
DEPARTMENT OF
COMPUTER SCIENCE

JOÃO FILIPE PEREIRA RODRIGUES

Barchelor in Computer Science and Engineering

3D SENSING CHARACTER SIMULATION
USING GAME ENGINE PHYSICS

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
December, 2022



DEPARTMENT OF
COMPUTER SCIENCE

3D SENSING CHARACTER SIMULATION
USING GAME ENGINE PHYSICS

JOÃO FILIPE PEREIRA RODRIGUES

Barchelor in Computer Science and Engineering

Adviser: Rui Nóbrega
Assistant Professor, NOVA School of Science and Technology

Examination Committee:

Chair: Maria Armanda Grueau
Associate Professor, NOVA School of Science and Technology

Rapporteur: Rui Prada
Associate Professor, IST, Lisbon University

Adviser: Rui Nóbrega
Assistant Professor, NOVA School of Science and Technology

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
December, 2022



3D Sensing Character Simulation using Game Engine Physics

Copyright © João Filipe Pereira Rodrigues, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.



Acknowledgements

To my adviser, Rui Nóbrega, who was always supportive and available to guide me

throughout the entire process.

To my mother and father, who have always been supportive of my academic decisions

and cared for me throughout the entire degree. To my brother who always supported my

decisions and was always there to listen to me whenever I needed.

To my close friends and colleagues, who made my experience in FCT NOVA a mem-

orable one, and were always there to help me when I needed and made my days much

more enjoyable.

iv



Abstract

Creating visual 3D sensing characters that interact with AI peers and the virtual envi-

ronment can be a difficult task for those with less experience in using learning algorithms

or creating visual environments to execute an agent-based simulation.

In this thesis, the use of game engines was studied as a tool to create and execute vi-

sual simulations with 3D sensing characters, and train game ready bots. The idea was to

make use of the game engine’s available tools to create highly visual simulations without

requiring much knowledge in modeling or animation, as well as integrating exterior agent

simulation libraries to create sensing characters without needing expertise in learning

algorithms. These sensing characters, were be 3D humanoid characters that can perform

the basic functions of a game character such as moving, jumping, and interacting, but

also have simulated different senses in them. The senses that these characters can have

include: touch using collision detection, vision using ray casts, directional sound, smell,

and other imaginable senses. These senses are obtained using different game develop-

ment techniques available in the game engine and can be used as input for the learning

algorithm to help the character learn. This allows the simulation of agents using off-the-

shelf algorithms and using the game engine’s motor for the visualizations of these agents.

We explored the use of these tools to create visual bots for games, and teach them how

to play the game until they reach a level where they can serve as adversaries for real-life

players in interactive games.

This solution was tested using both reinforcement learning and imitation learning

algorithms in an attempt to compare how efficient both learning methods can be when

used to teach sensing game bots in different game scenarios. These scenarios varied in

both objective and environment complexity as well as the number of bots to access how

each solution behaves in different scenarios. In this document is presented a related work

on the agent simulation and game engine areas, followed by a more detailed solution and

its implementation ending with practical tests and its results.

Keywords: 3D Sensing Characters, Game Bots, Game Engine, 3D Animation, Simulation

Visualization, Agent Simulation,

v



Resumo

Criar visualizações de personagens 3D com sentidos que interagem com colegas de

IA e com o ambiente virtual pode ser uma tarefa difícil para programadores com menos

experiência no uso de algoritmos de aprendizagem automática ou na criação de ambientes

visuais para executar simulações baseadas em agentes.

Nesta tese foi estudado o uso de motores de jogos como ferramenta para criar e execu-

tar simulações visuais com personagens 3D, e treinar bots para jogos. A ideia foi usar as

ferramentas disponíveis do motor de jogos para criar simulações visuais sem exigir muito

conhecimento em modelação ou animação, para além de integrar bibliotecas de simulação

de agentes externas para criar personagens com sentidos sem precisar de conhecimentos

em algoritmos de aprendizagem automática. Estas personagens 3D são humanoides que

podem desempenhar as funções básicas de uma personagem de um jogo como mover,

saltar e interagir, mas também terão simulados neles diferentes sentidos. Os sentidos que

estas personagens podem ter inclui: o tato, colisões, visão, som direcional, olfato e outros

sentidos imagináveis. Estes sentidos são obtidos usando diferentes técnicas de desenvol-

vimento de jogos disponíveis no motor de jogos, e podem ser usados como inputs para os

algoritmos de aprendizagem automática para ajudar as personagens a aprender.

Esta solução foi testada usando algoritmos de Reinforcement Learning e Imitation Le-
arning, com o intuito de comparar a eficiência de ambos os métodos de aprendizagem

quando usados para ensinar bots de jogos em diferentes cenários. Estes cenários variaram

em complexidade de objetivo e ambiente, e também no número de bots para que se possa

visualizar como cada algoritmo se comporta em diferentes cenários. Neste documento

será apresentado um estado da arte nas áreas de simulação de agentes e motores de jogos,

seguido de uma proposta de solução mais detalhada para este problema.

Palavras-chave: Personagens 3D Sensoriais, Bots de Jogos, Motor de Jogos, Animação 3D,

Visualização de Simulações, Simulação de Agentes,

vi



Contents

List of Figures ix

List of Tables xii

Acronyms xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art Review 6

2.1 Agent-Based Models and Simulation . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Self Play Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Visualization of Agent Learning . . . . . . . . . . . . . . . . . . . 13

2.2 Game Engine Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Human-like Models and Animation . . . . . . . . . . . . . . . . 15

2.2.2 Visualization of Simulations . . . . . . . . . . . . . . . . . . . . . 17

2.3 Visualization and Interaction with Simulation Libraries . . . . . . . . . 21

2.3.1 OpenAI Gym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 PettingZoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Unity Machine Learning Agents . . . . . . . . . . . . . . . . . . . 25

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Simulation and Training Workflow 30

3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Simulation and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



CONTENTS

3.2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Games with Self-Learning Agents 38

4.1 Implemented Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Clean the Bush . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Carry the Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Capture the Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Game Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Reinforcement-Learning . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Multiplayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Evaluation 55

5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Clean the Bush . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Carry the Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.3 Capture the Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Clean the Bush . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Carry the Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Capture the Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion 79

Bibliography 82

viii



List of Figures

2.1 Interactions in a prey-predator model [23] . . . . . . . . . . . . . . . . . . . 7

2.2 Still image of traffic simulation performed by Institute of Visual Computing1 9

2.3 OpenAI Five agents playing Dota2 . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 AlphaStar simulation on StarCraft II3 . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Hide and Seek simulation performed by OpenAI4 . . . . . . . . . . . . . . . 12

2.6 RoboCup 3D Simulation 2019 final5 . . . . . . . . . . . . . . . . . . . . . . 14

2.7 RoboCup 2D Simulation 2019 final6 . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Flow diagram of The Robot Engine [4] . . . . . . . . . . . . . . . . . . . . . 17

2.9 Exit times in single person exits [9] . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 Exit times in multiple people exits [9] . . . . . . . . . . . . . . . . . . . . . . 18

2.11 Ultra Flexible Production Environment in a robotic assembly line [7] . . . . 19

2.12 SimGen generated simulation of a rover in Unity7 . . . . . . . . . . . . . . . 20

2.13 Interactive simulation of liquids [17] . . . . . . . . . . . . . . . . . . . . . . 20

2.14 Environments included in the OpenAI Gym [8] . . . . . . . . . . . . . . . . 22

2.15 The AEC diagram of Chess [39] . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.16 ML-Agents teaching AI to play soccer8 . . . . . . . . . . . . . . . . . . . . . 27

3.1 General architecture for the game engine based simulation loops . . . . . . 31

3.2 Environment representation of a Volleyball Game . . . . . . . . . . . . . . . 31

3.3 Reinforcement Learning Training flowchart . . . . . . . . . . . . . . . . . . 33

3.4 Demonstration Record process flowchart . . . . . . . . . . . . . . . . . . . . 35

3.5 Used Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Screenshot from Clean the Bush game in the initial state with all bushes pol-

luted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Screenshot from Clean the Bush game after the player cleaned some of the

bushes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Screenshot from Carry the Box game in the initial state with all boxes in the

upper level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Screenshot from Carry the Box game after some of the boxes were moved. . 41

ix



LIST OF FIGURES

4.5 Screenshot from Capture the Flag game. . . . . . . . . . . . . . . . . . . . . 42

4.6 Point of view image of a player in Capture the Flag. . . . . . . . . . . . . . . 42

4.7 Action specification in the Unity3D inspector . . . . . . . . . . . . . . . . . 44

4.8 Colliders of the bot and the bush in Clean the Bush game. . . . . . . . . . . 45

4.9 Colliders of the bot and the bush in Clean the Bush game. . . . . . . . . . . 46

4.10 Code snippet of the CollectObservations function in Clean the Bush game. 47

4.11 Code snippet from Heuristic function to represent WASD movement as dis-

crete values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 User playing the Capture the Flag game to record a demonstration. . . . . . 49

4.13 Capture the Flag Connection Screen . . . . . . . . . . . . . . . . . . . . . . 50

4.14 Screenshot from the Capture the Flag game, where it is shown the three net-

work object types: the players, the flags and the balls. . . . . . . . . . . . . 51

4.15 Multiplayer Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.16 Unity training environment and ML-Agents console . . . . . . . . . . . . . 52

5.1 Episode time progression through the reinforcement learning training process. 59

5.2 Time spent inside bushes by the bots through the reinforcement learning train-

ing process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Amount of pollution cleaned from bushes by the bots through the reinforce-

ment learning training process. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Time spent performing the clean action per episode through the reinforcement

learning training process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Time spent inside a bush and amount of pollution cleaned from bushes by the

final result bot after training. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Average episode times obtained in bots trained by Imitation with different

demonstration samples. Each episode has a time limit of 160 seconds. . . . 64

5.7 Average amount of pollution cleaned from bushes by bots trained with Imita-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8 Average time spent inside of bush and average time spent performing the

cleaning action by bots trained with Imitation. . . . . . . . . . . . . . . . . 66

5.9 Progression of the time of each game iteration (episode) through the reinforce-

ment learning training process . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.10 Number of boxes successfully carried to the destination by both bots during

the reinforcement learning training process. . . . . . . . . . . . . . . . . . . 67

5.11 Time a bot spent carrying a box through the reinforcement learning training

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.12 Rewards obtained by both bots through the reinforcement learning training

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.13 Average episode times obtained by the bots trained with imitation. . . . . . 70

5.14 Number of boxes successfully carried to the destination and rewards obtained

by the bots trained with imitation. . . . . . . . . . . . . . . . . . . . . . . . 71

x



LIST OF FIGURES

5.15 Average times that a bot spent carrying boxes and standard deviation of the

values obtained by the bots trained with imitation. . . . . . . . . . . . . . . 71

5.16 Time progression of each game iteration (episode) through the reinforcement

learning training process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.17 Win ratio of the teams during the reinforcement learning training process. 73

5.18 Reward progression of both team through the reinforcement learning training

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.19 Win/Lose/Draw ratio from the blue team team perspective in bot teams trained

with different demo samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.20 Average episode times obtained in games with bots trained with different

demonstration samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.21 Average episode times throughout all episodes excluding games finished with

a draw result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.22 Average times obtained in episodes where winning was the final result in bots

trained with different demonstration samples for each team. . . . . . . . . 77

5.23 Average rewards obtained through all episodes in bots trained with different

demonstration samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



List of Tables

2.1 Pros and Cons of Agent-Based Models and Simulations . . . . . . . . . . . . 27

2.2 Comparative Table Between Machine Learning Libraries . . . . . . . . . . . 29

4.1 Games Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Mapping of Inputs to Discrete Values . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Configuration Parameters for RL Training . . . . . . . . . . . . . . . . . . . 53

5.1 Metrics for Clean the Bush game . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Metrics for Carry the Box game . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Metrics for Capture the Flag game . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Average metric values obtained in the game by the bots and humans. . . . . 62

5.5 Averages obtained by bots after training with Reinforcement Learning. . . 69

5.6 Averages obtained by the human users during demonstration recording ses-

sions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Recording Games Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



Acronyms

ABMS Agent-Based Modeling and Simulation 1

AEC Agent-Environment Cycle 23

EDTI Exploration via Decision-Theoretic Influence 12

EITI Exploration via Information-Theoretic Influence 12

HOV High Occupancy Lanes 9

HRI Human-Robot Interaction 16

MARL Multi-Agent Reinforcement Learning 13, 22

NEI Nuclear Engineering Institute 17

POMDP Partially Observable Markov Decision Process 21

POSG Partially Observable Stochastic Games 23

RL Reinforcement Learning 21

RTE Real-time Embedded systems 17

TRE The Robot Engine 16

VoI Value of Interaction 12

xiii





1

Introduction

Agent-based simulations are the representation of the actions and interactions of

autonomous agents in a set environment and is used to study and understand the behavior

of a system and what controls its outcomes [29]. Over the years, this simulation model

has grown in popularity since it can be used for numerous areas. In biology, agent-based

simulations can be used to study phenomena such as forest insect infestations [38] or

invasive species [1]. Still in relation with natural sciences, these simulation can also be

used in epidemiology in order to study and predict the progression of epidemic diseases1.

On other areas such as economics, agent-based models and simulation have been used

in an attempt to predict market progressions [43], or areas such as traffic management

for better road planning [14], amongst others. Nowadays, research in this area focuses on

both improving and creating algorithms to make more realistic simulations, and reducing

the number of iterations necessary for the simulation to reach a point where the results

are satisfactory.

Currently, these simulations are being employed in several areas such as the study of

traffic flow by simulating driver agents in order to design better road networks improving

the overall quality of life [14]. There is also a large number of studies in crowd behaviors,

building evacuations, and others using a game environment, taking advantage of the game

engine’s tools to create a graphical simulation [9]. With the increase of computational

power over the years many studies have also emerged using agent-based models in trying

to predict the evolution of stock markets to make a profit out of it, as well as predicting

the spread of pandemic deceases in an effort to help contain the spread of said deceases.

