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Abstract

This dissertation addresses an extension of a metaprogramming mechanism in low-code
platforms, specifically in the OutSystems platform. As proposed in the template language
OSTRICH, model templates allow developers to reuse existing and thoroughly tested code
fragments in a more productive and sound development process. Code templates help
to overcome developer difficulties and lack of training. For instance, the development of
professionally designed user interfaces is not a skill that is common amongst developers.
Scenarios like specific synchronization algorithms are the other end of the spectrum
for templates in OutSystems. The GOLEM project has the chief objective of providing
mechanisms for automated programming. Such automation will make programming
more accessible to a larger community of developers. This work is part of those efforts.

To this end, our focus will be on developing and improving the template language
OSTRICH that targets the OutSystems platform. It enables the creation of code fragments
like screen templates, saving the user from the cumbersome task of repeatedly constructing
code complex patterns. In OSTRICH, templates are instantiated by expanding their
definition in the caller context to enable further customization of the resulting code.
OSTRICH preserves the structure of the original model by expanding templates in place.
However, expanding the template definition in place breaks the possibility of reapplying
the template in the case of an update to a newer version or changing parameters. It
requires the user to repeat all customization operations on top of a new instantiation of
the template. Our purpose is to solve this issue by supporting customization operations
that extend to all future template updates and new parameters. This way, the user will
be saved from some erroneous trials, which could, eventually, push them to give up. We
plan to evaluate our work using the benchmark template examples used previously to
evaluate OSTRICH.

Keywords: Functional Programming, Low Code Development, Templating Language,
Staged Computation, Modal Logic
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Resumo

Esta dissertação aborda uma extensão de um mecanismo de metaprogramação em pla-
taformas low-code, especificamente na plataforma da OutSystems. Como proposto na
linguagem de template OSTRICH, os templates permitem que os utilizadores reutilizem
fragmentos de código existentes e completamente testados num processo de desenvol-
vimento produtivo e seguro. Estes fragmentos ajudam os utilizadores a ultrapassar as
dificuldades ou falta de conhecimento em linguagens de programação. Por exemplo, a
sua utilização permite criar interfaces de forma profissional, o que nem sempre é uma
habilidade comum entre desenvolvedores de software. Do outro lado do espetro, estão os
algoritmos de sincronização específicos para modelos em OutSystems. O projeto GOLEM
tem como principal objetivo fornecer mecanismos para automatizar a programação. Esta
automatização irá tornar a programação mais acessível a um maior número de pessoas.
Este trabalho faz parte destes esforços.

Para alcançar este objetivo, estaremos focados no desenvolvimento e melhoria da
linguagem de template OSTRICH para a plataforma da OutSystems. Esta permite a cria-
ção de fragmentos de código como screen templates, poupando os utilizadores da tarefa
complicada de repetir padrões complexos de código. Nesta linguagem, os templates são
instanciados através da expansão da sua definição para permitir a customização do código
resultante. Contudo, expandir esta definição no local quebra a possibilidade de reaplicar o
template em caso de atualização para uma versão mais recente ou mudança de parâmetros.
Isto acaba por obrigrar o utilizador a repetir todas as operações aplicadas numa nova
instanciação de template. O nosso propósito passa por resolver este problema, permitindo
que as operações do utilizador possam ser reaplicadas em todas as novas atualizações do
template e novos parâmetros. Desta forma, o utilizador será poupado de seguir uma apren-
dizagem tentativa e erro, que poderia eventualmente levá-lo a desistir. Planeamos avaliar
o nosso trabalho utilizando como referência exemplos de templates usados anteriormente
para avaliar a linguagem OSTRICH.

Palavras-chave: Programação Funcional, Desenvolvivemto Low Code, Linguagens de Tem-
plate, Computação por Etapas, Lógica Modal
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1

Introduction

1.1 Context

Now, more than ever before, the Internet plays a role in people’s life. Not only do we
use it to read the news or research some article, but also for trivial tasks, such as looking
for a restaurant menu or booking a reservation in a gym space. This growing use of
websites and applications, which only kept rising with the pandemic and the limitations
it brought to everyone’s routine, strengthens a new reality: it is increasingly necessary
that companies and businesses have an online presence. But despite this being a simple
concept, its implementation is not within reach of everyone, with the lack of programming
knowledge arising with the growing demand for them. This problem is the main incentive
for low-code platforms: how can we work around the long and tedious process of creating
applications and make them with a few programming skills?

Customers adopt the OutSystems’ low-code platform for several purposes, such as
creating applications and Modules on the server, creating user interfaces for Traditional
Web, Reactive Web, and Mobile Applications, or defining data models [7]. For each of
these, there are distinct domain-specific languages (DSLs). DSLs are used instead of
General Purpose Languages (GPLs) to address the specific needs of the domain it applies.
Its use has some advantages. To name a few, it is less time-consuming than GPLs since the
developer does not have to study concepts unrelated to the domain, and DSLs provide
more appropriate modeling abstractions and primitives closer to the ones used in it.

OSTRICH is a safe templating language intended to be used in the OutSystems’
low-code platform [13]. This platform is a visual model-driven development (MDD), a
methodology that uses models as the primary artifact of the development process, and
the code is automatically generated from them [1]. In MDD, model-driven techniques are
consistently applied to automate as much as possible of the software lifecycle from the
requirements down to the deployed application.

Adopting a model-driven approach is essential. Not only does it allow users the
possibility of building complex and faultless software through an easily readable interface
where pre-built components are available, but it also facilitates communication among all

1



CHAPTER 1. INTRODUCTION

Figure 1.1: A glimpse of the OutSystems’ platform.

stakeholders over its understandable structure.
MDD is the most crucial principle of low-code development, an approach that requires

minimal to no coding to build applications and processes. To this end, drag-and-drop
capabilities are used as well as visual logical interfaces, as previously mentioned, instead
of complex programming languages.

The topic of this work is integrated within the GOLEM project, which is a project led
by OutSystems and done in partnership with Carnegie Mellon University, NOVA LINCS,
and INESC-ID [20]. It is estimated to last three years and has a goal of answering the
following three questions: (1) What is the next generation of low-code?; (2) What is the
most natural way for a citizen developer to create fit-to-purpose apps without having to
write code?; (3) How can such a visionary development experience be implemented?

1.2 Motivation and Contributions

The OutSystems platform has several screen templates available. These allow for the
creation of screens with a predefined layout. The layout comes with sample data, which
helps the user understand how the screen is designed. These templates can be one of
many, such as a gallery or a list of products, and are the direct motivation in the design of
OSTRICH [13].

Its use will change some aspects of the platform as it is known today. As an example,
and as we can verify in Figure 1.1, the template instantiation comes with dummy data,
forcing the user to adapt it to their database entries. When using OSTRICH, this will no
longer be required since the developer will have the possibility to manipulate the entries
from the beginning.

Apart from that, the changes performed in the application after the template instanti-
ation are not tracked. This way, if the application on the template evolves in a divergent
manner, after reaching some point, the user would have to repeat the same changes on
the updated template to reach that point. OSTRICH will also solve this issue by keeping

2



1.3. DOCUMENT STRUCTURE

a record of the manual customizations applied to the template.

1.3 Document Structure

This document is composed of four more chapters:
1. Chapter 2, in which the focus is on the core concepts regarding this subject of study,

starting with some theory notions and the foundation of functional programming,
𝜆-calculus, and ending with the work already developed in OSTRICH language;

2. Chapter 3 presents related work that encompasses MetaML, Template Haskell, and
type systems motivated logically, namely modal 𝜆-calculus and modal Mini-ML;

3. Chapter 4 explains the different customizations we can apply to a template. We
carefully studied how they are evaluated and how we make sure they are only
applied if it is possible;

4. Chapter 5 describes the type system;
5. Chapter 6 exposes the code implementation and some testing examples;
6. Chapter 7 briefly covers what we have been studying throughout this thesis and

what could be done to improve this work.
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2

Background

This chapter will cover three main topics divided into three sections: key concepts (Sec-
tion 2.1), functional programming and𝜆-calculus (Section 2.2), and OSTRICH (Section 2.3).

The first one will explain five main concepts relevant to OSTRICH: the meaning of a
template language and what defines it; type safety; stages and phase distinction. It will
also include a section of partial evaluation, as it is necessary to have a firm understanding
of the related work studied in Chapter 3.

The second one will explore functional programming, 𝜆-calculus, and its properties.
𝜆-calculus is important as OSTRICH is an extension of it by adding new abstractions to
𝜆-calculus and keeping its code patterns.

The final and third section exposes the work already done in OSTRICH.

2.1 Key Concepts

OSTRICH is a template language built on metamodelannotations. Therefore, it is necessary
to get a good grasp of template languages and metamodels. Furthermore, some other
properties, such as type safety and phase distinction, both guaranteed by OSTRICH, will
be studied.

The notion of partial evaluation will be introduced, as it is strongly related to the work
presented in Chapter 3.

2.1.1 Template Languages

A metamodel is an abstraction of a model [1]. A model is a partial representation of some
reality to make predictions or inferences. By applying abstraction, the details are hidden,
and only the core concepts are covered. Thus, for a model to exist, three aspects have
to happen: (1) there is an original object or phenomenon that is mapped to the model;
(2) the model is a representation of this original; (3) the model fulfills some purpose.
This purpose can either be descriptive or prescriptive [6]. The former is used to describe
a reality of a system, while the latter is used to determine the scope and details of the
problem.

4



2.1. KEY CONCEPTS

Software development is increasingly relying on models. This increase is happening
since software artifacts are becoming more complex and, consequently, need to be dis-
cussed at different levels of abstraction. As this discussion is not exclusive to software
developers, the model needs to be made explicit and communicated in a language that
can be understood by all stakeholders. This caution is taken into account with descriptive
models as discussion and analysis are their principal purpose [27]. However, this com-
munication is not the only intent of models, as they are also used to generate code and
tests, which is the essence of model-driven development. For this, prescriptive models
are required, which need to be more rigorous, formal, complete, and consistent than
descriptive models.

The languages that define a set of models used for a specific purpose are called template
languages. The definition of these languages comprises three aspects: (1) the syntax, which
describes how its models appear; (2) the semantics, which describes the meaning of each
model; (3) its pragmatics, which describes how to use the models according to their
purpose.

The syntax of programming languages has two levels of structure: the concrete syntax
and the abstract syntax [19]. The former refers to the strings of characters the programmer
writes or whatever the user interacts with to create programs - it may be textual, graphical
as in template languages, tabular, or any combination of these. The latter is a simple
representation of programs as labeled trees, called abstract syntax trees, that hold the core
information.

An advantage of having the concrete syntax as graphical over textual is that it allows
the user to overview the different relationships between the model elements. However, it
takes more space to convey the same content.

Figure 2.1: Transformation from concrete to abstract syntax.

Figure 2.1 represents the transformation from concrete to abstract syntax. Briefly, a
lexical analyzer receives the string of characters written by the programmer (in textual
concrete syntax) or the result of the operations available in the user interface (in graphical
concrete syntax) as input and outputs a sequence of tokens as a result, such as identifiers
or keywords. During this process, the lexer removes comments and resolves other issues,
such as whitespaces. Afterward, a parser receives this output and transforms it into an
abstract syntax tree.

During parsing, several conventions take place. For example, associativity and prece-
dence reduce the need to clutter programs with parentheses to explicitly indicate the
structure of an expression, and if one writes 1 + 7 ∗ 5 the resulted tree would be the one

5



CHAPTER 2. BACKGROUND

on the left rather than the one on the right:

+

1 ∗

7 5

∗

+

1 7

5

2.1.2 Type Safety

Languages can be one of two kinds: typed or untyped [3]. Typed languages are the
ones where variables can assume a range of values. For instance, the variable x can be a
Boolean, and the variable y can be an Integer. On the other hand, untyped languages do
not have this kind of distinction, and all variables lack a type, or they all have the same
one. Examples of this are sets in set theory or bit strings in computer memory.

The move from untyped to typed comes with the need to categorize objects according
to their usage and behavior and prevent interaction between some of them. Types ensure
this since they impose constraints which, in its turn, imposes correctness [4].

There are still a lot of discussions about whether typed languages are better or not
than untyped languages. However, there is little space for doubt that the maintenance
of untyped languages is a challenging task. Some advantages of having types, and
therefore, reasons that make maintenance of untyped languages difficult, are: (1) economy
of execution - the information about types at compile time leads to the appropriate
operations at run time without the need of expensive tests; (2) economy of development
and maintenance in security areas - the casting of some variable, for example, from type
Integer to a value of pointer type can compromise the system and allow the access of an
attacker to the whole system. The most cost-effective way to solve these issues but not
eliminate them is to employ typed languages.

A type system is the component of type languages that keeps track of the variables
and expressions types presented in a program. Directly, the purpose of it is to prevent the
occurrence of execution errors upon the running of the program [3].

These execution errors can vary. There are the so-called obvious software errors that
type systems prevent, such as an illegal memory reference fault, but there are also faults
that usually can not be. Dividing a number by 0 is an example of this.

When looking more carefully into the execution errors, we can find two distinct classes:
the ones that cause a program to crash immediately and the ones that can go unnoticed
and sometimes cause different behavior from the one expected. The first ones are called
trapped errors, and the last ones are untrapped errors.

6



2.1. KEY CONCEPTS

In the absence of untrapped errors, a program fragment is called safe. Languages that
have all program fragments safe are named safe languages.

A type system has some expected proprieties: (1) it should be verifiable - the typecheck-
ing algorithm should be able to ensure the good behavior of the program by capturing
execution errors before they can occur; (2) it should be transparent - it should be easy
to predict if a program will typecheck, and if not, the reason should be clear to spot; (3)
it should be enforceable - type declarations should be either statically or dynamically
checked.

With these expected properties, there are a few advantages when using type systems:
(1) the errors can be early detected, which also means they can be fixed immediately
rather than when the program is being, for example, deployed; (2) the program becomes
more easily maintained, as all it takes to switch a type is change the declaration of that
datatype, run the compiler and examine the points where typechecking fails; (3) it enforces
disciplined programming through the definition of modules with clear interfaces, which
by its turn lead to a more abstract style of design, where interfaces can be discussed apart
from their implementation; (4) types turn the reading of a program more understandable
and can be seen as a form of documentation; (5) more efficient programs, as first mentioned.

When static program analysis can determine the type of every expression and variable,
the programming language is said to be statically typed. Static typing not only enforces a
more structured and easy-to-read program but also discovers errors in an early stage and
allows greater execution-time efficiency. Although this is useful, it is also too restrictive
since it requires all variables to be associated with a type at compile-time.

To work around this, ensuring that all variables and expressions are type-consistent,
even if the type is statically unknown, lifts some of these restrictions. This type-consistency
can be arranged by introducing some run-time type checking. Languages in which all
expressions are typed consistent are strongly typed languages [4].

2.1.3 Stages and Phase Distinction

As the name implies, staging is a program transformation that involves restructuring the
program execution into stages. In compiled languages, there are two separated stages
upon the execution of executing a program: compile-time and run-time. In program
generation, there are three different stages: generation, compilation, and execution.

A multi-stage program involves the three phases mentioned in program generation,
with all of them occurring inside the same process. Multi-stage languages express multi-
stage programs [26].

Staged programs aim to produce efficient programs through the control over resources,
both in terms of space and time [23]. To control the resources, programmers use program
annotations to control the order of evaluation, which influences the number of steps
in a reduction. By its turn, the number of steps relates to the resources consumed, so
controlling it also translates to the control of resources.

7



CHAPTER 2. BACKGROUND

According to this order of evaluation, most functional programming languages can
be classified as either eager (also known as strict) or lazy. Section 2.2 will discuss both of
these concepts.

The execution of a program is achieved in two distinct phases: a typechecking phase
(compile-time) and an execution phase (run-time). In some languages, there is no clear
separation between these phases, as in Pebble, while the difference is clear [2] in others,
as in Pascal.

