagens inesperadas causam erros

durante a execução de código, e dependências mútuas levam a deadlocks. Para resolver

estas questões, é tipico definir protocolos de comunicação que detalham a estrutura e a

ordem das mensagens transmitidas, mas garantir o seu cumprimento pode ser complexo

se feito manualmente. Os tipos de sessão formalizam este conceito ao materializar o

protocolo de comunicação como um tipo que pode ser gerido pelo sistema de tipos da

linguagem. Nesta tese apresentamos o primeiro embedding de tipos de sessão em Kotlin:

propomos uma Linguagem de Domínio Específica para tipos de sessão com múltiplos

participantes que permite aos programadores a escrita de aplicações concorrentes seguras,

incorporando validação e integrando a geração de código no framework da linguagem.

Palavras-chave: Tipos de sessão, Concorrência, Kotlin, Linguagem de Domínio Específico

vi

Contents

List of Figures ix

List of Tables x

List of Listings xi

1 Introduction 1

2 Background 4

2.1 Behavioural Types . 4

2.2 Binary Session Types . 5

2.3 Multiparty Session Types . 7

2.4 Refinements . 11

2.5 Typestates . 12

2.6 Implementations of Session Types . 13

2.6.1 Natively session Typed Languages 13

2.6.2 Embedding Session Types . 14

2.6.3 Session Types as DSLs . 16

2.7 Kotlin . 18

2.7.1 Functions and Lambdas . 19

2.7.2 Type-safe builders . 20

2.7.3 Metaprogramming . 21

2.7.4 Coroutines . 21

2.7.5 Channels . 21

3 Developed Work 23

3.1 Global Type Representation . 24

3.2 Global Type Projection & Validation . 26

3.3 Endpoint Implementation . 30

3.3.1 Communication . 30

vii

CONTENTS

3.3.2 Fluent API . 31

3.3.3 Callbacks . 32

3.3.4 Safety Guarantees . 32

3.4 Refinements . 33

3.5 Quality of Life Features . 35

3.6 Evaluation . 36

3.6.1 Limitations . 36

3.6.2 Case Study - SMTP . 37

3.6.3 Benchmarks . 42

4 Conclusion 45

Bibliography 47

viii

List of Figures

2.1 An adder server and a client . 4

2.2 Session types . 6

2.3 Duality of session types . 7

2.4 An arithmetic server and a client . 7

2.5 Interleaving of binary sessions . 7

2.6 Global session types . 8

2.7 Projection of G onto participant q (G ↾ q) . 8

2.8 Malformed global type G1 . 9

2.9 Local projections of G1 . 9

2.10 Global type G2 . 10

2.11 Local projections of G2 . 10

2.12 The Two Buyer protocol . 10

2.13 Global type TwoBuyer . 10

2.14 Local projections of TwoBuyer . 11

2.15 Global type G3 . 11

2.16 Refined addition . 12

2.17 Kotlin DSL for HTML (Simplified example from the kotlin docs) 20

2.18 Generating a class with kotlinpoet . 21

2.19 Coroutines and channels . 22

3.1 Overview of the library . 23

3.2 Recursive adder protocol and server FSM representation 30

3.3 Refinement expressions grammar . 34

3.4 Template Gradle project . 35

3.5 Rejected protocol and possible Charlie’s FSM representation 37

3.6 Protocols used for benchmarking . 43

ix

https://kotlinlang.org/docs/type-safe-builders.html

List of Tables

3.1 Project statistics . 23

3.2 Throughput using sockets (ops/s, higher is better) 43

3.3 Throughput using channels (ops/s, higher is better) 43

x

List of Listings

2.1 Seller endpoint of the Two Buyer protocol with scribble-java 16

2.2 Error example from sesh (Rust) . 18

2.3 Lambdas as arguments in Kotlin . 19

2.4 An extension function . 19

2.5 Function literal with receiver . 20

3.1 Two Buyer protocol in sessionkotlin . 25

3.2 Recursive protocol . 25

3.3 Protocol decomposition . 25

3.4 Unfinished role . 27

3.5 Inconsistent choice . 28

3.6 Role not enabled . 28

3.7 Collapsable choice . 28

3.8 Erased recursion . 29

3.9 Role not enabled . 29

3.10 Seller endpoint implementation (fluent API) 31

3.11 Seller endpoint implementation (callbacks API) 32

3.12 Refined Two Buyer protocol in sessionkotlin 33

3.13 Unknown variable (scope) . 34

3.14 Unknown variable (roles) . 35

3.15 Unsatisfiable refinement . 35

3.16 Parameterized protocol decomposition . 36

3.17 SMTP log . 38

3.18 Excerpt of an early SMTP implementation 39

3.19 SMTP definition in sessionkotlin . 42

4.1 Hypothetical static endpoint declaration . 46

4.2 Hypothetical generated code . 46

xi

1

Introduction

Concurrency and distribution have become essential for building modern applications.

However, developing and maintaining them is not easy. Programmers have to coordinate

processes and define a method of communication, usually either by sharing memory or by

sending messages over some channel abstraction. The former is typically easier to make

mistakes in: the wrong limitation of critical regions and incorrect usage of synchroniza-

tion primitives are frequently sources of problems. The latter has the advantage of being

more intuitive and can be easily ported from concurrent to distributed environments by

changing the transport layer. Unfortunately, simply communicating via channels is not

enough to avoid all errors [58]: deadlocks can still occur, and distributed architectures

have the additional issue of being susceptible to network errors (lost messages, message

reordering). Communication errors between endpoints are one type of error that is com-

mon in concurrent applications. They can happen when some endpoint sends a message

that the receiver is not expecting or doesn’t know how to process, or when endpoints have

mutual dependencies, creating a deadlock. It thus becomes critical to develop tools that

can mitigate these issues and give developers some safety guarantees.

Inter-process interactions that comprise more than one message are built with some

shared agreement (a protocol) in mind that defines the structure and order of the transmit-

ted messages, but maintaining protocol fidelity can be complex if carried out manually

by developers. Ensuring all possible paths of the protocol are accounted for and that

the correct messages are received and sent at the right moment is an error-prone task -

particularly in the presence of iteration. This issue persists for as long as the software is

maintained.

Therefore, to help developers build concurrent applications, we need to materialize

in some way this shared agreement. This materialization should be responsible for the

precise representation of the sequence of interactions (the session). Additionally, we

need a tool that audits the code and verifies that the protocol is followed. In the best-

case scenario, it should statically guarantee the absence of communication errors and

deadlocks.

One way of implementing this is to formalize the protocol as a type and have the

1

CHAPTER 1. INTRODUCTION

type system be the tool that enforces its correct usage. This idea is the basis for session

types [19], which enforce pre-determined sequences of I/O actions on communication

channels. By delegating this responsibility to the type system, we reduce software main-

tenance costs, eradicate communication errors, and guarantee deadlock-freedom.

However, to implement session types, the language’s type system needs to be fairly

sophisticated. It needs to track the session type, which evolves as actions on channels

take place, potentially in the presence of aliasing of channel references, which requires

intricate ownership tracking not typically found in general purpose languages. Typically,

special-purpose languages are created to support this from scratch, but these languages

are not the ones programmers use in their day-to-day work. Additionally, “mainstream”

languages generally do not have type systems that can track the stateful evolution of

resources, and this makes it challenging to encode session types.

Domain-Specific Languages are small languages that, as the name suggests, are fo-

cused on a particular domain or about solving a specific problem. They can be either

internal or external, as defined by Martin Fowler [15]. Internal (or embedded) DSLs are

languages defined within another language, and are typically implemented as a library:

they bend the host language in a way that it appears we are programming in another

language. External DSLs are not bound to a particular language and usually have custom

syntax and parsers. The SQL language and the sed utility 1 are examples of such DSLs.

This thesis focuses on the internal kind. Internal DSLs are much more practical to use as

they do not require external tools. Our DSL is built on top of the Kotlin language.

Kotlin is a modern, open-source, statically-typed programming language developed

by JetBrains that supports both object-oriented and functional programming. It has been

the official language for Android development since 2019 2 and is interoperable with

Java: it is possible to call Java code from Kotlin, and Kotlin can be used in Java. It is

also multiplatform and compiles to the JVM, Javascript, and native binaries. One can

develop an application that targets all three; this is useful, for example, when develop-

ing multiplatform libraries or to share common business code between mobile and web

applications. Nullability is encoded in the type system, making it null-safe and avoiding

runtime errors related to null values.

Kotlin also has first-order functions, lambdas and extension functions (functions

that add functionality to existing classes). Putting all this together, we can create semi-

declarative type-safe builders to create a DSL inside Kotlin. Type-safe builders are, in

essence, the builder pattern with some extra type-safety guarantees: they statically en-

sure that all mandatory properties are initialized and that methods are used in the right

context.

For example, the Gradle build tool comes with a Kotlin DSL for writing build scripts

in Kotlin, since version 5.0 3. By using a statically typed language instead of Groovy,

1https://www.gnu.org/software/sed/manual/sed.html
2https://developer.android.com/kotlin/first
3https://docs.gradle.org/5.0/release-notes.html#kotlin-dsl-1.0

2

https://www.gnu.org/software/sed/manual/sed.html
https://developer.android.com/kotlin/first
https://docs.gradle.org/5.0/release-notes.html#kotlin-dsl-1.0

a dynamically typed language, IDE’s can provide useful features like code completion,

refactoring, error highlighting, and source code navigation.

Goals In this thesis we propose a Domain-Specific Language (DSL) in Kotlin for mul-

tiparty session types with built-in validation that lets developers write safe concurrent

applications. Multiparty session types [20, 10] extend the theory behind session types to

account for more than two participants. The goal is to provide safety guarantees, such

as communication safety (no discrepancy between the types of the messages sent and re-

ceived) and protocol fidelity (all messages are accounted for), using a combination of static

(compile-time) and dynamic (runtime) verifications and exploring Kotlin’s capabilities

for DSL development, including type-safe builders and metaprogramming tools.

Contributions

• We present the first embedding of session types in Kotlin;

• We present a Kotlin-based DSL for multiparty session types that integrates type ver-

ification (i.e. protocol validation) and code generation in the language’s framework;

• We provide an implementation that allows for both concurrent and distributed

programming, based on coroutines and sockets;

• We provide a parametric endpoint implementation that seamlessly supports both

fluent and callback-based styles;

• Our DSL allows type refinements, offering the possibility to restrict message values

and the relationships between them.

Outline In Chapter 2 we introduce fundamental concepts to this thesis, such as be-

havioural types, binary and multiparty session types, and typestates. We discuss existing

implementations of session types in other languages, and explore relevant Kotlin fea-

tures for DSL implementation. Chapter 3 describes and evaluates our contributions, and

Chapter 4 discusses future work.

3

2

Background

When building concurrent applications, there are two main ways of communicating be-

tween processes: by sharing memory and by passing messages over some kind of channel.

This work focuses on the latter. Most applications that use messages as a mean of commu-

nication have some form of structure that the programmer has in its mind when writing

the program. For example, if we have a server that receives two integers and return their

sum, we can design an informal protocol that looks like this:

Figure 2.1: An adder server and a client

Server

1 receive an integer

2 receive an integer

3 send their sum

Client

1 send an integer

2 send an integer

3 receive their sum

A problem that commonly arises is how to guarantee that the protocol is followed by

both sides. It’s easy to verify with such a small example, but, if there were more messages,

or more participants, or if the flow branched depending on some choice, or if the protocol

suffers modifications, the burden of checking for errors lies on the programmer. This

issue encouraged the research and development of several languages and tools in the

realm of type theory, which we overview in the following sections.

2.1 Behavioural Types

Behavioural types arise in the context of process calculi and programming languages

as a way of capturing program behaviour at the type level [23]. This typing discipline

specifies properties related to concurrent programs such as causality and choice and

seek to ensure safety properties such as absence of communication errors, race freedom,

and deadlock freedom, in addition to liveness properties such as progress. To this end,

the processes’ actions are often partially ordered to avoid cyclic dependencies, and the

channels are classified to ensure reliability. Combining these two concepts guarantees

deadlock-freedom [32].

4

2.2. BINARY SESSION TYPES

Consider the following example from [32]: Assume there is a process that receives a

value along x (x?[]) and then sends a value along y (y![]). In the type system proposed by

Kobayashi [32], it has the following type judgement:

x : ↕ []tx , y : ↕ []ty , (tx, ty) ⊢ x?[] · y![]

where ti specify time tags, and the relation (tx, ty) defines that x may be used before y.

In contrast, a process that receives on y and then sends over x has the following type:

x : ↕ []tx , y :↕ []ty , (ty , tx) ⊢ y![] · x?[]

When composed in parallel x?[] · y![]|y![] · x?[], a cyclic ordering is detected through

the time tags {(tx, ty), (ty , tx)}, since they define that communication over x may be done

after y and, at the same time, communication over y may be performed after x.

Kobayashi et al. [33] build on this idea by developing a type reconstruction algorithm,

an extension of the one developed by Igarashi and Kobayashi [25], to check processes

without type annotations.

Igarashi and Kobayashi [24] propose a generic framework of system types for con-

current programming languages that express types as abstract processes. They show

that deadlock-freedom and race-freedom can be derived as instances of this generic type

system. The concept of conversation types, more closely related to session types (Sec-

tion 2.2), is presented by Caires and Vieira [7] as a generalization of binary session types

to concurrent multiparty conversations. Additionally, they allow dynamic conversations:

participants may join and leave as the conversation progresses.

2.2 Binary Session Types

Session types were first introduced by Honda, Vasconcelos, and Kubo [19], as a method of

describing complex interactions between two communicating processes. Their proposal

stands on three pillars:

• the session, a chain of interactions between two participants;

• Three basic communication primitives:

– value passing;

– labelled branching: a purified form of method invocation, where one side is

expected to make a choice;

– delegation: the ability to pass a channel to another process.

• A basic type discipline for the communication primitives, to ensure two communi-

cating processes have compatible patterns.

5

CHAPTER 2. BACKGROUND

The compiler, having access to the session type, can verify that the operations are

performed in an order that everyone expects, ensuring communication safety (no discrep-

ancy between the types of the messages sent and received), session fidelity (all messages

are accounted for in the protocol), and, if there is no session interleaving (more than one

session executing concurrently), deadlock-freedom. Session types can also be described

as a special case of behavioural type: they present a stricter type language, allowing fewer

valid programs, but have the advantage of being easier to develop and implement in

programming languages.

Figure 2.2: Session types

SF bool | nat | . . . Sorts

U F S | T Exchange types

T F !U.T Send

| ?U.T Receive

| &{li : Ti}i∈I Branch

| ⊕ {li : Ti}i∈I Select

| µt.T | t Recursion

| end Termination

With respect to the syntax, depicted in Figure 2.2, we use S to represent basic types

like booleans and numbers, T to range over sessions types, and U to represent exchange

types, which can be S or T . !U.T and ?U.T are used to send and receive values or channels

(session delegation), continuing with T . The branch type &{li : Ti}i∈I denotes an external
choice, and the select type ⊕{li : Ti}i∈I represents an internal choice. The labels li range

over an index set I . Recursion is modelled by the types µt.T and t, and sessions terminate

with end.