In the gaming area, these Agent-Based Modeling and Simulation (ABMS) have also been

emerging due to the entertainment value that is the combining of gaming with agent

simulation. Many of the games that exist so far with the incorporation of ABMS also

have the purpose of investigating certain social behaviors2, such as Sugarscape which

simulates an artificial society to study human social phenomena. Another game with

1Agent Based Epidemic Model, https://cloud.anylogic.com/model/6362c090-dfba-49c1-b071-
e48d520cbec9?mode=SETTINGS, Last Access: February 2022

2Agent Based Modeling games, https://inesad.edu.bo/developmentroast/2013/09/5-agent-based-
modeling-games-that-teach, Last Access: February 2022

1



CHAPTER 1. INTRODUCTION

this purpose is SimPachamama3, which is a policy game where the player takes the role

of mayor of a small Bolivian community, who has to put into place different policies

in order to achieve maximum well being of citizens while reducing deforestation of the

surrounding Amazon.

1.1 Motivation

Games have always used interactive characters and Non-Playable Characters (NPCs)

to make the game more interesting, appealing and relatable. Agent and Character Simu-

lation has been used over time for many different purposes [29], from scientific research,

such as predicting the spread of pandemics [22], to leisure [20] with games having NPCs

to add more interactivity or make the game harder. Using these simulations requires

a vast knowledge of the different AI, machine learning, and deep learning algorithms

needed for these simulations. Additionally, many of these simulations also need graphic

environments to show the results with rendering techniques and physics simulations. All

these techniques require specialized knowledge that for a computer graphics developer

may not be available, specially in the AI and Machine Learning fields.

Another factor that is also present in agent simulation, is the need to create sensing

characters. Many of the ABMS scenarios require characters that interact with the envi-

ronments or with their peers. To achieve this, the creation of characters that can sense

their surroundings by simulating vision, touch, distance amongst other factors is needed.

Creating these senses from scratch also needs complex knowledge in programming things

such as ray tracing for vision and distance, or physics for touch.

All these mentioned needs create a problem for those who want to create character

simulations but do not have the technical expertise to develop all the aforementioned

technologies. To solve the problems created by the need for a graphical environment and

creating sensing characters, it can be interesting to use game engines to visualize the envi-

ronment and simulate the senses. Being in constant development to facilitate the process

of creating games, game engines seem to be a good tool to create and train characters

and environments since they already have render and physics engines that implement

virtual environment rules such as ray cast distance, gravity or collisions. Besides the use

of game engines, over the years many tools have been created to facilitate the creation

and execution of these simulations by providing utilities that facilitate the testing and

sharing of different machine and deep learning algorithms such as OpenAI Gym [8] and

PettingZoo [39].

Taking these factors into consideration, in this work we studied the use of a game

engine to create, train and visualize simulated sensing characters and the surrounding

environment, as well as seeing how effective it was to create game ready bots. To solve

the problem of the expertise needed for the agent simulation algorithms, we used some

3Simpachamama, https://www.inesad.edu.bo/2018/03/11/simpachamama/, Last Access: February
2022

2



1.2. RESEARCH QUESTIONS

of the many external libraries that have been made that allow using AI and machine

learning algorithms without having to develop them. In this work, the use of tools

like Unity3D, and machine learning libraries, such as OpenAI gym and Unity Machine

Learning Agents, was explored to create game bots that learn how to play games with the

aid of these algorithms.

1.2 Research Questions

To follow the idea of creating sensing learning bots and visualizing character simu-

lations in a game engine with resource to external AI and Machine Learning libraries,

in this section some research questions followed by a more detailed explanation will be

presented.

To guide the research work and the design and development of the proposed experi-

ment, the following research questions were defined:

1. How to integrate off-the-shelf agent simulation algorithms in a game-engine-based

simulation environment.

2. How do the bots though with different learning techniques behave in different game

scenarios.

3. Is it worthwhile to use machine learning to teach bots to play games.

The first question aims to find how to use already existing agent simulation libraries

in a game engine to provide an easy to use tool to visualise agent simulations without

the need for complex knowledge of these algorithms. Finding how to incorporate the

different libraries in a game engine, and then how to communicate the state of the agents

and environment between game engine and library in order for the library to simulate

and the game engine to show the simulation is key to solve this problem.

The next question is related to comparing different learning algorithms, such as rein-

forcement learning and imitation learning, in different game scenarios and see how they

fair off in games with varying agents and environment complexity, as well as compare

their progression with increasing training time. With this it becomes possible to assess

which learning techniques are recommended for teaching bots in different scenarios.

The last question is about whether using reinforcement learning and imitation learn-

ing techniques to train and teach bots to play the game is worthwhile compared to hard-

coding the bots behaviour as done traditionally in games. With this question we aim to

discuss the level of difficulty of efficiently implementing these techniques to the difficulty

of manually coding every behavior of the bots.

1.3 Objectives

In order to address the research questions, this dissertation focused on using a game

engine as a tool to create simulations and exploring agent simulation libraries that can be

3



CHAPTER 1. INTRODUCTION

used in diverse tools such as game engines. Therefore it set out to study and implement

the creation and execution of sensing character simulations in a game engine to use it

as a tool of visualization, with the use of simulation libraries to allowed testing different

off-the-shelf algorithms without having to develop much code.

Given the complexity of the stated problem, this thesis was split into several objec-

tives:

• Creating simulation environments: Using the game engine’s graphical tool to build

environments for the simulations. The environment is one of they key elements of

the simulations since its components will interact and influence the agents.

• Creating simulation agents: Using human-like game-objects as a base to create

agents. Animating and coding all the interaction the agent has with the environment

as well as other agents, as without it there is no simulation.

• Integration of AI and machine learning libraries: Integrate agent simulation li-

braries in the game engine, in order to run and visualize the created simulation in

it using different algorithms.

• Creation of different game scenarios: Created diverse game scenarios that allow to

test the algorithms for teaching bots in varying conditions to see which algorithms

perform in different conditions.

• Visualize and document results: Visualize the simulations running using different

algorithms in different game scenarios and document relevant results in order to

compare the different algorithms in metrics such as success of the agents in per-

forming their task and time to learn.

The desired tools to elaborate this theses were the use of a 3D game engine with

incorporated physics simulation and a machine learning library that allows the execution

of the simulation only by sending it the information of the agents and environment, and

adjusting parameters without the real need to develop any machine learning algorithm.

1.4 Contributions

The main contributions of this dissertation is the creation of game scenarios for the

execution and visualization of agent simulations. This game scenarios allowed us to

explore a specific use of these agent simulations that was teaching bots how to play

games, and use it to test the use of game engines as a graphical tool for the simulations.

These scenario were simple games that any person without any gaming expertise could

easily play.

Besides the creation of game scenarios we also tested different machine learning al-

gorithms by using the before mentioned game scenarios. After developing the game

scenarios, we used them to test how two different learning algorithms, reinforcement

and imitation learning, would behave when teaching bots how to play these games. By

testing the algorithms in different games it was possible to find some conclusions of what

4



1.5. DOCUMENT STRUCTURE

influences the learning effectiveness and of how effective these methods are in different

games.

The work developed in this dissertation was used for the publication of the paper

by João Rodrigues and Rui Nóbrega in 2022 entitled "Character Simulation Using Im-

itation Learning With Game Engine Physics", published in the proceedings of the 4th

International Conference on Graphics and Interaction (ICGI 2022).

1.5 Document Structure

Following the introductory chapter, this thesis contains three additional chapters.

The next chapter presents the state of the art review, where the related research areas are

analyzed, beginning with agent simulation, its history, and current interaction methods

and applications, followed by game engines, giving a brief introduction to them followed

by works done in animation and simulation using them. The chapter ends with a revision

of tools and libraries to join agent simulation libraries with game engines.

The third chapter describes with more detail the proposed experiment, by exposing

its requirements, architecture, and the theory behind the concepts needed to implement

the games with learning bots. In the fourth chapter, it is firstly described the set of games

chosen to perform the agent based simulations and training, followed by a description of

how each game was implemented and how the training process occurred.

In the fifth chapter, it is started by explaining which metrics were used to evaluate

the each of the training processes, followed by the exposure of the experimental results

accompanied by a discussion of their values. In the sixth and last chapter a conclusion

about the entire process and its results, as well as the answer to the proposed research

questions is presented.

5



2

State of the Art Review

The purpose of this chapter is to provide an overview of the areas of study related to

the subject of this thesis, analyzing their history and also relevant current works that can

be used as a basis for the development of the work at hand. To start this chapter, we will

begin by seeing a brief definition and history of Agent Simulation, since this is what is

needed to accomplish the simulation of the 3D sensing characters. In addition, an analysis

of different techniques and procedures to execute Self-play and Imitation on AI agents,

as well as some works and projects made with this will be made. Then, we will proceed

to a brief explanation of game engines. These are the base for the planned simulation

platform, so understanding how they work, as well as seeing how they have been used in

prior works for animation and simulation is fundamental. Lastly, some machine learning

libraries will be reviewed, since these are needed to supply the simulation platform, with

the required learning algorithms.

2.1 Agent-Based Models and Simulation

Agent-Based Modeling and simulation is a paradigm in which simulated humans, ani-

mals, or other forms of beings are modeled as agents that interact with their peers as well

as their environment. In these agent-based simulations, sometimes called multi-agent

simulation, the environment plays a crucial role since it influences all the agents and their

interactions and therefore must be carefully taken into account. As said by Franziska

Klugl and Ana Bazzan [23], the key idea behind ABMS is to use the simulated agents to

produce a phenomenon that should be analyzed, reproduced, or predicted. In ABMS,

agents are the active components or decision-makers being modeled and implemented

using agent-related concepts and technologies. Rather than simply describing the overall

global phenomenon, said phenomenon can be generated from the actions and interac-

tions of the agents in the simulation. "ABMS is particularly suitable for the analysis of

complex adaptive systems and emergent phenomena in social sciences, traffic, biology,

and others" [23].

In 2009 Charles Macal and Michael North [29] asked the question of why is ABMS

6



2.1. AGENT-BASED MODELS AND SIMULATION

Figure 2.1: Interactions in a prey-predator model [23]

becoming widespread. In their words, it’s because we live in an increasingly complex

world. The systems that are needed to analyse are becoming more complex in terms of

their inter-dependencies and older modeling tools are no longer as efficient as they once

were. This authors state that some systems have always been too complex to adequately

model, such as economic markets that traditionally relied on the notions of perfect mar-

kets, homogeneous agents, and long-run equilibrium because these assumptions made

the problems analytically and computationally tractable. With the use of ABMS some of

this assumptions can be relaxed and take a more realistic view of these economic systems.

Lastly, the increase of computational power has made it possible for these models and

simulation to grow, as it is possible to compute large-scale simulation models that just

weren’t plausible years ago.

In order to create an agent-based simulation, four elements have to be taken into con-

sideration[24]. The first one is the set of agents in the simulation. These are autonomous

and independent of the other entities within the simulated environment. Secondly comes

the specification of the interactions between themselves and with the environment, since

these interactions produce the overall outcome. Next comes the simulated environment

which contains all other elements that can be re resources, objects with no active behavior,

as well as global properties. Lastly comes the simulation infrastructure, which is the tools

used to run and view the simulation. To illustrate what the elements are in a simulation

and how they relate, consider a simple environment that simulates the relation between

predators (wolves) and prey (sheep) [23] as seen in Figure 2.1. The set of agents are the

wolves and the sheep. The interactions of the agents consist of doing a random move-

ment, and when they are close to one another, they would procreate if they are the same

species, or eat in the case of predator and prey. In addition, when the sheep are close

to an environment object that represents their food (i.e grass), it also eats the grass. The

simulated environment of this scenario consists of the spatial representation where grass

objects are scattered, and possibly some global variables associated with temperature or

humidity to influence the availability of grass. The simulation infrastructure could be

the Unity game engine, where we would model the described elements and execute the

simulation.

The precise definition of an agent is not something globally agreed upon. It is the

7



CHAPTER 2. STATE OF THE ART REVIEW

subject of occasional debate as the issue arises when one claims that their model is "agent-

based"or when one is trying to discern whether such claims made by others have validity.

The use of the term "agent-based"to describe a model carries important implications.

"Some modelers consider any type of independent component whether it be software or

a model to be an agent. An independent component’s behavior can range from simple in

nature, e.g., described by simple if-then rules, to the complex, e.g., described by complex

behavioral models from the fields of cognitive science or artificial intelligence. Some

authors insist that a component’s behavior must also be adaptive in order for it to be

considered an agent. In this view, the agent label is reserved for components that can

learn from their environment and dynamically change their behaviors in response to their

experiences." [29]. In this thesis, the following set of properties and attributes will be

used to describe agents, taken from the description of agents used in Charles Macal and

Michael North’s work [29].

• An agent is autonomous and self-directed. An agent can function independently

in its environment and its interactions with other agents, generally from a limited

range of situations that are of interest.

• Agents are modular or self-contained. An agent is an identifiable, discrete indi-

vidual with a set of characteristics or attributes, behaviors, and decision-making

capability. The discreteness requirement implies that an agent has a boundary in a

sense and one can easily determine whether something (that is, an element of the

model’s state) is part of an agent, is not part of an agent, or is a characteristic shared

among agents.

• An agent is social, interacting with other agents. Agents have protocols or mecha-

nisms that describe how they interact with other agents, just as an agent has behav-

iors. Common agent interaction protocols include contention for space and collision

avoidance; agent recognition; communication and information exchange; influence;

and other domain or application-specific mechanisms.

• Agents interact with their environment as well as with other agents. An agent is

situated, in the sense that its behavior is situationally dependent, which means that

its behavior is based on the current state of its interactions with other agents and

with the environment.

• An agent may have explicit goals that drive its behavior. The goals are not neces-

sarily objectives to maximize as much as criteria against which to assess the effec-

tiveness of its decision and actions. This allows an agent to continuously compare

the outcomes of its behaviors to its goals and gives it a benchmark for possibly

modifying its behavior.

• An agent may have the ability to learn and adapt its behaviors based on its experi-

ences. Individual learning and adaptation require an agent to have memory, usually

in the form of a dynamic agent attribute.

As said in chapter 1, this system of ABMS in practice is used in a wide range of areas.