When using dependent types, both phases can get mixed. Dependent types are types
that depend on the evaluation of some expression. Carefulness is required to distinguish
between compile-time and run-time values to avoid this mix. OSTRICH respects phase
distinction as it avoids dependencies between compile-time and run-time expressions.

2.1.4 Partial Evaluation

Partial evaluation is a technique to evaluate a program, as the name indicates, partially
when some of its inputs are available. The goal of it is to generate efficient programs from
a more general one by completely automating methods [12]. The control flow of partial
evaluation is presented in Figure 2.2.

Figure 2.2: A partial evaluation.

Considering a program power that receives two arguments dynamically, x and n at
the same time, the program can only be executed at run-time. The program would be as
follows:

power(int n, int x) {

int result = 1;

while (n > 0) {

if (n % 2 == 0) {

8
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x = x * x;

n = n / 2;

} else {

result = result * x;

n = n -1;

}

return result;

}

If, on the contrary, one input is available from the beginning, n, the program can be
partially evaluated, producing a different version of the same program. For example, if
we apply n = 5, the newly executed program would be:

power5(int x) {

int result = 1;

result = result * x; // n = 5

x = x * x; // n = 4

x = x * x; // n = 2

result = result * x; // n = 1

return result;

}

Partial evaluation is used to speed up the evaluation process and can be applied to a
wide range of problems by first solving them indirectly using static information and then
running the generated program on various data supplied dynamically.

2.2 Functional programming and 𝜆-calculus

This section will present the main properties of functional programming languages, such
as how the programs are evaluated, and the fundamental aspects of 𝜆-calculus.

Since OSTRICH is a functional programming language, it is essential to understand the
primary concepts of the paradigm. We will introduce 𝜆-calculus based on its simplicity
and expressivity. These two characteristics make it possible to express all functional
programs.

2.2.1 Functional Programming

Functional programming has two core concepts: (1) functions are pure, and (2) there is
support for first-class functions.

The first one means that the output only depends on the input, and a function upon
receiving the same input as before has to output the same result. Apart from that, functions
have no side effects, such as changing global variables or writing to disk. An example of a
non-functional function, incCounter1, and a functional one, incCounter2, are displayed
below:

9
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var counter = 1;

function incCounter1() {

counter = counter + 1;

return counter;

}

function incCounter2(counter) {

return counter + 1;

}

As it can be verified, the function incCounter1 changes the global variable counter,
and will never output the same result. On the other hand, the function incCounter2 does
not have this side effect.

The second concept of functional programming means that functions behave like any
other data structure. That is, they can be assigned to variables or passed as arguments to
other functions, among others, as shown in the following example:

var inc = function(counter) { return counter + 1; }

The principal advantage of functional programming languages, such as Haskell or
OCaml, compared to imperative programming ones, such as Java or C, is having no side
effects. Thus it is not necessary to establish an execution order between functions, which
allows them to be safely executed in parallel, as they can not change the state of the other.
Moreover, keeping track of these states make imperative programs harder to read and
compile, as one needs to know their context.

Functional programming has seen an increase in terms of popularity and influence. It
has changed the way people construct, verify and think about programs [11]. However,
its adoption still faces a few obstacles. Most of these obstacles are social and commercial,
rather than technical: they usually fall short in terms of the richness of library packages
or debugging tools, and most programmers are trained in an imperative style [21].

Functional programming languages use either lazy evaluation or eager evaluation.
Examples of languages that use lazy evaluation are Haskell and Miranda. OCaml and
Standard ML use eager evaluation. The prime difference between these two types of
evaluation is the delay of some computations. For instance, a function can have an unused
parameter, and, in that case, it will not be necessary to evaluate that expression.

function add(x, y) {

return x + 1;

}

add(1,10+13)

In the example above, since the value of the parameter y is not used, from the
perspective of lazy evaluation, there is no need to evaluate 10+13. Evaluations will
only occur when they are needed. On the contrary, eager evaluation will compute these
expressions for all cases.

Lazy evaluation can have a few advantages over eager evaluation: it is more efficient
since it only evaluates once it is required - for this, it will use memoization, which can be

10
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seen as a dictionary that binds variables to their values; there is no reason to hard-code
some behaviors into compilers, such as short-circuiting - if there is a statement with a
logical AND between two sides, the right-hand side will not be looked at, if the left-hand
is evaluated to false; lazy evaluation can work with infinite lists, unlike eager evaluation
that would run out of memory.

2.2.2 𝜆-calculus

In 𝜆-calculus, everything is a function, and everything can be expressed and evaluated as
one [15][19]. The core concept around this language is 𝜆, and there are three kinds of 𝜆
expressions:

1. Individual variables: they can be represented by any sequence of non-blank charac-
ters, such as 𝑥, 𝑦,...;

2. Applications, (𝑒1𝑒2): this represents the application of 𝑒1 to 𝑒2;
3. Abstractions, (𝜆𝑥.𝑒): this represents the function which returns the value 𝑒 when

given formal parameter 𝑥. The "." separates the name from the expression in
which the abstraction with that name takes place. It is important to notice that the
expression can be any 𝜆 expression, including another function.

The syntax of 𝜆-calculus can thus be summarized as it follows (𝑡 represents a term and
we can see it as being the same as the mentioned expression 𝑒, and 𝑣 represents a value):

𝑡 ::= 𝑥 | 𝜆𝑥.𝑡 | 𝑡 𝑡
𝑣 ::= 𝜆𝑥.𝑡

The operational semantics of 𝜆-calculus are the following:

(𝜆𝑥.𝑡)𝑣 → {𝑥 ↦→ 𝑣}𝑡 𝐸_𝐵𝑒𝑡𝑎
𝑡1 → 𝑡

′
1

𝑡1𝑡2 → 𝑡
′
1𝑡2

𝐸_𝐴𝑝𝑝1
𝑡2 → 𝑡

′
2

𝑣1𝑡2 → 𝑣1𝑡
′
2
𝐸_𝐴𝑝𝑝2

The rules are very self-explanatory and focus on substituting arguments with variables
in expressions. However, there are a few things one needs to be aware of when making
substitutions, which we will show right away. Before that, there are syntactic conventions
worth displaying to make a program easier to read:

1. 𝜆𝑥.𝑥𝑦 means 𝜆𝑥.(𝑥𝑦) and not (𝜆𝑥.𝑥) 𝑦;
2. 𝜆𝑥1.𝜆𝑥2....𝜆𝑥𝑛 .𝑒 is equivalent to 𝜆𝑥1.(𝜆𝑥2....(𝜆𝑥𝑛 .𝑒));
3. Application associates to the left, implying that 𝑥𝑦𝑧 represents (𝑥𝑦)𝑧 and not 𝑥(𝑦𝑧).
Moreover, it is also worth explaining the scope of a variable. A variable 𝑥 is said to be

bound if its occurrence in the body of the definition is preceded by 𝜆𝑥. For example, in
the function:

𝜆𝑥.𝑥𝑦

The variable 𝑥 is bound and 𝑦 is free. Considering a more complex function:
(𝜆𝑥.𝑥) (𝜆𝑦.𝑦𝑥)

The first 𝑥 is bound to the first 𝜆, but the second 𝑥 is free.

11
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Considering the abstractions represented in 𝜆-calculus, the most simple one is the
identity function. It is usually found in the following format:

𝑓 (𝑥) = 𝑥

In 𝜆-calculus, it would appear as:
𝜆𝑥.𝑥

This function has the bound variable 𝑥 and has the expression body 𝑥. When it is used
as the function expression in a function application, the argument expression replaces the
variable 𝑥. For example, applying the identity function to itself would result in:

(𝜆𝑥.𝑥 𝜆𝑥.𝑥)

= (𝜆 𝑥 . 𝑥 𝜆𝑥.𝑥 )
= 𝜆𝑥.𝑥

As verified, the argument expression replaced the bound variable 𝑥 in the body
expression 𝑥, giving the result presented above.

When, in an expression, there are free and bound variables, carefulness is required
to avoid mixing both, as already mentioned. The following example illustrates this issue
more clearly:

(𝜆𝑥.𝜆𝑦.𝑥𝑦) 𝑦
= (𝜆𝑥.(𝜆𝑦.𝑥𝑦)) 𝑦

= (𝜆 𝑥 .(𝜆𝑦. 𝑥 𝑦)) 𝑦

= 𝜆𝑦.𝑦𝑦

At first, the variable 𝑦 at the right side was free, while the first 𝑦 was bound. However,
the replacement in the expression mixed both identifiers, giving an erroneous result.
Renaming the argument 𝑦 to 𝑧 would solve that issue:

(𝜆𝑥.𝑥𝜆𝑦.𝑥𝑦) 𝑧
= 𝜆𝑦.𝑧𝑦

Another essential aspect to keep in mind is how, in 𝜆-calculus, each function takes
exactly one parameter at a time, as it was already shown. The concept of receiving only
one argument at the original function and returning nested functions that receive the
other arguments is called currying and is rigorously used by 𝜆-calculus. The table below
shows an example comparing currying with no currying:

No currying Currying

function addBasic(x,y) {

return x + y;

}

addBasic(1,2);

function addCurry(x) {

return function(y) {

return x+ y;

}

}

addCurry(1)(2);

Before introducing types, we show a more complex example below:
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(𝜆𝑥.𝜆𝑦.𝑥𝑦) (𝜆𝑥.𝑥) (𝑧)

= (𝜆𝑦.(𝜆𝑥.𝑥)𝑦) (𝑧)

= (𝜆𝑥.𝑥) 𝑧

= 𝑧

(𝜆 𝑥 .𝜆𝑦. 𝑥 𝑦) ( 𝜆𝑥.𝑥 ) (𝑧)

= (𝜆 𝑦 .(𝜆𝑥.𝑥) 𝑦 ) ( 𝑧 )

= (𝜆 𝑥 . 𝑥 ) 𝑧

= 𝑧

So far, the 𝜆-calculus presented does not have types, but they can also be included in
the language to form the most elementary member of the family of type systems.

If we want to introduce them, it is necessary to establish a fixed set of ground types.
For simplicity, we can assume the ground types are boolean. Therefore we can extend the
previous syntax with the following grammar for types:

𝑇 ::= 𝐵𝑜𝑜𝑙 | 𝑇 → 𝑇

𝑡 ::= ... | 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒
The terms would be the previous ones plus the new boolean constants. 𝑇 → 𝑇

represents the type of functions, in which the first 𝑇 represents the arguments of type 𝑇
and the second returns the result of type 𝑇.

Assigning types in an abstraction can be represented as 𝜆𝑥 : 𝑇.𝑡, which means that
variable 𝑥 has type 𝑇. Consequently, we would have to refactor the untyped 𝜆-calculus
syntax to include this abstraction instead of the untyped one.

Now we need to think about the typing rules of our simply typed 𝜆-calculus. The
typing rules for 𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒 and variables would be simple:

Γ ⊢ 𝑡𝑟𝑢𝑒 : 𝐵𝑜𝑜𝑙 𝑇 − 𝑇𝑟𝑢𝑒
Γ ⊢ 𝑓 𝑎𝑙𝑠𝑒 : 𝐵𝑜𝑜𝑙 𝑇 − 𝐹𝑎𝑙𝑠𝑒

(𝑥 : 𝑇) ∈ Γ

Γ ⊢ 𝑥 : 𝑇 𝑇 −𝑉𝑎𝑟

For the other rules, we need to think about what is going to happen if some abstraction
is applied to an argument. We will use the connective → for this representation. The rules
for its introduction and elimination is the following:

Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇2
Γ ⊢ 𝜆𝑥.𝑡 : 𝑇1 → 𝑇2

𝑇 − 𝐴𝑏𝑠 Γ ⊢ 𝑡1 : 𝑇1 → 𝑇2 Γ ⊢ 𝑡2 : 𝑇1
Γ ⊢ 𝑡1𝑡2 : 𝑇2

𝑇 − 𝐴𝑝𝑝

On T-Abs we know the type of the argument and the type of the body 𝑡2. From that we
can assume the type of the result. The rule T-App would have a similar train of thought.

2.3 OSTRICH

This section presents OSTRICH [13] [22], a template language that is going to be the
foundation for this dissertation work. Just like the structure proposed in [13] [22], this
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work will also have as a starting point a simple example, which will focus solely on the
screen and the table that can be viewed in Figure 2.3.

The list was chosen as an example since it is a usual pattern worth abstracting, consid-
ering it can be used in several applications.

Figure 2.3: Gift list application in the OutSystems platform.

The screen we present in Figure 2.3 has a table with several entries of the same entity,
which has four attributes, each corresponding to a column: (1) the person’s name, (2) the
gift, (3) its price, and (4) whether the person bought it or not. We sum up this information
of the application model in Figure 2.4.

There are a few things we can observe when studying the model: an entity has
attributes; the table is part of the screen; the column can have a value or an icon, depending
on whether the attribute type is a boolean or not; the table can have several columns, with
this last amount being the same as the number of attributes; the column has a title that can
be configured; the column visibility status can be switched, through the visibility widget
toggle.

When keeping these last things in mind, there are OSTRICH annotations that make
the instantiation of elements easier: (1) template parameter that replaces the source of the
table with the one provided by the developer; (2) the property value that can be used to
determine the name of the screen or the title of a column if it was specified, or keeping the
value defined in the base model otherwise; (3) iteration, which is necessary for creating
multiple columns of the list; (4) conditional, that can either exclude or include an element
- for instance, in the gift list example, the column can have an icon or a value, depending
on the type of the attribute being represented; (5) template application, which instantiates
a template with given arguments and replaces the annotated node.

Figure 2.5 presents the metamodel of the OSTRICH language, omitting nodes that
were not relevant to the example we are studying. The yellow elements are exclusive to
OSTRICH, while the others are already part of the metamodel of OutSystems applications.
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Figure 2.4: Application model of the gift list.

Figure 2.5: Template metamodel.

It is worth noting that the colored ones correspond to the annotations described in the
previous paragraph.

We can make a few assumptions when presented with the metamodel. For instance,
the application is composed of different types of abstract objects, such as entities with
attributes - like the gift example we have seen before - or the screen that can contain
widgets - as the value or icon previously mentioned.

The IDE offers an operation that allows the instantiation of the template. For that, the
algorithm needs three inputs: (1) the template root object; (2) the target parent object in
which the template is going to be instantiated; (3) arguments for each parameter of the
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template. The instantiation algorithm can be better studied in Figure 2.6 which presents a
few notes to some of its core functions.

A new environment and an empty
map, required to store the future
generated objects, are created with
the received arguments. Then the
function Traverse is called twice:
first, to create the mentioned objects,
and then to set their properties.

For each template node, a function
fun is called with the environment
varying. Before that, the algorithm
will check and evaluate if there are
annotations. If there is a condi-
tional annotation, the function will
be called if the result is true. If there
is an iteration annotation, the result-
ing list elements will be iterated, and
a new environment created for each
of these iterations. In this environ-
ment, the item becomes available to
any template expression contained
in the template node and its children
through the computed cursor name.
The function fun is called with this
new environment.

Figure 2.6: Template instantiation algorithm, retrieved from [13], and notes.

2.3.1 Syntax

OSTRICH is a multi-stage language. In the first stage, template expressions are evaluated
in an environment containing, among others, references to elements in the actual model
or parameters introduced in the template declarations. In the second stage evaluation, per-
formed in a closed setting, the components mentioned are populated by model elements,
and all the expressions associated with the component properties are set to run-time
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values.
The syntax of OSTRICH is as presented in Figure 2.7. We now present each of these

elements separately.