Two endpoints of a session are compatible if their types are dual: every send must be

matched with receive, every internal choice must be matched to an external choice, and

vice-versa. Figure 2.3 lists these duality rules in detail.

Now that we have defined some grammar rules for session types, we can specify

session types for the Adder example from Figure 2.1: the server must receive two values

and send one, ?Int.?Int.!Int.end, and the client must do the opposite: !Int.!Int.?Int.end.

In Figure 2.4 we have an example of an arithmetic server that is capable of performing

addition and subtraction, offering a choice (&) between Add and Sub. The client must have

the dual session type: an internal choice (⊕) between the same labels (Add, Sub). The type

of each session for each label need to be dual as well: ?Int becomes !Int and vice-versa,

following the rules defined in Figure 2.3.

6

2.3. MULTIPARTY SESSION TYPES

Figure 2.3: Duality of session types

!S.T ≜ ?S.T
?S.T ≜ !T .T

&{li : Ti}i∈I ≜ ⊕{li : Ti}i∈I
⊕{li : Ti}i∈I ≜ &{li : Ti}i∈I

µt.T ≜ µt.T
t ≜ t

end ≜ end

Figure 2.4: An arithmetic server and a client

Server

1 Server = &{

2 Add: ?Int.?Int.!Int.end,

3 Sub: ?Int.?Int.!Int.end

4 }

Client

1 Client = ⊕{
2 Add: !Int.!Int.?Int.end,

3 Sub: !Int.!Int.?Int.end

4 }

If the types for both ends are dual, and we can prove session fidelity (i.e., the code fol-

lows the protocol), then communication safety is guaranteed: every send has a matching

receive and every message is expected despite the fact that we are using the same channel

for messages of different types. Processes that follow these types do not get “stuck”: they

are deadlock-free.

Figure 2.5: Interleaving of binary sessions

Process A

1 receive from B (s1)

2 send to C (s2)

Process B

1 receive from C (s3)

2 send to A (s1)

Process C

1 receive from A (s2)

2 send to B (s3)

These properties are only guaranteed for processes that act on a single session: if we

introduce session interleaving, deadlock-freedom is lost. Figure 2.5 shows an interleaving

of three binary sessions: s1, s2 and s3. In these sessions, an integer is exchanged. Process

A shares session s1 with B and session s2 with C; session s3 is between B and C. There

are no type errors but the processes are blocked waiting for a message that will never

arrive: they are deadlocked. When we need to describe interactions between more than

two participants, binary sessions are not enough to guarantee deadlock-freedom.

2.3 Multiparty Session Types

Multiparty session types [20, 10] extend the theory behind binary session types to account

for more than two processes. Honda et al. [20] introduces a new kind of type in which

interactions involving multiple actors are abstracted as a global scenario: the global

type. The global type is a shared agreement among the peers and can be used to project

7

CHAPTER 2. BACKGROUND

local sessions which can be used to typecheck individual peers. Projection is defined

inductively on the global type Figure 2.7.

Figure 2.6: Global session types

G F p→ q : ⟨U⟩.G Exchange
| p→ q : {li : Gi}i∈I Branching
| µt.G | t Recursion
| end Termination

We define the type for the global session in Figure 2.6. We use p, q to represent peers

and U has the same meaning as in Figure 2.2. The exchange type p→ q : ⟨U⟩.G defines

that peer p sends either a value or a channel to peer q, and proceeds with G (p , q); the

branching type p→ q : {li : Gi}i∈I .G means that peer p sends a label li to peer q (p , q) and

then continues with Gi .

Figure 2.7: Projection of G onto participant q (G ↾ q)

(p1→ p2 : ⟨U⟩.G) ↾ q =


!⟨U,p2⟩.(G ↾ q), if q = p1

?⟨U,p1⟩.(G ↾ q), if q = p2

G ↾ q otherwise

(p1→ p2 : {li : Gi}i∈I) ↾ q =


⊕⟨p2, {li : Gi ↾ q}i∈I⟩, if q = p1

&⟨p1, {li : Gi ↾ q}i∈I⟩, if q = p2

Gk ↾ q, where k ∈ I ∧ q , p1∧
q , p2 ∧Gi ↾ q = Gj ↾ q ∀i, j ∈ I

(µt.G) ↾ q =

µt.(G ↾ q), if (G ↾ q) , t

end, otherwise

t ↾ q = t

end ↾ q = end

The projection function for global types is defined in Figure 2.7. The first rule specifies

the projection of the exchange type. If q, the role we are projecting to, is the sender, then

it needs to send a message to the other role: !⟨U,p2⟩; if q is receiving, it needs to receive

the message: ?⟨U,p1⟩. If q does not participate in the exchange, ignore the exchange. In

all cases, we must continue projecting the rest of the type.

The second rule refers to the projection of the branching type. If q is the one making

the decision, it is projected as an internal choice (⊕); if it is the one offering a decision,

it is projected as an external choice (&). In both cases, we must continue projecting the

branches. If q is not making or offering the decision, and all branches when projected

onto q are equal,then the local type is the projection of any of them.

8

2.3. MULTIPARTY SESSION TYPES

This implies that, when projecting a branching type and q is not choosing or offering a

choice, and if the projection Gk ↾ q is not equal for all branches, the function is undefined.

If a role does not know the outcome of a choice, its local type needs to be the same

for every label. Furthermore, recursion needs to be guarded. The last rule defines the

projection of termination, which is always end.

A global type is well-formed if the projection G ↾ q is defined for all participants.

Figure 2.8 details a malformed global type G1. This type describes a protocol in which,

depending on the choice a makes, b either sends a message to c or to a. The local types

that correspond to the projections for a and b are shown in Figure 2.9. The local type for

c is undefined because, as c does not have knowledge of the choice a made, does not know

whether it should receive a message from b or not. Formally, G1 ↾ c is undefined because

(b→ c : ⟨U⟩.end) ↾ c = ?⟨U,b⟩.end is not equal to (b→ a : ⟨U⟩.end) ↾ c = end. This global

type, according to the projection function defined in Figure 2.7, is therefore malformed.

This clause ensures that participants that are not involved in a choice behave the same,

regardless of the outcome of the choice.

Figure 2.8: Malformed global type G1

G1 ≜ a→ b : {
L1 : b→ c : ⟨U⟩.end,
L2 : b→ a : ⟨U⟩.end

}

Figure 2.9: Local projections of G1

G1 ↾ a = ⊕⟨b, {
L1 : end,

L2 : ?⟨U,b⟩.end
}⟩

G1 ↾ b = &⟨a, {
L1 : !⟨U,c⟩.end,
L2 : !⟨U,a⟩.end

}⟩
G1 ↾ c = undefined

There is a different definition for the branching projection that takes a more relaxed

approach when projecting a role that does participate in a choice and has non-identical

branches. Carbone et al. [8] introduced the notion of mergeability and defined the projec-

tion of the branching as a merge of the projections of the branches. Using this operator

allows for more global types to be projectable.

Taking the global type G2 defined in Figure 2.10 as an example, its projection onto

c (G2 ↾ c) is only defined using this notion of mergeability. Although projecting the Li
branches onto c result in a different type, we can merge them and have c offer both Ki

branches to b, regardless of a’s decision.

Figure 2.12 describes the Two Buyer protocol [20], in which the two buyers, A and

B, combine their money to purchase an expensive item from Seller. Buyer A starts by

sending a message to Seller, with the name of the item they intend to buy. Afterwards,

9

CHAPTER 2. BACKGROUND

Figure 2.10: Global type G2

G2 ≜ a→ b : {
L1 : b→ c : {K1 : end},
L2 : b→ c : {K2 : end}

}

Figure 2.11: Local projections of G2

G2 ↾ a = ⊕⟨b, {
L1 : end,

L2 : end

}⟩
G2 ↾ b = &⟨a, {

L1 : ⊕⟨c, {K1 : end}⟩,
L2 : ⊕⟨c, {K2 : end}⟩

}⟩
G2 ↾ c = &⟨b, {

K1 : end,

K2 : end

}⟩

Seller sends the quote to both buyers. With this information, A sends to B the amount of

money it can give, and B decides whether it is enough by choosing between two branches:

Ok, sending the address to the seller and receiving the date of delivery, or Quit, terminat-

ing the protocol. Figure 2.13 defines corresponding the global type. The local types that

correspond to applying the projection function (Figure 2.7) to the global type onto each

participant are shown in Figure 2.14.

Figure 2.12: The Two Buyer protocol

A Seller B

item

quotequote

amount

address

date

Quit

Ok

branch

Figure 2.13: Global type TwoBuyer

TwoBuyer ≜

a→ s : ⟨String⟩.
s→ a : ⟨Int⟩.
s→ b : ⟨Int⟩.
a→ b : ⟨Int⟩.
b→ s : {
Ok :

b→ s : ⟨String⟩.
s→ b : ⟨String⟩.
end,

Quit :

end

}

If we define a well-formed global type for the interleaving of binary sessions detailed

10

2.4. REFINEMENTS

Figure 2.14: Local projections of TwoBuyer

TwoBuyer ↾ a≜ !⟨String, s⟩.?⟨Int, s⟩.
!⟨Int,b⟩.end

TwoBuyer ↾ b ≜ ?⟨Int, s⟩.?⟨Int,a⟩.
⊕ ⟨s, {
Ok : !⟨String, s⟩.

?⟨String, s⟩.end,
Quit : end

}⟩

TwoBuyer ↾ s ≜ ?⟨String, a⟩.
!⟨Int, a⟩.!⟨Int,b⟩.
&⟨b, {
Ok : ?⟨String,b⟩.

!⟨String,b⟩.
end,

Quit : end

}⟩

in Figure 2.5, we’d have no more deadlocks. Since the protocol would start with an

exchange, some process would need to send the first message before receiving any. Fig-

ure 2.15 shows a well-formed global type that describes the interaction. In this example,

c sends the first message, and no processes will ever become deadlocked.

Figure 2.15: Global type G3

G2 ≜ c→ b : ⟨Int⟩.
b→ a : ⟨Int⟩.
a→ c : ⟨Int⟩.
end

2.4 Refinements

Session types are useful to describe communication structure, but they are unable to cap-

ture information about the communicated data. Take, for example, the protocol described

in Figure 2.4. When the client chooses the Add branch and sends two integers, it expects

a value equal to their sum, but there is no guarantee that the server’s answer is correct.

In other words, session types represent the choreography but cannot describe message

content apart from its type.

The general concept of refinement types can be applied to multiparty session types [6,

57, 60] in order to express properties and constraints on communicated values and their

relationships. In this extended setting, messages are labeled so that it is possible to refer

to them in predicates. Figure 2.16 illustrates a refined global protocol. In this example,

the client messages are labeled as a and b, while the server response, c, is restricted to be

equal to the sum of the previous messages.

11

CHAPTER 2. BACKGROUND

Figure 2.16: Refined addition

Adder ≜

client→ server : ⟨Int⟩[a].

client→ server : ⟨Int⟩[b].

server→ client : ⟨Int⟩[c,a+ b = c].

end

To implement such an extension, additional validations are required. The first chal-

lenge is related to the local vision that each participant has of the global interaction: type

projection needs to guarantee that endpoints have all the information they need to verify

the refinements. Secondly, the refined interactions needs to be satisfiable, which means

that there should be some combination of message values that allow the predicates to be

true. To perform these validations, SMT solvers are often used [45, 60, 13] in combination

with runtime assertions [60] or proof objects [57].

2.5 Typestates

Typestates, a kind of behavioural type, were originally introduced by Strom and Yem-

ini [53] as a way of restricting the operations available on an object to a subset that

depends on its state.

Take, for example, an object representing a file with four operations: open, read, write,

and close. Intuitively, this object can have two states: the first, which is the initial state,

should only have the open operation available. The object progresses to the next state

with the open operation, in which it can be read, written to, or closed. In this state, closing

the file changes it back to the initial state, making it impossible to read or write before

opening it again. The idea is having the type system enforce this pattern to statically

guarantee that it is impossible to read and write from a closed file.

Arguably, session types could be perceived as typestates defined on channel objects

with send and receive operations: they can both be seen as a finite state machine, but

session types are typically focused on concurrency. Concretely, they are more closely

related to session endpoints that follow the fluent API pattern: the class chaining via

method calls have a similar look to how the object is manipulated. A popular tool in

the session types ecosystem is Scribble [59], which defines a language for describing

multiparty session types. Its toolchain is commonly extended to generate APIs for general-

purpose languages. StMungo [38] bridges typestates and session types by generating

typestates definitions from multiparty communication protocols written in the Scribble

language.

12

2.6. IMPLEMENTATIONS OF SESSION TYPES

2.6 Implementations of Session Types

Most presentations of session types are developed in special-purpose languages instead

of general-purpose languages, and are typically focused on providing as much safety

guarantees as possible rather than user experience. Additionally, not all languages sup-

port direct implementations of session types: the fundamental challenge comes from the

type system’s need to track resources and channel types, potentially in the presence of

aliasing. In this section, we explore two ways of approaching this subject: natively or

through embedding.

2.6.1 Natively session Typed Languages

Native implementations come in two categories: included in languages created to support

them (usually minimalistic, with limited usability), or as an extension of a preexisting

language. In both cases, they implement the necessary sophisticated types to represent

type evolution.

Toninho et al. [56] presents a functional language that integrates a Curry-Howard

interpretation of linear sequent calculus as session typed processes. Processes are encap-

sulated in a contextual monad that also contain all the channels. Griffith [17] explores

logically motivated session types and polarization, and presents a language called SILL.

Its interpreter is written in Ocaml.

Das and Pfenning [13] present Rast (Resource-Aware Session Types), a language based

on binary session types governing the interaction of two processes along a single channel.

Supports arithmetic type refinements as well as ergometric and temporal types to mea-

sure the total work and span of the programs. It is implemented in Standard ML and the

algorithm for type equality is presented in their following work [14].

FreeST [2] is an implementation of the context-free session type language introduced

by Thiemann and Vasconcelos. Context-free session types allow left recursion instead of

the usual tail-recursion, enabling the transmission of tree-structured data in a type-safe

way [55].

Fowler et al. [16] extend Links, a functional web programming language, with support

for session types with failure handling using the existing effect handlers of the language.

They introduce three new terms to support failure handling: cancel, to explicitly cancel

a session endpoint, raise, to raise an exception, and a try-catch term to handle failures.

These terms map onto existing Links constructs. Effect handlers are a generalization of

exception handlers.

Additionally, there are some implementations that extend existing languages. Hu,

Yoshida and Honda [22] extend Java with session types, with support for delegation

subtyping. This strategy comes with the cost of locking the developer to a specific Java

version (in this case, 1.4).

13

CHAPTER 2. BACKGROUND

All the works mentioned above have completely static guarantees of error-free com-

munication and, except for the last one, deadlock-freedom.

Mungo [44] is a tool that can be used to statically check the order of method calls in

Java. An annotation is added to classes, associating them to a protocol that defines the

sequence of method calls. The protocol files are generated by StMungo [38, 44], a tool

that translates local protocols from Scribble to typestate specifications that Mungo can

use.