8



2.1. AGENT-BASED MODELS AND SIMULATION

Figure 2.2: Still image of traffic simulation performed by Institute of Visual Computing1

One of the areas mentioned was traffic management, on which Priyadarsini Ghadai et

al. [14] performed a study showing how simulations using the agent-based model could

help traffic engineers reduce congestion, in particular by the use of High Occupancy Lanes

(HOV) lanes. To execute this first it was needed to model the vehicles with maximum

speed, acceleration, and deceleration. Then the drivers, where their decisions were split

into macro and micro-decisions. Macro decisions consisted in defining the destination

and route taken, and micro-decisions consist of the actions taken by the driver at each

point of time, such as accelerating, overtaking, and turning. Afterward, the environment

consists of the road network on which vehicles will travel that is made up of link segments

that have one or more lanes, operate in one or both directions, and have properties such

as length, number of lanes, and speed limit. Then the approach for the simulation was

to treat vehicles as individual units instead and analyze what behavior emerges when the

vehicles are given simple rules to follow. Each vehicle moved according to the vehicle

ahead, speeding up or slowing down to match its speed while maintaining a safe distance.

The authors of this work concluded that using this system for traffic modeling over the

prior ones provided more realistic simulations, although to ensure an even more realistic

simulation more entities would need to be added to the simulation such as busses, trucks,

emergency vehicles, pedestrians and many others that affect the traffic flow in real life.

In Figure 2.2 we see an example of a traffic simulation done by Professor Dr. Rainer

Herpers and Sven Seele that include some of these extra entities in having pedestrians

and different kinds of vehicles.

2.1.1 Self Play Simulation

Self-play reinforcement learning is when agents learn by exploring and playing with

themselves. It has seen success when applied in many game scenarios, however, the

1Agent Based Traffic Simulation, https://vc.inf.h-bonn-rhein-sieg.de/?pageid = 1025,LastAccess :
February2022

9



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.3: OpenAI Five agents playing Dota2

process for self-play learning is unstable and more sample-inefficient than general rein-

forcement learning especially when used in imperfect information games [3]. AI learning

using direct supervision will not scale to unbounded complex tasks, many have worked

on unsupervised exploration and skill acquisition methods. Current indirect exploration

methods scale poorly with the environment complexity and differ from the way organ-

isms evolve on Earth. “The vast amount of complexity and diversity on Earth evolved

due to co-evolution and competition between organisms, directed by natural selection”.

Multi-agents auto-curricula have been used to solve the various type of multiplayer games

both in classic discrete games (Backgammon [40], Chess [36]) and continuous real-time

games (Dota, Starcraft) as illustrated in Figures 2.3 and 2.4.

Environment affects the capacity for qualitative observation as the more complex the

environment is, it becomes harder to see whether the actions taken are positive or not.

Simpler environments produce easier-to-evaluate scenarios. “as environments increase

in scale and multi-agent auto-curricula become more open-ended, evaluating progress

by qualitative observation will become intractable.” [3]. In 2019, OpenAI researchers

Bowen Baker et al. [3] performed a study to show how effective self-play RL can me in

teaching cooperative and competitive agents using, in which two teams of agents were

placed in an environment to play hide and seek as shown in Figure 2.5. This agents

had no knowledge in how to play hide and seek, and besides walking around they could

also move a set of boxes and ramps and lock them in place. This agents didn’t have any

2OpenAI Dota Simulation, https://openai.com/blog/openai-five/, Last Access: February 2022
3Starcraft agent simulation, https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-

game-starcraft-ii, Last Access: February 2022

10



2.1. AGENT-BASED MODELS AND SIMULATION

Figure 2.4: AlphaStar simulation on StarCraft II3

incentive in interacting with the world objects, the score system only considered whether

the hiders were not yet found, awarding them one point and and punishing the seekers

with a negative point, or whether the seekers had found the hiders, switching the points

awarded around. Simulating this scenario over and over again, it was possible to see that

the losing team was the one that would learn new strategies. At first the seekers were

consistently winning so the hiders learned to move boxes to block seekers entry to their

zone, then seekers had to learn how to use ramps to climb boxes, and it got going to the

point were the agents would find bugs in the phisics programing and would send objects

flying out the map, or they would send themselves flying to get somewhere unreachable

by normal means.

In 2020, another work by Łukasz Kaiser et al. was done on agents learning using

RL [21], this time teaching agents how to play different atari games. This study however

aimed at understanding why AI takes longer to play a game than a human and showing

how video prediction models can enable agents to learn atari games in fewer iterations.

Lukasz Kaiser says that humans learn how to play a game faster than a simulated agent

because humans possess an intuitive understanding of the physical processes that are

represented in the game: we know that planes can fly, balls can roll, and bullets can

destroy aliens. We can therefore predict the outcomes of our actions. Using policies that

allow for video prediction, it was shown that agents learned how to play atari games in

way lesser iteration than previous studies done before.

Throughout this thesis, we’ve only been focusing on agent-based simulation in a high-

level view, mentioning definitions, utilities, and works done in the area with a focus on

the results of the simulations and not so much on the algorithms that lie under. Though

4OpenAI Hide and Seek, https://openai.com/blog/emergent-tool-use/, Last Access: February 2022

11



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.5: Hide and Seek simulation performed by OpenAI4

the focus here is in that high-level view, this wouldn’t be possible if others hadn’t done the

low-level work, and studied the actual algorithms involved in executing these simulations.

In 2020 Tonhhan Wang et al. [44] made a study comparing the use of two algorithms for

influence-based multi-agent exploration, Exploration via Information-Theoretic Influence

(EITI) and Exploration via Decision-Theoretic Influence (EDTI), showing how to optimize

each of these algorithms. The first algorithm, EITI, uses mutual information to capture

interdependence between the transition dynamics of agents, while EDTI uses Value of

Interaction (VoI), to characterize and quantify the influence one agent’s behavior has

on the expected returns of other agents. By optimizing either as a regularizer to the

value function, agents are encouraged to explore where they can exert influence on other

agents for learning sophisticated multi-agent cooperation strategies. After optimizing the

regularizers and performing tests on different scenarios they concluded that the use of

both of these facilitates effective exploration on all the tasks by exploiting interactions,

and in the comparison between the two, they concluded that EDTI performs slightly

better due to its ability to filter out interaction points that lead to no reward points.

In the same year, Jiachen Yang et al. [45] showed how the CM3 architecture (Cooper-

ative Multi-Goal Multi-Stage Multi-Agent) learns significantly faster than direct adapta-

tions of existing algorithms on three challenging multi-goal multi-agent problems. These

problems were cooperative navigation in difficult formations, negotiating multi-vehicle

lane changes in the SUMO traffic simulator5, and strategic cooperation in a Checkers

environment. Their work focused on the multi-goal multi-agent setting where each agent

is assigned a goal, and then it must learn to cooperate with other agents with possibly

different goals. To do this Jiachen Yan described the complete CM3 learning framework

5Simulation of Urban Mobility, https://sumo.dlr.de/docs/index.html, Last Access: February 2022

12



2.1. AGENT-BASED MODELS AND SIMULATION

by defining a credit function, deriving a new cooperative multi-goal policy gradient with

localized credit assignment, motivating the possibility of significant training speedup

via a curriculum for Multi-Agent Reinforcement Learning (MARL), describing function

augmentation, and finally synthesizing all components into a synergistic learning frame-

work. After doing this and running experiments on the defined problems, they concluded

that CM3 obtained significantly higher performance, faster learning, and overall robust-

ness than other existing MARL methods, displaying the strengths of both independent

learning and centralized credit assignment.

2.1.2 Imitation Learning

Imitation learning is a learning paradigm in which agents learn by mimicking a given

behaviour by mapping the set of observations to the actions taken from a set of demon-

strations (the mappings to learn from) [18]. This paradigm is gaining popularity because

it facilitates teaching of complex tasks with minimal expert knowledge of them. Generic

imitation algorithms can also reduce the problem of having to design reward functions

by teaching using only the demonstrations available. Within the paradigm a distinction

can be made by algorithms that aim to mimic humans such as Generative-Adversarial Im-

itation Learning (GAIL) and Behavioral Cloning, and algorithms that mimic other agents

such as Self-Imitation Learning.

Imitation Learning can be performed either by mimicking demonstrations provided

by human agents or artificial agents [47]. In 2018, Junhyuk Oh et al. [31] made a study

about self-imitation learning, where artificial agents gradually learned how to play Atari

games by mimicking their best past behaviour. The idea with this work, is that exploring

past good experiences indirectly lead to a deeper exploration depending on the domain.

To further explain this, Junhyuk Oh et al. gave an example of the Atari game Montezuma’s
Revenge where at a certain point the agent needs to pick up the key and open the door.

According to the author "Many existing methods occasionally generate experiences that

pick up the key and obtain the first reward, but fail to exploit these experiences often

enough to learn how to open the door by exploring after picking up the key."... "On the

other hand, by exploiting the experiences that pick up the key, the agent is able to explore

onwards from the state where it has the key to successfully learn how to open the door.

2.1.3 Visualization of Agent Learning

In this thesis, we focus on the visualization of simulated agents rather than on the

learning algorithms themselves. To provide a graphical visualization of a simulation

there are a lot of tools available from game engines, to python coding using simulation

libraries (more on these in section 2.2.1). In this section we will look at some projects that

provide a real-time graphical view of the simulation, focusing on that visual component

and not on the simulation itself.

13



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.6: RoboCup 3D Simulation
2019 final6

Figure 2.7: RoboCup 2D Simulation
2019 final7

An interesting project to look at is the RoboCup [33]. Since 1997 it has been held the

robot cup, in which robots play a soccer league. In this tournament each team programs

their robots, aiming for them to learn soccer better than the other team’s robots, and was

made in proportionate evolution in learning algorithms expectation each year’s robots

to be better and better [27]. Although robot learning is not the aim of this thesis, what

latter was added to the robot cup is. In past years it was created the simulation league,

where this time instead of actual robots, simulated robots competed in the game of soccer.

This category has both the 2d simulation and the 3d simulation. The past editions of

these competitions can be watched online, and see how the simulations are shown. These

simulations use a platform created by robocup. In figures 2.6 and 2.7 is shown the visual

representation of RoboCup 3D and 2D simulations respectively, that allow the spectators

to watch the match and see how each simulated team plays.

Another work that allows for an interesting visualization of agent simulations is the

one already mentioned in section 2.1.1 done by Bowen Baker et al. [3] from OpenAI,

where it is possible to see how agents play hide-and-seek as seen in Figure 2.5 and analyze

their learning only from watching the simulation, without needing to analyze numbers

to make conclusions. For this, they used python as their main tool for showing the

simulations and using Mujoco library for the agent’s movements and OpenAI Gym for

the simulation algorithms.

2.2 Game Engine Visualization

A game engine’s main use is to produce games by rendering its graphics, producing

music and sound effects, and allowing external manipulation of the scene by reading

inputs from an input device. Usually, a game engine is made up of Rendering Engine,

Animation Engine, Physics Engine, Artificial Intelligence Engine, Network Engine, 3D

Sound Engine, and a Map Editor. The rendering engine renders the objects out on the

7RoboCup 3D simulation, https://www.youtube.com/watch?v=edHyjLC49G4, Last Access: February
2022

7RoboCup 2D simulation, https://www.youtube.com/watch?v=BVMathAxss,LastAccess : February2022

14



2.2. GAME ENGINE VISUALIZATION

screen, the animation engine expresses the object’s motion, the physics engine is responsi-

ble to simulate an object’s gravity, weight, collision, parabola, and centrifugal force. The

AI engine controls every entity (NPC) not manipulated by the player, the network Engine

makes each user contact the server sharing one space and interaction based on network

and the sound Engine generates the game sound data to the game progress state [30].

Although the main purpose of a game engine is, as its name says, to create games,

the features of one allow for more uses such as animations and simulations. The render,

animation, and physics engines can facilitate the production of animation, since one can

just pick up a scene to animate, code the intended movements, and then just play out

the result which will follow physics without having to animate frame by frame every

movement, and collision. In the same line as animation, these tools can be used to

produce simulations. If instead of coding every movement to occur, the focus is on coding

how different materials behave and then creating scenarios with different placements of

said materials, the result is a simulation of how the materials behave in contact with each

other. A more concrete example of this is a fluid simulation [17], where you code different

behaviors for liquids and then simulate how the liquid behaves in a given scenario. With

the use of the AI engine an agent simulation can be created [20]. This time the focus is on

coding the agent behavior and learning algorithms and then playing out the scene with

the resulting simulation.

What makes the use of a game engine alluring for these animations and simulations

is how it allows a user to view these creations, without having to create low-level code to

render and animate the scene since the game engine deals with this internally. For agent

simulation, it interests the most how a game engine allows manipulating the motion of

the agent’s models and how to create a simulation environment for the agents to play out

simply by adding game-objects to a scene, and manipulating it’s properties with no need

for extensive lines of code describing the shape, physics and motion of every object in the

simulation.

2.2.1 Human-like Models and Animation

Another functionality that makes a game engine useful for the creation of digital

content is that it allows the creator to import resources from external sources, making

it possible to develop a project without having all the skill-sets needed for it as long

as it’s available online for use or purchase. This means that there is no need to know

how to create a model, or animated since there are lots of these available in assets stores.

Although it’s nice to be able to import models and animations, someone had to do it to

make it available, raising the questions of why is it important to know and understand

how to make and manipulate humanoid models, and how to do it. Wenheng Chen [10]

said that "Human motion modeling is crucial in many areas such as computer graphics,

vision and virtual reality"in his work on diversified human notion generation. With the

progress in graphic computing over time, society has begun to expect more and more

15



CHAPTER 2. STATE OF THE ART REVIEW

realistic human-like graphics in their digital entertainment, thus making it crucial to

know how to create humanoid models, with realistic motion animation.