𝑉 ::= (Basic Values)
| Integer (Intenger literal)
| Boolean (Boolean literal)
| String (String literal)
| Unit (Unit literal)

𝑀 ::= (Template Expressions)
| 𝑉 (Basic Values)
| 𝑥 (Compile-time Variable)
| 𝑢 (Runtime Variable)
| 𝐿 (Label)
| let 𝑥 = 𝑀 in 𝑀 (Let)
| {𝐿 = 𝑀} (Records)
| [𝑀] (Lists)
| 𝑀 ⊕ 𝑀 (Binary Operations)
| Node(𝛼, {𝐿 = 𝑀}, 𝑀) (Node Element)
| ForNode(𝑥 : 𝑇 = 𝑀 in 𝑀) (Iteration Node)
| IfNode(𝑀,𝑀, 𝑀) (Conditional Node)
| Entity(𝑁, {𝐿 = 𝑀}, {𝐿 = 𝑀}) (Entity)
| Attribute(𝑁, 𝐿, 𝑇, 𝐿 = 𝑀) (Attribute)
| Template(𝑥, 𝑇, 𝑀) (Template)
| 𝑀(𝑀) (Template Instantiation)
| box(𝑀) (Box)
| letbox 𝑥 = 𝑀 in 𝑀 (Let Box)
| 𝑀 isOfType 𝑇 (Type Validation)
| NameOf M (Name Property)
| LabelOf M (Label Property)
| PropsOf M (Properties)
| AttributesOf M (Attributes)
| 𝑀 ⊗ 𝑂 (Customization)

𝑂 ::= (Customization Operation)
| insert(𝑝, 𝐵𝑉, 𝑀) (Insert Node)
| remove(𝑝) (Remove Node)
| replace(𝑝, 𝑀) (Replace Node)
| move(𝑝, 𝐵𝑉) (Move Node)
| insertProp(𝑝, {𝐿 = 𝑀}) (Insert Property)
| replaceProp(𝑝, {𝐿 = 𝑀}) (Replace Property)
| removeProp(𝑝, {𝐿}) (Remove Property)

Figure 2.7: Syntax of OSTRICH.

Basic values. Basic values compromise four different literals. These are integers, strings,
booleans, and unit. This last one was added to the syntax as it was necessary to represent
the different customizations uniformly.
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Records and lists. Literals for records and lists are defined as usual.

Let binder. The construct let 𝑥 = 𝑀1 in 𝑀2 represent all the elements 𝑀1 designated
by 𝑥 that appear in 𝑀2.

Binary operations. All operations that compromise basic values, records, and lists are
represented by binary operations 𝑀 ⊕ 𝑀.

Nodes. We define nodes based on a type, their properties, and children nodes. The
type of a node defines what kind of programming element it represents. The different
types of nodes are presented in Figure 2.8a, and can range from, for instance, Column to
Screen, two categories we have seen on our previously example. We have three kinds of
nodes: Node, ForNode, and IfNode. Node represents a simple node in the tree, with a list of
children nodes and a list of properties. The possibilities for this last one are displayed in
Figure 2.8b, and just like the categories, their values can vary, with Title being one of the
properties present in our previous example. Node IfNode represents a conditional term in
the template language. Based on a boolean term, it expands one of two given branches
containing a list of other nodes. Node ForNode(𝑥 : 𝑇 = 𝑀1 in 𝑀2) iterates over a list
of values, given by term 𝑀1, and produces an instance of term 𝑀1 for each one of the
elements of the list 𝑥;

𝛼 ::= (Node Categories)
| Top (Top)
| Screen (Screen)
| 𝑇𝑎𝑏𝑙𝑒 (Table)
| 𝐶𝑜𝑙𝑢𝑚𝑛 (Column)
| 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 (Calendar)
| 𝐼𝑐𝑜𝑛 (Icon)
| 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (Expression)
| 𝐶ℎ𝑒𝑐𝑘𝑏𝑜𝑥 (Checkbox)
| 𝐼𝑛𝑝𝑢𝑡 (Input)
| 𝑃𝑎𝑔𝑒𝑠 (Pages counter)

(a) Possible node categories.

𝛼 ::= (Properties)
| 𝑁𝑎𝑚𝑒 (Name)
| 𝑉𝑖𝑠𝑖𝑏𝑙𝑒 (Visible)
| 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 (Description)
| 𝑇𝑦𝑝𝑒 (Type)
| 𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑁𝑎𝑚𝑒 (Display name)
| 𝑆𝑜𝑢𝑟𝑐𝑒 (Source)
| 𝑇𝑖𝑡𝑙𝑒 (Title)
| 𝑉𝑎𝑙𝑢𝑒 (Value)
| 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (Variable)
| 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (Attributes)

(b) Possible node properties.

Figure 2.8: Node categories and properties.

Entities and attributes. We define an Entity(𝑁, {𝐿 = 𝑀}, {𝐿 = 𝑀}) with a name 𝑁 , a
record mapping labels 𝐿 to the entity’s attributes 𝑀 (columns), and a record mapping
labels to properties of the entities themselves. An Attribute(𝑁, 𝐿, 𝑇, 𝐿 = 𝑀) has the name
of the entity 𝑁 they belong to, a label 𝐿, a type 𝑇, and a record mapping properties to
their expressions.
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Templates. Templates are abstracted terms that can be instantiated to create and replace
nodes in a target tree. Term Template(𝑥, 𝑇, 𝑀) declares a new parameter, with identifiers
𝑥, its type 𝑇, and the template body, 𝑀, that is also the scope of 𝑥. Template instantiation,
𝑀1(𝑀2), denotes a tree node produced from a template, denoted by 𝑀1, and its argument
𝑀2. Arguments can be entities, attributes, or other values.

Box and let box. Term box(𝑀) represents a runtime expression to be evaluated in a
later stage of computation. The destructor for these expressions is represented using
letbox 𝑥 = 𝑀1 in 𝑀2. 𝑀1 is the runtime term attributed to 𝑥, which may appear in the
term 𝑀2. When 𝑀2 is also a boxed expression, the result is the combination of different
delayed runtime elements to compose a new runtime expression based on compile-time
decisions.

Built-in operations. NameOf M, LabelOf M, PropsOf M and AttributesOf M receive a term
and output the information requested. M isOfType T has similar logic, with the exception
that receives a second parameter, which is the type, 𝑇.

Customizations. Finally, we describe customization operations𝑀⊗𝑂. These operations
change trees are denoted by the term given as the first operand in a customization term.
The operation𝑂 includes the type of operation to be applied, the path in the tree to identify
the target node of the operation, and the term used as the argument to the operation. This
last term can vary, depending on the operation: to insert or replace a node, we need it to
be of type node; to remove and move a node, the term corresponds to unit, as it is not
required; to insert and update properties on the node, we need it to be a record; lastly, to
remove properties, we need it to be a list of the identifiers of those same properties. In
case of node insertion and node movement, an integer defining the index is also required.
Customizations are more carefully studied in Chapter 4.

Now that we are aware of the syntax, we can consider an example to better understand
it: the property value of the Screen in Figure 2.4 can be computed as Value = "List" +
{{e.Name}}, where e.Name refers to the name of the entity used to instatiate the template.
We use the syntax with double curly braces to identify compile-time expressions embedded
into runtime expressions (e is a compile-time variable). The previous concrete syntax
is then transformed into abstract syntax, with the parser outputting the value "List" +
(NameOf e), in which the + concatenates a string literal with an identifier, resulting in
a new identifier. For instance, when using the entity previously shown Gift, the result
would be ListGift.

2.3.2 Type System

OSTRICH is a strongly typed template expression language in which the evaluation
of template expressions always results in a valid run-time expression that matches the
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expected output. This is a concern that sometimes is overlooked when working with
templating languages. Besides that, our language preserves phase distinction. Moreover,
the separation between type-level, compile-time, and run-time computations is well
drawn.

Figure 2.9 presents the syntax of types. Below we study them separately, just as we
did before in Subsection 2.3.1.

𝐵 ::= (Basic Types)
| Integer (Intenger)
| Boolean (Boolean)
| String (String)
| Unit (Unit)

𝑇 ::= (Types)
| 𝐵 (Basic Types)
| Name(𝑁) (Name)
| Label(𝐿) (Label)
| LabelAttr(𝑁,𝑇) (Attribute label)
| {𝐿 = 𝑇} (Record)
| RecordAttr(𝑁) (Records of entity’s attributes)
| [𝑇] (Lists)
| NodeT([𝛼], [(𝑝𝑡, [𝑝])]) (Node)
| EntityT(𝑁, {𝐿 = 𝑇}) (Entity)
| AttributeT(N,T) (Attribute)
| Template(𝑇1 → 𝑇2) (Template)
| BoxT(𝑇) (Box)
| Top (Top)

Figure 2.9: Syntax of types.

Top and basic types. All of our value literals have their respective types: integers, strings,
booleans, and unit. The type Top denotes a supertype that can represent all possible types.

Records and lists. A record {𝐿 = 𝑇} denotes a collection of pairs in which label 𝐿 has
type 𝑇. A list [𝑇] represents a list of types. Moreover, the type RecordAttr(𝑁) conveys the
record of attributes of the entity designated by 𝑁 .

Names and labels. A name has the type of Name(N), whereas a label can have one of two
types: Label(𝐿) or LabelAttr(𝑁,𝑇). The first one stands for the description of a label, while
the latter stands for an attribute label from entity 𝑁 with type 𝑇.

Nodes. Template nodes have the type NodeT([𝛼], [(𝑝𝑡, [𝑝])]), in which the [𝛼] represents
the categories of the node, and [(𝑝𝑡, [𝑝])] represents the list of pairs of path and properties
presented in respective path.
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Entities and attributes. Entity types are represented as EntityT(𝑁, {𝐿 = 𝑇}), in which
𝑁 stands for the the name and the list for the properties and respective types. Attribute
types are denoted as AttributeT(N,T), where 𝑁 is the name of the entity it belongs to, and
𝑇 being the type of the attribute itself.

Template. We can look at the type Template(𝑇1 → 𝑇2) as the function from 𝑇1 to 𝑇2.

Box. The type BoxT(𝑇) represents the type of a delayed expression, in which 𝑇 is the
type of that expression during the runtime stage.

Furthermore, and from what we have seen before in Figure 2.5, there are a few template
rules that need to be valid: an App node can only contain one of three nodes with them
being either a Screen node, an Action node or an Entity node (we have seen two of these
three in Figure 2.4 when presenting the application model of the gift example); by its turn,
an Entity node can only contain Attribute nodes and these only exist inside entities; the
Table node can only contain Column nodes, and Column nodes can include any abstract
widget, such as an Icon or a Value node; similarly, the Screen node only contains abstract
widgets as well.

Lastly, we present a simple example of types using our example gift once again il-
lustrated in Figure 2.4. This entity is represented by the type Entity(Gift) and has four
different attributes. If we look more closely at the attribute that indicates wether the gift
was bought or not, we can see that it has the Boolean type. This way, we would represent
the attribute type as Attribute(Gift,Boolean). The other three would be Attribute(Gift,String)
for two of them - the ones that represent what the gift is about and for whom - and one
for Attribute(Gift,Integer) to represent the price.

2.3.3 Evaluation

OutSystems provides a set of sample code fragments that developers can use. However,
these still need some adjustments to the developer data, which requires effort and pro-
gramming skills. This way, it is a process that is still prone to errors. Moreover, the
operations applied to a template cannot be reapplied in the case of template updates or
new parameters. OSTRICH will try to solve both these issues, and so far, one evaluation
has been done to understand how OSTRICH is performing.

This evaluation targets the ten most used screen templates, which account for more
than half of all template usage. In total, 70 screen templates exist. Out of the ones tested,
only one, “Account Dashboard”, was not successfully converted. This failure happened
because OSTRICH still has some limitations. In this case, it was not possible to identify the
minimum number of attributes an entity should have to be an argument for a template.
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Screen template % of total instantiations Successfully converted
List with charts 19.1 ✓

Admin dashboard 4.7 ✓

Detail 4.6 ✓

Dashboard 4.2 ✓

List 4.2 ✓

List with filters 4.0 ✓

Bulk actions 3.7 ✓

Four column gallery 3.2 ✓

Account dashboard 3.2 ✗

Master detail 3.0 ✓

Table 2.1: Ten most used template screens, and result of conversion [13].
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3

Related work

One of the indispensable properties of OSTRICH is code generation. This chapter will start
by focusing on three different multi-stage programming languages that support program
generation. The first two languages, MetaML and Template Haskell, are motivated
algorithmically, while the third one, modal MiniML is motivated logically. The former
means that MetaML and Template Haskell were designed to support specialization of a
function to its early arguments, and the latter means that the statements of modal MiniML
express facts and rules about problems within a system of formal logic [9].

This part of the chapter will end with a discussion in which we establish comparisons
between these three languages.

To finish the chapter, we will explore how to create a bidirectional type system, and
an example of a type systems with that technique.

3.1 MetaML

MetaML is a functional programming language for multi-stage programming, where
programs are represented as abstract syntax trees, making their semantic properties
verifiable [26] [23].

The purpose of MetaML is to write programs that build and manipulate otherprograms.
The first ones are named meta-programs, and the second ones object-programs.

The most important aspects of MetaML are enumerated next.
1. Static type-checking: the typechecking occurs before any execution and only happens

once, securing meta-programs and all its object-programs from run-time errors. This
typechecking is crucial to ensure type-safety;

2. Cross-stage persistence and safety: variables bound in a particular stage are available
in future stages but not in earlier stages.

3. Static scoping of variables in code fragments: this means that the bindings between
names and objects can be determined at compile-time by examining the text of the
program, without consideration of the flow of control at run-time;

4. Staging annotations, some of them analogous to LISPS annotations [26]: these staging
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annotations allow the construction, combination, and execution of object-programs.
These annotations are:

• Brackets ⟨_⟩ for delaying a computation. Such delayed expression is called a
piece of code;

• Escape ∼_, used inside Brackets and intended to relax the restriction that no
reduction can occur. For a clearer idea, the expression ⟨ ... ∼⟨ e ⟩ ... ⟩ is
reduced to ⟨ ... e ... ⟩;

• Run run _ to remove the outermost brackets, forcing a piece of code to be
evaluated. The expression run ⟨ e ⟩ would be reduced to e;

• Lift lift _ transforms an expression into a piece of code, but reduces its input
before delaying it.

The Escape operator has the highest precedence, and Lift and Run operators have
the lowest.

3.1.1 Brackets

Brackets can be inserted around any expression to delay its execution, and the type inside
brackets is not the same as outside brackets. For instance, ⟨int⟩ (read code of int) is not
the same as int, therefore they cannot be combined.

A simple example of the usage of brackets is presented bellow:
-| val a = ⟨1+2⟩;
val a = ⟨1%+2⟩ : ⟨int⟩.

As it is verifiable, the addition was not performed. The symbol % indicates that + is
not a free variable. In fact, in MetaML the operators are identifiers. We will explain this
symbol later on.

3.1.2 Escape

As previously written, Escape allows the evaluation of a bracketed expression. As an
example:

-| val pair = ⟨(∼a, ∼a)⟩;
val pair = ⟨(1%+2, 1%+2)⟩ : ⟨int * int⟩.

The declaration presented binds pair to a delayed expression, representing a tuple of
the arithmetic expression presented in the previous subsection.

3.1.3 Run

Run executes a code fragment, allowing a delayed computation to be activated. Its use is
illustrated in the following example:

-| val b = run a;
val b = 3 : int.
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3.1.4 Lift

Both Brackets and Lift construct a piece of code, but unlike Brackets, Lift does not delay
its computation. A simple example:

-| val c = lift 1 + 2;
val c = ⟨3⟩ : ⟨int⟩.

Now that all four annotations were introduced, a new example combining all of them is
shown above:

run ⟨1 + ∼((fn x => x) ⟨2+3⟩) + ∼(lift (1+2))⟩
run ⟨1 + ∼(⟨2+3⟩) + ∼(lift (1+2))⟩
run ⟨1 + ∼⟨2+3⟩ + ∼(lift (1+2))⟩
run ⟨1 + 2 + 3 + ∼(lift (1+2))⟩
run ⟨1 + 2 + 3 + ∼(lift 3)⟩
run ⟨1 + 2 + 3 + ∼(⟨3⟩)⟩
run ⟨1 + 2 + 3 + ∼⟨3⟩⟩
run ⟨1 + 2 + 3 + 3⟩
9

3.1.5 Levels

To further explore the concepts of cross-stage safety and cross-stage persistence, it is
essential to understand the notion of levels in MetaML. The level of a piece of code is
equal to the number of surrounding brackets minus the number of surrounding escapes.