2.6.2 Embedding Session Types

The second type of implementation is with an embedding in a general-purpose language.

Incorporating session types in a “mainstream” language can be challenging: the type

system needs to be sophisticated to support the necessary features session typing requires:

channel linearity (use exactly once), branch exhaustion, and type duality.

Within this group, we have two approaches: those that aim to provide strong, fully-

static guarantees, and those that aim to promote usability by relaxing some verifications

to runtime (usually, linearity).

2.6.2.1 Statically checked approach

Fully statically checked implementations are generally very safe, but can be challenging

to use for programmers. The host language’s type system needs to be flexible, especially

to enforce linearity: functional languages are generally good candidates for this approach.

Everything is encoded statically and does not have any runtime overhead, as they stat-

ically encode everything in the type system. On the downside, error messages may be

hard to interpret.

A fully static implementation of session types in OCaml is provided by Imai et al. [26].

It uses a parameterized monad to statically encode multiple simultaneous sessions, and

lenses to manipulate a symbol table of the monad.

In Haskell, Pucella and Tov [46] propose a library that handles multiple communi-

cation channels typed independently and infers session types automatically. Aliasing

is avoided by threading session type information linearly through the system, using an

indexed monad. Type classes are used to express the duality of session types. Lindley

et al. [41] presents an embedding of GV (a core session-typed functional language, built

on Wadler’s work on functional calculus) and two implementations of that embedding:

one based on the concurrent primitives in Haskell’s IO monad and another that expresses

concurrency using continuations. Finally, Kokke and Dardha [35] show a deadlock-free

implementation of session types, even if the process structure has cycles, using priori-

ties. These priorities are an extension of session types with partial ordering, allowing

programs that have cyclic process structure but have an acyclic communication graph.

In Rust, Chen, Balzer and Toninho [9] allow shared session types that support safe

aliasing of channels. The channels must be used in mutual exclusion: clients need to

14

2.6. IMPLEMENTATIONS OF SESSION TYPES

acquire the linear channel to the component, becoming its unique owner, and release it

when done.

2.6.2.2 Hybrid approach

Hybrid implementations delegate some checks to runtime. This can be useful because not

all languages have sophisticated enough type systems to effectively encode, for example,

linear use of resources.

There are several implementations of session types that take this approach. Hu and

Yoshida [21] present scribble-java, an implementation in Java for multiparty session types

based on API generation as an extension of the Scribble protocol language. Linear usage

of channels is verified at runtime. Each protocol state is materialized as a distinct channel

type that permits only the exact I/O operations according to the protocol. These channels

are linked as a call-chaining API that returns a new instance of the successor state for the

action performed. The global protocol is defined in Scribble.

Scribble [59] is a language that describes multiparty protocols for communication. It

is frequently used to represent and validate global protocols, generate local types, and

generate local APIs for other languages, like Java and Scala. By delegating these tasks

to Scribble, programmers can avoid the challenges of representing session types and

implementing validation.

Listing 2.1 shows an implementation of the Seller endpoint of the Two Buyer protocol

(Subsection 2.3) using scribble-java [21]. Line 1 instantiates an endpoint for the role

S inside a try-with-resources statement, to automatically close the session. Lines 4 and

5 accept connections from the two buyers, A and B. Afterwards, we start the protocol

by creating an object, for the initial state, TwoBuyer_S_1. Starting with it, we execute the

protocol using the call-chaining API until it terminates. A switch statement is used to

branch based on the decision of B.

Scalas and Yoshida [47] present a library, lchannels, that offers an API for binary

session programming in Scala with continuation-passing style programming. Linearity is

enforced during runtime. Scalas et al. [48] build on this work by encoding deadlock-free

multiparty sessions as a composition of binary sessions. They also extend Scribble.

Neykova et al. [45] propose a library for the specification and implementation of

multiparty distributed protocols in F#. It is implemented by extending and integrating

Scribble with an SMT solver into the type providers framework. Type providers are

a .NET feature for a form of compile-time metaprogramming, designed to bridge be-

tween statically typed languages and information spaces (structured data sources like

SQL databases or XML data). A type provider works as a compiler plugin that performs

on-demand generation of types: it takes a schema, in this case, a Scribble protocol, and

generates protocol and role-specific types of an API for implementing the endpoint, with

methods for chaining I/O actions. This paper also implements refinements, which are

logical constraints over the data. Linearity is enforced at runtime. Refinements that

15

CHAPTER 2. BACKGROUND

Listing 2.1: Seller endpoint of the Two Buyer protocol with scribble-java

1 try (MPSTEndpoint<TwoBuyer, S> endpoint = new MPSTEndpoint<>(tb, S.S, new

ObjectStreamFormatter())) {↪→
2 Buf<String> buffer = new Buf<>();

3

4 endpoint.accept(new SocketChannelServer(9997), A.A);

5 endpoint.accept(new SocketChannelServer(9998), B.B);

6

7 TwoBuyer_S_1 s1 = new TwoBuyer_S_1(endpoint);

8 TwoBuyer_S_2 s2 = s1.receive(A.A, title.title, buffer);

9

10 int quoteValue = 100;

11 TwoBuyer_S_4 s4 = s2

12 .send(A.A, quote.quote, quoteValue)

13 .send(B.B, quote.quote, quoteValue);

14

15 TwoBuyer_S_4_Cases cases = s4.branch(B.B);

16

17 switch (cases.getOp()) {

18 case ok:

19 cases

20 .receive(B.B, ok.ok, buffer)

21 .send(B.B, EMPTY_OP.EMPTY_OP, Date.from(Instant.now()));

22 break;

23

24 case quit:

25 cases.receive(B.B, quit.quit);

26 break;

27 }

28 }

cannot be verified statically are enforced with assertions during runtime.

In Rust, Lagaillardie et al. [40] present an implementation of multiparty session types

as a wrapper of the library for binary session types done by Kokke and Wen [34]. Local

Rust types can be generated by Scribble, guaranteeing deadlock-freedom (because they

were projected from a well-formed global type), or written by the programmer and stati-

cally checked to ensure reception error safety. Rust has some features that help guarantee

linear use of channels: its affine type system guarantees at-least-once usage of variables,

and, to prevent dropped sessions, [#must_use] is employed to annotate the definitions

of the send, receive and end operations: this causes Rust to emit a warning whenever a

session is dropped. The Rust compiler statically guarantees that more-than-once usage

never happens.

2.6.3 Session Types as DSLs

The original theory behind multiparty session types seek to provide static guarantees

such as deadlock-freedom, communication safety, and protocol fidelity. But, in practice,

mapping these concepts to mainstream languages is a difficult task: very few languages

have rich type systems capable of tracking resources and channel types, potentially in

16

2.6. IMPLEMENTATIONS OF SESSION TYPES

the presence of aliasing. Nonetheless, there has been extensive work on static implemen-

tations for the languages that do support it, such as in OCaml [26], Haskell [46, 41, 35],

and Rust [29, 34, 9].

In the context of multiparty session types, there is an implementation in Rust, mpst-

rust [40], that uses Scribble to generate local Rust types. Additionally, Cutner et al.

present rumpsteak [11, 12]. They use νScr [1], a toolkit that manipulates Scribble pro-

tocols, for the same effect. In the OCaml ecosystem, Imai et al. present ocaml-mpst [27], a

library that uses global combinators as a way of representing global types.

However, strong static guarantees often come at the cost of usability. The implemen-

tations typically result in less idiomatic and user-friendly APIs, either requiring users

to describe protocols in an external environment (Scribble, νScr) or in a verbose embed-

ded DSL. priority-sesh [35] tries to sidestep this problem by encoding linearity using

the Linear Haskell language extension [4] instead of implementing it in Haskell’s type

system. In an effort to improve compatibility between linear code and the standard li-

brary, linear-base [42] was created. It contains linear variants of common data types and

classes, as well as some useful abstractions. The work of Zhou et al. [60] is a special case:

its callback-based approach allows them to dispense linearity checking completely with

inversion of control.

In Listing 2.2, we show an example of a type error when misusing types with Rusty

Variation, now called sesh [34, 49]. We declare a simple protocol type from the perspective

of the server in Line 6: it receives two integers and returns their sum. The dual type,

for the client, is implicitly derived by the fork call. In this example, the client does

not send the second integer (note that Line 16 is commented out). The type error, as

the compiler kindly reports, is in Line 17: session s should have type Recv instead of

Send. In other words, the session should be used to receive a value, not sending one.

Two aspects can be highlighted: type definitions can become quite convoluted in bigger

protocols and undermine code readability and maintainability. Error message readability

is also important: type errors can be hard to interpret, although Rust’s compiler produces

friendlier error messages than most.

On the other hand, we have implementations that take a more pragmatic approach,

either forced by limitations of the language (e.g.dynamically typed languages) or as a

deliberate choice. In an attempt to provide a better user experience and more idiomatic

APIs, some guarantees are relaxed: typically, this includes linearity checks. Code gener-

ation is quite common as well. There are implementations in Java [21], Scala [48], and

F# [45].

All of these have similar structure: the global protocol definition is specified in the

Scribble language (which effectively is an external DSL), that corresponds to the session

type definition in Line 6 of the previous example. The global protocol is validated, pro-

jected to local protocols, and finite state machines are created for each participant. A class

in the target language is generated for each state, containing methods that correspond to

the transitions between them. These methods perform the necessary I/O operations that

17

CHAPTER 2. BACKGROUND

Listing 2.2: Error example from sesh (Rust)

1 extern crate sesh;

2

3 use std::error::Error;

4 use sesh::*;

5

6 type AddServer = Recv<i64, Recv<i64, Send<i64, End>>>;

7

8 fn adder() -> Result<(), Box<dyn Error>> {

9 let s = fork(move s: AddServer {

10 let (i, s) = recv(s)?;

11 let (j, s) = recv(s)?;

12 let s = send(i + j, s);

13 close(s)

14 });

15 let s = send(10, s);

16 // let s = send(12, s);

17 let (r, s) = recv(s)?;

18 println!("{0}", r);

19 close(s)

20 }

21 fn main() {

22 adder();

23 }

1 error[E0308]: mismatched types

2 --> src/main.rs:17:23

3 |

4 17 | let (r, s) = recv(s)?;

5 | ---- ^ expected struct `sesh::Recv`, found struct `sesh::Send`
6 | |

7 | arguments to this function are incorrect

8 |

9 = note: expected struct `sesh::Recv<_, _>`
10 found struct `sesh::Send<i64, sesh::Recv<i64, sesh::End>>`

were previously validated and return an instance of next state class. Linearity is enforced

at runtime, which means that we lose static guarantees of deadlock-freedom.

Our DSL is different in the sense that it is internal: the features presented in Section 2.7

allow us to create a library that seamlessly blends with the enclosing code. Furthermore,

by offering two options for endpoint code (fluent API and callback-based), developers

can choose between the more natural chained-call style with runtime verifications or the

linear-by-construction design.

2.7 Kotlin

Kotlin is a modern, open-source, null-safe, statically-typed programming language that

supports both object-oriented and functional programming. It is multiplatform, and can

target the JVM, JavaScript, and native code.

Notably, Kotlin provides some features that streamline the implementation of a DSL,

18

https://github.com/JetBrains/kotlin
https://kotlinlang.org/docs/multiplatform.html

2.7. KOTLIN

which we overview in the following section.

2.7.1 Functions and Lambdas

Kotlin treats functions as first-class citizens: they can be stored and passed around as

arguments and returned from other functions. The map function operates on a list, applies

the supplied function to each element, and returns the modified list. For example, if we

wanted to double all the elements of a list of integers, we could use map and pass it the

lambda {n -> n * 2}. Listing 2.3 shows all the different ways we can invoke map with a

lambda: Line 4 corresponds to the basic method call everyone is accustomed to, Line 5

shows that we can move the lambda out of the parentheses if it is the last argument, and

Line 6 shows that when the lambda is the only argument, we can omit the parentheses

entirely. We can also omit the argument definition in the lambda and use it to refer to

the argument, as shown in Line 7 .

Listing 2.3: Lambdas as arguments in Kotlin

1 val numbers = listOf(0, 1, 2)

2

3 // All equivalent: [0, 2, 4]

4 numbers.map({ n -> n * 2})

5 numbers.map() { n -> n * 2}

6 numbers.map { n -> n * 2}

7 numbers.map { it * 2 }

It is also possible to extend a class with new functionality without inheritance, using

extension functions. To declare an extension function, we write the receiver type before

the function name. Listing 2.4 declares an extension function double that adds function-

ality to lists of integers, which are the receiver type. Inside the body of the function, this

refers to the receiver object; that is why the body of the double function is simply invok-

ing map on the receiver (the list), passing as an argument a lambda that multiplies each

element by two. The this expression can even be omitted, as it implicitly refers to the

receiver object.

Listing 2.4: An extension function

1 fun List<Int>.double() = this.map {it * 2}

Function types with receiver can be instantiated with a special form of function liter-

als1: function literals with receiver. Inside the function literal, this refers to the receiver

object, like extension functions.

Listing 2.5 declares a function literal with receiver that has the same functionality as

the extension function declared in Listing 2.4.

1Function literals are functions that are not declared but passed as an expression.

19

CHAPTER 2. BACKGROUND

Listing 2.5: Function literal with receiver

1 val double: List<Int>.() -> List<Int> = { map { it * 2 } }

2.7.2 Type-safe builders

Kotlin has support for type-safe, statically typed builders that allow us to create DSLs in

a semi-declarative way. This is achieved by combining functions as builders, functions

with receivers and the fact that in Kotlin we can move the last argument of a function

outside the parentheses if it is a lambda and even omit the parentheses if there are no

other arguments, as shown previously (Subsection 2.7.1).

Figure 2.17 shows how we can use type-safe builders to write HTML code in a more

idiomatic way in Kotlin. We start by calling the html function, passing a lambda as the

argument. In the lambda’s body, we call the head and body methods of the HTML class (the

lambda receiver), once again passing lambdas as arguments. The unary plus (+) method

of the String class is used to add a text element to the children of the this element. Line 11

shows how we can pass a mandatory argument to create a link element (href). Lines 18-19

generate two list items, showing that we can write any code we want inside the lambdas.

Figure 2.17: Kotlin DSL for HTML (Simplified example from the kotlin docs)

HTML definition

1 html {

2 head {

3 title { +"HTML encoding with Kotlin" }

4 }

5 body {

6 h1 { +"HTML encoding with Kotlin" }

7 p {

8 +"an alternative markup to HTML"

9 }

10

11 a(href = "http://kotlinlang.org") {

12 +"Kotlin"

13 }

14

15 p {

16 +"some text"

17 ul {

18 for (i in 1..2)

19 li { +"${i}*2 = ${i*2}" }

20 }

21 }

22 }

23 }

Generated HTML

1 <html>

2 <head>

3 <title>

4 HTML encoding with Kotlin

5 </title>

6 </head>

7 <body>

8 <h1>

9 HTML encoding with Kotlin

10 </h1>

11 <p>

12 an alternative markup to HTML

13 </p>

14

15 Kotlin

16

17 <p>

18 some text

19

20

21 1*2 = 2

22

23

24 2*2 = 4

25

26

27 </p>

28 </body>

29 </html>

20

https://kotlinlang.org/docs/type-safe-builders.html

2.7. KOTLIN

2.7.3 Metaprogramming

KotlinPoet [37] is a Kotlin and Java API for generating Kotlin source files. It has builders,

method chaining, and models for Kotlin files, classes, interfaces, objects, type aliases,

properties, functions, constructors, parameters, and annotations. This makes generating

code easier and makes it is less error-prone than simply writing plain text to a file.