In 2015 Cristoph Bartneck et al. [4] wrote a paper on the use of Unity 3D game en-

gine to control human-like robots. In regards to using a 3D game engine, they said that

"Unity 3D allows non-programmers to use a set of powerful animation and interaction

design tools to visually program and animate robots.", and were motivated by the fact

that most of the tools used for Human-Robot Interaction (HRI) are prototype hardware

and software packages that most require classical programming in order to control the in-

teractions. With this work, they aimed at building software that would allow similar ease

at controlling robots. To achieve this they created The Robot Engine (TRE), built on top

of Unity 3D since it possessed the desired properties of having an easy-to-use graphical

user interface for animating and controlling interactions, the ability to communicate with

external hardware, and process multimedia sensory data, and is available for multiple

operating systems. In Figure 2.8 it’s exemplified how TRE uses the different components

to control a robot using Unity as its base. As the main component, Unity acts as the

central part of the system, using the scene as a means to show the state of the robot and

manipulate it with the help of the Animator controller, taking inputs to form speakers

and camera as other means to control the robot, and communicating with the robot using

an Arduino.

Using the structure in Figure 2.8, TRE was built, and in order to use it, one simply

had to import the TRE package into unity, place the human-like models into the scene,

define the parameters on the script, test the connection with the Arduino device, and

the TRE is ready for use. The only thing a user needs to do in order to use TRE is to

create the animation controller using Unity’s tools. To test this, Cristoph Bartneck et al.

imported a model of a Lego Robot and of an InMoov robot8, and tested using Unity 3D to

control both of these. After this, they concluded that using a game engine as software to

control humanoid robots has the advantages of making it easier to develop stand-alone

software and that it already contains many tools that have been developed specifically for

animating biological life forms.

Focusing more on the digital part of animation, another use that game engines have

seen growing is for creating animated films. Both 3D games and animated films have

one common goal that is high-quality 3D video sequences [2]. The difference in achiev-

ing this same goal is that video games require real-time rendering, making it that they

often sacrifice quality to get better frame rates. On this topic, Artur Bąk and Marzena

Wojciechowska [2] wrote that the evolution of game engines, in order to aid game devel-

opers to achieve more realistic 3D graphics, have allowed their use as a tool for animated

films. The main advantage of the mage engine is the generation of a smooth sequence

of high-quality 3D frames in real time [19]. It also allows for easy change of the scene

configuration, where the view is obtained almost immediately. With this, the use of a

8InMoov robot, http://inmoov.fr/, Last Access: February 2022

16



2.2. GAME ENGINE VISUALIZATION

Figure 2.8: Flow diagram of The Robot Engine [4]

game engine does not necessarily cut steps from the traditional linear pipeline of creat-

ing animated films [13], but allows for many of these to be carried out simultaneously.

In their work, Artur Bąk and Marzena Wojciechowska listed some benefits of using a

game engine as a tool for creating animation films. This included the interactive creative

process with ease of editing and fast output, earlier creative decision making, reduced

production time and reusable assets, and brand consistency. But using a game engine

for animation also comes with drawbacks, mainly being the quality, since algorithms for

real-time rendering won’t be as high quality as algorithms for offline animation [2].

2.2.2 Visualization of Simulations

One other application that game engines have seen rising over the years is their use

for all kinds of simulations. According to Michal Pasternak et al. "Simulation and visu-

alization are some of the main methods for testing and validation in the context of the

development of Real-time Embedded systems (RTE), especially when testing with real

hardware is costly or dangerous" [32]. Being game engines powerful visualization tools,

they make a useful tool to simulate these RTE systems in a cost-free way. Besides this,

game engines can also be used for simulation of other types of systems such as virtual

reality, material simulations, agent simulations, as seen throughout this thesis, and some

others.

In 2008 Antônio Mól and Carlos Jorge [9] made a research on the use of game en-

gines for VR simulations in order to help in evacuation planning for buildings. In this

research they used a 3D model of the Nuclear Engineering Institute (NEI) of the Brazilian

Commission of Nuclear Energy, to perform preliminary evacuation tests using the VR

Simulation prior to real-life evacuation tests. Their motivation to use a game engine to

develop the VR simulations is that they are independent of specific scenarios, meaning

that researchers can use the engine’s source codes to create totally new scenarios and

17



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.9: Exit times in single person
exits [9]

Figure 2.10: Exit times in multiple peo-
ple exits [9]

applications. Besides this, game engines are relatively inexpensive, most of them being

free and only need to pay for resources you can’t create yourself. Lastly is that game

engines include networking capabilities, which allow for multi-user simulation. Antônio

Mól and Carlos Jorge used the Unreal Engine to build their simulations. In it, they used

the 3D Model of NEI and coded the VR simulation. The interesting take in this work is

that the evacuation times obtained in the VR simulation and real-life were similar, with

the difference in average time in one person exits being two seconds, and in multiple

people exits being around 7 seconds as seen in Figures 2.9 and 2.10.

Liliana Zarco et al. [46] wrote in 2021 about the advantages and setbacks of using

game engines simulations for ultra-flexible production environments, as well as compar-

ing different game engines for modeling and controlling these simulations. The general

idea of ultra-flexible production environments is to use mobile platforms to carry parts

from workstation to workstation in an automated manner [7]. An example of these ultra-

flexible production environments can be seen in Figure 2.11. In the words of Liliana

Zarco "Ultra-flexible production environments require platforms capable of represent-

ing, modeling, controlling, and visualizing highly complex systems. Game engines have

evolved rapidly in recent years, proving that they can represent very complex systems in

a reliable and user-friendly way." [46].

Gamification for controlling these ultra-flexible production systems makes use of

video game elements and their development environments in the technical context of the

factory with the objective of creating precise control and a positive experience for the user.

By creating an enhanced visual experience, operators can efficiently perform tasks and

acquire new skills. In addition, game engines can exploit resource redundancy, allowing

efficient integration of new resources into simulations. According to these authors, one of

the great potentials of game engines in this area is the fast development and data redun-

dancy since, nowadays, developers can reuse significant portions of their core software

components and invest in custom software engineering. Besides this, game engines allow-

ing hierarchical data architectures, reuse of resources, and also rearranging its relations

helps with the development of these systems since they use hierarchical models that have

18



2.2. GAME ENGINE VISUALIZATION

Figure 2.11: Ultra Flexible Production Environment in a robotic assembly line [7]

already been standardized, such as the Unified Robot Description Format which is an

XML format for representing a robot model.

As for the setbacks of using game engines for ultra-flexible production systems, the

authors states that the integrated physic engines have limitations for these systems. These

simulations require lots of precise different physics such as the ability to detect collision

between a relatively high number of objects (between 250 and 500) at interaction frame

rates from 60Hz to 1kHz and the computed responses of dynamic objects to collisions

have to result in a realistic behavior. Besides this, the movement constraint between

objects must obey their defined limits and the game engine’s physics should support

the realistic simulation of a screw mechanism, performing a stable collision and friction

computation for complex geometric objects. The problem is, that no game engine physics

motor excels at all of these needs of the system, some excel in realistic collisions, others

in optimization for higher frame rates, but no game engine can perform all of these

simulations at the desired level.

Some other works have been done concerning the use of game engines for simulations.

SimGen is a tool for generating simulations and visualizations on the Unity Game Engine.

In general, this tool creates scripts to execute a simulation of real-time embedded systems

in unity, using predefined meta-objects [32]. In Figure 2.12 is shown the simulation

of a rover executed in a unity build with the use of the generated scripts. To control

the simulated rover, the execution a java file in the CMD is needed, connecting it with

the right IP and ports, and use commands defined in the meta-objects to control the

simulation.

In the area of fluid simulation, Wefeng Hu et al. [17] did research in the use of game

engines in order to achieve real-time interaction fluid simulations. According to the

authors, although there are many real-time simulations using animation software, there

is a lack of interactive simulations. In their works, they used the Unity3D container fluid

simulation combined with the Smoothed Particle Hydrodynamics method [28] to create

9Rover Simulation using SimGen, https://youtu.be/4ROt2N6i6KA, LastAccess: February 2022

19



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.12: SimGen generated simulation of a rover in Unity9

Figure 2.13: Interactive simulation of liquids [17]

a 3D real-time interaction of pouring liquid from one container to another. In Figure

2.13 it can be seen the final result of the interactive simulation of pouring water from one

glass to another.

20



2.3. VISUALIZATION AND INTERACTION WITH SIMULATION LIBRARIES

2.3 Visualization and Interaction with Simulation Libraries

In order to create sensing agents for our game engine environment, it is crucial to find

a library that allows simulating the agent’s actions without the need to write complex

algorithms. Luckily, nowadays, there are an increasing number of these that are open

source and allow for indiscriminate integration in any kind of work as long as it complies

with the library specifications. In this sub-chapter we’ll be looking into some of these

libraries, what they offer and aim to achieve, a general view of how they work, and what

is needed to integrate these libraries with a game engine.

2.3.1 OpenAI Gym

OpenAI Gym10 is a toolkit for Reinforcement Learning (RL) research [8] as it includes

a growing collection of benchmark problems that expose a common interface and a web-

site where people can share results and compare the performance of algorithms. This

library focuses on the episodic setting of RL, meaning that the agent’s experience is bro-

ken into a series of episodes where the agent’s initial state is sampled from distribution,

and the interaction proceeds until the environment reaches a terminal state. The objective

in episodic RL is to maximize the expectation of total reward per episode and achieve a

high level of performance in as few episodes as possible.

When designing OpenAI gym, its authors made decisions based on their previous

experiences developing RL algorithms and using previous benchmarks collections. One

of these design decisions is providing abstraction only for the environment and not for

the agents. According to Greg Brockman et al. [8] this was to maximize convenience to

the users and allow them to implement different styles of agent interfaces as there are

numerous ways of agents taking input and learning from it. Another of these design

choices is to emphasize the sample complexity and not just the final performance. This

means that instead of evaluating the algorithm solely based on the final performance

score, OpenAI gym also takes into account the time it takes to learn (sample complexity).

One way of doing this sample complexity evaluation is to define a threshold and count the

number of episodes necessary for the score to reach that threshold. Lastly, they chose to

have strict versioning for environments, meaning that if an environment changes in any

way, its name will be updated with a new version number. This is because results between

changing environments are incomparable since agents might act differently because of

the changes.

OpenAI Gym contains a set of environments formalized as a Partially Observable

Markov Decision Process (POMDP) [37]. See Figure 2.14 for an example of one of these

environments. The following environments are some of the ones included as of now [8]:

• Classic control and toy text: small-scale tasks from the RL literature.

10OpenAI Gym website, http://gym.openai.com/, Last Access:February 2022

21



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.14: Environments included in the OpenAI Gym [8]

• Algorithmic: perform computations such as adding multi-digit numbers and re-

versing sequences. Most of these tasks require memory, and their difficulty can be

chosen by varying the sequence length.

• Atari: classic Atari games, with screen images or RAM as input, using the Arcade

Learning Environment [6].

• Board games: currently, we have included the game of Go on 9x9 and 19x19 boards,

where the Pachi engine [5] serves as an opponent.

• 2D and 3D robots: control a robot in simulation. These tasks use the MuJoCo

physics engine, which was designed for fast and accurate robot simulation [41]. A

few of the tasks are adapted from RLLab [12].

In regards to integrating OpenAI gym with a game engine, it is a difficult task. In this

work, we aim to find if using a game engine’s graphical tools is a worthwhile way of creat-

ing environments and simulations with sensing agents, without needing much knowledge

in simulation algorithms. Meanwhile, OpenAI gym focuses on simulation using already

incorporated abstracted environments which complicate the use of environments created

in game engines. Besides this, OpenAI gym also leaves to the user the programming of

the agent’s learning algorithms. Although they offer a community to share and compare

algorithms, this still requires the user to have some knowledge in which algorithms to

select.

To read more on works done with OpenAI Gym, one of them has been referenced in

section 2.1.1, or go to OpenAI Gym website to see full documentation.

2.3.2 PettingZoo

PettingZoo11 is a library of diverse sets of multi-agent environments using a Python

API. PettingZoo was developed with the objective of accelerating research in MARL, by
11PettingZoo website, https://www.pettingzoo.ml/, LastAccess: February 2022

22



2.3. VISUALIZATION AND INTERACTION WITH SIMULATION LIBRARIES

making work more interchangeable, accessible, and reproducible similar to what Ope-

nAI’s Gym did for single-agent RL [39]. Although PettingZoo’s API inherits many features

of a Gym, is unique amongst other RL APIs in that it’s based around the novel Agent-

Environment Cycle (AEC) games model. In the words of J.K Terry et al., the need for a

library for MARL research comes from the fact that as of October 2021, "While a massive

number of Gym-based single-agent reinforcement learning libraries or code bases exist

(as a rough measure 669 pip-installable packages depend on it at the time of writing),

only 5 MARL libraries with large user bases exist [25, 26, 34]12,13"

When developing PettingZoo both as a library and an API, its authors centered it

around two main goals. The first one is for it to be like a gym, in the sense they wanted

the API to look and feel as if working with a Gym and include numerous reference

implementations of games with the main package. Reusing as many design metaphors

from Gym as possible will help its massive existing user base to understand PettingZoo’s

API without much trouble. The second goal is for PettingZoo to be a universal API for

MARL, meaning that it needs to support all use cases and types of environments. With

this in mind, several technically difficult cases arise that need to be carefully considered

such as environments with large numbers of agents, with agent death and creation, where

different agents can be chosen to participate in each episode, and learning methods that

require access to specialty low-level features [39]. In addition to this, the other two softer

goals that J.K Terry et al. had when developing PettingZoo, are ensuring the API is simple

enough for beginners to easily use, and making the API easily changeable if the direction

of research drastically changes.

As mentioned in section 2.3.1 for OpenAI, most single-agent RL libraries and APIs

use environments based on POMDP, however, MARL does not have a universal mental

and mathematical model. One of the most popular models for MARL is the Partially

Observable Stochastic Games (POSG) [16]. In a POSG, all agents step together, observe

together, and are rewarded together. This creates a couple of problems for MARL. The

first problem is that POSGs don’t allow access to all information you should have since the

agent’s rewards are summed and returned at once. In a multi-agent game, this combined

reward is often the composite reward from the actions of other agents and one might

want to attribute the source of this reward for various learning purposes. The second

problem is that POSGs based APIs aren’t conceptually clear for games implemented in

code. The main example of this is race conditions which occurs because simultaneous

models of multi-agent games are not representative of how game code normally works.