The expressions 5 and (fn a => a+5) are level 0 code. In a more complex example,
⟨fn a => ⟨a+5⟩⟩, there are three different stages present: the first one is the piece of code
⟨fn a => ⟨a+5⟩⟩; the second one is the result of running that program, a second stage
function fn a => ⟨a+5⟩; and the third one is ⟨%a %+ 5⟩, result of applying an integer to
the second stage function.

Now that it is clearwhat levels are and how they are determined, cross-stage persistence
and safety can be better understood. When a variable is bound at some level and used
in another higher one, we call it cross-stage persistent. The following program shows an
example:

let val a = 1 in ⟨a+1⟩ end
The example computes the code ⟨a %+ %1⟩, where % indicates that the variables a and

+ are bound in the code’s local environment. When %a is evaluated in later stages, it will
always return 1.

Allowing cross-stage persistence translates into a lack of cross-stage portability. This
lack of cross-stage portability happens as most compilers do not maintain a high-level
representation for values at run-time. Specifically, if we perform different stages in
different computers, the local environment must be port from one machine to the other.
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This manipulation can cause some portability issues. For now, MetaML always assumes
that the computing environment does not change between stages.

A variable is cross-stage safety if it is not used in a level that comes first then the level
it was bounded. This example shows how the concept can be violated:

fn a => ⟨fn b => ∼(a+b)⟩
The variable a is available at the first stage, b at the second stage, and the expression

is being computed at the first stage. Therefore, when b is first necessary, it was not yet
bounded, causing an error in the code.

3.1.6 Two Stage Example

Consider the following function to search a value in a list:
(* search1 : ”a → ”a list → bool *)
fun search1 v l =

if (null l)

then false

else if v = (hd l)

then true

else search v (tl l)

As we present it, the function does not have partial evaluation. However, if the list is
available at the first stage and the value at the second stage, we can make the following
assumptions: the type of value would be between brackets since it would only be later
evaluated; the list type would still be the same; the result would also be inside brackets
since the final result is only computed after the two inputs are available.

(* search2 : ⟨”a⟩ → ”a list → ⟨bool⟩ *)
fun search2 v l =

if (null l)

then ⟨false⟩
else if ⟨ ∼v = ∼(lift (hd l))

then true

else ∼(search v (tl l))⟩
The main difference between the two functions is the ⟨ ∼v = ∼(lift (hd l)) that

ensures the hd l is performed during the first stage.
Moving to a more concrete example, evaluating ⟨fn x => ∼(search2 x [1,2,3])⟩

yields:
⟨fun d1 =>
if d1 %= 1 then true

else if d1 %=2 then true

else if d1 %=3 then true

else false⟩
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3.2 Template Haskell

Template Haskell is a language extension that adds features supporting compile-time
meta-programming to the Haskell language, a strongly typed and functional language. Its
purpose is to manipulate Haskell’s code programmatically by allowing the programmer
to compute parts of their program instead of writing them, automating aspects of the
compilation [18] [24].

This extension is advantageous for, among others: (1) conditional compilation, benefi-
cial for compiling a program for different platforms or with a different configuration; (2)
program reification, as programs can inspect their structure; (3) optimizations since the
compiler can learn new things; (4) algorithmic program construction where the algorithm
that describes the program is simpler than the program itself - some examples are the
functions map and show, now exemplified:

-| show 12
"12"

-| map (3*) [1,2,3,4]
[3,6,9,12]

It is required to have a few features available to generate a program. Some examples
of these are the ability to retrieve information about something through its name and the
ability to put and get some custom state that all Template Haskell code can share in the
same module.

To achieve this, Template Haskell makes use of something called monads. All functions
provided by this templating language are hosted by a special monad called Q, short for
"quotation". There are a few types of quotations enabled by this extension:

Produces Quotation syntax Type
Declaration [d| ... |] Q [Dec]

Expression [e| ... |] Q Exp

Typed Expression [|| ... ||] Q (TExp a)

Type [t| ... |] Q Type

Pattern [p| ... |] Q Pat

Since most of the time, the code being operated is about expressions, [| ... |] is the
same as writing [e| ... |].

3.2.1 Quoting and Splicing

There are two principal forms in Template Haskell: quotes and splices. The first one takes
some type of quotation and makes it a value of type code, resulting in an Abstract Syntax
Tree. The second one takes an already quoted definition and evaluates it at compile-time.
The code below shows an example of the usage of the two forms. It also shows the
resulting Abstract Syntax Trees upon the evaluation of expressions.
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It is interesting to note how there is a parallelism between the annotations of Template
Haskell and MetaML: Brackets and Quotes create a piece of code, and Splices and Escape
evaluate some kind of definition in a piece of code. The similarities do not end there, as
both languages also have the notion of level. Specifically, in both of them, it is not allowed
to use a variable before they are bound, but it is possible to use it at some future stage.

x :: Q Exp

x = [| 1 + 5 |]

InfixE

Just

LitE

IntegerL

1

VarE

GHC.Num.+

Just

LitE

IntegerL

5

+

1 5

y :: Q Exp

y = [| 2 + $(x) |]

InfixE

Just

LitE

IntegerL

2

UnboundVarE

+$

Just

VarE

Ghci5.x

+

2 x

An example of a forced error is presented below:
-| stageError = [| \x -> $(x) |]
Stage error: ’x’ is bound at stage 2 but used at stage 1

The result is very self-explanatory: the x is being evaluated at a lower level than the
one it was bounded. We can define a stage as the number of quotations minus the number
of splices. Keeping that in mind, if quotations surrounded x, the stage error would no
longer be present:

-| [| \x -> $[| x |] |]
This way, both xwould be at the same stage.
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If we now present an example of a variable being used at a future stage, we can verify
that no errors occur:

-| double :: Int -> Q Exp
-| double x = [| x * 2 |]
-| $(double 10)
20

Besides the level restriction, Template Haskell has another limitation: a splice can only
be used on already compiled functions. Specifically, functions need to be defined in a
different module than where the splice is being applied. As an example, the following file
Main.hs is presented:

import Language.Haskell.TH

decx :: Q [Dec]

decx = [d|x = 0|]

$decx

If the file is loaded, this is what will happen:
-| :load Main
GHC stage restriction:

’decx’ is used in a top-level splice, quasi-quote, or annotation and

must be imported, not defined locally

Failed, no modules loaded.

To prevent that from happening, developers create a separate module usually named
TH.hs, like it is being done below:

Main.hs TH.hs

import Language.Haskell.TH

import TH

$decx

module TH where

import Language.Haskell.TH

decx :: Q [Dec]

decx = [d|x = 0|]

3.3 Logic Type Systems

This section will expose the programming language modal MiniML. As this language is
an extension of modal 𝜆-calculus, it is necessary to disclose that first. However, before
diving into these two languages, it is required to understand a few concepts that both
languages use. Namely, what is modal logic, and what is Curry-Howard isomorphism.

3.3.1 Modal Logic

Modal logic is part of the family of modal logics, which is also composed, among others,
by temporal logic or deontic logic.
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Modal logic is just a standard proposition logic extension with two new symbols: the
box, □, and the diamond, ⋄. The former expresses necessity, while the latter expresses
possibility. It is not required to use both symbols, as one can express both:

□𝐴 ≡ ¬ ⋄ ¬𝐴
⋄𝐴 ≡ ¬□¬𝐴

An example of usage of both symbols could be:
□(1 + 1 = 2) = "It is necessary that the addition of two 1s equals 2"
⋄ (Dog is six years old) = "It is possible that the dog is six years old"

The simplest system of modal logic is K, named after Saul Kripke, and it constitutes
the basis for every other system of modal logic. It has three main components:

1. Necessitation rule: if A is an axiom of K, then □A is as well;
2. Distribution axiom: □(𝐴 → 𝐵) → (□𝐴 → □𝐵). This means that if an implication

statement is necessary, then both participants of that implication statement are also
necessary;

3. Definition of possibility: expressed by the two rules first presented, relating the □
with the ⋄.

Another system is system T, also known as M, that is, the composition of system K
plus axiom M, that says the following:

□𝐴→ 𝐴: if it is necessary 𝐴, then it implies 𝐴.
Lastly, system T plus the axiom 4 compose the system S4:

□𝐴→ □□𝐴: necessary 𝐴 implies that is necessarily necessary 𝐴.
There are other modal logic systems, such as S5, but they are not relevant to this work.

Recapping the three studied systems:
1. 𝐾 = 𝐾;
2. 𝑇 = 𝐾&𝑀;
3. 𝑆4 = 𝐾&𝑀&4 = 𝑇&4.

3.3.2 Curry-Howard Isomorphism

Curry-Howard isomorphism, also known as propositions as types or simply Curry-
Howard correspondence, establishes a relation between a given logic and a given program-
ming language [28]. It starts by stating that each proposition in logic has a corresponding
type in the programming language and vice-versa. Moreover, for each proof of a given
proposition, there is a program of the corresponding type and vice-versa. It ends by
noting that for each way to simplify a proof, there is a way to evaluate a program and
vice-versa. We thus have:

propositions = types
proofs = programs

simplification of proofs = evaluation of programs
These conclusions first started when Curry observed that every type of function

(𝐴 → 𝐵) could be read as a proposition (𝐴 ⊃ 𝐵), and hence every type of any given
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function would always correspond to a provable proposition, and vice-versa. Later on,
Howard noted that there is a similar correspondence between natural deduction and
simply-typed 𝜆-calculus, and we can describe it as follows:

1. Conjunction 𝐴 ∧ 𝐵 corresponds to Cartesian Product 𝐴 × 𝐵. The proof for the
conjunction consists of a proof of 𝐴 and a proof of 𝐵. Likewise, a value of type 𝐴× 𝐵
consists of a value of type 𝐴 and a value of type 𝐵;

2. Disjunction 𝐴 ∨ 𝐵 corresponds to a disjoint sum 𝐴 + 𝐵. A proof of the disjunction
would include proof of either 𝐴 or 𝐵, including which one yields. Similarly, a value
of type 𝐴 + 𝐵 consists of the value of type 𝐴 or the value of type 𝐵, including an
indication of whether this is a left or right summand;

3. As mentioned before, the implication 𝐴 ⊃ 𝐵 corresponds to function 𝐴 → 𝐵. A
proof of the implication would imply that given 𝐴, then 𝐵 yields. Likewise, a value
of type 𝐴→ 𝐵 consists of a function that, when applied to a value of type 𝐴, returns
a value of type 𝐵.

Furthermore, the predicate quantifiers ∀ and ∃ correspond to the already studied
dependent types.

Before ending this subsection, we now present a connection between natural deduction
(on the right) and simply-typed 𝜆-calculus (on the left):

𝐴 𝐵
𝐴 ∧ 𝐵 ∧𝐼 𝑀 : 𝐴 𝑁 : 𝐵

(𝑀, 𝑁) : 𝐴 × 𝐵 ×𝐼

Briefly, in the first case, the premises 𝐴 and 𝐵 yield, so we can conclude that 𝐴 ∧ 𝐵. In
the second case, term 𝑀 has type 𝐴 and term 𝑁 has type 𝐵, then it is possible to form the
pairing term (𝑀, 𝑁) of product type 𝐴 × 𝐵.

3.3.3 Modal 𝜆-calculus

Modal𝜆-calculus, 𝜆→□
𝑒 , is just an extension of simply-typed𝜆-calculus plus the addition of

the new symbol □ [9]. Any expression of the form □𝐴 corresponds to code to be executed
in a future computation stage, where □𝐴 represents code of type 𝐴.

To decide which operations should be supported in code is necessary a constructor,
box, where box 𝐸 : □𝐴, if 𝐸 : 𝐴 in the empty context. It is essential to note that this is the
modal rule of necessitation already presented.

Code can only be substituted into code and not arbitrary expressions, which is reflected
in the necessitation rule. When code of type 𝐴 is executed, this produces values of type
𝐴. It is crucial to make the following judgment to have a system that satisfies subject
reduction and other desirable properties for a natural deduction system: 𝐴 is both true
and valid. Thus, there are two different types of hypotheses: (1) the ones that express
validity; (2) the ones that convey truth. This types are written as:

(𝐴1 , . . . , 𝐴𝑚); (𝐵1 , . . . , 𝐵𝑛) ⊢ 𝐶
And it means that under the hypothesis that 𝐴1 , . . . , 𝐴𝑚 are valid and 𝐵1 , . . . , 𝐵𝑛 are

true, then C is true.
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As the goal of the paper [9] is the analysis of the Curry-Howard isomorphism between
proofs and programs, the hypotheses are labeled, and 𝐶 is annotated with a proof term 𝐸:

𝑚𝑜𝑑𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, △︷                    ︸︸                    ︷
(𝑢1 : 𝐴1 , ..., 𝑢𝑚 : 𝐴𝑚);

𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, Γ︷                   ︸︸                   ︷
(𝑥1 : 𝐵1 , ..., 𝑥𝑛 : 𝐵𝑛) ⊢ 𝐸 : 𝐶

To conclude that 𝐴 is valid, its validity must not depend on the value of truth of any
hypothesis. In different words, 𝐴 is valid under the presumption that all hypotheses are
true, which could be expressed as:

(𝐴1 , ..., 𝐴𝑚); · ⊢ 𝐶
Or, using proof terms:

(𝑢1 : 𝐴1 , ..., 𝑢𝑚 : 𝐴𝑚); · ⊢ 𝐸 : 𝐶
The following expression means that 𝐸 contains free code variables but not free value

variables.
From the judgment presented, it is possible to infer two different rules:

1. 𝐴 is true from the hypothesis that 𝐴 is true:

𝑥 : 𝐴 𝑖𝑛 Γ

△;Γ ⊢ 𝑥 : 𝐴 𝑜𝑣𝑎𝑟

2. If 𝐴 is true, then 𝐴 is also valid.

𝑢 : 𝐴 𝑖𝑛 △
△;Γ ⊢ 𝑥 : 𝐴 𝑚𝑣𝑎𝑟

Apart from that, it is also possible to make a derivation about the truth and validity
of 𝐴 for all use cases that 𝐴 is, respectively, true and valid. That is, if 𝐶 is true from the
hypothesis that 𝐴 is true, then it is possible to substitute a derivation establishing the
truth of 𝐴 for all use cases of the hypothesis, which ultimately results in a derivation of
truth 𝐶 which no longer depends on the hypothesis:

If △;Γ ⊢ 𝐸1 : 𝐴 and △; (Γ, 𝑥 : 𝐴Γ′) ⊢ 𝐸2 : 𝐵 then
△; (Γ, Γ′) ⊢ [𝐸1/𝑥]𝐸2 : 𝐵

Likewise, it is possible to substitute a derivation demonstrating the validity for 𝐴 for
all use cases that 𝐴 is valid:

If △; · ⊢ 𝐸1 : 𝐴 and (△, 𝑢 : 𝐴, △′);Γ ⊢ 𝐸2 : 𝐵 then
(△, △′);Γ ⊢ [𝐸1/𝑢]𝐸2 : 𝐵

Now that we have established the basis, we can introduce logical connectives and
operators. Starting on the implication rules, both introduction and elimination, the
following would apply:

1. Introduction - 𝐴→ 𝐵 should be true if 𝐵 is true under the hypothesis that 𝐴 is true:

△; (Γ, 𝑥 : 𝐴) ⊢ 𝐸 : 𝐵
△;Γ ⊢ 𝜆𝑥 : 𝐴.𝐸 : 𝐴→ 𝐵

→ 𝐼

2. Elimination - in an implication, if the right side is true, then the left side must also
be true:

△;Γ ⊢ 𝐸2 : 𝐴→ 𝐵 △;Γ ⊢ 𝐸1 : 𝐴
△;Γ ⊢ 𝐸2𝐸1 : 𝐵 → 𝐸
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For the new modal operator, □, that, once again, defines computation to be evaluated
at a later stage, the rules would be as follows:

1. Introduction - if 𝐴 is valid, then □𝐴 is also true. It is important to note that only
modal variables can occur free in 𝐸:

△; · ⊢ 𝐸 : 𝐴
△;Γ ⊢ box 𝐸 : □𝐴 □𝐼

2. Elimination - since a connective is only meaningful if local soundness and local com-
pleteness are valid, there are a few incorrect judgments that seem straightforward: it
is not possible to conclude𝐴 from□𝐴, as it is not complete; similarly, it is not possible
to assume that 𝐴 is valid from □𝐴 is true, as that would be unsound. Instead, we
could make the following conclusion: if □𝐴 is true under some hypothesis, then any
judgment made under the additional hypothesis that 𝐴 is valid must be evident:

△;Γ ⊢ 𝐸1 : □𝐴 (△, 𝑢 : 𝐴);Γ;Γ ⊢ 𝐸2 : 𝐵
△;Γ ⊢ let box 𝑢 = 𝐸1 in 𝐸2 : 𝐵 □𝐸

The term construct let is new and is required to express the following reasoning:
𝐸1 represents a value of type □𝐴, as it can be verified above, and is accessible in 𝐸2

through the name 𝑢.
The other connectives, such as conjunction or disjunction, would have the same logic

for the rules of introduction and elimination previously presented.
The summary of the properties for the system of natural deduction described is as

shown:

Types 𝐴 ::= 𝑎 | 𝐴1 → 𝐴2 | □𝐴
Modal Contexts △ ::= · | △, 𝑢 : 𝐴
Ordinary Contexts Γ ::= · | Γ, 𝑥 : 𝐴
Terms 𝐸 ::= 𝑥 | 𝜆𝑥 : 𝐴.𝐸 | 𝐸1𝐸2 | 𝑢 | box 𝑢 | let box 𝑢 = 𝐸1 in 𝐸2

𝐴, 𝐵 express types, 𝑎 represents base types, 𝑥 is used for ordinary variables in Γ and 𝑢
is used for modal variables in △. Furthermore, each variable can only be declared at most
once in a context.

Now that we have put out the basis, the relationship between 𝜆→□
𝑒 and staged com-

putation can be better studied. Like it was already noted, every term enclosed by a box
constructor will have its evaluation delayed. The following judgment is applied:

𝐸 ↦→ 𝐸′ 𝐸 reduces to 𝐸′

Which, by its turn, is defined by the following rules:

(𝜆𝑥 : 𝐴.𝐸2)𝐸1 ↦→ [𝐸1/𝑥]𝐸2
→ 𝛽

let box 𝑢 = box 𝐸1 in 𝐸2 ↦→ [𝐸1/𝑢]𝐸2
□𝛽

𝐸 ↦→ 𝐸′

(𝜆𝑥 : 𝐴.𝐸) ↦→ (𝜆𝑥 : 𝐴.𝐸′) 𝑐𝑜𝑛𝑔_𝑙𝑎𝑚
𝐸1 ↦→ 𝐸′

1
𝐸1𝐸2 ↦→ 𝐸′

1𝐸2
𝑐𝑜𝑛𝑔_𝑎𝑝𝑝1
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𝐸2 ↦→ 𝐸′
2

𝐸1𝐸2 ↦→ 𝐸1𝐸
′
2
𝑐𝑜𝑛𝑔_𝑎𝑝𝑝2

𝐸1 ↦→ 𝐸′
1

let box 𝑢 = 𝐸1 in 𝐸2 ↦→ let box 𝑢 = 𝐸′
1 in 𝐸2

𝑐𝑜𝑛𝑔_𝑙𝑒𝑡𝑏𝑜𝑥1

𝐸2 ↦→ 𝐸′
2

let box 𝑢 = 𝐸1 in 𝐸2 ↦→ let box 𝑢 = 𝐸1 in 𝐸′
2
𝑐𝑜𝑛𝑔_𝑙𝑒𝑡𝑏𝑜𝑥2

From this, the following theorem applies: △;Γ ⊢ 𝐸 : 𝐴 and 𝐸 ↦→∗ 𝐸′ then △;Γ ⊢ 𝐸′ : 𝐴,
where ↦→∗ defines the reflexive and transitive closure of ↦→.

The criteria for defining correctness in binding-time is followed [16] to demonstrate
the relationship between this reduction relation and computation staging. Briefly, this
correctness has two essential aspects to take into account. The first one is consistency and
states that a binding-time analysis is correct if it always produces consistent binding-time
information. This consistency is what prevents partial evaluators from going wrong,
which happens if a partial evaluator trusts a part of the program to be of a particular form,
of which it is not - since𝜆→□

𝑒 is well-typed, this can never happen. The second aspect is that
once a stage terminates, all partial evaluators will have eliminated all eliminable-marked
parts of an input. In 𝜆→□

𝑒 , all terms inside of □ are to be computed in a later stage and are,
therefore, persistent. All other term occurrences are considered eliminable.

The following theorem expresses the second aspect: if ·; · ⊢ 𝐸 : □𝐴 and 𝐸 ↦→∗ 𝐸′ and
𝐸′ is irreducible, that is, there are no terms that be further reduced, then 𝐸′ does not
contain any eliminable term occurrences. This can be proven as ·; · ⊢ 𝐸 : □𝐴 reduces to
·; · ⊢ 𝐸′ : □𝐴 - by the former presented theorem -, and, since 𝐸′ is irreducible, 𝐸′ must have
the form box 𝐸′

0 for some 𝐸′
0. This way, all term occurrences in 𝐸′ are in the scope of a box

constructor and therefore persistent.
There is still one more property, not included in the correctness criteria, that the

authors added to 𝜆→□
𝑒 , as it needs to be shown explicitly: eliminable subterms cannot be

reduced to persistent terms. For this matter, 𝜆→□
𝑒 is extended with labels, with the terms

possible having the addition of 𝐸𝑙 . The rules to apply labels (on the left), and to unlabel
(on the right), would be the following:

△;Γ ⊢ 𝐸 : 𝐴
△;Γ ⊢ 𝐸𝑙 : 𝐴

𝐿𝐵
𝐸𝑙 ↦→ 𝐸

𝑢𝑛𝑙𝑎𝑏𝑒𝑙

If 𝐸1 and 𝐸2 differ only in a way that subterms of 𝐸1 are labeled, then typing and
reduction correspond between 𝐸1 and 𝐸2. This correspondence allows tracing the "images
under reduction" as the authors called them, of eliminable parts of an unlabeled term by
labeling all persistent subterm occurrences. From this, the following theorem applies: if
△;Γ ⊢ 𝐸 : 𝐴 and all persistent subterm occurrences of 𝐸 are labeled with 𝑙, and 𝐸 ↦→ 𝐸′,
then all persistent subterm occurrences of 𝐸′ are labeled with 𝑙.
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3.3.4 Modal Mini-ML

Mini-ML□𝑒 is a language that combines Mini-ML [5] with the already presented 𝜆→□
𝑒 .

Mini-ML is the restricted part of ML, and we can define it as a simple typed 𝜆-calculus
with constants, products, conditionals, and recursive function definitions. Unlike ML,
which is implicitly typed, Mini-ML□𝑒 is explicitly typed, and both exhibit polymorphism.
That is, functions assume the same behavior for arguments of different types.

The syntax of Mini-ML□𝑒 is as follows:

Types 𝐴 ::= nat | 𝐴1 → 𝐴2 | □𝐴 | 𝐴1 × 𝐴2 | 1
Modal Contexts △ ::= · | △, 𝑢 : 𝐴
Ordinary Contexts Γ ::= · | Γ, 𝑥 : 𝐴

Terms
𝐸 ::= 𝑥 | 𝜆𝑥 : 𝐴.𝐸 | 𝐸1𝐸2 | 𝑢 | box 𝑢 | let box 𝑢 = 𝐸1 in𝐸2

| ⟨𝐸1 , 𝐸2⟩ | fst 𝐸 | snd 𝐸 | ⟨⟩ | z | s 𝐸
| (case 𝐸1 of z ⇒ 𝐸2 | s 𝑥 ⇒ 𝐸3) | fix 𝑥 : 𝐴.𝐸

There are a few new keywords in this syntax compared to the one studied before. Their
definition can be found in [8], but briefly, their meaning is:

1. fst: Expects a term ⟨𝑠, 𝑡⟩ and returns s;
2. snd: Expects a term ⟨𝑠, 𝑡⟩ and returns t;
3. z: Refers to 0;
4. s: Refers the successor function;
5. case: It is equivalent to if 𝐸1 then 𝐸2 else 𝐸3;
6. fix: Represents a recursive function.
All the rules seen in 𝜆→□

𝑒 still apply to Mini-ML□𝑒 , with a few additions:

△;Γ ⊢ 𝐸1 : 𝐴1 Γ ⊢ 𝐸2 : 𝐴2
△;Γ ⊢ ⟨𝐸1 , 𝐸2⟩ : 𝐴1 × 𝐴2

𝑡𝑝𝑒_𝑝𝑎𝑖𝑟 △;Γ ⊢ 𝐸 : 𝐴1 × 𝐴2
△;Γ ⊢ fst 𝐸 : 𝐴1

𝑡𝑝𝑒_ 𝑓 𝑠𝑡

△;Γ ⊢ 𝐸 : 𝐴1 × 𝐴2
△;Γ ⊢ snd 𝐸 : 𝐴2

𝑡𝑝𝑒_𝑠𝑛𝑑 △;Γ ⊢ ⟨⟩ : 1
𝑡𝑝𝑒_𝑢𝑛𝑖𝑡

△;Γ ⊢ z : nat 𝑡𝑝𝑒_𝑧
△;Γ ⊢ 𝐸 : nat
△;Γ ⊢ s 𝐸 : nat

𝑡𝑝𝑒_𝑠

△;Γ ⊢ 𝐸1 : nat △;Γ ⊢ 𝐸2 : 𝐴 △; (Γ, 𝑥 : nat) ⊢ 𝐸3 : 𝐴
△;Γ ⊢ (case 𝐸1 of z ⇒ 𝐸2 | s 𝑥 ⇒ 𝐸3)

𝑡𝑝𝑒_𝑐𝑎𝑠𝑒

△; (Γ, 𝑥 : 𝐴) ⊢ 𝐸 : 𝐴
△;Γ ⊢ fix 𝑥 : 𝐴.𝐸 : 𝐴 𝑡𝑝𝑒_ 𝑓 𝑖𝑥

When an expression is evaluated, it could be expressed as:
𝐸 ↩→ 𝑉 𝐸 evaluates to value 𝑉

The written 𝑉 could be one of the following:
Values 𝑉 ::= 𝜆𝑥 : 𝐴.𝐸 | ⟨𝑉1 , 𝑉2⟩ | ⟨⟩ | z | s 𝑉 | box 𝐸

The semantics for evaluating functions, code, products, natural numbers and recursion
act in accordance with the rules shown below:
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𝜆𝑥 : 𝐴.𝐸 ↩→ 𝜆𝑥 : 𝐴.𝐸 𝑒𝑣_𝑙𝑎𝑚𝑏
𝐸1 ↩→ 𝜆𝑥.𝐸′

1 𝐸2 ↩→ 𝑉2 [𝑉2/𝑥]𝐸′
1 ↩→ 𝑉

𝐸1𝐸2 ↩→ 𝑉
𝑒𝑣_𝑎𝑝𝑝

box 𝐸 ↩→ box 𝐸 𝑒𝑣_𝑏𝑜𝑥
𝐸1 ↩→ box 𝐸′

1 [𝐸′
1/𝑢]𝐸2 ↩→ 𝑉2

let box 𝑢 = 𝐸1 in 𝐸2 ↩→ 𝑉2
𝑒𝑣_𝑙𝑒𝑡_𝑏𝑜𝑥

𝐸1 ↩→ 𝑉1 𝐸2 ↩→ 𝑉2
⟨𝐸1 , 𝐸2⟩ ↩→ ⟨𝑉1 , 𝑉2⟩

𝑒𝑣_𝑝𝑎𝑖𝑟 𝐸 ↩→ ⟨𝑉1 , 𝑉2⟩
fst 𝐸 ↩→ 𝑉1

𝑒𝑣_ 𝑓 𝑠𝑡

𝐸 ↩→ ⟨𝑉1 , 𝑉2⟩
snd 𝐸 ↩→ 𝑉2

𝑒𝑣_𝑠𝑛𝑑 ⟨⟩ ↩→ ⟨⟩ 𝑒𝑣_𝑢𝑛𝑖𝑡

z ↩→ z 𝑒𝑣_𝑧 𝐸 ↩→ 𝑉
s 𝐸 ↩→ s 𝑉

𝑒𝑣_𝑠

𝐸1 ↩→ z 𝐸2 ↩→ 𝑉

(case 𝐸1 of z ⇒ 𝐸2 | s 𝑥 ⇒ 𝐸3) ↩→ 𝑉
𝑒𝑣_𝑐𝑎𝑠𝑒_𝑧

𝐸1 ↩→ s 𝑉′
1 [𝑉′

1/𝑥]𝐸3 ↩→ 𝑉

(case 𝐸1 of z ⇒ 𝐸2 | s 𝑥 ⇒ 𝐸3) ↩→ 𝑉
𝑒𝑣_𝑐𝑎𝑠𝑒_𝑠

[fix 𝑥.𝐸/𝑥]𝐸 ↩→ 𝑉

fix 𝑥.𝐸 ↩→ 𝑉
𝑒𝑣_ 𝑓 𝑖𝑥

Most of the evaluations inferred are simple to understand at first sight. In detail, this
is what is happening in three of those evaluations:

1. 𝑒𝑣_𝑎𝑝𝑝: expression 𝐸1 evaluates to an expression 𝐸′
1 with parameter 𝑥 and 𝐸2

evaluates to𝑉2. Then replacing𝑉2 for 𝑥 in 𝐸′
1 would result in𝑉 . From this, it is easy

to infer that the evaluation of 𝐸1𝐸2 would evaluate to 𝑉 ;
2. 𝑒𝑣_𝑙𝑒𝑡_𝑏𝑜𝑥: Similarly to 𝑒𝑣_𝑎𝑝𝑝, 𝐸1 evaluates to 𝑏𝑜𝑥 𝐸′

1 and replacing 𝐸′
1 for 𝑢 in 𝐸2

would result in𝑉2. This way, evaluating 𝐸2 by accessing 𝑢 computed from evaluated
𝐸1 would evaluate to 𝑉2;

3. 𝑒𝑣_𝑐𝑎𝑠𝑒_𝑠: The first thing required is to evaluate 𝐸1. Then, it is needed to replace
𝑉′

1, the result of 𝐸1, for 𝑥 in expression 𝐸3. The result would be 𝑉 , which is also the
final result of the whole expression. 𝑒𝑛𝑣_𝑐𝑎𝑠𝑒_𝑧 is similar.

From these rules of evaluations, there are a few statements that can be made:
1. If 𝐸 ↩→ 𝑉 then 𝑉 is a Value;
2. If 𝐸 ↩→ 𝑉 and 𝐸 ↩→ 𝑉′ then 𝑉 and 𝑉′ are the same;
3. If 𝐸 ↩→ 𝑉 and ·; · ⊢ 𝐸 : 𝐴 then ·; · ⊢ 𝑉 : 𝐴, which is to say that both 𝐸 and its result 𝑉

would have the same type.
Moving on to the relation between products and □, we show two examples. It is impor-

tant to remind that since products and conjunction are related as seen in Subsection 3.3.2,
these examples correspond to proofs in modal logic:

1. -| 𝜆𝑥 : (□𝐴) × (□𝐵).let box 𝑢1 = fst 𝑥 in let box 𝑢2 = snd 𝑥 in box⟨𝑢1 , 𝑢2⟩
(□𝐴) × (□𝐵) → □(𝐴 × 𝐵)

It is easy to conclude that the returning type has the form of □(𝐴 × 𝐵) by the last
expression 𝑏𝑜𝑥⟨𝑢1 , 𝑢2⟩, composed by the □ and a pair, or product.