In Figure 2.18 we show how we can generate a Person class. Using kotlinpoet’s FileSpec

builder, we start by adding a comment (Line 2). We then, in Lines 3-10, define the

class. Lines 4-6 define the primary constructor with an argument name, Lines 7-9 define a

property name that is initialized with the value of the argument.

Figure 2.18: Generating a class with kotlinpoet

1 val file = FileSpec.builder("", "Person")

2 .addComment("Generated file")

3 .addType(TypeSpec.classBuilder("Person")

4 .primaryConstructor(FunSpec.constructorBuilder()

5 .addParameter("name", String::class)

6 .build())

7 .addProperty(PropertySpec.builder("name", String::class)

8 .initializer("name")

9 .build())

10 .build())

11 .build()

12

13 file.writeTo(System.out)

Output

// Generated file

import kotlin.String

public class Person(

public val name: String

)

2.7.4 Coroutines

Coroutines are Kotlin’s lightweight threads. They follow the principle of structured

concurrency and can only be launched inside a coroutine scope that limits their lifetime.

Figure 2.19 shows how we can build programs with them. In Line 2, we use run-

Blocking, a coroutine builder. It blocks the current thread until the coroutine passed as an

argument completes. We need to use this function to bridge blocking code with suspending
style code. Suspend functions are special functions that can be paused and resumed and

can only be used inside other suspend functions. Channel’s send and receive methods are

examples of suspending functions. The last argument of the runBlocking function is the

coroutine (and also a lambda with receiver).

The launch function is also a coroutine builder, but this one does not block the current

thread. Both coroutines run concurrently - the one started in the call to runBlocking and

the one initiated by launch.

2.7.5 Channels

Kotlin implements channels as a way of sending messages between coroutines. Channels

are parameterized with the type of message they transmit, behave like a queue, and can

have a buffer. Sending may suspend execution if the buffer is full. The same can happen

21

CHAPTER 2. BACKGROUND

Figure 2.19: Coroutines and channels

1 fun main() {

2 runBlocking {

3 val channel = Channel<Int>()

4

5 launch {

6 for (x in 1..3) channel.send(x)

7 }

8 repeat(3) { println(channel.receive()) }

9 println("Done!")

10 }

11 }

Output

1

2

3

Done!

when receiving if the buffer is empty. It is possible to define a channel with an “unlimited”

buffer: With these, sending never suspends and the buffer may grow infinitely until an

out-of-memory exception occurs.

Sending and receiving are also fair, in the sense that they respect the order of invoca-

tion: the first coroutine that invokes receive is the first one to receive a value and resume

execution.

Figure 2.19 illustrates how can we use channels to communicate between coroutines.

Line 3 declares a new unbuffered Channel that transmits integers. In the coroutine declared

inside launch, we send three messages; at the same time, the main coroutine receives them,

on Line 8.

22

3

Developed Work

We present an idiomatic implementation of Multiparty Session Types in Kotlin that ex-

plores the features of the language. We provide a DSL, built upon the features mentioned

in Section 2.7, that enables programmers to declare and use session types in a practical

way [50].

Figure 3.1: Overview of the library

Projection

Global protocol
definition

Code generation

Simplification + validation

Local Type
Parsing + validation

Solver

Local Endpoint API

Callbacks Interface

Callbacks API

Callbacks Endpoint

Fluent API

State classes

Finite State
Machine

Figure 3.1 provides a high-level view of the library. The global protocol, written by

the user, is converted into a recursive global type. If the global type uses refinements,

they are parsed, and a solver is invoked to guarantee satisfiability. Afterward, a projection

function is applied to the global type, and recursive local types are generated. Finite state

machines are created from local types and then used to generate local endpoint APIs.

Table 3.1 provides additional implementation statistics.

Table 3.1: Project statistics

Lines Of Code (Source Code) 7947
Unit Tests 266
Test Coverage 90.28%

In the following sections, we discuss how we tackled the challenges of representing

and projecting global types (Section 3.1 and Section 3.2), endpoint implementation (Sec-

tion 3.3), and refinements (Section 3.4) Lastly, we present some Quality of Life features

23

CHAPTER 3. DEVELOPED WORK

that were introduced to assist with developer’s workflow (Section 3.5), and we close the

chapter with the evaluation (Section 3.6).

3.1 Global Type Representation

To represent global types we considered two approaches:

• Use the Scribble language and extend the Scribble toolchain to target Kotlin (similar

to Hu and Yoshida [21]);

• Create a DSL and define the types directly in Kotlin.

The former has the advantage of inheriting Scribble’s syntax and validation capabil-

ities but would require developers to learn a new syntax. The latter was the direction

chosen for this project: the DSL offers a much more familiar coding environment, and it

leverages Kotlin’s type system to provide code completion and documentation.

To build multiparty session types, the DSL has the function globalProtocol(...) as

its entrypoint. The second argument, protocolBuilder, is a lambda with receiver (Subsec-

tion 2.7.1). This receiver has the operations commonly present in session types:

• send<T>(from: SKRole, to: SKRole, label: String)

Declare that from sends a labelled message with type T to to;

• choice(at: SKRole, branches: ChoiceEnv.() -> Unit)

Declare that at must choose a continuation. The different paths are declared inside

the lambda with branch:

– branch(protocolBuilder: GlobalEnv.() -> Unit).

• mu(): RecursionTag

Create a recursion point;

• goto(t: RecursionTag)

Declare that the protocol should continue at the point t was created.

To better illustrate how sessionkotlin can be used to build session types, we present

an implementation of the Two Buyer protocol (Listing 3.1), which was described in the

previous section (Figure 2.12). First, we create roles for A, B, and the Seller, which are

instances of the provided SKRole class (Lines 1-3). Next, we define the protocol using

the globalProtocol function, passing three arguments: the protocol name ("TwoBuyer"),

whether the callbacks API should be generated, and the protocol builder, which is a

lambda (Subsection 2.7.1). Inside the protocol builder environment, it is possible to

invoke the functions detailed above to send messages and offer choices.

Using recursion, we can describe a protocol that sums a variable amount of numbers.

In Listing 3.2, Alice sends one or more integers to Bob before terminating. We use the

24

3.1. GLOBAL TYPE REPRESENTATION

Listing 3.1: Two Buyer protocol in sessionkotlin

1 val a = SKRole("ClientA")

2 val b = SKRole("ClientB")

3 val seller = SKRole("Seller")

4

5 globalProtocol("TwoBuyer", true) {

6 send<String>(a, seller, "Id")

7 send<Int>(seller, a)

8 send<Int>(seller, b)

9 send<Int>(a, b)

10 choice(b) {

11 branch {

12 send<String>(b, seller, "Address")

13 send<LocalDate>(seller, b, "Date")

14 send<LocalDate>(b, a, "Date")

15 }

16 branch {

17 send<Unit>(b, seller, "Quit")

18 send<Unit>(b, a, "Quit")

19 }

20 }

21 }

tag created by the mu() call (Line 2) as the argument of the goto function (Line 7). The

message in Line 10 is needed to propagate the result of the choice to Bob: this and other

restrictions are detailed in Section 3.2.

Note that these protocol definitions are much more flexible than the standard. In

particular, when defining a choice, developers only need to specify the role that makes

the choice.

1 globalProtocol("SumProtocol") {

2 val t = mu()

3

4 choice(a) {

5 branch {

6 send<Int>(a, b, "Add")

7 goto(t)

8 }

9 branch {

10 send<Unit>(a, b, "Quit")

11 send<Int>(b, a) // result

12 }

13 }

14 }

Listing 3.2: Recursive protocol

1 val quitBranch: GlobalProtocol = {

2 send<Unit>(a, b, "Quit")

3 send<Int>(b, a) // result

4 }

5

6 globalProtocol("SumProtocol") {

7 val t = mu()

8

9 choice(a) {

10 branch {

11 send<Int>(a, b, "Add")

12 goto(t)

13 }

14 branch {

15 quitBranch()

16 }

17 }

18 }

Listing 3.3: Protocol decomposition

Listing 3.3 showcases the possibility of extracting parts of the protocol. The variable

declared in Lines 1-4, when invoked inside the Quit branch, has the same effect of the

25

CHAPTER 3. DEVELOPED WORK

Lines 10-11 of Listing 3.2. The GlobalProtocol type is an alias of a function type that has

a global protocol as its receiver, and that is why it is invoked inside the global protocol

declaration.

In exchange for the ability to declare global types in the DSL, we lose the ability to

validate it statically: the lambda inside globalProtocol is not available at compile time.

But, in practice, we have two compilation moments: one to compile the global type

(and generate local APIs) and one to compile the code that uses the generated APIs. By

validating the global type before generating local APIs, we ensure that client code always

uses valid types.

3.2 Global Type Projection & Validation

The projection is, in practice, similar to the one shown in Figure 2.7. Due to our global

type definitions being much more flexible than the standard definition (Figure 2.6), the

implementation is a bit more sophisticated. We perform the following verifications and

optimizations:

1. When sending messages:

a) The sender must be different from the receiver;

b) If the generation of callbacks API is requested, the sequence {action, label,

sender, receiver} must be unique.

c) The sender must “know” the message labels used in the refinement condition,

if present;

d) All conditions must be parseable.

2. In choices:

a) A role can be enabled or disabled.

b) The choice subject (the role that makes the choice) starts as enabled. All the

other roles become disabled.

c) Disabled roles become enabled upon receiving a message;

d) A role must be enabled in exactly zero or in every branch;

e) A role must be enabled by the same role in every branch;

f) Branches that describe the same local type as another branch are locally erased.

g) If all choice branches are empty, the choice is locally erased;

h) If a disabled role sends a message, is the subject of a choice, or if some branch

ends with a recursion call, its behavior must be the same for all branches.

3. On recursions:

26

3.2. GLOBAL TYPE PROJECTION & VALIDATION

a) Recursion definitions that are not used are locally erased;

b) If a role does not send, receive, or choose after a recursion definition, the

recursion is locally erased;

This transitive notion of activation represents the roles’ knowledge of the outcome of

choices. The actions of enabled and disabled roles are the basis for choice validation. To

clarify these rules and their purpose consider the following examples, in which we refer

to the roles a, b, and c as Alice, Bob, and Charlie, respectively.

Listing 3.4: Unfinished role

1 globalProtocol("UnfinishedRoleExample") {

2 choice(a) {

3 branch {

4 send<Int>(a, b, "b1")

5 send<Int>(a, c, "b1")

6 }

7 branch {

8 send<Int>(a, b, "b2")

9 // Charlie hanging

10 }

11 }

12 }

1 [main] ERROR GlobalEnv - Exception while projecting onto Charlie

2 Exception in thread "main" UnfinishedRolesException: Unfinished roles: Charlie.

Listing 3.4 declares a protocol in which Charlie only receives a message in the first

branch. As expected, an exception is thrown describing the problem: a role is not finished:

Charlie cannot tell if it should wait for Alice’s message or if the protocol has terminated.

Rule 2d, which ensures that there are no unfinished roles, is violated.

The protocol declared in Figure 3.5 contains an inconsistent choice: In the first branch,

Charlie receives it’s first message from Bob, while in the second branch it is from Alice.

Rule 2e, which guarantees consistent choices, is broken and the exception details exactly

that: Charlie is activated by two different roles (Bob and Alice).

In Listing 3.6, Charlie does not know the outcome of the choice (he is disabled) and

thus cannot determine whether to send the message to Bob or not. This example breaks

rule 2h, which guarantees that local role behavior does not depend on the outcome of

unknown choices. In contrast, the protocol described in Listing 3.7 is perfectly fine:

Charlie presents the same behaviour in both branches and the choice is locally collapsed

due to rule 2f. Charlie’s local type is simply !⟨Int,Bob⟩.end.

As for recursion, consider Listing 3.8. This protocol would appear to break rule 2h

but we can combine rules 3b and 2g: the first allows unguarded recursions to be erased

from local types, while the second erases empty choices. In this example, Charlie does

not need to distinguish between branches because he does not "do anything"after the

recursion definition in Line 3. The local type becomes ?⟨Int,Bob⟩.end. In contrast, the

27

CHAPTER 3. DEVELOPED WORK

Listing 3.5: Inconsistent choice

1 globalProtocol("InconsistentProtocol") {

2 choice(a) {

3 branch {

4 send<Int>(a, b, "b1")

5 send<Int>(b, c, "b1") // Charlie activated by Bob

6 }

7 branch {

8 send<Int>(a, b, "b2")

9 send<Int>(a, c, "b2") // Charlie activated by Alice

10 }

11 }

12 }

1 [main] ERROR GlobalEnv - Exception while projecting onto Charlie

2 Exception in thread "main" InconsistentExternalChoiceException: Inconsistent external

choice: role Charlie activated by [Bob, Alice]↪→

Listing 3.6: Role not enabled

1 globalProtocol("Protocol1") {

2 choice(a) {

3 branch {

4 send<Int>(a, b, "b1")

5 send<Int>(c, b) // Charlie not enabled

6 }

7 branch {

8 send<Int>(a, b, "b2")

9 }

10 }

11 }

1 [main] ERROR GlobalEnv - Exception while projecting onto Charlie

2 Exception in thread "main" RoleNotEnabledException: Role Charlie not enabled.

Listing 3.7: Collapsable choice

1 globalProtocol("Protocol1") {

2 choice(a) {

3 // Charlie not activated in any branch

4 branch {

5 send<Int>(a, b, "b1")

6 send<Int>(c, b)

7 }

8 branch {

9 send<Int>(a, b, "b2")

10 send<Int>(c, b)

11 }

12 }

13 }

protocol displayed in Listing 3.9 is invalid because it breaks rule 2h. We cannot apply

rule 3b because Charlie sends an integer to Alice after the recursion definition (Line 4).

28

3.2. GLOBAL TYPE PROJECTION & VALIDATION

Listing 3.8: Erased recursion

1 globalProtocol("Protocol1") {

2 send<Int>(b, c)

3 val t = mu()

4 choice(a) {

5 branch {

6 send<Int>(a, b, "b1")

7 goto(t) // Charlie not enabled

8 }

9 branch {

10 send<Int>(a, b, "b2")

11 send<Int>(b, a)

12 }

13 }

14 }

Finally, the rule 1b prevents name clashing of generated classes and methods.