The problem occurs when two agents are able to take conflicting actions (i.e. moving into

the same space), and needs to be resolved by the environment (i.e. collision handling).

Motivated by the problems just mentioned, J.K Terry et al. developed the before

mentioned AEC. The idea with AEC is that agents sequentially see their observation,

12Tianshou MARL API, https://github.com/thu-ml/tianshou, LastAccess: February 2022
13Autonomous Learning MARL library, https://github.com/cpnota/autonomous-learning-library, Las-

tAccess: February 2022

23



CHAPTER 2. STATE OF THE ART REVIEW

Figure 2.15: The AEC diagram of Chess [39]

take actions, are granted rewards from the other agents, and then the next agent to act

is chosen. Another conceptual feature of this is the existence of the "environment"agent.

When this agent acts in the model it indicates the updating of the environment itself,

realizing and reacting to the other agent’s actions. This allows for a more comprehensive

attribution of rewards, cause of death, amongst others. Figure 2.15 is an example of the

AEC diagram in a two-agent chess game. According to the authors, modeling multi-agent

environments sequentially for APIs has the following beneficts [39]:

• It allows for clearer attribution of rewards to different origins, allowing for various

learning improvements.

• It prevents developers adding confusing and easy-to-introduce race conditions.

• It more closely models how computer games are executed in code.

• It formally allows for rewards after every step as is required in RL.

• It is simple enough to serve as a mental model, especially for beginners.

• Changing the number of agents for agent death or creation is less awkward, as

learning code does not have to account for lists constantly changing sizes.

• It is the least bad option for a universal API, compared to simultaneous stepping. Si-

multaneous stepping requires the use of no-op actions if not all agents can act which

are very difficult to deal with, whereas sequentially stepping agents that could all

act simultaneously and queuing up their actions is not especially inconvenient.

As of now, PettingZoo has available many environments for its users. Like many other

libraries, this list of environments contains a set of diverse Atari games such as Pong,

Space War, Mario Bros, and many others. In addition, they offer some environments

created by them called the butterfly environments. Then they also have environments for

24



2.3. VISUALIZATION AND INTERACTION WITH SIMULATION LIBRARIES

multiple classic games such as chess and backgammon. A list of configurable environ-

ments with massive numbers of particle agents is also offered. To top this off, they also

offer a set of non-graphical communication tasks and three cooperative environments.

In regards to integrating PettingZoo with a game engine, although it has incorporated

environments similar to what OpenAI Gym has, PettingZoo facilitates integration with

outside environments by making environments expose only basic and essential functions

making it easier to create a wrapper from an environment created to PettingZoo. This

reduces the task of integrating PettingZoo’s simulations to a game engine, by finding a

way of wrapping the game engine’s environments in a way PettingZoo’s API will accept

and manage the communication between both tools. As for the learning algorithm side of

the problem, it’s still up to the user to decide which algorithms to use in its agents, either

by programming entirely or using available algorithms shared by the community.

2.3.3 Unity Machine Learning Agents

Unity Machine Learning Agents14(ML-Agents) is a toolkit that allows games and sim-

ulation to serve as environments for training intelligent agents. This library is specific

for Unity’s 3D game engine and provides implementations of state-of-the-art that enable

game developers and researchers to easily train agents for 2D, 3D, and VR/AR games.

With ML-Agents, agents can be trained using reinforcement learning, imitation learn-

ing, neuroevolution, and some other methods with the provided simple-to-use Python

API [20].

Having been developed specifically for a game engine, these trained agents can be

used for multiple purposes such as controlling NPC behavior, automated testing of game

builds, and evaluating different game design decisions pre-release. This toolkit is benefi-

cial for both game developers and AI researchers as it provides a central platform where

advances in AI can be evaluated on Unity’s environments and then made accessible to

game developer communities.

With ML-Agents, the training of the agent’s behaviors using a variety of methods is

possible, but to do so, it’s needed to define three entities at every moment of the game

(called the environment). The first is the observations, that is, what the agent perceives

about the environment. These can be either numeric or visual observations. Numeric

observations measure attributes of the environment from the point of view of the agent,

while visual observations are images generated from the cameras attached to the agent

and represent what the agent is seeing. Secondly, there is the action that the agent can

take. For these, there is also a distinction between action existing continuous or discrete

ones. The difference between both can be understood by the example of an agent moving

in a grid or moving freely on the map. An agent moving in a grid can be seen as a discrete

action where it matters only if he moves north, south, east, or west, while the agent

14Unity ML Agents website, https://unity.com/products/machine-learning-agents, Last Access: February
2022

25



CHAPTER 2. STATE OF THE ART REVIEW

moving freely can be seen as two continuous actions that determine direction and speed.

Lastly, there is the reward signal, which is a scalar value that indicates how well the agent

is performing. These rewards need not be provided at every moment but only when the

agent performs an action that is either good or bad.

Having been developed by Unity3D, ML-Agents offers the following features[42]:

• 18+ example Unity environments

• Support for multiple environment configurations and training

• Flexible Unity SDK that can be integrated into your game or custom Unity scene

• Support for training single-agent, multi-agent cooperative, and multi-agent com-

petitive scenarios via several Deep Reinforcement Learning algorithms (PPO, SAC,

MA-POCA, self-play).

• Support for learning from demonstrations through two Imitation Learning algo-

rithms (BC and GAIL).

• Easily definable Curriculum Learning scenarios for complex tasks

• Train robust agents using environment randomization

• Flexible agent control with On Demand Decision Making

• Train using multiple concurrent Unity environment instances

• Utilizes the Unity Inference Engine to provide native cross-platform support

• Unity environment control from Python

• Wrap Unity learning environments as a gym

To offer its diverse functionalities ML-Agents contains five high-level key components.

The first one is the Learning Environment. which contains the Unity scene and all the

game agents. The unity scene provides the environment in which agents observe, act,

and learn. Secondly, there is the Python low-level API for interacting and manipulating

the learning environment. This API is not a part of unity and is used to communicate

and control the Academy during training, as well as using the API to use Unity as the

simulation engine for own machine learning algorithms. Then there is the external com-

municator that simply connects the learning environment and the Python low-level API.

Afterward, there are the Python Trainers which contain all the machine learning algo-

rithms that enable training agents. Finally, there is the Gym Wrapper, which wraps the

unity environment into OpenAI’s gym. This however can only be used with single-agent

environments.

On the ML-Agents website it is available many resources showcasing or teaching the

utilities of ML-Agents. In it, it’s possible to see some of the works done using this, such as

AI learning soccer as illustrated in Figure 2.16, or agents learning how to fly an airplane

or learning how to kart racing. Besides these gaming environments, ML-Agents has also

been used in a project to automate the task of making breakfast, teaching agents how

to flip pancakes from pan to plate and a robot that dodges obstacles to deliver butter.

In addition, this library has also been used in teaching a robot to collect metallic waste,

26



2.4. DISCUSSION

Figure 2.16: ML-Agents teaching AI to play soccer16

Table 2.1: Pros and Cons of Agent-Based Models and Simulations

Pros Cons
Ability to Model Heterogeneous Populations Weak dealing with Homogeneous Data
Models both Discrete and Continuous
Models

Computationally expensive

Doesn’t require knowledge of studied
Phenomena
Can incorporate randomness into Model

meaning that with enough research this can one day be applied in a real-life scenario, and

has also been used in teaching AI how to park a car. Besides these mentioned scenarios

and others present on the website, a game that has used ML-Agents as a tool to improve its

gameplay is also mentioned. This game is Source of Madness15, which is a rogue-lite game

created by Carry Castle that uses machine learning to procedurally generate millions of

monsters, making it that you play against different enemies each play-through.

2.4 Discussion

In this section, a brief discussion about agent simulation and the different machine

learning algorithms will be made.

Throughout this thesis, one of the topics talked about was agent-based simulations.

This paradigm allows for modeling and simulating some more complex paradigms with

15Source of Madness game, https://sourceofmadness.com/, LastAccess: February 2022

27



CHAPTER 2. STATE OF THE ART REVIEW

more efficiency, and for this work in specific, it makes it possible to execute the simu-

lation of sensing characters, having them learn their environments gradually by explor-

ing it. Looking into some of the advantages and disadvantages of agent-based models

and simulations, ABMS excel in modeling heterogeneous populations, meaning that it

can perform well in scenarios where the agents perform and behave differently to each

other, and where the agents interacting with different environments assets can change

the outcome of the simulation. This advantage, make for a disadvantage in homogeneous

models where agents are supposed to behave the same way every time independent of

what happens in the environment. Besides this, ABMS can deal with both discrete and

continuous models as seen in section 2.1.1 with works done in games such as Chess

(discrete) and Dota (continuous) and can insert randomness into the model, which can

simulate some factors impossible in deterministic models such as errors and other ran-

dom events. Another interesting factor about agent-based simulations is that most of the

time one does not need to know about the studied phenomenon to obtain results, since

these are obtained through visualization and analysis of the progression in the agent’s

behavior. Although these simulations are appealing, the more complex they are, the more

computational resources are needed to execute the simulations since simulations using

agent-based models are computationally expensive. In Table 2.1 a summary of these pros

and cons is listed.

In Table 2.2 some key comparisons between the three machine learning libraries seen

in section 2.3 is made. As seen, OpenAI Gym has the disadvantages of not allowing

for multi-agent simulations, as well as requiring reinforcement learning algorithms. In

another hand, it contains sample environments for the user to test and allows connection

to the Unity3D game engine using the Unity ML-Agents Wrapper. PettingZoo has the

upsides of allowing multi-agents simulation as well as containing sample environments

to test algorithms, but once more this one doesn’t contain any sample RL algorithms and

has the downside of, at the time of writing, not having any form of environment wrapper

that allows connection with game engine environments. In relation to the downside

of requiring the algorithms, both these libraries encourage their users to share their

algorithms and result in their community, making it a bit easier for inexperienced users

to find algorithms to use in their projects. Lastly, Unity ML-Agents has the big upside of

being developed specifically for a game engine, making it easier than OpenAI to make

the connection. Besides this, ML-Agents also allows multi-agent simulations and contains

both sample algorithms and environments ready to use. Although not mentioned in the

table, ML-Agents also have the possibility for learning through other methods besides RL,

by having imitation algorithms.

16AI learns soccer using ML-Agents, https://www.youtube.com/watch?v=qN7umlE4ZmQlist=WLindex=85,
Last Access: February 2022

28



2.4. DISCUSSION

Table 2.2: Comparative Table Between Machine Learning Libraries

OpenAI Gym PettingZoo Unity ML-Agents

Single-Agent Simulation Yes Yes Yes
Multi-Agent Simulation No Yes Yes
Sample Environments Yes Yes Yes
Sample Algorithms No No Yes
Game Engine Connection Yes No Yes

29



3

Simulation and Training Workflow

As mentioned in previous chapters, the goal is to create and run agent simulation

loops using game engine physics and use this as a base to teach game bots using both

reinforcement learning and imitation algorithms and compare both results in different

types of games. To get a better grasp on how to do this, in this chapter we are going to look

at the overall architecture and workflow of the simulations followed by more detailed

concepts of how the simulations and the bots’ training work. This will give a generic view

of which kinds of games this training process should be effective.

3.1 Architecture

To create a game engine-based simulation loop that can be used to teach bots, two

key components are needed: The Game Engine and a Machine Learning Library. The

game engine is used to create the autonomous agents and the surrounding environment,

as well as performing physics calculations that allow us to define the environment rules

(collisions, speed, gravity) and emulate the agent senses. As seen in Figure 3.1 all of these

calculations will produce observations, such as, which objects the agents see, and the

distance to objects amongst others. These are provided to the Machine Learning library

that will use the observations to calculate which actions to take and perform the learning

according to the selected algorithm and configurations.

Besides these key components, human input can also influence the simulation. In

reinforcement learning algorithms some predetermined knowledge can be provided to

the agents to accelerate the learning process, although it’s not necessary. In imitation

learning algorithms based on human behavior, some sort of demonstration is required to

allow the algorithms to emulate what humans would do during the course of the games.

Going into further detail in each component, the game engine is responsible for the

agents, the environment, and physics calculations. The agents represent our game bots

that have to learn to play games. With the help of the game engine physics motor, the bots

can have emulated in them different senses such as vision, touch, and hearing assisted by

ray-tracing, collision detection, and audio engines. The environment represents the game

30



3.1. ARCHITECTURE

Game Engine

Agents
Environment 

Objects
Physics 

Calculations

ML Library

Algorithms Configurations

Human Input

Observations

Actions

Knowledge

Figure 3.1: General architecture for the game engine based simulation loops

that is going to be played by the bots. If we take as an example the game of volleyball, as

seen in Figure 3.2, the environment will be composed by a field, a ball, the net, an outside

area, and borders that limit the space where bots can roam around. Besides the visual

representation of the game, the environment is also what defines the game rule. In the

example used these rules would be the regular rules of a volleyball game. The physics

engine is responsible for handling the bots’ movement, and collision detection amongst

other possibilities such as the senses emulation as mentioned before.

The machine learning library is what is responsible for performing the bots’ learning.

This library should have available different off-the-shelf machine learning algorithms so

that they can be used without requiring the expertise to develop the needed learning

Figure 3.2: Environment representation of a Volleyball Game

31



CHAPTER 3. SIMULATION AND TRAINING WORKFLOW

algorithms. This library will receive from the game engine the different observations

and rewards, and use them to compute which actions should be the correct ones and

infer conclusions based on the rewards compared to the observations it has. This library

should be configurable so that the users can select different algorithms, and change the

parameters of the algorithm to the desired ones.

3.2 Simulation and Training

In this thesis, Reinforcement Learning and Imitation Learning methods were the

focus of the study. As mentioned before, the goal is to use both these techniques to teach

bots how to play different game scenarios and compare the results obtained with both

methods in different games.

To better understand how these learning techniques can be used to teach bots how to

play games, first, it’s good to understand how to create scenarios with learning bots. A

general flow of a Game Engine and an ML library can produce self-learning bots can be

seen in Figure 3.1. Creating the scenarios is quite simple for those with game development

experience. The first step is to envision the desired interactive game, then, build that

game using the Game Engine scene editor by placing different game objects and scripts

that control the desired interactions.