2. -| 𝜆𝑥 : □(𝐴 × 𝐵).let box 𝑢 = 𝑥 in ⟨box fst 𝑢, box snd 𝑢⟩
□(𝐴 × 𝐵) → (□𝐴) × (□𝐵)
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Likewise, the returning type is (□𝐴) × (□𝐵), as the expression ⟨box fst 𝑢, box snd 𝑢⟩
expresses a product of two values in the □ form.

Focusing now on recursive functions, the 𝑝𝑜𝑤𝑒𝑟 example shows the fix and case
keywords in action. This function has type nat → □(nat → nat), and makes use of a
function 𝑡𝑖𝑚𝑒𝑠 that receives two natural numbers and returns another natural number
(nat → nat → nat).

𝑝𝑜𝑤𝑒𝑟 ≡ fix 𝑝 : nat → □(nat → nat).
𝜆𝑛 : 𝑛𝑎𝑡.case 𝑛
of z ⇒ box (𝜆𝑥 : nat.s z)
| s 𝑚 ⇒ let box 𝑞 = 𝑝 𝑚 in

box (𝜆𝑥 : nat.𝑡 𝑖𝑚𝑒𝑠 𝑥 (𝑞 𝑥)))
This example is simple. It states the returned number will be the successor of 0, that

is, 1, if the exponent received equals 0. Otherwise, it will compute the multiplication
between the base, 𝑥, and the result of calling the recursive function for 𝑛 − 1. In this
function, everything that depends on the exponent is computed. In action, this function
would behave as it follows:

𝑝𝑜𝑤𝑒𝑟 𝑧 ↩→ box (𝜆𝑥 : nat.s z) (from case n of z)
𝑝𝑜𝑤𝑒𝑟 (𝑠 𝑧) ↩→ box (𝜆𝑥 : nat.𝑡 𝑖𝑚𝑒𝑠 𝑥

((𝜆𝑥 : nat.s z)
𝑥))

(from case n of s m) (1)
(from case n of z)
(1)

𝑝𝑜𝑤𝑒𝑟 (𝑠 (𝑠 𝑧)) ↩→ box (𝜆𝑥 : nat.𝑡 𝑖𝑚𝑒𝑠 𝑥
(𝜆𝑥 : nat.𝑡 𝑖𝑚𝑒𝑠 𝑥
((𝜆𝑥 : nat.s z)
𝑥))
𝑥))

(from case n of s m) (1)
(from case n of s m) (2)
(from case n of z)
(2)
(1)

3.4 Discussion

All languages presented have strong staging properties. In MetaML we express the
delayed code using Brackets; in Template Haskell using Quotes; and finally, in Mini-ML□𝑒
using the constructor box. Similarly, all three of them allow the execution of code by
having, respectively, Escape, Slices, and let box. While using stages, it is possible to use a
variable declared in a previous stage but never on a future one. That is, all three languages
ensure cross-stage persistence and safety.

Despite these similarities, these languages also have their differences [24]. For instance,
in Template Haskell, typechecking is delayed until the last possible moment, which allows
for more powerful meta-programs without resorting to dependent types. In MetaML
this carefulness is not taken into account, as the typechecking for all stages occurs once
and for all before the execution of the first stage. Template Haskell also differentiates
from the others in three crucial aspects: (1) it allows manipulation of the data, as its
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structure representation can be obtained and inspected by compile-time functions; (2) all
meta-computations happen at compile-time; (3) its data structures are represented using
algebraic datatypes - these represent, among others, expressions and declarations -, which
makes it compliant to pattern matching and case analysis (this last one also present in
modal MiniML). On the other hand, this last approach also implies that the construction of
a representation of a program may require more effort than the one necessary to construct
the program itself.
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4

Customizations

In Section 2.3, we have seen that behind each application, there is a tree of nodes rep-
resenting the widgets and the general structure of a template. Thus, if anything on the
application changes, it will be translated into this same tree. From this knowledge, a few
questions may surge regarding this tree. Is it possible to insert nodes between others? Can
we remove some nodes and keep the rest of the tree as it is? What functions should be
supported? And many others. This chapter will start by outlining the elements composing
an application and how to reach each of them. After that, we will explore the seven
different customizations that can be applied to a template and the considerations we need
to take into account when applying them. The presentation of such customizations will
be the purpose of this chapter. Throughout the presentation, we will be guided by an
example application to give the reader a better understanding of this matter. We will
assume the same approach in every section, with a few modifications to our example.

4.1 Overview

There are seven main operations involving a tree of nodes. The first four regard the
structure of the tree, while the last three regard the structure of the node itself. These
operations are, respectively: (1) insertion of a node; (2) replacement of a node; (3) removal
of a node; (4) move node; (5) addition of new properties to some node; (6) update of the
node properties; and (7) removal of node properties.

All these customization functions require mostly different arguments to perform
successfully, apart from two common requirements, which are the path and the original
tree. The path indicates how to reach some tree node from the root node and can be easily
produced by a user interaction that sees the changes on the user interface in an IDE.

To better visualize the path, let’s consider an application and its tree of nodes. This
application is represented in Figure 4.1a. Our example application has four different
widgets and aims to show the properties of several products, with the possibility of
searching for them separately. The widgets available for this purpose are an input bar
(Input node), a search button (Button node), a table (Table node), and, lastly, the page
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(a) Application example.
(b) Tree of widgets on application.

Node⟨Screen, [], [
Node(Input, [], []),
Node(Button, [], []),
Node⟨Table, [], [

Node(Column, [], [Node(Icon, [], [])]),
Node(Column, [], [Node(Expression, [], [])])

]⟩,
Node(Pages, [], [])

]⟩

(c) Syntax of the example tree.

Figure 4.1: Application with widgets.

counter (Pages node). On Figure 4.1a side, in Figure 4.1b, there is a tree of the widgets,
without their properties for clarity, present in the application. We can check that the screen
has the four mentioned elements, with the table having two columns, each having either
an icon (for the stock property) or an expression (for the description property). Using
the syntax represented in Section 2.3, the application would have the code illustrated in
Figure 4.1c. From it, we can check that Input, Button, Table and Pages are all children of
the Screen node, the latter being the application root node. Moreover, the Table includes
two distinct columns in its list of children, and each Column node contains, respectively,
an Icon and an Expression. Notice that the list of properties of every node is empty, as we
decided to remove them from this example in favor of simplicity.

As it was stated, to reach some node from the root node, we always need to know
the path. This path consists of a list of numbers. Each number at some index of the list
corresponds to the node order in the list of widgets at that depth and with the same parent.
For instance, the Screen node could be found in path [0]. On the other hand, the Table
would be at [0 2] - the first number 0 indicates the Screen (we always append the path
that allows us to reach the parent node), while the 2 indicates the third child of the node
Screen (we always start counting from 0 and not 1); and the Icon would be at [0 2 1 0],
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since it is the first child of the Column present at [0 2 1], which by its turn is the second
child of the Table node present in [0 2], and so forth. The complete list of the path to reach
each node of the tree is represented in Figure 4.2. Before we go on, it is worth pointing
out that these examples will not take into consideration any IfNode or ForNode as they are
evaluated before any customization is performed. Therefore, we will be solely focused on
grounded node trees. Moreover, the IfNode and ForNode require a little more care and will
be studied in Section 5.1 as we encounter them in the typechecking phase.

Figure 4.2: Path to nodes.

Apart from the path and the original tree, the other necessary parameters required to
apply the different operations to the tree of nodes vary. If our goal is to insert or replace a
node, we will have to provide one. In case of node insertion, or node movement, we will
also have to supply the index intended for the target element - that is, the position it is
going to assume in its siblings’ list (this will become clearer in the upcoming examples of
this matter). It is worth noting that the index will not be part of the path, as we found it
to be more explicit having both separated. If the operations in question regard properties,
we have to either provide a record of these in case of property addition or replacement -
the record maps the identifiers to the values they hold - or a list of labels corresponding
to the identifiers in the case of property removal. These requirements were already seen
in the syntax presented previously in Section 2.3.

Now that we are acquainted with the operations, we can study them more carefully
one by one, always taking into account our example application as the starting point of
each applied customization.

4.2 Customization Operation Description

Insert node Apart from the original tree, which along with the path, is always required,
we would need to provide the index, the path, and the node to insert.

As an example, let’s consider our previous application represented in Figure 4.1. To
add a Checkbox between the Button and the Table node, we would have the following
parameters: the path [0], since the new node would be a child of Screen; the index 2 -
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the first two elements of that level, index 0 and 1, would still be the Input and the Button,
while the Table and Pages node assume the positions following the new node place; and
the Checkbox node to insert. The resulting graph of applying this operation is illustrated
in Figure 4.3. On the left, we see the initial template. On the right, we see the template
after the customization has been applied.

Figure 4.3: Example of insert node operation.

If we consider 𝑡 to be the original tree represented in Figure 4.3 (the one on the left),
we would have the syntax of this operation as:

𝑡 ⊗ insert([0], 2,Node(Checkbox, [], []))

Once again, we are inserting a node without properties as all the others were, hence
the first empty list inside it. The second empty list indicates that the node does not have
any children.

Replace Node To replace a node on the tree, we would need the path for replacement
and the node that is going to replace the one we reached from the given path. We would
no longer need the index as that is only required for node insertion and node movement.

Grabbing the same example application, if we wanted to switch the Icon for the Checkbox
node, we would have the following parameters: the path [0 2 1 0], the original tree (the
same as before) and the Checkbox node. Regarding the path provided, we would start on
Screen, placed at path [0]. Then we would move to the third child of Screen. That is, the
Table. The Table has one of two Column nodes, and we will move to the second one as it
is the parent of the Icon node. After that, we will simply choose the Icon, which would
finally be substituted.

The result of applying such customization is presented in Figure 4.4.
Using our syntax, the customization would be written as:

𝑡 ⊗ replace([0 2 1 0],Node(Checkbox, [], []))

where 𝑡 is the initial tree of Figure 4.4.
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Figure 4.4: Example of the replace node operation.

Remove Node To remove a node on the tree, the only two arguments we need to provide
are the path and the original tree.

If we use the same structure as in the previous operations, and we wanted to remove
the Table node, we would have to provide the path [0 2] - it is a child of the Screen node
and corresponds to the third element of its children. Using our syntax, we would express
such customization as:

𝑡 ⊗ remove([0 2])

where 𝑡 is the initial tree in Figure 4.5. This example is illustrated in Figure 4.5. We can
check that the Table node, as well as all its children, are no longer presented in the final
tree while all the other nodes remain in the same position.

Figure 4.5: Example of remove node operation.

Move Node To move a node, we need to provide the original tree, the path for that node,
and an index indicating where the node is going to be moved on that list. This list is the
list of its siblings (the nodes that share the same parent).

Using our example once again, if we wanted to move the Table node to the first position
of the list, we would have the path [0 2] and the index 0. The path [0 2] indicates where
the node is on the tree concerning the root node (the Screen).
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In our syntax, this example would look like the following:

𝑡 ⊗ move([0 2], 0)

where 𝑡 is the initial tree in Figure 4.6, in which our full example is illustrated. We can
check that the Table node replaced the Input as the first element. All the other elements
remained the same.

Figure 4.6: Example of move node operation.

Add Property All the three customizations left to present regard properties instead of
nodes.

To add a property to some node, we need to have the original tree, the path to the
node that is going to be modified, and a record of properties. The length of this record
can vary according to the user’s needs.

Figure 4.7: Example of add property operation.

If, for instance, we wanted the first Column to have a property named Title with the
value “Description”, then we could simply provide the path to that node and a record
containing this one property. This way, the expression in our syntax would be as below:
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𝑡 ⊗ insertProp([0 2 0], {Title = “Description′′})

where 𝑡 is the initial tree of Figure 4.7. This operation is illustrated in Figure 4.7. The box
has the category of the node above the line and its properties below. From now on, we
will use them to represent nodes with properties.

For this operation to work, we have to make sure that the new properties to be added
do not exist in the original tree.

The other two customizations that affect the node properties - remove a property or
replace one - have similar behavior to what we have already seen. Both operations require
the path to reach the target node and a record of properties, mapping their identifier
to their value. To avoid repetition, we will not be demonstrating them in an identical
structure as we did with the others.

Given all the seven customizations, we now focus on how the type system must work
to avoid execution errors. The most obvious check is to confirm if the path is valid. That
is, if we can reach some node from the root node, taking it into consideration. At first, it
seems that all paths provided are, as the changes are obtained through the drag-and-drop
capabilities of the low-code platform, thus using existent paths. However, we cannot
disregard that some operations are applied through a log of customizations. Therefore,
even if some paths were valid on a template, they may not be valid on a new template.
Apart from these, we have to check different arguments depending on the operation. For
the node insertion and node movement, we have to check if the index is valid for the same
reason we have to check the path. For the property addition and replacement, the type
system must check if the properties we are targeting exist. Lastly, and following the same
reasoning, the labels given on property removal must correspond to actual properties. We
will study more carefully these types of situations in the next chapter.
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Type System

Following the presentation of customizations in Chapter 4, we will take a closer look
at what the types involved in these operations hold. First, we will present a more
general outline in Section 5.1 that focuses solely on nodes. Then, we go deeper into how
our typechecker behaves in Section 5.2 and the reason for this behavior. We separate
these two as it is essential to understand the type produced by a tree without involving
customizations, which make the type of the resulting node more complex. Moreover,
the changes produced by the path on the node type are the last ones left to study since
Section 2.3 presented the syntax of types and seems fitted to learn about them first.

We will finish this chapter by exposing the typing rules involved in these operations
in Section 5.3 and the steps to carry out their execution in ??. We leave these rules for the
end, as it will be easier to get a grasp on them having the knowledge shared up to their
start in Chapter 4 and this one.

5.1 Path Type

When we are evaluating expressions, we never find an IfNode nor a ForNode because
those terms have to be first evaluated to produce grounded node trees (Node). However,
when the moment of typechecking occurs, we can encounter these type of nodes, so it
is necessary to think about what information is included in the specification. Namely,
should the IfNode and ForNode be ignored or should the path of these compile-time nodes
be kept?

The types of IfNode andForNode comprise the following: (1) the set of node types
they may produce - the categories of an IfNode account for the disjunction of all nodes,
independently of the branch they are in; (2) the set of paths available; (3) the record of
properties in each node of the tree. To better understand this, we will study the path of
each customization represented by an IfNode and a ForNode.

So far, the path to reach a node has been very straightforward: we always start from 0
and go from there. However, not always does this correspond to reality. If we happen to
have an IfNode present in the original tree, then we have two possible branches: the one
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that evaluates to true and the one that results to false.
To better visualize a case like this, we disregard our previous application and consider

a more simple one that either displays a Checkbox and an Icon or displays an Input and an
Expression. This example is illustrated in Figure 5.1a. We can see that the cluster on the
left corresponds to the value true on the evaluation, while the right corresponds to the
value false. It is also important to note that each branch can contain a list and not just a
single node. Although this last one is also possible, corresponding to a list with a length
of one. The path of each of these nodes is represented in Figure 5.1b.

(a) (b)

(c)

(d) (e)

NodeT⟨[Checkbox, Icon, Input, Expression,Calendar], [
([0], []);
([1], [])]⟩

(f)

Figure 5.1: Example of IfNode, path and type.