Listing 3.9: Role not enabled

1 globalProtocol("Protocol1") {

2 send<Int>(b, c)

3 val t = mu()

4 send<Int>(c, a) // Charlie sends a message

5 choice(a) {

6 branch {

7 send<Int>(a, b, "b1")

8 goto(t) // Charlie not enabled

9 }

10 branch {

11 send<Int>(a, b, "b2")

12 send<Int>(b, a)

13 }

14 }

15 }

1 [main] ERROR GlobalEnv - Exception while projecting onto Charlie

2 Exception in thread "main" RoleNotEnabledException: Role Charlie not enabled.

Once the local types are obtained, similarly to Scribble [59], they are transformed in

a Finite State Machine (FSM) to perform simplifications, detect non-deterministic states,

and streamline the API generation. Consider the protocol in Figure 3.2 that describes

the interactions between two participants, a client and a server. The figure also shows

the simplified FSM representation of the server’s behaviour, with the receiver and sender

omitted. The initial state reflects the ability to receive the Quit message from the first

branch, and both Number and ObtainSum from the nested choice.

29

CHAPTER 3. DEVELOPED WORK

Figure 3.2: Recursive adder protocol and server FSM representation

1 globalProtocol("RecAdder") {

2 val t1 = mu()

3 choice(c) {

4 branch {

5 send<Unit>(c, s, "Quit")

6 }

7 branch {

8 val t2 = mu()

9 choice(c) {

10 branch {

11 send<Int>(c, s, "Number")

12 goto(t2)

13 }

14 branch {

15 send<Unit>(c, s, "ObtainSum")

16 send<Int>(s, c, "Sum")

17 goto(t1)

18 }

19 }

20 }

21 }

22 }

?[Quit]<Unit>

?[ObtainSum]<Unit>

?[Number]<Int>

1

?[ObtainSum]<Unit>

2
![Sum]<Unit>

3

?[Number]<Int>

3.3 Endpoint Implementation

We offer two alternatives for endpoint implementation: a fluent API and a callback-based

approach: both can be used interchangeably but provide different guarantees. To generate

endpoint code, we use the kotlinpoet library [37], which provides an API for generating

Kotlin source files.

3.3.1 Communication

Endpoint communication can be carried out via channels and/or sockets. We provide the

following communication API:

• request(role: SKGenRole, hostname: String, port: Int)

• accept(role: SKGenRole, port: Int)

• accept(role: SKGenRole, serverSocket: SKServerSocket)

• bind(port: Int): SKServerSocket

• connect(role: SKGenRole, chan: SKChannel)

• wrap(role: SKGenRole, wrapper: SocketWrapper)

Where SKGenRole is a superclass that all generated roles inherit from, and SKChannel is

a class that wraps two Kotlin channels to allow bidirectional communication. A single

SKChannel instance is shared between two endpoints. The accept(..., port: Int) operation

will implicitly create a socket and bind it. For the socket to persist across SKMPEndpoint

instances, it is possible to obtain an SKServerSocket by explicitly calling the static bind

30

3.3. ENDPOINT IMPLEMENTATION

method. The wrap method is used to wrap an existing socket connection: we offer an

implementation of TLS, TLSSocketWrapper.

We use the suspending-style socket API offered by the Ktor framework [39], which in-

ternally uses java.nio. This allows us to create a unified communication API that supports

both sockets and channels.

3.3.2 Fluent API

Listing 3.10: Seller endpoint implementation (fluent API)

1 runBlocking {

2 val chanClientASeller = SKChannel()

3 val chanClientBSeller = SKChannel()

4 launch {

5 SKMPEndpoint().use { e ->

6 e.connect(ClientA, chanClientASeller)

7 e.connect(ClientB, chanClientBSeller)

8

9 val productId = ""

10 val address = ""

11

12 TwoBuyerSeller1(e)

13 .receiveFromClientA { productId = it }

14 .sendToClientA(getPriceByName(productId))

15 .sendToClientB(getPriceByName(productId))

16 .branch()

17 .let {

18 when (it) {

19 is TwoBuyerSeller4_AddressInterface -> it

20 .receiveFromClientB { address = it }

21 .sendToClientB(calculateDelivery(address))

22 is TwoBuyerSeller4_QuitInterface -> it

23 .receiveFromClientB()

24 }

25 }

26 }

27 }

28 }

To support this style, a class is created for each state. The class corresponding to the

initial state is public, acting as the entry point. Each method returns an instance to the

next state, making it possible to chain the calls. These methods are guarded: should they

be called more than once, an exception is thrown and no I/O is performed, preserving

linearity.

Figure 3.10 shows an implementation of Seller endpoint of the two buyer protocol

using this style. It starts by creating an SKMPEndpoint and connecting to both clients via

channels. It then creates an instance of the initial state (TwoBuyerSeller1), passing the

endpoint as an argument, and executes the protocol by calling the methods. Note that

the I/O methods can suspend, so they can only be called inside coroutines.

31

CHAPTER 3. DEVELOPED WORK

3.3.3 Callbacks

The idea behind this approach is to invert the control and have the library call user-

defined code. Similarly to Zhou et al. [60], the developer defines callbacks and the back-

end invokes them as the protocol progresses. The main advantage is that, as the user

cannot explicitly send or receive messages, linearity is achieved by construction, and we

avoid the runtime verifications that the fluent approach need. To generate an API in this

style, simply pass True as the callbacks argument of the globalProtocol function.

Listing 3.11 shows how we can implement the seller endpoint of the Two Buyer proto-

col using the callbacks API. The library generates an interface with the callback signatures

(TwoBuyerCallbacksSeller) and an endpoint (TwoBuyerCallbackEndpointSeller). The developer

implements the callbacks and pass them to the endpoint as an argument. The endpoint

provides methods to connect to other endpoints, just like SKMPEndpoint, and a method that

starts the execution of the protocol, start.

Listing 3.11: Seller endpoint implementation (callbacks API)

1 runBlocking {

2 val chanClientASeller = SKChannel()

3 val chanClientBSeller = SKChannel()

4 launch {

5 val productId = ""

6 val address = ""

7

8 val cs = object : TwoBuyerSellerCallbacks {

9 override fun receiveIdFromClientA(v: String) { productId = v }

10 override fun sendToClientA(): Int = getPriceByName(productId)

11 override fun sendToClientB(): Int = getPriceByName(productId)

12 override fun receiveAddressFromClientB(v: String) { address = v }

13 override fun receiveQuitFromClientB() {}

14 override fun sendDateToClientB(): LocalDate = calculateDelivery(address)

15 }

16 TwoBuyerSellerCallbacksEndpoint(cs).use {

17 it.connect(ClientA, chanClientASeller)

18 it.connect(ClientB, chanClientBSeller)

19 it.start()

20 }

21 }

22 }

3.3.4 Safety Guarantees

The callbacks API guarantees linearity by construction as a result of I/O not being called

directly by the developer. Endpoint code that uses the fluent API contains runtime checks.

In any case, endpoint code is only generated after global type validation: the APIs stati-

cally define the allowed I/O and require exhaustive handling of all branches, resulting in

protocol fidelity and communication safety.

32

3.4. REFINEMENTS

3.4 Refinements

The DSL also supports type refinements: it is possible to define logical expressions to

constrain the exchanged data. We show, in Figure 3.12, how we could extend the global

type of the Two Buyer protocol to include these refinements. The first condition (Line 8)

ensures that both clients receive the same value for the price of the product; the second

condition (Line 9) guarantees that Client A does not pay the total amount.

Listing 3.12: Refined Two Buyer protocol in sessionkotlin

1 val a = SKRole("ClientA")

2 val b = SKRole("ClientB")

3 val seller = SKRole("Seller")

4

5 globalProtocol("TwoBuyer") {

6 send<String>(a, seller, "Id")

7 send<Int>(seller, a, "valA")

8 send<Int>(seller, b, "valB", "valA == valB")

9 send<Int>(a, b, "proposal", "proposal <= valA")

10 choice(b) {

11 branch {

12 send<String>(b, seller, "Address")

13 send<LocalDate>(seller, b, "Date")

14 send<LocalDate>(b, a, "Date")

15 }

16 branch {

17 send<Unit>(b, seller, "Quit")

18 send<Unit>(b, a, "Quit")

19 }

20 }

21 }

The expressions can contain integers, floating-point numbers, string literals, and mes-

sage labels. It also supports basic arithmetic operations (sum, subtraction), comparisons,

and boolean operators (and, or, implication). The parser was built with the parser combi-

nator library better-parse [5]. For a full grammar specification check out Figure 3.3.

For an expression to be valid, all variables must be visible locally. In Listing 3.13, the

condition is not valid because val1 does not exist in the branch.

In Listing 3.14 we have two conditions. The first, val2 == val1, is valid because Bob

has knowledge of both messages and only the message sender enforce the refinement. In

opposition, val3 == val1 is not valid since Charlie does not know the value of val1.

It is also needed to check for satisfiability. This can be done by employing an external

solver (for example, an SMT solver) [45, 60, 13]. We use the Z3 theorem prover [54], as it

supports integers, floating-point numbers and strings, through the API provided by the

java-smt library [3].

As an example, Listing 3.15 defines an expression that is not satisfiable: val2 cannot

be greater than zero and at the same time have the same value of val1. This information

is reported by the library through an exception with information about the offending

condition.

33

CHAPTER 3. DEVELOPED WORK

Figure 3.3: Refinement expressions grammar

ImplChain≜OrChain− > ImplChain

| OrChain

OrChain≜OrChain&&AndChain

| AndChain

AndChain≜ AndChain ∥Bool
| Bool

T erm≜

| − T erm
| (Expr)
| 'string' // String literal

| string // Variable

| float

| integer

Bool ≜

| true | false

| ! Bool
| Expr == Expr

| Expr ! =Expr

| Expr < Expr

| Expr <= Expr

| Expr > Expr

| Expr >= Expr

| (ImplChain)

Expr ≜

| Expr + T erm

| Expr − T erm
| T erm

Listing 3.13: Unknown variable (scope)

1 globalProtocol("RefinedProtocol1") {

2 choice(a) {

3 branch {

4 send<Int>(a, b, "val1")

5 }

6 branch {

7 send<Int>(a, b, "val2", "val2 != val1")

8 }

9 }

10 }

1 [main] ERROR GlobalEnv - Exception while projecting onto Alice

2 Exception in thread "main" UnknownMessageLabelException: Role Alice cannot see some

message labels: [val1]↪→

Any problems with name visibility or satisfiability cause the global type to be invalid

and prevent local types from being generated. All refinement conditions materialize to

assertions that are inserted within the endpoint code.

34

3.5. QUALITY OF LIFE FEATURES

Listing 3.14: Unknown variable (roles)

1 globalProtocol("RefinedProtocol2") {

2 send<Int>(a, b, "val1")

3 send<Int>(b, c, "val2", "val2 == val1")

4 send<Int>(c, a, "val3", "val3 == val1")

5 }

1 [main] ERROR GlobalEnv - Exception while projecting onto Charlie

2 Exception in thread "main" UnknownMessageLabelException: Role Charlie cannot see some

message labels: [val1]↪→

Listing 3.15: Unsatisfiable refinement

1 globalProtocol("RefinedProtocol3") {

2 send<Int>(a, b, "val1", "val1 < 0")

3 send<Int>(a, b, "val2", "val2 > 0 && val2 == val1")

4 }

1 Exception in thread "main" UnsatisfiableRefinementsException: (and (< val1 0) (> val2 0)

(= val2 val1))↪→

3.5 Quality of Life Features

The library is available as a Maven artifact and can be added as a dependency to Gradle

or Maven projects. We created two project templates on GitHub: one that uses Gradle 1

and one with Maven 2. The former is recommended for a couple of reasons. It is a multi-

project build 3: one project contains the protocol definition, and the other the main app.

With this structure, we split the two compilation steps discussed in Section 3.1, and it

becomes possible to change the protocol definition as needed without commenting out

the main application code. Additionally, it uses a plugin we built that simplifies the build

configuration (the solver library requires some files to be in a special folder).

Figure 3.4: Template Gradle project

sessionkotlin-template-gradle

Protocol App

sessionkotlin-plugin
sessionkotlin-lib

sessionkotlin-parser

1https://github.com/d-costa/sessionkotlin-template-gradle/tree/thesis
2https://github.com/d-costa/sessionkotlin-template-maven/tree/thesis
3https://docs.gradle.org/current/userguide/multi_project_builds.html

35

https://github.com/d-costa/sessionkotlin-template-gradle/tree/thesis
https://github.com/d-costa/sessionkotlin-template-maven/tree/thesis
https://docs.gradle.org/current/userguide/multi_project_builds.html

CHAPTER 3. DEVELOPED WORK

The Gradle project is detailed in Figure 3.4. The Protocol subproject declares a depen-

dency on the sessionkotlin-lib artifact, which itself depends on the sessionkotlin-parser

module. The App subproject has access to the library and generated code via its depen-

dency on Protocol. Finally, the plugin takes care of all the necessary configurations.

1 fun aux(sender: SKRole, receiver: SKRole): GlobalProtocol = {

2 send<Int>(sender, receiver)

3 }

4 globalProtocol("Protocol1") {

5 aux(a, b)() // send<Int>(a, b)

6 aux(b, a)() // send<Int>(b, a)

7 }

Listing 3.16: Parameterized protocol decomposition

Protocol decomposition was also an important feature to have in the DSL. In addition

to what was shown in Listing 3.3, it is possible to go one step further and create parame-

terized protocols. For example, in Listing 3.16, we define a higher-order function aux that

takes two roles as arguments and returns a function that returns a protocol (GlobalProto-

col is a type alias of a function type that has a global protocol as its receiver). This allows

developers to extract and reuse sections of a big protocol.

3.6 Evaluation

In this section we discuss potential limitations present in the library, show how SMTP

can be implemented using our tools, and examine the results of micro-benchmarks.

3.6.1 Limitations

Some protocol definitions that could represent valid global types are rejected by ses-

sionkotlin. Consider the protocol defined in Figure 3.5, between Alice (a), Bob (b), and

Charlie (c). Charlie starts the protocol by receiving a message n from Alice. Then, de-

pending on Alice’s choice, either receives a message labeled b1 or recurs. Unfortunately,

rule 2h causes this interaction to be invalid: Charlie is not aware of Alice’s choice at the

point of recursion. However, if we unroll the recursion, it is obvious that Charlie can

infer Alice’s choice: the n message, if received, means that Alice chose the second branch.

Scribble [59] implements this unrolling and correctly validates this protocol. Figure 3.5

illustrates the possible states that Charlie could go through.

On the other hand, protocols such as the one declared in Figure 3.7 are invalid through

Scribble’s rules: only enabled roles are allowed to send messages. When projecting Char-

lie’s local type, our library erases the external choice since all branches describe the same

behaviour, resulting in a valid global protocol.

As previously stated, protocol validation is performed during runtime (Section 3.2).