After the game environment is built, each bot connects with the ML library interface,

it’s behavior takes into consideration the actions that it receives from the system and the

observations from the environment it interacts with. Each bot sends a set of variables and

values that constitute the observations, and a ray-cast from the bot to the world with hit

history.

In the next sections, we are going to look in more detail at how both Reinforcement

learning and Imitation learning algorithms can be used to teach bots how to play games.

3.2.1 Reinforcement Learning

As seen in Section 2.1.1, the aim of reinforcement simulation is that agents learn how

to behave in a scenario by exploring it autonomously and gradually learning as it obtains

rewards and starts understanding what is beneficial and what is not.

For this thesis, we used reinforcement learning algorithms to teach bots how to play

games by having the bots play them autonomously with no initial knowledge of the game,

and learn how to play it by playing the game out repeatedly, and getting better at the

game by getting rewards and understating what got them the rewards.

One of the key elements for reinforcement learning is the definition of the reward

system. The reward system is what is going to tell the bots that they did something

positive or negative by awarding or removing reward points. In game scenarios, the main

form of obtaining a reward should be the main goal of the game. This means that in

a game of football we would reward a team by scoring a goal and penalize a team by

32



3.2. SIMULATION AND TRAINING

suffering a goal. For these kinds of rewards, the two approaches that can be used are to

give a flat reward for doing the objective or give a reward based on the time taken (more

time to score/suffer a goal means lesser rewards given/taken).

Depending on the game, giving rewards only on the main objective might not be

enough, in which case rewards can also be given for the secondary objective. These

objectives are actions that don’t win the game by themselves but contribute positively to

it. If we reuse the football example, we can consider giving rewards for blocking a shot,

stealing the ball from the opponent, or making a successful pass. Although these rewards

can help the bots get better at the game, they should be significantly smaller than the

rewards for the main goal of the game. If we give too much importance to secondary

objectives, the bots might think that completing the main objective is useless as they

could just repeat the secondary ones. Going back to the football example, two bots from

the same team could just keep passing the ball between each other to get a higher reward

than trying to score a goal.

Now that we talked about rewards we can have a better look at the learning process

using reinforcement learning as seen in Figure 3.3. From the game, we can start the

training process in which the bots and the reinforcement learning algorithm enter a cycle

in which the bots communicate with the algorithms what observations they have and how

much reward they have obtained, and the algorithm processes this information to learn

and compute which actions the bot should do next. After the training ends we can analyze

the results by both seeing how the rewards obtained progressed through the training and

seeing the bots in play using the knowledge obtained in the previous training. If the

results are not yet up to the pretended level, the training process can restart from the

endpoint of the previous training.

Of the Reinforcement Learning algorithms, there are three of them that are commonly

used. These algorithms are Proximal Policy Optimization (PPO) [35] and Soft-Actor Critic

(SAC) [15] for single-agent scenarios, and MultiAgent Posthumous Credit Assignment

(MA-POCA) [11] for multi-agent scenarios. PPO uses a neural network to approximate

the ideal function that maps an agent’s observations to the best action an agent can take

in a given state. Meanwhile, SAC is an off-policy that can learn from experiences collected

at any time during the past. As experiences are collected, they are placed in an experience

Game App

Game Bots

Learning 
Algorithms Result Analysis

Begin Training

End Training

Observations/Rewards

Actions

Figure 3.3: Reinforcement Learning Training flowchart

33



CHAPTER 3. SIMULATION AND TRAINING WORKFLOW

replay buffer and randomly drawn during training. Lastly, MA-POCA is a novel multi-

agent trainer that trains a centralized critic, a neural network that acts as a "coach"for a

whole group of agents.

3.2.2 Imitation Learning

As mentioned before, the goal of Imitation Learning is to get records of humans

playing games and use the obtained data to train bots.

In the context of this thesis, these records will be called demonstrations. A demon-

stration is a data structure that saves the observations obtained using human gameplay,

at each moment and maps it to the actions they took so that bots can decide their actions

by finding the actions in the demonstrations that have similar observations to what they

have at that point.

Focusing on the question of how can demonstration records help bots learn, let’s first

look at what exactly are these demonstration records. To obtain a demonstration, some

sort of program or script attached to a bot controlled by a human is needed so that it can

generate the demonstrations. This program will record the actions the user took at each

moment and map it to the observations available and ray trace hits so it can be saved in a

data structure to later be used.

This data structure forms a demonstration for imitation learning because the bots can

then use the data in these data structures to decide what actions to take, by comparing

their observations with the observations present on the demonstration file, and see which

one looks the most similar and perform the action taken with that observation on the

demo.

This means that to generate demos that can be used for learning, we can have human

users playing the game scenarios and completing the tasks to serve as inspiration for the

bots. This is possible because we can have humans control the bots by creating a typical

game character controller and shifting the bots’ actions to the human inputs rather than

the library inputs.

The idea with this is that for more complex scenarios that take very long for bots to

learn, and that the tuning of the configuration becomes harder, we can take advantage

of these demonstrations to accelerate the process and create usable bots faster. For this,

first, we have to create a game that is designed for both the agents and users to play out.

We also need to define the observations and rewards the agent gets. If this game involves

multiple agents simultaneously it has to support multiplayer so multiple users can also

play it out simultaneously. After all, this is done, we proceed to have users play the

game to record the demonstrations. The more users and the more time the better. Upon

collecting all the demonstrations, the training of the bots can be started. Then the final

result of the bots can be analyzed, and if it’s still not up to expectations, the process can

be repeated to collect more demonstrations with the possibility of using the current bots

as adversaries to the users. A flowchart of this process can be seen in Figure 3.4.

34



3.3. GAMES

Game App
Demonstration

Recording

Training
Result

Analysis

Figure 3.4: Demonstration Record process flowchart

For the imitation algorithms that mimic human behavior, there are two of them that

are commonly used. These algorithms are the Generative Adversarial Imitation Learning

(GAIL) and Behavioural Cloning. GAIL is an imitation algorithm that uses an adversarial

approach to reward the agent for behaving similarly to a set of demonstrations. This

training method does not require the definition of a reward system, since it distinguishes

whether an observation/action is from a demonstration set or produced by the agent, and

then examines a new observation or action and gives it a reward based on how close it

believes this new observation/action is to the provided demonstrations.

Then we have behavioral cloning, which is a policy that trains the agent to mimic

the exact actions of a demonstration. This policy can’t generalize past what is in the

recordings, which makes it work well when it exists recordings for nearly all states, which

reinforces the idea that the more demonstrations the better. These imitation algorithms

are not exclusive, meaning they can be used together. In particular, behavioral cloning

works well when paired with GAIL since it allows the bot to infer what can be a good

action if the observation values are not explicitly the same as one in the demonstration

set, but similar to it.

3.3 Games

Now we are going to discuss which types of games we aim to teach the bots how to play.

In an ideal world, we could use these kinds of algorithms to create usable bots for every

game, but that is unrealistic since very complex bots would need a lot of computational

power and time to the point where it is easier to create a bot with manually programmed

behaviors. Creating a bot that follows the player and helps them in every available task

in the game could be too heavy for self-learning bots, but teaching it how to drive a car

around a circuit is a much lighter and doable task.

35



CHAPTER 3. SIMULATION AND TRAINING WORKFLOW

In this section, we are going to narrow down which type of games we consider that

these teaching methods can be specifically useful, as the training process is reasonably

resource and time hungry to obtain results that are satisfying and ready to ship to a

full-fledged game.

Firstly, it is recommended games with a single objective. Single objective games will

produce better results since the self-learning bots won’t be divided by having to complete

multiple objectives which can lead to it being less efficient at completing the tasks to even

being unable to complete a single task since it got overloaded with information about

multiple tasks that lead to being unable to understand what is good and what is not.

This, however, doesn’t mean that using self-learning bots for games with multiple

goals is unachievable, it simply is recommended to keep the number of goals as low as

possible. Then we have the complexity of the tasks. These methods don’t do well with

complex tasks, meaning that the game should be something with a reasonable amount

of actions, obstacles, and variables. The complexity of tasks that the method can handle

varies with the number of tasks, meaning that a game with a single goal can handle a

more complex task than a game with many goals in which the bot has to focus on learning

various tasks.

Lastly, we have the number of bots in play. Games with a single bot or multiple bots

with the same behavior and objective are simpler to teach. In these games, the algorithm

only has to worry about a single type of behavior and all the findings through training can

be used for every bot in play. Games with bots with different behaviors or objectives are

harder to achieve since the algorithms have to focus on either teaching multiple behaviors,

or how to play the same behavior in a symmetric objective.

To better understand these concepts, we are going to see some real game examples,

and how they would fit into each of the mentioned categories. The first game we have is a

game of basketball free throw shots. In this game, the single goal is to throw the ball from

the free throw mark and hit it inside the hoop. This game should be one of the simpler

ones to teach since it has a single goal with low complexity that is hitting the hoop from

the same spot, and also only has a single agent.

The second example is a racing game, in which multiple bots drive a car around the

same circuit with the objective of finishing first. Once more this game only has one goal of

driving around the circuit, however, this one has multiple agents with the same behavior,

and is a bit more complex than the previous one as it not only has to learn to drive the

circuit, it also needs to learn how to overtake/defend against the other bots racing.

The last example is the game of football. This game has two goals scoring a goal and

preventing the opposition’s goal. This game is more complex than the previous ones since

the bots have to learn all the rules of the game (no handballs, fouls, corners kick, etc...),

and the multiple bots have the same behavior, but symmetric objectives depending on

the team. If we want a game with different behaviors, we can split the football game into

the attacking team and defending team, in which case the teams have different behaviors

as they have different objectives.

36



3.4. USED TECHNOLOGIES

3.4 Used Technologies

In this section, we are going to discuss with tools and technologies that were used

to develop the game engine-based simulation loops to train self-learning bots in game

scenarios.

For the Game Engine, Unity 3D was chosen to develop this project, as it offers an

intuitive and accessible interface to develop games, and is free meaning that anyone

can replicate the work done on their one and expand on it. Besides this, Unity 3D is

accompanied by an asset store, where community members can out their assets for sale,

or provide them for free, making it extremely useful to get assets and tools to create

and develop games. Lastly, this game engine also offers a variety of plugins that can be

integrated into games that offer a wide range of utilities to facilitate different aspects of

game creation.

As for the Machine Learning library, the ML-Agents Unity Plugin was used. Being

a plugin developed by Unity, compatibility and connecting the environments with the

algorithms is not an issue. With this, the only focus in development is creating the game

scenarios and testing out the different algorithms for teaching bots. Aside from this, ML-

Agents offers a wide range of reinforcement learning, self-play, and imitation learning

algorithms, and has available robust documentation that makes it easier to understand

how to better use each algorithm and how to tune the algorithm parameters.

Figure 3.5: Used Technologies.

37



4

Games with Self-Learning Agents

In this chapter, we are going to see the details of how we created games with self-

learning bots and how these bots were trained to play the games. Firstly we are going

to talk about which games were chosen, how they play out, and why they were chosen,

followed by the details of how the games were implemented to support the self-learning

algorithms. Lastly, we are going to see how the training process was prepared and done

going into the detail of the parameters used for each training.

4.1 Implemented Games

In this section, we are going to look at the rules and details of the chosen games. The

games chosen were Clean the Bush, Carry the Box and Capture the Flag. Besides the

rules of the games, in this section is also mentioned the controls of the game for a human

player to play the game, ending with an explanation of why the game was chosen as a

testing example. A summary of these games characteristics can be seen in Table 4.1.

4.1.1 Clean the Bush

In the game Clean the Bush, the player is in a natural park with bushes, rocks, trees,

and tree trunks but the bushes are all polluted so they look purple instead of green, as

can be seen in Figure 4.1. Faced with this unpleasant situation, the goal of the player in

this game is to clean the bushes until they are no longer polluted and turn back green.

To complete this game with a higher score, the player should clean the bushes in as little

time as possible, while also avoiding colliding with the other objects.

To complete this task, the player can move forward and backward using the W and

S keys, although the backward speed is slightly slower than the forward speed. Besides

moving, the players can rotate left and right using the A and D keys, and start their

cleaning action while pressing F.

In Figure 4.2 we can see a game state where the player has already cleaned some of

the polluted bushes, signaled by them turning green. Meanwhile, the game is not yet

38



4.1. IMPLEMENTED GAMES

Table 4.1: Games Characteristics

Clean the Bush Carry the Box Capture the Flag
Agent Type Single Agent Multi Agent Multi Agent

Gameplay Type Individual Cooperative
Cooperative
Competitive

Positive Rewards Cleaning a Bush
Picking up a Box,
Delivering a Box

Capturing a flag
Recover a flag
Pick up a ball
Hit player with ball

Negative Rewards
Colliding with
Obstacles

Colliding with
Obstacles

Obstacle Collision
Getting hit by ball
Losing Ally Flag

Observations

Ray-Trace Vision
Self Position
Cleaning Action State
Is Inside bush State

Ray-Trace Vision
Self Position
Delivery Zone
Position
Carrying Box State

Ray-Trace Vision
Self Position
Flags Position
Ally Field Position
Has a Flag State
Has a Ball State

over as in the distance is possible to see that not all bushes have been cleansed as some of

them are still purple.

This game was chosen as the first testing game, as it is a good example to test self-

learning techniques in simple environments. This game is a game that has a singular way

of gaining rewards by cleaning the bushes, and a single way of losing rewards by colliding

with obstacles. This means that the bots only have to learn how to walk into the bushes,

perform cleaning while in there and avoid the obstacles in the way. If the self-learning

bots are unable to learn a scenario as simple as this, then these methods to create bots are

useless as they won’t be able to successfully teach the bots more complex games.

Figure 4.1: Screenshot from Clean the Bush game in the initial state with all bushes
polluted.

39



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

Figure 4.2: Screenshot from Clean the Bush game after the player cleaned some of the
bushes.

4.1.2 Carry the Box

In the game Carry the Box, two players are in a warehouse site and have to transport

the boxes from the initial zone to a carriage as seen in Figure 4.3. The trick here is that

the zone has two floors: The upper one where the boxes are, and the lower one where the

carriage is. So to complete the game the players start each on a different floor, and the

one on the upper floor carries the boxes to a ramp that leads to the lower floor, and the

player that plays on the lower floor waits for the boxes to drop and carries them to the

carriage.