If we now consider the example in Figure 5.1c, our intuition tells us that we should add
a 2 to the right side. Although this is correct (we can check this from Figure 5.1d, where
the Calendar node added one more possible path to the false cluster), this number 2 will
not matter when it comes to the moment of typechecking. This unimportant attribution
happens because when typechecking occurs, it is used the maximum information we
can get from a node. When it comes to an IfNode, this information must be generalized
between the left and the right side. Using this reasoning, the most we can know from the
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two clusters is as much as they have in common. Thus, the paths that we can assume the
IfNode to have will be the intersection of paths from the two sets. This way, Figure 5.1e
shows the path for each of our two examples. We can see that even though our trees were
different, the type produced ended up being the same. It should also be pointed out that
the same logic goes for the properties of the nodes and not just for the path. For simplicity,
we only considered the path in these examples. Moreover, the result of typechecking this
last example is shown in Figure 5.1f. Notice that the possible categories for the node type
are obtained from the disjunction of the ones of all nodes in each branch - the one that
evaluates to true and the one that evaluates to false - as we have previously stated. The
path (and respective properties) remain the same.

(a) Node tree. (b) Resulting path tree.

NodeT⟨[Screen], [
([0], []);
([0 0], []);
([0 1], []);
([0 2], []);
([0 2 0], []);
([0 2 0 0], []);
([0 2 0 1], []);
([0 2 0 2], []);

([0 3], [])]⟩

(c) Node type.

Figure 5.2: A more complex example of IfNode usage.

In Figure 5.2 we illustrate a more complex example. It is the application example from
Figure 4.1 with a few modifications. Instead of just having two Column nodes, we only
have one that displays an Expression at all times, followed by either a Checkbox and an
Icon or an Input and another Expression. If we look at the path, we can see that the IfNode
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produced two node paths: 1 and 2, obtained from the intersection of the two clusters.
It starts at 1 because we have, at the same depth and with the same parent, the node
Expression that sits at 0. All the other paths are pretty straightforward and have already
been studied. The result of typechecking such tree is also illustrated. We can notice that
the kind of category is Screen, which corresponds to the root node, and all paths and
corresponding properties are present on the type.

Now that the IfNode has been presented, we have one type of node left to study: the
ForNode. This node has similar reasoning to what we have already analyzed. Its purpose
is to range over the attributes of some entity.

(a) (b)

NodeT⟨[Column], [
([0], []);
([0 0], [])]⟩

(c)

Figure 5.3: Simple example of ForNode, respective path and type.

The ForNode produces just one child, independently of the number of attributes it is
ranging over. This consistency happens because, at the moment of typechecking, we do
not know anything about those attributes. If we consider an example of a ForNode over
an arbitrary number of attributes - just like it is illustrated in Figure 5.3a -, we get a path
that corresponds to the one produced by the child node - shown in Figure 5.3b. The type
of such tree includes the category and the pair that matches the path to the respective
properties of the child node (presented in Figure 5.3c).

To end this subsection, let’s consider, once again, our example application. This time,
we will use it just as it was presented in see Figure 4.1. In that application, we have two
attributes. One for the product description and another to display an icon indicating
whether there is stock left of that product or not. From this, we can see a conditional
situation: if we are on the description, then we will be presented with an Expression; if
we are on the indication on whether there is stock, then we are presented with an Icon.
We can now build our IfNode from this information, just like it is illustrated in Figure 5.4a.
We assume that the IfNode is evaluating the respective attribute as either being a boolean
or not. Since we have two attributes, we can include this IfNode on a ForNode. All the
rest of our node tree is the same as we have seen before. Finally, the path follows the
previously approach: the IfNode produces an intersection of the sets of the true and false
side, which is just the path [0 0] (that is, one Column and either an Expression or an Icon);
the ForNode produces what is originated by its child node. This is illustrated in Figure 5.4b.
Moreover, and since we have not yet presented an example of our syntax using an IfNode
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(a) Widgets tree.
(b) Path tree.

Node⟨Screen, [], [
Node(Input, [], []),
Node(Button, [], []),
Node⟨Table, [], [

ForNode⟨attr in Entity.attrs, [
IfNode⟨𝑎𝑡𝑡𝑟 isOfType 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, [

Node(Column, [], [Node(Icon, [], [])])
], [

Node(Column, [], [Node(Expression, [], [])])
]⟩

]⟩
]⟩,
Node(Pages, [], [])

]⟩

(c) Syntax of the tree.

NodeT⟨[𝑆𝑐𝑟𝑒𝑒𝑛], [
([0], []);
([0 0], []);
([0 1], []);
([0 2], []);
([0 2 0], []);
([0 2 0 0], []);

([0 3], [])]⟩

(d) Node type.

Figure 5.4: A more complex example of IfNode and ForNode usage.

nor a ForNode, we could represent this tree as it is displayed in Figure 5.4c. In it, we are
ranging over the attributes (attr) of the entity (Entity.attr) product of our example. Lastly,
Figure 5.4d presents the type of such tree. The category of the node type is the one that
matches the root node, Screen, and the list of paths and properties corresponds to the
information of every node on the tree.
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5.2 Hybrid Typechecking

When we presented the possible customizations, we briefly discussed what our type
system must check to avoid execution errors. In our language, typechecking can either
be static or dynamic. These have different strengths and weaknesses [25] [10]. Static type
checking provides better documentation, the errors are detected early, and the program
execution is more efficient, whereas dynamic typing enables rapid development and fast
adaptation to changing requirements.

To further introduce hybrid type systems - that is, type systems that combine static and
dynamic checking - we will consider a simple application. Our application is presented in
Figure 5.5a and similar to the one we have show in Figure 4.1. We can see that one of the
columns can either display a Checkbox and an Icon, or simply an Expression. Furthermore,
we saw from Section 5.1 that when we encounter this type of conditional situation, what
our type system knows is as much as the two clusters have in common. That is the
intersection between paths and properties. Following this logic, the information retrieved
from this application is shown in Figure 5.5b. The type has the node categories, which in
this case is just Screen, and a list of paths and respective properties. For instance, the pair
([0],[]) means that at path 0 we have an empty list of properties - we decided to disregard
them as it makes the example simpler. More interestingly, we can check that below [2 1 0],
we only encounter [0 2 1 0] and not [0 2 1 1], which would correspond to the possible path
of our Icon.

(a) Example application.

NodeT⟨[Screen], [
([0], []);
([0; 0], []);
([0; 1], []);
([0; 2], []);
([0; 2; 0], []);
([0; 2; 0; 0], []);

([0; 2; 1], []);
([0; 2; 1; 0], []);

([0; 3], [])]⟩

(b) Result of the application typechecking.

Figure 5.5: Example application and respective typechecking.

If we now consider the situation in which we want to add the property Title with the
value “Icon” to the Icon node, we would do the following, using our syntax:

𝑡 ⊗ addProp([0 2 1 1], {Title = “𝐼𝑐𝑜𝑛′′})

where 𝑡 is the initial tree of Figure 5.5. From now on, and until we say otherwise, name 𝑡
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will always represent that tree.
If we only check type information statically, we can do one of two things: accept or

reject the execution of such a program. However, we do not have sufficient information to
make a decision. If we decide to accept it, we may be allowing the execution of programs
that cause errors, as specifications are later violated at run-time, but if we reject it, we may
be defecting programs that end up being well-typed. For example, if we check statically if
the given path is valid, then we would be rejecting the previous customization at all times
since the typechecker does not know about the possible existence of the path [0 2 1 1].

On the other hand, if we only check the programs dynamically, our specifications will
only be checked on data values of actual executions. Moreover, dynamic checking results
in incomplete and late detection of defects, apart from consuming cycles that could be
used to perform useful computation. For instance, it is not worth evaluating a program at
run-time that does not have the correct types, which can be determined statically.

To work around these issues, the solution is to combine both static and dynamic
checking. We should check the programs statically whenever possible and dynamically
whenever necessary. Thus, we can benefit from the advantages of these two techniques:
the defects will be detected early, and all well-typed programs are statically accepted.

We will now see which situations can be statically checked and which ones should be
dynamically checked.

5.2.1 Static Typechecking

From what we have already studied, we need to check the types and everything related to
properties, paths and indexes (in case the customization regards node insertion or node
movement). However, we do not have access to the information of these last three aspects
at compile-time, as we have seen from the previous example illustrated in Figure 5.5.
Therefore, we will leave everything related to that to be checked at run-time.

Let’s now consider that we try to do the following operation over our example tree:

𝑡 ⊗ remove(Node⟨Checkbox, [], []⟩)

In this customization, we are trying to remove a Checkbox from the tree. However, we
have seen that the customization remove requires a path instead of a node. Thus, this
program will not be executed at run-time, as it will be rejected at compile-time. We can
consider that all operations similar to this example, in which the type of the arguments is
incorrect, will be immediately rejected.

Moreover, we have to decide which information our types will hold when we perform
customizations over a tree, as we will accept all programs in which the types are correct.
Below, we study each customization one by one.

Insert node. The path and properties of the node for insertion will always be added to
the type information, except on one occasion: if the index received is a negative number,
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as we already know this will never correspond to a valid index within the sequence of
siblings’ nodes. Apart from that situation, the index will solely be checked dynamically,
as already stated. For example, if we wanted to add another Checkbox node after the Icon
one, we would do the following:

𝑡 ⊗ insert([0 2 1], 2,Node⟨Checkbox, [], []⟩)

This program would be accepted, even if it is an impossible execution in case the
IfNode evaluates to false because the index of the last element (the Expression node) sits at
position 0 and not at 1.

The resulting type is as displayed in Figure 5.6, in which we use the ellipsis to indicate
that the path and properties remain the same, except for the one being expanded. So,
in this case, the children in the node we reached from the path [0 2 1] will suffer a
modification while the others will not.

NodeT⟨[Screen], [
...

([0; 2; 1], []);
([0; 2; 1; 0], []);
([0; 2; 1; 2], [])⟩

Figure 5.6: Example of insert typechecking.

Remove node. The node that corresponds to the given path is removed. The program
will be statically accepted even if that path does not appear on the type. We do this because,
as we have seen, the path can be valid upon execution even if it is not present on the type.
For instance, if we have the following customization:

𝑡 ⊗ remove([0 2 1 1])

The final result would be as previously shown in Figure 5.5b. That is, no modifications
occur, and the program will later be evaluated at run-time. We will study in the upcoming
Subsection 5.2.2 what will happen if we cannot reach any node from the given path.

Replace node. As happened with the node insertion, the path and properties will always
be added to the type in case they do not belong to it already. Let’s consider we perform
the following customization:

𝑡 ⊗ replace([0 2 1 1], 𝑁𝑜𝑑𝑒⟨Input, [], []⟩)

We will be replacing the Icon node - in case the execution evaluates to true - or no node
at all - in case the execution evaluates to false - with the Input node. The final type would
be exactly like the one presented in Figure 5.7. We can notice that the path for replacement
appears now on the type.
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NodeT⟨[Screen], [
...

([0; 2; 1], []);
([0; 2; 1; 0], []);
([0; 2; 1; 1], [])⟩

Figure 5.7: Example of replace and remove property typechecking.

Move node. The final type will have the target path and respective properties modified,
even if the former given does not appear in it. For instance, let’s imagine we perform the
customization as follows:

𝑡 ⊗ move([0 2 1 1], 0)

In this customization, we are trying to either move the Checkbox node (in case branch
evaluates to true) or no node at all (in case branch evaluates to false) to appear as the first
element of its siblings’ node list. Since we do not have the path [0 2 1 1] on the type, we
will only modify [0 2 1 0] to appear as the former (since the node is moved to occupy the
first place, we need to add one more position to every node on the correspondent list).
The final result is presented in Figure 5.8.

NodeT⟨[Screen], [
...

([0; 2; 1], []);
([0; 2; 1; 1], [])⟩

Figure 5.8: Example of move typechecking.

Add property. When adding a property, the type will retain the path for insertion
together with the properties to be added. However, if these last ones already exist in
the given path, then nothing will be changed. For instance, if we perform the following
customization:

𝑡 ⊗ addProp([0 2 1 1], {Title = “Icon′′})

Then we will be adding the pair [0 2 1 1] and the property Title to our type, as neither
of those two appeared on the type specification. The result would be as the one shown in
Figure 5.9.

Replace property. Just as it happened when adding a property, the path and properties
will be added to the type. If they already exist in it, then, once again, nothing will be
changed. For example, in the case of the following customization:

𝑡 ⊗ replaceProp([0 2 1 1], {Title = “Icon′′})
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NodeT⟨[Screen], [
...

([0; 2; 1], []);
([0; 2; 1; 0], []);
([0; 2; 1; 1], [(“Title′′, StringT])⟩

Figure 5.9: Example of add and replace property typechecking.

We would be adding the path [0 2 1 1] and the property Title, as neither of these
information appeared previously on the type. The result would be the same we have seen
before in Figure 5.9. On the other hand, if the original tree for this customization had the
type presented in Figure 5.9, the result would still be the same, as we would not need to
add anything to the type.

Remove property. If the path and properties received exist, then we will be deleting the
properties, and keeping the path (as the node remains present when performing such
customization). In contrast, if the path does not exist, then we will be adding it, but not
the properties, since the final result will never contain them. As an example, consider the
following customization:

𝑡 ⊗ removeProp([0 2 1 1], [Title])

From it, we can see that we are trying to remove from the target node reached from
the path [0 2 1 1] the property Title. However, in our type, it does not appear such path.
In that case, we will be adding it. The final result is presented in Figure 5.7.

5.2.2 Dynamic Typechecking

In the examples presented in Chapter 4, we have seen what happens if we perform a
customization successfully (see Section 4.1). However, the parameters given are not always
valid, as we have seen previously. At run-time, we will have to check if the (positive)
index is valid in case the customization is to insert or move a node, and the path is valid,
for all customizations. Moreover, we also have to study the given properties in case the
operation regards them.

Considering the example in Figure 5.5, let’s imagine that the IfNode evaluated to
true. Then we know that the index under the second Column ranges from 0 to 2 in
case of insertion, or 0 to 1 in case of node movement, as the node has two children (the
Checkbox and the Icon node, respectively). Thus, if we try to perform any of the following
customizations:

𝑡 ⊗ insert([0 2 1], 5, 𝑁𝑜𝑑𝑒⟨Checkbox, [], []⟩)

𝑡 ⊗ move([0 2 1 1], 2)

55



CHAPTER 5. TYPE SYSTEM

The resulted tree will not be any different than the initial tree. Both the customizations
fail because the value provided for the index is too high. This example is illustrated in
Figure 5.10.

Similarly, if the path is invalid and we cannot reach any node from it, the final tree
would remain the same as the initial one. This transition without modifications is what
happens if we try to replace the inexistent second child of the Checkbox node for a Calendar
node. Or using our syntax:

𝑡 ⊗ replace([0 2 1 0 1], 𝑁𝑜𝑑𝑒⟨Calendar, [], []⟩)

Figure 5.10: Example of typechecking dynamically.

To end this subsection, we give one last example. This example will take as the original
tree the one displayed on the left of Figure 5.11, which is similar to the one used in the
previous example, except for the node properties. We can see that the second Column has
two different attributes: one for the Title and one for the Visibility. Let’s consider we try
the following customization:

𝑡 ⊗ removeProp([0 2 1], [Title,Description])

Or using words, we are trying to remove a list of properties containing Title and
Description as the property identifiers from the second Column node of our example. Since
everything that regards properties is accepted statically, this program will be evaluated
at run-time as all the given types match the ones expected. However, and as we can
check, our Column node does not have associated with it the two properties requested
to be removed (the one missing is Description), so it will only try to remove the Title.
Consequently, this last attribute will be deleted, and all the others will remain present.
The result of executing such an operation is fully illustrated in Figure 5.11. We follow a
similar approach for all customizations regarding properties.