We argue that relying on runtime checks is reasonable for two reasons. First, malformed

protocols are never allowed since the library will never generate APIs from them. Second,

36

3.6. EVALUATION

Figure 3.5: Rejected protocol and possible Charlie’s FSM representation

1 globalProtocol("Protocol") {

2 val t = mu()

3 send<Int>(a, c, "n")

4 choice(a) {

5 branch {

6 send<String>(a, b, "b1")

7 send<String>(a, c, "b1")

8 }

9 branch {

10 send<Int>(a, b, "b2")

11 goto(t)

12 }

13 }

14 }

?A[n]<Int>

1

2
?A[b1]<String>

?A[n]<Int>

the usage discipline complements the runtime verifications: the fluent API guides the

developer through session states with the return types, and the autocomplete feature

present in every modern IDE avoids the need to know about function name generation

and the possible outcomes of a choice. Linearity is enforced through runtime assertions,

and any attempt to break it results in an exception. The callbacks API provides linearity

by construction but requires developers to define the callbacks while keeping in mind

the message labels defined earlier. This strategy allows global protocol definition through

type-safe builders, which provide an intuitive and idiomatic way to create multiparty

session types while simultaneously taking advantage of the host language ecosystem.

The refinements have some restrictions as well: payload types are limited to String,

Long and Double, while Int, Short, and Byte payloads are promoted to Long. Additionally,

the expressions are dynamically typed, which means that type compatibility is checked

during runtime, while the protocol is being validated. Therefore, invalid expressions

such as "'a' > 0" (string literal a must be greater than zero) are not statically flagged as

such and result in a runtime exception.

3.6.2 Case Study - SMTP

We implemented a simplified version of SMTP [31], the internet standard for mail

transport, together with a client4 that is capable of communicating with external SMTP

servers such as Gmail’s SMTP server.

An execution log is show in Listing 3.17. The session is initiated when the client opens

a connection to the server and receives its welcome message (Line 1). In this example, we

connect to Gmail’s SMTP server. The client sends the ehlo message (Line 2), to which the

server replies with the supported extensions (Lines 3-10). The client continues by signal-

ing the intention to use the TLS extension [18], and the server acknowledges (Lines 11-12).

At this point, the TLS handshake is carried out: the unsecured connection is wrapped

within a TLSSocketWrapper object that handles the handshake and transparently encrypts

4https://github.com/d-costa/sessionkotlin/tree/thesis/evaluation/smtp

37

https://github.com/d-costa/sessionkotlin/tree/thesis/evaluation/smtp

CHAPTER 3. DEVELOPED WORK

Listing 3.17: SMTP log
1 SKMPEndpoint - Received: 220 smtp.gmail.com ESMTP c13-20020a056000104d00b0021cf31e1f7csm1091022wrx.102 - gsmtp

2 SKMPEndpoint - Sent : Ehlo com.github.d_costa

3 SKMPEndpoint - Received: 250-smtp.gmail.com at your service, [IP]

4 SKMPEndpoint - Received: 250-SIZE 35882577

5 SKMPEndpoint - Received: 250-8BITMIME

6 SKMPEndpoint - Received: 250-STARTTLS

7 SKMPEndpoint - Received: 250-ENHANCEDSTATUSCODES

8 SKMPEndpoint - Received: 250-PIPELINING

9 SKMPEndpoint - Received: 250-CHUNKING

10 SKMPEndpoint - Received: 250 SMTPUTF8

11 SKMPEndpoint - Sent : StartTLS

12 SKMPEndpoint - Received: 220 2.0.0 Ready to start TLS

13 TLSSocketWrapper - Client: TLS Handshake complete

14 TLSSocketWrapper - Client: Protocol: TLSv1.3

15 TLSSocketWrapper - Client: CipherSuite: TLS_AES_256_GCM_SHA384

16 SKMPEndpoint - Sent : Ehlo com.github.d_costa

17 SKMPEndpoint - Received: 250-smtp.gmail.com at your service, [IP]

18 SKMPEndpoint - Received: 250-SIZE 35882577

19 SKMPEndpoint - Received: 250-8BITMIME

20 SKMPEndpoint - Received: 250-AUTH LOGIN PLAIN XOAUTH2 PLAIN-CLIENTTOKEN OAUTHBEARER XOAUTH

21 SKMPEndpoint - Received: 250-ENHANCEDSTATUSCODES

22 SKMPEndpoint - Received: 250-PIPELINING

23 SKMPEndpoint - Received: 250-CHUNKING

24 SKMPEndpoint - Received: 250 SMTPUTF8

25 SKMPEndpoint - Sent : Auth LOGIN

26 SKMPEndpoint - Received: 334 Username:

27 SKMPEndpoint - Sent : ZGNvc3RhLnNtdHBAZ21haWwuY29t

28 SKMPEndpoint - Received: 334 Password:

29 SKMPEndpoint - Sent : [password]

30 SKMPEndpoint - Received: 235 2.7.0 Accepted

31 SKMPEndpoint - Sent : Mail from:<dcosta.smtp@gmail.com>

32 SKMPEndpoint - Received: 250 2.1.0 OK c13-20020a056000104d00b0021cf31e1f7csm1091022wrx.102 - gsmtp

33 SKMPEndpoint - Sent : Rcpt to:<dcosta.smtp@gmail.com>

34 SKMPEndpoint - Received: 250 2.1.5 OK c13-20020a056000104d00b0021cf31e1f7csm1091022wrx.102 - gsmtp

35 SKMPEndpoint - Sent : Data

36 SKMPEndpoint - Received: 354 Go ahead c13-20020a056000104d00b0021cf31e1f7csm1091022wrx.102 - gsmtp

37 SKMPEndpoint - Sent : message-id:<1657795062413AE98FCE0F8306893CBBABDDCC5B567F7@com.github.d_costa>

38 SKMPEndpoint - Sent : from:<dcosta.smtp@gmail.com>

39 SKMPEndpoint - Sent : to:<dcosta.smtp@gmail.com>

40 SKMPEndpoint - Sent : subject:Hello!

41 SKMPEndpoint - Sent : Hello world,

42 SKMPEndpoint - Sent :

43 SKMPEndpoint - Sent : Lorem ipsum dolor sit amet, consectetur adipiscing elit.

44 SKMPEndpoint - Sent : Cras hendrerit posuere augue, ut pulvinar nulla semper ut.

45 SKMPEndpoint - Sent : .

46 SKMPEndpoint - Received: 250 2.0.0 OK 1657795063 c13-20020a056000104d00b0021cf31e1f7csm1091022wrx.102 - gsmtp

47 TLSSocketWrapper - Client: Closing connection...

48 TLSSocketWrapper - Client: Connection closed.

and decrypts messages. The ehlo message is repeated, but this time the server sends a list

of authentication methods [52] (Line 20). The client proceeds by authenticating itself to

the server using the Login method (Lines 25-30). Next, the client signals the beginning

of a mail transaction by sending a Mail message (Line 31). After setting the necessary

headers and transmitting the mail body, the transaction finishes when the termination

signal is emitted (the full stop, on Line 45). Finally, the server indicates that the message

was accepted and the connection is closed.

In addition to being a valuable exercise in expressiveness, the development of the

SMTP client led to several changes and improvements to the library. The most notable one

is that initial versions of the DSL had labeled branches instead of labeled messages and

that API generation was based on the local types. The label corresponding to the selected

branch was sent on the first message of that branch, which caused a type of construction

to be problematic. Consider the excerpt of an initial SMTP shown in Figure 3.18, which

illustrates the server’s possible answers to client authentication. If accepted, the server

38

3.6. EVALUATION

Listing 3.18: Excerpt of an early SMTP implementation

1 choice(server) {

2 branch("Success") {

3 // Authentication succeeded

4 send<C235>(server, client)

5 mail() // The mail transaction

6 }

7 branch("AuthFailed") {

8 // Authentication unsuccessful

9 val t = mu()

10 choice(server) {

11 branch("C535") {

12 send<C535>(server, client)

13 }

14 branch("C535H") {

15 send<C535H>(server, client)

16 goto(t)

17 }

18 }

19 } // Other branches omitted

20 }

responds with a C235 message. Otherwise, it can send zero or more C535H messages before

finalizing with C535. Note that it is not possible to flatten the choices due to the presence of

recursion in the inner choice. The issue arises when deciding what label is sent alongside

the messages inside the AuthFailed branch: should we discard the outer label and use

only C535H and C535, or combine them (AuthFailed_C535)? If all endpoints were using the

APIs generated by the library it would pose no problem, but when dealing with an SMTP

server that does not know about any labels, we concluded that the most intuitive design

would be to only label the messages.

Additionally, instead of generating the APIs directly from the local types, we added

finite state machines as an intermediate representation: transforming the inherently

recursive local types into sets of states and transitions allows us to analyse and simplify

the state graph before API generation. The finite state machine, unlike the local type,

maps directly to the APIs: in the case of the fluent variant, states become classes and the

transitions specify their methods; for the callbacks API, the states map to functions.

Finally, the need to secure an ongoing TCP connection prompted the development of

SKMPEndpoint’s wrap functionality: it creates an interface between the application and trans-

port layers that modifies inbound and outbound data as needed. The library implements

a TLS wrapper, but any class that implements the SocketWrapper API can be employed.

A simplified definition of the protocol is shown in Listing 3.19. A class was created for

each kind of message (Ehlo, C220, etc.), and the message codes, used as labels, are statically

defined within the Code class.

1 globalProtocol("SMTP") {

2 choice(server) {

3 branch {

4 // Service ready

39

CHAPTER 3. DEVELOPED WORK

5 send<C220>(server, client, Code.C220)

6 ehlo(tls)()

7 }

8 branch {

9 // Transaction failed

10 send<C554>(server, client, Code.C554)

11 }

12 }

13 }

14
15 fun ehlo(continuation: GlobalProtocol): GlobalProtocol = {

16 choice(client) {

17 branch {

18 send<Ehlo>(client, server, Code.Ehlo)

19 val t = mu()

20 choice(server) {

21 branch {

22 send<C250Hyphen>(server, client, Code.C250Hyphen)

23 goto(t)

24 }

25 branch {

26 send<C250>(server, client, Code.C250)

27 continuation()

28 }

29 }

30 }

31 branch {

32 clientQuit()

33 }

34 }

35 }

36
37 val tls: GlobalProtocol = {

38 choice(client) {

39 branch {

40 send<StartTLS>(client, server, Code.TLS)

41 send<C220>(server, client, Code.C220)

42 // Do TLS handshake here, e.g.:

43 // endpoint.wrap(Server, TLSSocketWrapper(ConnectionEnd.Client))

44 ehlo(auth)()

45 }

46 branch {

47 clientQuit()

48 }

49 }

50 }

51
52 val auth: GlobalProtocol = {

53 choice(client) {

54 branch {

55 send<AuthLogin>(client, server, Code.Auth)

56 send<C334>(server, client)

57 send<AuthUsername>(client, server)

58 send<C334>(server, client)

59 send<AuthPassword>(client, server)

60 choice(server) {

61 branch {

62 // Authentication Succeeded

63 send<C235>(server, client, Code.C235)

64 mail()

65 } // 501, 504, 534, 535, and 538 branches ommited

66 }

67 }

68 }

69 }

70
71 val mail: GlobalProtocol = {

72 send<Mail>(client, server, Code.Mail)

73 choice(server) {

40

3.6. EVALUATION

74 branch {

75 // OK

76 send<C250>(server, client, Code.C250)

77 recipients()

78 } // 553 and 530 branches ommited

79 }

80 }

81
82 val recipients: GlobalProtocol = {

83 val t = mu()

84 choice(client) {

85 branch {

86 send<RCPT>(client, server, Code.RCPT)

87 choice(server) {

88 branch {

89 // OK

90 send<C250>(server, client, Code.C250)

91 goto(t)

92 }

93 branch {

94 branch550()

95 }

96 }

97 }

98 branch {

99 data()

100 }

101 }

102 }

103
104 val branch550: GlobalProtocol = {

105 // Requested action not taken: mailbox unavailable (e.g., mailbox

106 // not found, no access, or command rejected for policy reasons)

107 val t = mu()

108 choice(server) {

109 branch {

110 send<C550>(server, client, Code.C550)

111 }

112 branch {

113 send<C550Hyphen>(server, client, Code.C550Hyphen)

114 goto(t)

115 }

116 }

117 }

118 val data: GlobalProtocol = {

119 send<Data>(client, server, Code.Data)

120 send<C354>(server, client, Code.C354)

121 bodyHeaders()

122
123 val t = mu()

124 choice(client) {

125 branch {

126 // Add a line

127 send<DataLine>(client, server, Code.DataLine)

128 goto(t)

129 }

130 branch {

131 // End data

132 send<DataOver>(client, server, Code.DataOver)

133 choice(server) {

134 branch {

135 // Ok

136 send<C250>(server, client, Code.C250)

137 }

138 branch {

139 branch550()

140 }

141 }

142 }

41

CHAPTER 3. DEVELOPED WORK

143 }

144 }

145
146 val bodyHeaders: GlobalProtocol = {

147 send<MessageIdHeader>(client, server)

148 send<FromHeader>(client, server)

149 send<ToHeader>(client, server)

150 send<SubjectHeader>(client, server)

151 }

152
153 val clientQuit: GlobalProtocol = {

154 send<Quit>(client, server, Code.Quit)

155 send<C221>(server, client, Code.C221)

156 }

Listing 3.19: SMTP definition in sessionkotlin

3.6.3 Benchmarks

We created a set of micro-benchmarks that measure the throughput of the two imple-

mented APIs, fluent and callbacks, and the two backends, sockets and channels. Addi-

tionally, we included a third variant that implements the protocol by hand, i.e. without

sessionkotlin, to evaluate the library’s overhead.

Testing was done with the Java Microbenchmark Harness [28] through the JMH Gradle

plugin [30]. Instructions on how to reproduce the presented results are available on the

project’s repository 5.

We implemented three protocols that, together, use all of the features offered by the

DSL: choice, recursion, and refinements. Figure 3.6 illustrates two of them: Adder

describes the behaviour of a recursive server that receives two integers and returns their

sum, while TwoBuyer is a recursive variant of our running example. The third protocol,

AdderRefined, is not present in the figure. It is identical to Adder with the addition

of a refinement in Line 10 that asserts that the sum is correct: "Sum == V1 + V2". The

implemented endpoints of all protocols loop 1000 times over t before quitting.

A comparison with Scribble’s Java runtime was considered, but initial testing yielded

strange results: throughput was reported to be an order of magnitude worse than ses-

sionkotlin. Through personal communication with the library authors, we learned that

the Java runtime is still in an experimental state and is event-driven, focused on scalability.

For these reasons, the comparison with Scribble’s runtime was dropped.

The results were obtained by averaging the throughput over three trials, each with

five warmup iterations and five measurement iterations. The warmup iterations ensure

that the JVM reaches a steady state before any measurements. Each trial is executed in a

freshly forked JVM, to avoid reusing profile-guided optimizations from previously run

benchmarks. The error corresponds to half of a 99.9% confidence interval.