So to complete the game, the players have to work together to carry the boxes to the

Figure 4.3: Screenshot from Carry the Box game in the initial state with all boxes in the
upper level.

40



4.1. IMPLEMENTED GAMES

Figure 4.4: Screenshot from Carry the Box game after some of the boxes were moved.

carriage as quickly as they can. To do this, the players can move forward and backward

using the W and S keys and rotate left and right using the A and D keys. To hold the box

the players simply have to touch them and they will pick them up, being unable to pick

up another box while they are still holding a box. To drop the box and the destined zone,

they simply have to enter the red zone and the box will be dropped moving it to either

the ramp or the carriage depending on whether the box is on the upper or lower floor.

In Figure 4.4 we can see a game state where the players have already moved some of

the boxes, having some of them being held by the players, others at the carriage, some on

the lower floor and ramp, and the rest still in the initial upper floor.

This game was chosen as the second test as it provided a good example of a simple

scenario with some variations. As for the reward system, it is as simple as the previous

one, the player receives rewards for carrying a box successfully to the destination, and

loses rewards for colliding with the borders of the area. In the player department, this

one seems more complex as it has two players cooperating to get the same results, but

with a closer look, we can see that it is not the case. Although there are two players that

play different roles, their tasks as exactly the same. Each player needs to find a box, pick

up the box and carry it to the red area. This means that in reality, the bots of this game

can learn from the same behavior with no need to distinguish teams. A well-trained brain

for a bot in the upper level should be a well-trained brain for a bot in the lower level as

well.

4.1.3 Capture the Flag

The last tested game was the game Capture the Flag. In this game, two teams of three

players compete to steal the opposing team’s flag and return it to their teams’ side. The

field is made of two symmetric halves with inner walls to provide hiding spots for the

41



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

Figure 4.5: Screenshot from Capture the Flag game.

players. Besides the walls, it is also placed in the field six balls (initially three in each

field) that the players can pick up and throw to stun the enemies and make them drop

the flag in case they’re holding it. If a flag is dropped outside its spawn area it can be

picked by the rival team to resume their heist on the flag, or retaken by the ally team in

which case the flag automatically transports to the spawn point. In Figure 4.5 it is seen

the capture the flag field as described before.

To win this game, players have to compete with the opposing team and cooperate with

the ally team to steal the opposition flag first, while defending the team’s flag. To do this,

the players can move forward and backward using the W and S keys and rotate left and

right using the A and D keys. Besides the controls already present in the other games, the

players can strafe left and right using the Left Arrow and the Right Arrow keys. To pick

up the balls the players just have to walk through it, as it will automatically pick them

up, and can throw them in the direction they are facing by pressing Space-bar.

In Figure 4.6 we can see the point of view of a player playing the game, in which he

Figure 4.6: Point of view image of a player in Capture the Flag.

42



4.2. GAME IMPLEMENTATION

can see two other players, one from the white team holding a ball, and one from the blue

team stealing the white team flag. Since in the game multiple episodes are played, it is

also possible to see the scoreboard in which the blue team is winning 5 to 3 against the

white team.

This last game was chosen to provide results in a more complex game scenario. In this

game no only we have a total of six players, but the behaviour of the bots needs to be split

into two teams so each bot knows how to play in cooperation with their team but also

in competition with the opposing team. Besides this, this game also has a more complex

reward system. Obviously the main source of gaining and losing rewards is the game

result, if your team wins you get rewards if your team loses you lose rewards. But since

the game have many secondary interactions some of these also need to be considered for

rewards.

First of all, it makes sense to reward players for capturing/recovering a flag since

it is the most important task to win the game. Hitting players with a ball can also be

considered for rewards. If you hit a member of the opposing team it makes sense to get

rewards since you stun an enemy for a couple of seconds and may cause him to drop the

flag. Meanwhile hitting an ally player you should lose rewards since you are setting your

team back by incapacitating a member for a couple of seconds. With this game we’ll be

able to see how the self-learning bots fair off in a more complex game with more variants,

seeing how they do in both the cooperative and in the competitive parts of the game.

4.2 Game Implementation

In this section, we are going to see how the games were implemented to support

the different needed components to create the self-learning bots. First, we are going to

review what was needed to do in each game to teach bots how to play using reinforcement

learning. Then we are going to talk about the adaptations that are needed to create bots

that learn through imitation and how to create game scenarios where human players can

play and record demonstrations that bots will use to learn the game. Lastly, as a follow-

up on imitation learning we are going to see how to implement a multiplayer game that

allows multiple human users to play and record the demonstrations simultaneously for

games that require multiple bots to interact with each other.

For the context of this thesis, we consider an Episode to be each full iteration of a

game played. This means than an episode is the entirety of events that happen from the

moment a game round starts to be played to the moment that same round ends either by

the objective being completed or by exceeding the time limit.

4.2.1 Reinforcement-Learning

As seen in Section 3.2.1, Reinforcement Learning bots learn by exploring the game

autonomously by doing random actions and slowly learning how to perform their actions

43



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

Figure 4.7: Action specification in the Unity3D inspector

as they receive/lose rewards as the algorithm analyses the observations the bot has when

a reward is given, and as rewards accumulate the algorithm starts to understand patterns

of actions leading to observations and observations leading to rewards.

Since the main components needed to teach bots using Reinforcement Leaning are

Actions, Rewards and Observations, in this section we are going to talk about what

is needed to implement these components using a generic game engine and machine

learning library followed by a specification of how Unity 3D and the ML-Agents plugin

allowed the implementation of the different components.

The actions for the bots are equivalent to what the input controls are for humans.

The actions are what will tell the bot that it should move forwards or backward, turn left

or right among all the other interactions the player needs to do. As mentioned before,

human users need to use input devices like a keyboard to perform their actions, like using

the WASD keys to move as is the case in all the games implemented. But the bots cannot

press keys on a keyboard, so they need another method to process their actions. This

method is through numeric values. With numbers, we can map the values given by the

algorithms to actions similar to keyboard presses.

Reinforcement learning and most agent-based machine learning algorithms can in-

terpret actions in either continuous or discrete values. In continuous values, the range

usually goes from -1 to 1 as normalized values help algorithm efficiency. Meanwhile, the

range in discrete values needs to be specified as they go from zero to the desired integer.

In our games, since the actions from the human perspective are all keyboard inputs, it

makes sense to use discrete values. Since you can’t half press a key on the keyboard using

a continuous value will only increase learning difficulty, but if the motion control was

done through a joystick analog or other device that is sensitive to how much it is pressed

then a continuous is the better choice.

In all of the implemented games, at least two discrete values were needed to describe

the movement. The first one to describe motion (W and S keys), raging from 0 to 2, where

0 represents the state where no key is pressed, and each one of the remaining states for

each of the W and S keys. For rotation the same logic is applied, where we have a three

option discrete value, where 0 describes no pressed key, and 1 and 2 represent A and

44



4.2. GAME IMPLEMENTATION

Table 4.2: Mapping of Inputs to Discrete Values

0 1 2
Movement No movement Forwards Backwards
Rotation No Rotation Left Right
Actions No Action Clean

D. In the Clean the Bush game, besides the movement the F can be pressed to clean a

bush, this was represented by another discrete value with 0 for no key pressed and 1 for

F key pressed. This same logic was applied for the extra actions in capture the flag, the

strafe movement can be represented by a three option discrete value and the throw ball

command by a two value discrete value as seen in Figure 4.7 and in Table 4.2.

To do this using Unity3D game engine and the ML-Agents plugin, we can use a script

from the ML-Agents which is the Agent script. This script must be attached to every bot

that needs to learn, and establishes the connection between the algorithm and the game

engine. In it, there is a function called OnActionReceived, on which the algorithm sends

the numeric values requested in the game engine as shown in Figure 4.7, and then the

developer has to map the values to the actions as one would map the keyboard presses.

The rewards, as mentioned before, is what triggers the algorithm to try to map actions

and observations to what is good or not. This makes the definition of a reward system one

of the key elements in reinforcement learning which without the bots are unable to learn

effectively. To see how game engines can be used to implement efficient and easy-to-make

reward systems we are first going to see what rewards are given in each game followed

by an explanation of which game engine tools can be used to detect reward opportunities

and give them to the bots.

In Clean the Bush the reward system is quite simple as the only influencing factors

are if the bot is cleaning the bush and if it collided against an obstacle. So in this game

the bot receives a little bit of reward for each moment he is cleaning the bush which

Figure 4.8: Colliders of the bot and the bush in Clean the Bush game.

45



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

accumulates to a substantial reward as more bushes get cleaned, and the bot loses some

rewards each time it collides with an obstacle. This way the bot gets incentives to find

and clean bushes, but also to avoid the obstacles in the way. In Carry the Box, the system

is really similar as the bot receives rewards for picking up boxes and for dropping them

at the objective area, and loses rewards for colliding with borders and obstacles.

In the Capture the Flag game, the reward system is more complex as more variants

need to be looked at. First of all, since this game is a multiple bots game with different

teams in the behavior, rewards are given as a team, This means that the rewards one bot

gets, all the bots from the same team will also get. Successfully taking the opposition flag

you allied spawn zone is what prompts the game over screen with a victor and defeat,

so completing this task awards a large number of rewards to the winning team, and

penalizes the losing team the same large amount of rewards. To retrieve the enemy flag to

your spawn area, first, you need to get a hold of the enemy flag, so catching the opposing

team flag also wins rewards. Likewise, recovering the allied flag after it being stolen gets

the bots some rewards. Then we have the ball interactions. Hitting an enemy with a ball

gives rewards while hitting an ally loses rewards. Getting hit by a ball will also result in

rewards being taken. Lastly, running into walls will result in rewards lost, since we don’t

want our bots to bump into them constantly.

So now that we saw how rewards were given in different games we can talk about

how game engines allow us to detect the mentioned events and give rewards for them.

The main tools in a game to detect such events are collision detection and variable. For

instance, in the Clean the Bush game where only two events cause rewards change, we can

use collision detection to know when the bot bumps into obstacles to trigger the reward

loss. To know if a bot is cleaning, we can use collision detection to know when a bot is

inside a bush, and then check if the bot’s variable that represents if it is cleaning or not,

and the variable that represents if the current bush is polluted or not, giving it rewards if

Figure 4.9: Colliders of the bot and the bush in Clean the Bush game.

46



4.2. GAME IMPLEMENTATION

it’s performing the cleaning action while inside a polluted bush. This collision detection

is facilitated when using a game engine since they have pre-built collider systems that

automatically detect contact with other colliders. In Figure 4.8 we can see the Unity3D

collider system that is used to detect collisions.

The last key component, the observations, is a representation of what the bot sees

and knows through numeric values. This numeric representation of what is seen is what

allows for the algorithms to discover similarities in these numbers each time a reward

is given, and discover what to look for and what to avoid. These observations will most

of the time be ray trace hits to simulate vision, as well as the representation of the bot’s

world coordinates, the local rotation, and the vector that represents the forward direction

the bot is facing. In the Clean the Bush game, besides the mentioned observations, the

bot also knows if he is performing the cleaning action or not. Similarly, in the Carry the

Box game the bot knows if he is carrying a box, as well as the world coordinates of the

destiny location.

In capture the flag, the bot has a larger number of observations as more things are in

play. Besides the common observations mentioned, the bot knows if it holds a ball, if it

holds a flag, the world coordinates of the allied flag and of the enemy flag, and a vector

pointing toward the enemy flag (to facilitate the bot understanding the objective), and a

vector pointing towards home spawn so the bot knows where to take the flag.

To represent these observations, both Unity3D and ML-Agents have some tools that

facilitate the development process. The ML-Agents contains a script that provides ray-

tracing vision, as seen in Figure 4.9, which automatically supplies to the algorithm the

numeric representation of the ray trace hits. In the Agent script mentioned before, it

is also available the function CollectObservations that allows us to supply the rest of

the observations using typical Unity scripting tools. Everything that represents a world

coordinate or a vector can be represented using a Vector3 variable, and every flag-typed

variable can be passed as observation through its boolean value as seen in the code snippet

in Figure 4.10.

Figure 4.10: Code snippet of the CollectObservations function in Clean the Bush game.

47



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

4.2.2 Imitation

As seen before in section 3.2.2, imitation learning uses a sample of demonstrations to

teach the bots how to play by mimicking the behavior in the demonstrations. Although

these demonstrations can be human-based on computer-based, in this thesis the focus

was on teaching bots through human behavior, so only humane imitation techniques were

used. In this section, we are going to see what was needed to obtain these demonstrations

based on human behavior and how to use them to teach bots.

In this paradigm, two of the main components mentioned for Reinforcement Learn-

ing still stand: the Actions and the Observations. In Imitation Learning, rewards are

not necessary as the algorithms have automated reward systems based on similarity to

demonstrations, but they can still be optionally used since Imitation Learning can be

used simultaneously with Reinforcement Learning. As for the other components, they

work the same as in Reinforcement Learning. The actions need to have a numeric rep-

resentation so the algorithm can tell the bot what to do, and observations are a numeric

representation of what the bot sees and knows.

Now the question is, how to record a human-player game session, and save it as a

demonstration file that can be interpreted by the algorithms. First, let us remind that a

demonstration is a data structure that maps the actions the player takes to the observa-

tions it has in that instance. This means that to form a representation we need to convert

the player input (such as pressing WASD keys to move) to the numeric representation the

bots have for those actions. As seen in the previous section, the numeric representation

for actions is not hard to obtain, since they are either a continuous number between -1

Figure 4.11: Code snippet from Heuristic function to represent WASD movement as
discrete values.

48



4.2. GAME IMPLEMENTATION

Figure 4.12: User playing the Capture the Flag game to record a demonstration.

and 1 or a discrete integer number between zero and the desired value. We even exem-

plified the numeric representation of every action in every game through discrete values

in Section 4.2.1, such as movement being a value from 0 to 2 to represent no movement,

forwards, and backward.