5.3 Typing Rules

In this section, we will focus solely on the types involved in customizations. However, the
reader can find a list of the complete typing rules of OSTRICH language in [17]. We will
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Figure 5.11: Example of typechecking dynamically.

also use the same typing judgment form by reason of consistency. Keeping it implies that
a judgment will assume the form Γ;Δ;Ω;Φ;Υ ⊢ 𝑀 : 𝑇, in which 𝑀 represents the term,
where free variables occur, with type 𝑇. We use five different environments to represent:
(1) the ordinary context that stores compile-time variables, Γ; (2) the run-time context, Δ;
(3) a context to store polymorphic variables’ name, type, and rows, defined respectively
by Ω,Φ, and Υ.

Before we move on to the typing rules of customizations, we expose three rules for
integers (t_int), Strings (t_string) and path (t_path), that consists of a list of integers.
These are important since we use these two literals and the list to represent respectively
the index, the identifier we provide to remove a target property, and the path to reach
some node of the tree.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑖𝑛𝑡 : Integer
t_int

Γ;Δ;Ω;Φ;Υ ⊢ 𝑠𝑡𝑟𝑖𝑛𝑔 : String
t_string

for each Γ;Δ;Ω;Φ;Υ ⊢ 𝑣 : Integer
Γ;Δ;Ω;Φ;Υ ⊢ {𝑣 : Integer}

t_path

Both the t_int and t_string rule are straightforward. We consider a path well-typed
if every element belonging to it assumes the type Integer, as the t_path rule shows.

The typing rule for the different customizations varies according to the arguments
required to perform them successfully. We will now present each separately. We will also
represent the type of a Node as NodeT(𝐴, 𝐶), instead of NodeT([𝛼], [(𝑝𝑡, [𝑝])]) as we used
when studying the syntax of types in Section 2.3, since it is easier to read.

Insert node. The typing rule to insert a node is well-typed if every type of each given
argument matches the expected type. This correspondence means that our original tree
has the Node type, the path is composed solely of integers, the index is an integer superior
to 0 (we have seen before that any index below this value is considered to be invalid), and
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the term to insert is of type Node.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
Γ;Δ;Ω;Φ;Υ ⊢ 𝐼 : Integer, 𝐼 ≥ 0 Γ;Δ;Ω;Φ;Υ ⊢ 𝑁 : NodeT(𝐴, 𝐶)

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ insert(𝑃, 𝐼, 𝑁)
t_insert

Remove node. This customization adds nothing new to what we have seen previously.
We have to simply check if the original tree is of type Node and that the path is composed
of Integers.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ remove(𝑃)

t_remove

Replace node. The typing rule to replace a node is very similar to the one to add a node,
with the exception that we do not have to check the index, as this argument is not required
to perform such customization. Therefore, we have to check if the given path is composed
solely of integers, and if our original tree and term to replace are of type Node.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
Γ;Δ;Ω;Φ;Υ ⊢ 𝑁 : NodeT(𝐴, 𝐶)
Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ replace(𝑃, 𝑁)

t_replace

Move node. To move a node, we need the node path and the index that the target node
is going to assume in its siblings’ list. The path is composed of integers, as we have seen
previously, and the index follows the same logic as in the typing rule to insert a node:
it should be an integer equal to or greater than 0. We also need to check the type of the
original tree.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
Γ;Δ;Ω;Φ;Υ ⊢ 𝐼 : Integer, 𝐼 ≥ 0
Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ move(𝑃, 𝐼)

t_move

Add property. Having the typing rule to add a property to be well-typed means that,
apart from checking the types for the original tree and the path received, we have to check
the type of each value assumed by the new properties. This type can be any of the possible
ones.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
Γ;Δ;Ω;Φ;Υ ⊢ 𝑣 : 𝑇

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ insertProp(𝑃, {𝐿 = 𝑣 : 𝐿 = 𝑇})
t_insertProp
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Replace property. The typing judgments to the replace properties typing rule are similar
to the previous customization, as the reader can confirm.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
Γ;Δ;Ω;Φ;Υ ⊢ 𝑣 : 𝑇

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ replaceProp(𝑃, {𝐿 = 𝑣 : 𝐿 = 𝑇})
t_replaceProp

Remove property. To remove a property, we need to check the type of the given labels,
which should be of type String. The common typing judgments for the path and the
original tree are required once again.

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 : NodeT(𝐴, 𝐶) Γ;Δ;Ω;Φ;Υ ⊢ 𝑃 : {𝑣 : Integer}
for each Γ;Δ;Ω;Φ;Υ ⊢ 𝐿 : String

Γ;Δ;Ω;Φ;Υ ⊢ 𝑂 ⊗ removeProp(𝑃, {𝐿 : String})
t_removeProp
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6

Implementation

In this chapter, we will briefly show how we implemented the customizations. We will
first take a look at how our typechecker behaves when presented with one, and then we
will move on to its respective evaluation. To not overbear the reader, we will just study
the insert node customization, as all the others follow a similar reasoning.

1 let typecheck_insert e envs =
2 match e with
3 | t1 ⊗ insert(p,i,t2) ->
4 let t1' = typecheck t1 envs in
5 let p' = typecheck p envs in
6 let p'' = begin match p' with
7 | PathT _ -> extract_path p
8 | _-> raise (Exception)
9 end in

10 let i' = typecheck i envs in
11 let t' = typecheck t envs in
12 begin match t1',i',t' with
13 | NodeTP(n,l), NumT, NodeTP(_,l2) ->
14 let idx = match i with
15 | Num(n) -> n
16 | _ -> assert false
17 in
18 if idx < 0 then
19 raise (Exception)
20 else
21 let l = update_indexes l l2 i in
22 NodeTP(n, append l' r )
23 | _ -> raise (Exception)
24 end
25 | _ -> raise (Exception)

Listing 1: Insert typechecking.

The code for the insert typechecking is shown in Listing 1. It is important to note that
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the code, as it is presented, was slightly simplified in the interest of comprehension.
The typechecking function requires two types of input: one representing the expression

to be evaluated (e), and the other representing the environments needed to store variables
(envs). After that, the following will happen:

1. We will see if the expression received matches an insert customization (line 3). If
not, we will raise an exception (line 19), and the typechecking will stop here;

2. We will obtain the type of every term as we need to check if they match the expected
(lines 4,5,10, 11, and 14-17);

3. As stated, we will compare the returned types to the ones we are expecting (line 13).
If they do not match, we will raise an exception (line 23), and the typechecking stops
here;

4. We will check if the given index is a number greater or equal to zero, as we know
that any negative number is invalid for this operation (line 18);

5. When we reach line 20, we already know that everything works as expected, and we
can proceed with this customization evaluation. All that we have to do to return the
type (line 22) is update the position of every tree element (line 21).

1 let eval_tree_insert e envs =
2 match e with
3 | t1 ⊗ insert(p,i,t2) ->
4 let t1' = List [eval t1 []] in
5 let t1'' = match t1' with
6 | List xs -> map (fun n -> eval n env) xs
7 | _ -> raise (Exception)
8 in
9 let is_path_valid,node = check_path_validity t1'' p in

10 let is_index_valid = check_index_validity op i p in
11 if not (is_path_valid && is_index_valid) then
12 t1''
13 else begin
14 let t2' = eval t2 [] in
15 let is_t2_valid,t2'' = check_t2_validity op t2' node in
16 if not (is_t2_valid) then
17 t1''
18 else insert t1'' p i t2''
19 | _ -> raise (Exception)

Listing 2: Insert evaluation.

The code for the insert evaluation is shown in Listing 2. Just like we did for the
typechecking function, we simplified the code for the evaluation to accommodate only
the insert customization.

For the evaluation to work, itneeds the same two inputs as before: one for the expression
to be evaluated (e), and the other for the environments needed to store variables (envs).
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After that, the following will happen:
1. We will see if the expression received matches an insert customization (line 3). If

not, we will raise an exception (line 19), and the evaluation will stop here. This first
step is the same as the first one for the typechecking function;

2. After that, we will need to evaluate the original tree, t1 (line 4). The result will be
stored in a list that will have its elements further evaluated (line 6);

3. We will check if the path provided by the user is valid. If it is, we will store the target
node in the variable node (line 9);

4. Similarly to the previous step, we will check if the given index is valid (line 10);
5. If 3) or 4) fail, then we will return the original tree without applying any modification

(lines 11 and 12);
6. If the index and the path are valid, then we will evaluate the node that is going to

be inserted into the tree (line 14);
7. We will then check if the term is valid (line 14);
8. If the previous step fails, we will return the original tree (line 17). Otherwise, we

will perform the customization (line 18) and return the resulting tree.

6.1 Testing

Now that we have studied the implementation for the typechecking and evaluation of the
insert node customization, we can check if both functions work as expected. We will used
the original tree we previously studied in Chapter 4 examples. To remember the reader,
this tree is illustrated in Figure 6.1. On the other hand, we will have the Checkbox node as
the one that is going to be inserted into the original tree.

Figure 6.1: Original tree.

The representation of this tree code is shown in Listing 3. The variable screen
represents the original tree, while the variable cb represents the Checkbox node to insert.
We take this opportunity to remember that a node is represented as Node, and receives
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three arguments: its category, a list of its attributes, and a list of its children. As an
example, in line 4, we create a Column node with 0 attributes and one child named i1.

1 let exp1 = Node(Expression, [], List [])
2 let c1 = Node(Column, [], List [exp1])
3 let i1 = Node(Icon, [], List [])
4 let c2 = Node(Column, [], List[i1])
5 let t = Node(Table, [], List [c1;c2])
6 let inp = Node(Input, [], List [])
7 let pg = Node(Pages, [], List [])
8 let btn = Node(Button, [], List [])
9 let screen = Node(Screen, [], List [inp; btn; t; pg])

10

11 let cb = Node(CheckBox, [], List [])

Listing 3: Code for the original tree and node to insert.

In this section, we will study three types of insert node customization:
1. One that works well in both typechecking and evaluation;
2. One that works well in typechecking but does not meet the criteria to perform the

actual operation in the original tree upon evaluation;
3. One that fails the typechecking and, therefore, the evaluation.
For all the three situations, we will always use the presented original tree and the

Checkbox node. Without further due, let’s approach these case studies.

1 For this example, we will consider the already studied customization (see Section 4.2
for a more detailed description):

𝑡 ⊗ insert([0], 2,Node(Checkbox, [], []))

In it, we are trying to insert our Checkbox node in between the Button and Table node.
We will use 𝑡 to represent our original tree.

The result of the insert customization typechecking is shown in Listing 4. We can
confirm that the positions of every node were updated, and while the type does not tell
us the category of each node for each position, it is safe to say that the Table node moved
from position 2 to 3. We can say this because this node has 2 children (the Column nodes),
while the Table siblings did not have any. We can also assume that the Checkbox assumed
the position [0 2], which was what caused the Table, and therefore the Pages node, to have
its positions updated.

The evaluation for this customization is represented in Listing 5. We can see that the
resulting type has the Checkbox node, positioned in between the Button and Table node,
just as it was expected.
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1 let result = typecheck_insert (screen ⊗ insert([0],2,cb)) {}

val result : ty =
NodeTP ([Screen], [

([0], []);
([0; 0], []);
([0; 1], []);
([0; 2], []);
([0; 3], []);

([0; 3; 0], []);
([0; 3; 0; 0], []);

([0; 3; 1], []);
([0; 3; 1; 0], []);

([0; 4], [])
])

Listing 4: Insert customization typechecking example, index 2.

1 let result = eval_tree_insert (screen ⊗ insert([0],2,cb)) {}

val result : term list =
[Node (Screen, [], List [

Node (Input, [], List []);
Node (Button, [], List []);
Node (CheckBox, [], List []);
Node (Table, [], List [

Node (Column, [], List [Node (Expression, [], List [])]);
Node (Column, [], List [Node (Icon, [], List [])])

]);
Node (Pages, [], List [])

])]

Listing 5: Insert customization evaluation example, index 2.

2 In this example, we will be trying to insert the Checkbox node as the fifth child of the
Screen node. Using our syntax, the customization is represented as follows:

𝑡 ⊗ insert([0], 5,Node(Checkbox, [], []))

Since we know the structure of our original tree, we already know that this should fail
as the index needs to be a number between 0 and 4. However, as we studied in Chapter 5,
our typechecking function does not make any assumptions about the index, apart from
imposing that it should be a number greater or equal to 0. This way, the path for insertion,
[0 5], will always be added to the type. Everything that was previously presented in the
type will remain the same. The result of this operation is shown in Listing 6.
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1 let result = typecheck_insert (screen ⊗ insert([0],5,cb)) {}

val result : ty =
NodeTP ([Screen], [

([0], []);
([0; 0], []);
([0; 1], []);
([0; 2], []);

([0; 2; 0], []);
([0; 2; 0; 0], []);

([0; 2; 1], []);
([0; 2; 1; 0], []);

([0; 3], []);
([0; 5], [])

])

Listing 6: Insert customization typechecking example, index 5.

At the moment of evaluation, our function will detect that the index 5 for the given
path is invalid. Since this happens, the tree will not suffer any modification, and the
returned output will be the original tree. This example is represented in Listing 7.

1 let result = eval_tree_insert (screen ⊗ insert([0],5,cb)) {}

val result : term list =
[Node (Screen, [], List [

Node (Input, [], List []); Node (Button, [], List []);
Node (Table, [], List [

Node (Column, [], List [Node (Expression, [], List [])]);
Node (Column, [], List [Node (Icon, [], List [])])

]);
Node (Pages, [], List [])

])]

Listing 7: Insert customization evaluation example, index 5.

3 Our last example will force our customization to be rejected at the moment of type-
checking. To accomplish this, we will try to insert the Checkbox node in the position −1 for
the path [0]:

𝑡 ⊗ insert([0],−1,Node(Checkbox, [], []))

As previously stated, since the index is a negative number, it will never pass the
typechecking operation. We can see this exception raising in lines 18 and 19 of the
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Listing 1, in which we presented the typechecking function. The result of this operation
shows this exact failure in Listing 8.

1 let result = typecheck_insert (screen ⊗ insert([0],-1,cb)) {}

Exception: Exception "Index needs to be bigger than 0."

Listing 8: Insert customization typechecking example, index -1.

We do not show the evaluation for this customization since we know that the type-
checking operation failure will prevent it from being evaluated.

The complete code of this work can be found here.
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7

Conclusion

Throughout this thesis work, we studied the template language OSTRICH and the concepts
relevant to the low-code development field. The goal is to integrate this work into the
OutSystems platform, Service Study. Currently, this platform has a few limitations that
could be overcome with the usage of our template language. For instance, the available
screen templates always come with dummy data. Although this, indeed, helps the user
understand how the design of the screen, it is also true that the user will be obligated
to adapt the template to their database entries, an activity that could reveal itself as
cumbersome and complicated. Furthermore, there is no support to track the changes
applied to a template. Thus, if the template suffers a modification, from an update to
changing parameters, the developer would have to perform all customization operations
on top ofa new template instantiation to reach the same point. This dissertation approaches
this last issue.

To find a solution that did not obligate the user to repeat all customizations, we
covered several steps. First, we decided which operations should be tracked. This process
resulted in studying seven different customizations that involved the structure of the
whole template as well as particular elements of it. Afterward, we had to decide how to
evaluate such customizations and how to ensure the evaluation occurred as expected. For
example, some customizations may target an element of the old template that does not
correspond to the one that occupies its place on the new template. In such an occurrence,
we need to determine if there are still conditions to operate or if we should just ignore
the customizations. Moreover, we also have to choose the moment we make such a
judgment, with the options being compile-time or run-time. We explored the advantages
and disadvantages of each of these, concluding that we should take action as early as
possible so as not to waste cycles that could otherwise be performing useful computation
and not reject well-typed programs. In the end, these cautions resulted in a hybrid type
system. We took the time to study different situations to better understand how our type
system approaches distinct programs.

Despite this work being finished, some of its aspects could be worked on and improved.
For instance, it would be helpful to compare two different templates and have a way to
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obtain the sequence of customizations that could lead one to the other.
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