We tasked sessionkotlin to generate fluent and callback-based endpoint APIs for each

protocol shown in Figure 3.6. For each API, we implemented a version that uses sockets

and one that uses channels. We also added a third variant, Handwritten, that implements

5https://github.com/d-costa/sessionkotlin/tree/thesis/evaluation/benchmark

42

https://github.com/d-costa/sessionkotlin/tree/thesis/evaluation/benchmark

3.6. EVALUATION

Figure 3.6: Protocols used for benchmarking

1 globalProtocol("Adder", true) {

2 val t = mu()

3 choice(client) {

4 branch {

5 send<Unit>(client, server, "Quit")

6 }

7 branch {

8 send<Int>(client, server, "V1")

9 send<Int>(client, server, "V2")

10 send<Int>(server, client, "Sum")

11 goto(t)

12 }

13 }

14 }

1 globalProtocol("TwoBuyer", true) {

2 val t = mu()

3 choice(a) {

4 branch {

5 send<String>(a, seller, "Id")

6 send<Int>(seller, a, "Price")

7 send<Int>(seller, b, "Price")

8 send<Int>(a, b, "aShare")

9 choice(b) {

10 branch {

11 send<String>(b, seller, "Address")

12 send<Date>(seller, b, "Date")

13 send<Date>(b, a, "Date")

14 goto(t)

15 }

16 branch { // Unused branch

17 send<Unit>(b, seller, "Reject")

18 send<Unit>(b, a, "Reject")

19 goto(t)

20 }

21 }

22 }

23 branch {

24 send<Unit>(a, seller, "Quit")

25 send<Unit>(seller, b, "Quit")

26 }

27 }

28 }

the protocol by hand: it does not use sessionkotlin but uses the same communication

primitives (Kotlin channels and the async socket API offered by Ktor[39]). Table 3.2

reports the test results for sockets, while Table 3.3 shows the results for the channels.

Table 3.2: Throughput using sockets (ops/s, higher is better)

Protocol API Score Error
Adder Callbacks 10.015 ± 0.237
Adder Fluent 9.989 ± 0.206
Adder Handwritten 16.139 ± 0.552
AdderRefined Callbacks 9.861 ± 0.197
AdderRefined Fluent 9.886 ± 0.212
TwoBuyer Callbacks 4.128 ± 0.052
TwoBuyer Fluent 4.120 ± 0.043
TwoBuyer Handwritten 6.206 ± 0.314

Table 3.3: Throughput using channels (ops/s, higher is better)

Protocol API Score Error
Adder Callbacks 900.015 ± 12.899
Adder Fluent 1000.775 ± 18.362
Adder Handwritten 1823.978 ± 49.704
AdderRefined Callbacks 701.728 ± 13.518
AdderRefined Fluent 819.187 ± 37.289
TwoBuyer Callbacks 313.886 ± 8.674
TwoBuyer Fluent 320.949 ± 10.549
TwoBuyer Handwritten 759.749 ± 3.834

43

CHAPTER 3. DEVELOPED WORK

As expected, throughput is inversely proportional to the amount of messages ex-

changed: TwoBuyer needs roughly double the messages relatively to the Adder protocol.

It is also quite clear that channels perform much better than sockets: the throughput of

the trials that use channels are orders of magnitude better than the alternative. This is not

caused by our library: even the handwritten endpoints follow this trend. Since the chan-

nels we use are backed by a linked-list buffer, endpoint code that uses them is, in theory,

simpler to optimize than code that uses sockets (either by the Kotlin compiler or during

runtime by the JIT compiler). It is also important to note that all socket connections are

local: remote connections would be even slower.

Relatively to the refined protocol, AdderRefined, the trials that used the socket back-

end had a very similar performance to the unrefined variant. On the other hand, the ones

that used channels performed about 20% worse. It is possible that, when inlining the

assertions, some type of compiler or JIT optimization is lost.

As for the APIs, both fluent and callback-based exhibit similar performance: the linear

by construction guarantees that the callback API offers does not introduce any additional

overhead. Unfortunately, the two perform worse than their handwritten counterparts. In

addition to the runtime linear checks required by the fluent API, endpoint code contains

more abstraction layers and serialization. Note that, while the loss in throughput appears

to be quite large, the corresponding elapsed time difference is in the order of a hundredth

of a second. Nonetheless, we consider that the safety benefits offered by the library

outweigh the performance loss.

44

4

Conclusion

In this thesis we develop the first embedding of session types in Kotlin, and a DSL for

multiparty session type definition (Section 3.1). Since one of the main implementation

requirements was to provide a reasonable user experience and an idiomatic DSL, we

allow a less strict syntax compared to standard MPST theory. We adopt a hybrid verifica-

tion strategy that combines static and dynamic verifications: while sacrificing fully static

guarantees in favor of usability, our approach still protects the user from communication

errors and protocol violations. Our generated endpoint APIs (fluent and callback-based)

materialize message types as Kotlin types, ensuring communication safety for free, pro-

vided that all participants use APIs originated from the same protocol. Protocol fidelity

is guaranteed by design, in the case of the callbacks API, since message IO is not called

directly by the user. In contrast, the fluent API relies on runtime verifications to ensure

linearity, throwing an exception upon API misuse (e.g. attempting to reuse an endpoint).

IDE features such as code completion and static code analysis greatly facilitate the usage

of both APIs, freeing the user from being familiar with code generation rules, such as

method and class naming, when writing endpoint code.

We provide an implementation that supports both concurrent and distributed pro-

grams, allowing connections through TCP sockets and Kotlin channels (Subsection 3.3.1),

and offer type refinements (Section 3.4). Our generated endpoint API includes two code

styles: fluent (Subsection 3.3.2) and callback-based (Subsection 3.3.3). The first is based

on method-chaining and relies on runtime linear checks, while the latter offers linearity

by design. Additionally, the provided Gradle plugin [51] greatly simplifies the build

configuration by managing solver dependencies, and the project templates offer a quick

way to get a project started (Section 3.5).

We demonstrate our library’s expressiveness by implementing SMTP and prove proto-

col compliance by successfully communicating with the Gmail servers (Subsection 3.6.2).

Additionally, we show that the generated code has a reasonable performance (Subsec-

tion 3.6.3).

As the selected communication backends are unknown at protocol validation, session

delegation is not supported. Only channel connections could be delegated, since sending

45

CHAPTER 4. CONCLUSION

socket references is impossible.

Listing 4.1: Hypothetical static endpoint declaration

1 @SKMP("Adder.scr", "Server")

2 class AdderServer

3

4 @SKMP("Adder.scr", "Client")

5 class AdderClient

The main topics of future work focus on approximating the performance to the hand-

written endpoints, and improving refinement validation, which could include expression

simplification (e.g. "a > 2 && true") and new supported types (e.g. Boolean messages).

It would also be interesting to explore an alternative way to define global protocols.

In Listing 4.1 we define two (dual) classes, AdderServer and AdderClient, and annotate

them with @SKMP. Using an annotation processor such as the Kotlin Symbol Processing

API [36], we can generate new classes and extension functions to create an endpoint

API (Listing 4.2). The global protocol would be defined in an external file (in this case,

Adder.scr), and would be processed before compilation takes place.

Listing 4.2: Hypothetical generated code

1 class AdderServer2

2 class AdderServer3

3

4 fun AdderServer.receiveFromClient(buf: SKBuffer<Int>): AdderServer2 {

5 // ...

6 }

7 fun AdderServer2.receiveFromClient(buf: SKBuffer<Int>): AdderServer3 {

8 // ...

9 }

10 fun AdderServer3.sendToClient(v: Int): AdderProtocolEnd {

11 // ...

12 }

46

Bibliography

[1] νScr. url: https://github.com/nuscr/nuscr/ (15/6/2022) (cit. on p. 17).

[2] B. Almeida, A. Mordido, and V. T. Vasconcelos. “FreeST: Context-free Session

Types in a Functional Language”. In: Electronic Proceedings in Theoretical Computer
Science 291 (Apr. 2019), pp. 12–23. issn: 2075-2180. doi: 10.4204/eptcs.291.2.

url: http://dx.doi.org/10.4204/EPTCS.291.2 (cit. on p. 13).

[3] D. Baier, D. Beyer, and K. Friedberger. “JavaSMT 3: Interacting with SMT Solvers

in Java”. In: Computer Aided Verification: 33rd International Conference, CAV 2021,
Virtual Event, July 20–23, 2021, Proceedings, Part II. Berlin, Heidelberg: Springer-

Verlag, 2021, pp. 195–208. isbn: 978-3-030-81687-2. doi: 10.1007/978-3-030

-81688-9_9. url: https://doi.org/10.1007/978-3-030-81688-9_9 (cit. on

p. 33).

[4] J.-P. Bernardy et al. “Linear Haskell: Practical Linearity in a Higher-Order Poly-

morphic Language”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi:

10.1145/3158093. url: https://doi.org/10.1145/3158093 (cit. on p. 17).

[5] better-parse. url: https://github.com/h0tk3y/better-parse (3/6/2022) (cit.

on p. 33).

[6] L. Bocchi et al. “A Theory of Design-by-Contract for Distributed Multiparty Interac-

tions”. In: CONCUR 2010 - Concurrency Theory. Ed. by P. Gastin and F. Laroussinie.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 162–176. isbn: 978-3-

642-15375-4 (cit. on p. 11).

[7] L. Caires and H. T. Vieira. “Conversation Types”. In: Programming Languages and
Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings. Ed. by G. Castagna. Vol. 5502. Lecture Notes in

Computer Science. Springer, 2009, pp. 285–300. doi: 10.1007/978-3-642-0059

0-9_21. url: https://doi.org/10.1007/978-3-642-00590-9%5C_21 (cit. on

p. 5).

47

https://github.com/nuscr/nuscr/
https://doi.org/10.4204/eptcs.291.2
http://dx.doi.org/10.4204/EPTCS.291.2
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3158093
https://github.com/h0tk3y/better-parse
https://doi.org/10.1007/978-3-642-00590-9_21
https://doi.org/10.1007/978-3-642-00590-9_21
https://doi.org/10.1007/978-3-642-00590-9%5C_21

BIBLIOGRAPHY

[8] M. Carbone, N. Yoshida, and K. Honda. “Asynchronous Session Types: Exceptions

and Multiparty Interactions”. In: Formal Methods for Web Services, 9th International
School on Formal Methods for the Design of Computer, Communication, and Software
Systems. Vol. 5569. LNCS. Springer, 2009, pp. 187–212. doi: 10.1007/978-3-642

-01918-0_5 (cit. on p. 9).

[9] R. F. Chen, S. Balzer, and B. Toninho. Ferrite: A Judgmental Embedding of Session
Types in Rust. 2022. doi: 10.48550/ARXIV.2205.06921. url: https://arxiv.

org/abs/2205.06921 (cit. on pp. 14, 17).

[10] M. Coppo et al. “A Gentle Introduction to Multiparty Asynchronous Session Types”.

In: Formal Methods for Multicore Programming - 15th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM 2015,
Bertinoro, Italy, June 15-19, 2015, Advanced Lectures. Ed. by M. Bernardo and E. B.

Johnsen. Vol. 9104. Lecture Notes in Computer Science. Springer, 2015, pp. 146–

178. doi: 10.1007/978-3-319-18941-3_4. url: https://doi.org/10.1007/97

8-3-319-18941-3_4 (cit. on pp. 3, 7).

[11] Z. Cutner and N. Yoshida. “Safe Session-Based Asynchronous Coordination in

Rust”. In: Coordination Models and Languages. Ed. by F. Damiani and O. Dardha.

Cham: Springer International Publishing, 2021, pp. 80–89. isbn: 978-3-030-78142-

2 (cit. on p. 17).

[12] Z. Cutner, N. Yoshida, and M. Vassor. Deadlock-free asynchronous message reordering
in Rust with multiparty session types. 2021. doi: 10.48550/ARXIV.2112.12693.

url: https://arxiv.org/abs/2112.12693 (cit. on p. 17).

[13] A. Das and F. Pfenning. Rast: Resource-Aware Session Types with Arithmetic Refine-
ments (System Description). Ed. by Z. M. Ariola. 2020. doi: 10.4230/LIPIcs.FSCD.

2020.4. url: https://doi.org/10.4230/LIPIcs.FSCD.2020.33 (cit. on pp. 12,

13, 33).

[14] A. Das and F. Pfenning. “Session Types with Arithmetic Refinements”. In: CoRR
abs/2005.05970 (2020). arXiv: 2005.05970. url: https://arxiv.org/abs/2005

.05970 (cit. on p. 13).

[15] M. Fowler. Domain-Specific Languages. url: https://martinfowler.com/dsl.

html (16/2/2022) (cit. on p. 2).

[16] S. Fowler et al. Exceptional asynchronous session types: session types without tiers.
2019. url: https://doi.org/10.1145/3290341 (cit. on p. 13).

[17] D. Griffith. Polarized Substructural Session Types. 2015 (cit. on p. 13).

[18] P. Hoffman. SMTP Service Extension for Secure SMTP over Transport Layer Security.

RFC 3207. RFC Editor, Feb. 2002. url: http://www.rfc-editor.org/rfc/rfc3

207.txt (cit. on p. 37).

48

https://doi.org/10.1007/978-3-642-01918-0_5
https://doi.org/10.1007/978-3-642-01918-0_5
https://doi.org/10.48550/ARXIV.2205.06921
https://arxiv.org/abs/2205.06921
https://arxiv.org/abs/2205.06921
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.48550/ARXIV.2112.12693
https://arxiv.org/abs/2112.12693
https://doi.org/10.4230/LIPIcs.FSCD.2020.4
https://doi.org/10.4230/LIPIcs.FSCD.2020.4
https://doi.org/10.4230/LIPIcs.FSCD.2020.33
https://arxiv.org/abs/2005.05970
https://arxiv.org/abs/2005.05970
https://arxiv.org/abs/2005.05970
https://martinfowler.com/dsl.html
https://martinfowler.com/dsl.html
https://doi.org/10.1145/3290341
http://www.rfc-editor.org/rfc/rfc3207.txt
http://www.rfc-editor.org/rfc/rfc3207.txt

BIBLIOGRAPHY

[19] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. 1998. url: https://www.di.

fc.ul.pt/~vv/papers/honda.vasconcelos.kubo_language-primitives.pdf

(cit. on pp. 2, 5).

[20] K. Honda, N. Yoshida, and M. Carbone. “Multiparty asynchronous session types”.

In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008.

Ed. by G. C. Necula and P. Wadler. ACM, 2008, pp. 273–284. doi: 10.1145/13284

38.1328472. url: https://doi.org/10.1145/1328438.1328472 (cit. on pp. 3, 7,

9).

[21] R. Hu and N. Yoshida. Hybrid Session Verification through Endpoint API Generation.

url: https://www.doc.ic.ac.uk/research/technicalreports/2015/DTR15-6

.pdf (cit. on pp. 15, 17, 24).

[22] R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java.

2008. url: https://dl.acm.org/doi/10.1007/978-3-540-70592-5_22 (cit. on

p. 13).

[23] H. Hüttel et al. “Foundations of Session Types and Behavioural Contracts”. In:

ACM Comput. Surv. 49.1 (Apr. 2016). issn: 0360-0300. doi: 10.1145/2873052.

url: https://doi.org/10.1145/2873052 (cit. on p. 4).

[24] A. Igarashi and N. Kobayashi. “A Generic Type System for the Pi-calculus”. In:

Theoretical Computer Science 311.1 (2004), pp. 121–163. issn: 0304-3975. doi:

https://doi.org/10.1016/S0304- 3975(03)00325- 6. url: https://www.

sciencedirect.com/science/article/pii/S0304397503003256 (cit. on p. 5).

[25] A. Igarashi and N. Kobayashi. “Type Reconstruction for Linear Pi-Calculus with

I/O Subtyping”. In: Information and Computation 161.1 (2000), pp. 1–44. issn:

0890-5401. doi: https://doi.org/10.1006/inco.2000.2872. url: https:

//www.sciencedirect.com/science/article/pii/S0890540100928724 (cit. on

p. 5).

[26] K. Imai, N. Yoshida, and S. Yuen. “Session-ocaml: A session-based library with

polarities and lenses”. In: Science of Computer Programming 172 (2019), pp. 135–

159. issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.2018.08.005.

url: https://www.sciencedirect.com/science/article/pii/S016764231830

3289 (cit. on pp. 14, 17).

[27] K. Imai et al. “Multiparty Session Programming With Global Protocol Combi-

nators”. In: 34th European Conference on Object-Oriented Programming (ECOOP
2020). Ed. by R. Hirschfeld and T. Pape. Vol. 166. Leibniz International Pro-

ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-

Zentrum für Informatik, 2020, 9:1–9:30. isbn: 978-3-95977-154-2. doi: 10.4230

49

https://www.di.fc.ul.pt/~vv/papers/honda.vasconcelos.kubo_language-primitives.pdf
https://www.di.fc.ul.pt/~vv/papers/honda.vasconcelos.kubo_language-primitives.pdf
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://www.doc.ic.ac.uk/research/technicalreports/2015/DTR15-6.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2015/DTR15-6.pdf
https://dl.acm.org/doi/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00325-6
https://www.sciencedirect.com/science/article/pii/S0304397503003256
https://www.sciencedirect.com/science/article/pii/S0304397503003256
https://doi.org/https://doi.org/10.1006/inco.2000.2872
https://www.sciencedirect.com/science/article/pii/S0890540100928724
https://www.sciencedirect.com/science/article/pii/S0890540100928724
https://doi.org/https://doi.org/10.1016/j.scico.2018.08.005
https://www.sciencedirect.com/science/article/pii/S0167642318303289
https://www.sciencedirect.com/science/article/pii/S0167642318303289
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9

BIBLIOGRAPHY

/LIPIcs.ECOOP.2020.9. url: https://drops.dagstuhl.de/opus/volltexte/2

020/13166 (cit. on p. 17).

[28] Java Microbenchmark Harness. url: https://github.com/openjdk/jmh (24/7/2022)

(cit. on p. 42).

[29] T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. “Session Types for Rust”.

In: Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming. WGP

2015. Vancouver, BC, Canada: Association for Computing Machinery, 2015, pp. 13–

22. isbn: 9781450338103. doi: 10.1145/2808098.2808100. url: https://doi.

org/10.1145/2808098.2808100 (cit. on p. 17).

[30] JMH Gradle Plugin. url: https://github.com/melix/jmh-gradle-plugin (

24/7/2022) (cit. on p. 42).

[31] J. Klensin. Simple Mail Transfer Protocol. RFC 5321. RFC Editor, Oct. 2008. url:

http://www.rfc-editor.org/rfc/rfc5321.txt (cit. on p. 37).

[32] N. Kobayashi. “A Partially Deadlock-Free Typed Process Calculus”. In: ACM Trans.
Program. Lang. Syst. 20.2 (Mar. 1998), pp. 436–482. issn: 0164-0925. doi: 10.1

145/276393.278524. url: https://doi.org/10.1145/276393.278524 (cit. on

pp. 4, 5).

[33] N. Kobayashi, S. Saito, and E. Sumii. “An Implicitly-Typed Deadlock-Free Process

Calculus”. In: Proceedings of the 11th International Conference on Concurrency The-
ory. CONCUR ’00. Berlin, Heidelberg: Springer-Verlag, 2000, pp. 489–503. isbn:

3540678972 (cit. on p. 5).

[34] W. Kokke. “Rusty Variation: Deadlock-free Sessions with Failure in Rust”. In:

Electronic Proceedings in Theoretical Computer Science 304 (Sept. 2019), pp. 48–60.

issn: 2075-2180. doi: 10.4204/eptcs.304.4. url: http://dx.doi.org/10.420

4/EPTCS.304.4 (cit. on pp. 16, 17).

[35] W. Kokke and O. Dardha. “Deadlock-Free Session Types in Linear Haskell”. In:

ACM, New York, NY, USA: ACM, 2021. url: https://doi.org/10.1145/347187

4.3472979 (cit. on pp. 14, 17).

[36] Kotlin Symbol Processing API. url: https://github.com/google/ksp/ (16/2/2022)

(cit. on p. 46).

[37] KotlinPoet. url: https://square.github.io/kotlinpoet/ (16/2/2022) (cit. on

pp. 21, 30).

[38] D. Kouzapas et al. “Typechecking protocols with Mungo and StMungo: A session

type toolchain for Java”. In: Science of Computer Programming 155 (2018). Selected

and Extended papers from the International Symposium on Principles and Practice

of Declarative Programming 2016, pp. 52–75. issn: 0167-6423. doi: https://

doi.org/10.1016/j.scico.2017.10.006. url: https://www.sciencedirect.

com/science/article/pii/S0167642317302186 (cit. on pp. 12, 14).

50

https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://drops.dagstuhl.de/opus/volltexte/2020/13166
https://github.com/openjdk/jmh
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://github.com/melix/jmh-gradle-plugin
http://www.rfc-editor.org/rfc/rfc5321.txt
https://doi.org/10.1145/276393.278524
https://doi.org/10.1145/276393.278524
https://doi.org/10.1145/276393.278524
https://doi.org/10.4204/eptcs.304.4
http://dx.doi.org/10.4204/EPTCS.304.4
http://dx.doi.org/10.4204/EPTCS.304.4
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/3471874.3472979
https://github.com/google/ksp/
https://square.github.io/kotlinpoet/
https://doi.org/https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/https://doi.org/10.1016/j.scico.2017.10.006
https://www.sciencedirect.com/science/article/pii/S0167642317302186
https://www.sciencedirect.com/science/article/pii/S0167642317302186

BIBLIOGRAPHY

[39] Ktor. url: https://ktor.io/ (2/6/2022) (cit. on pp. 31, 43).

[40] N. Lagaillardie, R. Neykova, and N. Yoshida. “Implementing Multiparty Session

Types in Rust”. In: Coordination Models and Languages. Ed. by S. Bliudze and

L. Bocchi. Cham: Springer International Publishing, 2020, pp. 127–136. isbn:

978-3-030-50029-0 (cit. on pp. 16, 17).

[41] S. Lindley and J. G. Morris. “Embedding Session Types in Haskell”. In: Proceedings
of the 9th International Symposium on Haskell. Haskell 2016. Nara, Japan: Associ-

ation for Computing Machinery, 2016, pp. 133–145. isbn: 9781450344340. doi:

10.1145/2976002.2976018. url: https://doi.org/10.1145/2976002.2976018

(cit. on pp. 14, 17).

[42] Linear base library. url: https://github.com/tweag/linear-base/ (16/6/2022)

(cit. on p. 17).

[43] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. iii).

[44] Mungo. url: http://www.dcs.gla.ac.uk/research/mungo/ (16/2/2022) (cit. on

p. 14).

[45] R. Neykova et al. “A Session Type Provider: Compile-Time API Generation of Dis-

tributed Protocols with Refinements in F#”. In: Proceedings of the 27th International
Conference on Compiler Construction. CC 2018. Vienna, Austria: Association for

Computing Machinery, 2018, pp. 128–138. isbn: 9781450356442. doi: 10.1145

/3178372.3179495. url: https://doi.org/10.1145/3178372.3179495 (cit. on

pp. 12, 15, 17, 33).

[46] R. Pucella and J. A. Tov. “Haskell session types with (almost) no class”. In: 2008,

pp. 25–36. isbn: 9781605580647. doi: 10.1145/1411286.1411290 (cit. on pp. 14,

17).

[47] A. Scalas and N. Yoshida. “Lightweight Session Programming in Scala”. In: 30th
European Conference on Object-Oriented Programming. LIPIcs. Dagstuhl, 2016, 21:1–

21:28. doi: 10.4230/LIPIcs.ECOOP.2016.21 (cit. on p. 15).

[48] A. Scalas et al. “A linear decomposition of multiparty sessions for safe distributed

programming”. In: vol. 74. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik

GmbH, Dagstuhl Publishing, June 2017, pp. 241–2431. isbn: 9783959770354.

doi: 10.4230/LIPIcs.ECOOP.2017.24. url: https://drops.dagstuhl.de/

opus/volltexte/2017/7263/pdf/LIPIcs-ECOOP-2017-24.pdf (cit. on pp. 15,

17).

[49] Sesh: A library for deadlock-free session-typed communication in Rust. url: https:

//github.com/wenkokke/sesh/ (17/6/2022) (cit. on p. 17).

51

https://ktor.io/
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2976002.2976018
https://github.com/tweag/linear-base/
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
http://www.dcs.gla.ac.uk/research/mungo/
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://drops.dagstuhl.de/opus/volltexte/2017/7263/pdf/LIPIcs-ECOOP-2017-24.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/7263/pdf/LIPIcs-ECOOP-2017-24.pdf
https://github.com/wenkokke/sesh/
https://github.com/wenkokke/sesh/

BIBLIOGRAPHY

[50] sessionkotlin. url: https://github.com/d-costa/sessionkotlin/tree/thesis

(6/9/2022) (cit. on p. 23).

[51] sessionkotlin-plugin. url: https : / / github . com / d - costa / sessionkotlin /

blob/thesis/sessionkotlin/sessionkotlin-plugin/src/main/kotlin/com/

github/d_costa/sessionkotlin/SessionKotlinPlugin.kt (6/9/2022) (cit. on

p. 45).

[52] R. Siemborski and A. Melnikov. SMTP Service Extension for Authentication. RFC

4954. RFC Editor, July 2007. url: https://datatracker.ietf.org/doc/html/

rfc4954 (cit. on p. 38).

[53] R. E. Strom and S. Yemini. “Typestate: A programming language concept for

enhancing software reliability”. In: IEEE Transactions on Software Engineering SE-

12.1 (1986), pp. 157–171. doi: 10.1109/TSE.1986.6312929 (cit. on p. 12).

[54] The Z3 Theorem Prover. url: https://github.com/Z3Prover/z3 (31/5/2022)

(cit. on p. 33).

[55] P. Thiemann and V. T. Vasconcelos. “Context-Free Session Types”. In: SIGPLAN Not.
51.9 (Sept. 2016), pp. 462–475. issn: 0362-1340. doi: 10.1145/3022670.2951926.

url: https://doi.org/10.1145/3022670.2951926 (cit. on p. 13).

[56] B. Toninho, L. Caires, and F. Pfenning. “Higher-Order Processes, Functions, and

Sessions: A Monadic Integration”. In: Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-
24, 2013. Proceedings. Ed. by M. Felleisen and P. Gardner. Vol. 7792. Lecture Notes

in Computer Science. Springer, 2013, pp. 350–369. doi: 10.1007/978-3-642-370

36-6_20. url: https://doi.org/10.1007/978-3-642-37036-6%5C_20 (cit. on

p. 13).

[57] B. Toninho and N. Yoshida. “Certifying data in multiparty session types”. In:

Journal of Logical and Algebraic Methods in Programming 90 (2017), pp. 61–83. issn:

2352-2208. doi: https://doi.org/10.1016/j.jlamp.2016.11.005. url:

https://www.sciencedirect.com/science/article/pii/S2352220816300864

(cit. on pp. 11, 12).

[58] T. Tu et al. “Understanding Real-World Concurrency Bugs in Go”. In: Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’19. Providence, RI, USA: Association

for Computing Machinery, 2019, pp. 865–878. isbn: 9781450362405. doi: 10.114

5/3297858.3304069. url: https://doi.org/10.1145/3297858.3304069 (cit. on

p. 1).

[59] N. Yoshida et al. “The Scribble Protocol Language”. In: Trustworthy Global Com-
puting. Ed. by M. Abadi and A. Lluch Lafuente. Cham: Springer International

Publishing, 2014, pp. 22–41. isbn: 978-3-319-05119-2 (cit. on pp. 12, 15, 29, 36).

52

https://github.com/d-costa/sessionkotlin/tree/thesis
https://github.com/d-costa/sessionkotlin/blob/thesis/sessionkotlin/sessionkotlin-plugin/src/main/kotlin/com/github/d_costa/sessionkotlin/SessionKotlinPlugin.kt
https://github.com/d-costa/sessionkotlin/blob/thesis/sessionkotlin/sessionkotlin-plugin/src/main/kotlin/com/github/d_costa/sessionkotlin/SessionKotlinPlugin.kt
https://github.com/d-costa/sessionkotlin/blob/thesis/sessionkotlin/sessionkotlin-plugin/src/main/kotlin/com/github/d_costa/sessionkotlin/SessionKotlinPlugin.kt
https://datatracker.ietf.org/doc/html/rfc4954
https://datatracker.ietf.org/doc/html/rfc4954
https://doi.org/10.1109/TSE.1986.6312929
https://github.com/Z3Prover/z3
https://doi.org/10.1145/3022670.2951926
https://doi.org/10.1145/3022670.2951926
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6%5C_20
https://doi.org/https://doi.org/10.1016/j.jlamp.2016.11.005
https://www.sciencedirect.com/science/article/pii/S2352220816300864
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3297858.3304069

BIBLIOGRAPHY

[60] F. Zhou et al. “Statically Verified Refinements for Multiparty Protocols”. In: Proc.
ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi: 10.1145/3428216. url: https:

//doi.org/10.1145/3428216 (cit. on pp. 11, 12, 17, 32, 33).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 53).

53

https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Listings

	1 Introduction
	2 Background
	2.1 Behavioural Types
	2.2 Binary Session Types
	2.3 Multiparty Session Types
	2.4 Refinements
	2.5 Typestates
	2.6 Implementations of Session Types
	2.6.1 Natively session Typed Languages
	2.6.2 Embedding Session Types
	2.6.3 Session Types as DSLs

	2.7 Kotlin
	2.7.1 Functions and Lambdas
	2.7.2 Type-safe builders
	2.7.3 Metaprogramming
	2.7.4 Coroutines
	2.7.5 Channels

	3 Developed Work
	3.1 Global Type Representation
	3.2 Global Type Projection & Validation
	3.3 Endpoint Implementation
	3.3.1 Communication
	3.3.2 Fluent API
	3.3.3 Callbacks
	3.3.4 Safety Guarantees

	3.4 Refinements
	3.5 Quality of Life Features
	3.6 Evaluation
	3.6.1 Limitations
	3.6.2 Case Study - SMTP
	3.6.3 Benchmarks

	4 Conclusion
	Bibliography
	Back Matter
	Back Cover