In the Agent script from the ML-Agents plugin mentioned in the previous section,

there is a Heuristic function that eases the conversion from human input to numeric

representation. Instead of having a dedicated script for the player movement, we can use

this function to describe the inputs as numeric values as seen in Figure 4.11, and then the

OnActionReceived mentioned before will take the numeric representation and perform

the movement/actions as if it was provided by the algorithm.

We have now seen how to convert human inputs to numeric values that the algorithm

and the bot understand, now we just need to have a system that saves the mapping

between the user input and the observations. One way would be to map at every other

frame of the game a list of actions taken and map it to a list of observations obtained. In

the ML-Agents plugin, there is a script that automatically does this. Once the script is

attached to a player with the Agent script, it will record the play session and save a file

with all the mappings of actions to observations.

With all this done, it is simply needed to have the game ready and let human users

play it to record demonstrations as seen in Figure 4.12. It is possible to train bots using

multiple demonstrations at once, and the more demonstrations are provided the better

the final result should be as there is a bigger sample of mapping for the algorithms to

find similarities to the bots’ current state. Worthy to note that only demonstrations of

players who know how to play the game are useful, as the algorithm has no way to know

if a player is playing badly, meaning that providing a demonstration of a bad player will

49



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

Figure 4.13: Capture the Flag Connection Screen

create the chance the algorithm takes those mapping as an example for the bot to follow.

4.2.3 Multiplayer

Now all that is left to be able to train our bots is to look at the Capture the Flag game.

With this game being, at its nature, a 3vs3 game, it supports multiple users playing at

the same time, meaning that a multiplayer component must be implemented for this

game. This is needed so that the human users can play and record demonstrations at a

competitive level by playing other humans so that the comparison between demonstration

observations, and the bot’s observations is as realistic as possible so the learning is more

effective.

The first step in designing the multiplayer is defining how the connection is made.

For this, we used the Unity Netcode plugin which allows us to connect to a host player

simply by putting the host’s public IP address. To establish this connection we created

a menu, as exemplified in Figure 4.13, which has the option to start a game as either a

host or a server, or to connect as a client with a space to input the host IP to establish the

connection. After establishing the connection, there is the option to input a game name

for better immersion, the option to choose which team the player will compete on, and

the list of connected players divided by the selected team.

Then we have to look at the network object. Network objects are those that need

to be constantly synchronized between all connected players so that the game state is

consistent. The objects usually are those whose state (position, rotation, variable, etc...)

are dynamic and in constant change. All other objects who are static and see no relevant

change during gameplay don’t need to be synchronized since their state should remain

the same through all connected players regardless. If we take a game of football as an

example, the ball would be a network object since it’s in constant motion and is essential

that all players see it the same while the goal posts wouldn’t be a network object, since

50



4.2. GAME IMPLEMENTATION

Figure 4.14: Screenshot from the Capture the Flag game, where it is shown the three
network object types: the players, the flags and the balls.

their position is always the same no matter what happens in the game.

For the capture the flag game, we have three groups of objects that will be network

objects and thus synchronized: Players, balls, and flags.

The flag and the ball are the simpler network objects. The flag mostly coordinates its

position, having as only variables a boolean that states if the flag is picked up by a player

or not. The Ball is pretty similar since it mostly coordinates positions, and a boolean if it

is picked up, but also has a variable about the user who last picked up the ball.

The players, like all others, also have to coordinate their positions. But besides this,

they also have information about which ball and/or flag they are holding, the inputs

pressed by the user so it can be supplied to the ml-agents interface, and if it is stunned so

it can’t move after being hit. In Figure 4.14 we see a screenshot that displays all network

objects in action: the two players, the flag, and the ball both being held by players.

Having defined how to establish a connection and which objects need to be synchro-

nized, we can use the Unity Netcode plugin to create the online connection and handle

the synchronization. With this plugin, we can create a Manager Script that reads inputs

Game Manager
(Client)

Read Inputs

Player Network Object
(Client)

Convert Inputs

Bot
(Client)

Move

Player Network Object
(Server)

Process Colisions

Bot
(Client)

Save Mappings

Figure 4.15: Multiplayer Execution Flow

51



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

and communicates with the server to send and receive new game states. The server is

responsible for all collision calculations so that these are consistent amongst all players.

This means that upon receiving information about a state change in a player, the server

will calculate all collisions and send them back to all players so everyone has a consistent

game state.

Now we can take a better look at how the game will flow with the multiplayer as

shown in Figure 4.15. Upon the start of the game players will starts pressing inputs that

are read by the Game Manager to move their characters. These inputs are then sent to

the player network object on the client side and converted into discrete integer values

that can be read by the agent. The agent script will read the values and perform the

movements and actions upon command. After moving, on the server side, the collisions

are calculated and processed causing the player to be stunned, catch the balls and flags,

and upon receiving the result of the collision detection the player-controlled bot can save

the mappings of actions/observations to save in the demonstration.

4.3 Training

After seeing how we prepared games for training bots with Reinforcement and Imi-

tation Learning algorithms it’s time to proceed to the training phase of the bots. In this

thesis, we will focus more on training through Reinforcement Learning using the PPO

and MA-POCA algorithms, and Imitation Learning using Behavioural Cloning and GAIL

algorithms.

During training, it is generated for each bot a log file with different relevant metrics

for evaluation. The contents of these logs will be further explained in Section 5.1 where

the metrics used to evaluate the training results will be exhibited and discussed. To

initiate training, the configurations of the algorithms and a form of connection to the

game engine environment are needed. Using Unity3D and ML-Agents plugin this can

be achieved using the python-based ML-Agents library that reads a configuration file

that dictates the used algorithm and used parameters, and automatically detects a unity

environment to connect with and start training.

Figure 4.16: Unity training environment and ML-Agents console

52



4.3. TRAINING

Table 4.3: Configuration Parameters for RL Training

trainer_type PPO MA-POCA
batch_size 1024 2024
buffer size 10240 20240
learning_rate 3e-4 3e-4
epsilon 0.2 0.2
lambd 0.95 0.95

In Figure 4.16 we show an example of the Unity training environment as well as the

ml-agents console in the middle of a training session. To ease the evaluation of the results

for the imitation algorithms, during demonstration recordings the human-controlled

bots generate the same log files as the AI bots. The only difference is during training

some default values may generate for bots since these have a time limit on each episode

(Each iteration of the game played) which may lead to unfinished scenarios compared to

demonstrations where humans always finish their tasks.

Now that we spoke about how to start training and that during the process logs are

generated to help analyze the results, it is left to speak about the training parameters.

These parameters are different for Reinforcement Learning and Imitation Learning, and

although there are many parameters that can be tweaked during training, only the most

relevant ones are going to be mentioned.

For Reinforcement Learning the parameters1 that were the most relevant during the

training were: Batch Size, Buffer Size, Learning Rate, Epsilon, and Lambd. The batch size

is the number of experiences/examples produced by the algorithm over each iteration of

training. Related to batch size, buffer size is the number of these experiences/examples

the algorithm should collect before updating the policy, this is, how the bot behaves. This

parameter should be a multiple of the buffer size, so we don’t have examples sampled from

an iteration split between different buffers. The learning rate is the initial rate for gradient

descent, as it corresponds to the strength of each gradient descent update step. In other

words, the learning rate is how strongly the buffer experiences affect each policy update,

as it shouldn’t be too high as it hinders learning early during training, nor it should be too

low as it prevents the bot’s ability to learn. The epsilon influences how rapidly the policy

can evolve during training. It corresponds to the acceptable threshold of divergence

between the old and new policies during gradient descent updating meaning that setting

this value small will result in more stable updates, but will also slow the training process.

Finally, the lambd can be thought of as how much the bot relies on its current value

estimate when calculating an updated value estimate. Low values correspond to relying

more on the current value estimate (which can be high bias), and high values correspond

to relying more on the actual rewards received in the environment (which can be high

variance). The values used for each of the policies of RL (PPO for Clean the Bush and

1ML-Agents Parameters, https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-
Configuration-File.md , Last Access: September 2022

53



CHAPTER 4. GAMES WITH SELF-LEARNING AGENTS

Carry the Box, and MA-POCA for Capture the flag) can be seen in Table 4.3.

For imitation learning, mostly the default values were used, with the most relevant

being the strength of imitation being set to 1, which maximizes the learning through

imitation. Since imitation can be used in junction with reinforcement learning there

are setting where having an imitation learning strength lesser than one makes sense to

balance what the bot learns with imitation, and what he learns with RL, but since the

focus of the thesis is with pure imitation, we leave the strength set to one.

54



5

Evaluation

To evaluate the results of the different training, several metrics were defined to let

us compare the performance of the bots while learning with reinforcement learning and

with Imitation Learning. In this chapter, first, we are going to discuss which metrics were

used in each game and how they help us evaluate the performance of the bots. Then, we

will expose the various results of the different training sessions and discuss what it shows

us about the bot’s progression and performance.

5.1 Metrics

In this section we are going to see which metrics were chosen to evaluate the bots level

of play in the different implemented games, and why these metrics were chosen. These

metrics must be values that in some capacity measure the quality of play from the bots,

such as measuring times for speed analysis, or track certain variables that influence the

result of the game.

5.1.1 Clean the Bush

To analyze the results of the entire bot training process using Reinforcement Learning,

Imitation learning and the resulting usable bots, we first defined metrics to evaluate the

training process in reinforcement learning displayed in Table 5.1 , followed by metrics

to evaluate the resulting bots and the human recording sessions, finishing by metrics to

evaluate bots though with imitation learning.

Table 5.1: Metrics for Clean the Bush game

Metric
A1 Episode Times
A2 Time in Bushes
A3 Pollution Cleaned
A4 Time Cleaning

55



CHAPTER 5. EVALUATION

The first metric defined, A1, was the episode times (each episode represents an

episode of the bot cleaning the bushes) through the course of training. These times

include the total episode time, the time the bot took to clean 10 out of the 12 available

bushes and the time the bot needed to clean half of the bushes. Assuming the bots can

learn to beat the objective within the time limit, this allows us to see the progression of the

bot getting faster at beating the game and analyze if there was a threshold where the bot

couldn’t get faster. Having the times at certain checkpoints also allows us to comprehend

if at certain point the bot was able to clean bushes when many were available and only

struggled to find the last few ones or if there simply was a general struggle in cleaning in

the first place.

The next metric, A2, was the time spent in bushes by the bot though the training

process. This metric allows us to analyze the progress of the bot learning that the bush is

where rewards can be obtained, and in conjunction with the next metric A3, the amount

of pollution cleaned, also permits to identify if there was a point where the bot was in

bushes but wasn’t cleaning, and how efficient the bot was in cleaning the bushes once

it was there. The amount of pollution cleaned, is a value created to quantify how much

the bot has cleaned. Each unit of this value is equivalent to 2 seconds spent cleaning a

bush, which is why in conjunction with time spent in bushes it allows us to infer the bot

efficiency once inside a bush since the required time to clean a bush is equal to 2 times

the amount cleaned.

The last training related metric, A4, was the time spent performing the clean action.

This metric aims to see if the bot is defaulting to cleaning all the time instead of cleaning

only when inside a bush. Time spent cleaning can be compared to time spent in a bush

to see how much time the bot was performing the cleaning action compared to the time

it should have spent performing that action.

Then we analyze average times and values of the previous mentioned metrics, as well

as its deviations from the mean and compare it to results obtained by human users during

demonstration recordings. This values aim to see if the level of the final bot is on par with

the level during final episodes of training as well as compare it to the human level and

see if it performs better or worse. To display the imitation learning results, these metrics

will be displayed but as a progression graph as more demonstrations were used to train

the bots.

5.1.2 Carry the Box

To analyze the results of the entire bot training process using Reinforcement Learning,

Imitation learning and the resulting usable bots, we first defined metrics to evaluate the

training process in reinforcement learning shown in Table 5.2, followed by metrics to

evaluate the resulting bots and the human recording sessions, finishing by metrics to

evaluate bots though with imitation learning.

Metric B1 is the episode times (each episode represents an episode of the bot carrying

56



5.1. METRICS

Table 5.2: Metrics for Carry the Box game

Metric
B1 Episode Times
B2 Boxes Carried
B3 Time Carrying Boxes
B4 Rewards

the bots) through the course of training. Assuming the bots can learn to beat the objective

within the time limit, this allows us to see the progression of the bot getting faster at

beating the game and analyze if there was a threshold where the bot couldn’t get faster.

The second metric defined, B2, is the number of boxes a bot successfully carried in

each episode. This allows us to observe how long the bot took to learn to complete its

objective, and compare it to the previous values to access how efficient the bots are. Metric

B3 is the time the bots spent carrying the boxes during the course of training. This allows

us to analyse the progress of the bot learning that it has to carry the box, and then also

see the progress if the bot gets faster at getting the boxes to the objective zone.

The last metric, B4, is he rewards obtained by the bot over time. This allows us to have

a general view of how was the progression of the bot not only in learning the objective,

but also in avoiding penalties.

To evaluate the level of the bot after the training, we analyze average times and values

of the previous mentioned metrics, as well as its deviations from the mean compared to

same values obtained by human players. This allows us to see if the level of the final bot

is on par with the level during final episodes of training, as well as compare the level

to the human level. To display the imitation learning results, the same metrics will be

displayed but as a progression graph as more demonstrations were used to train the bots.

5.1.3 Capture the Flag

Same as the other games, to analyze the results of the entire bot training process

using Reinforcement Learning, Imitation learning and the resulting usable bots, we first

defined metrics to evaluate the training process in reinforcement learning as displayed

in Table 5.3 followed by metrics to evaluate the resulting bots and the human recording

sessions, finishing by metrics to evaluate bots though with imitation learning.

In metric C1, we will compare the overall average episode time obtained during play.

With episode times, it is possible to see if any of the bot teams were able to beat the other

within the time limit and if they got faster at it. Then in metric C2 the teams’ performance

will be compared by analyzing ratio between wins, losses, and draws, between the 2 teams,

by comparing average episode times on wins, and the average rewards obtained by the

bots on those teams. This allows us to see if one team learned better than the other.

In metric C3 we start by compare the rewards obtained by the bots through the train-

ing process, as this allows us to see how the bots did in learning to play the game and

57



CHAPTER 5. EVALUATION

Table 5.3: Metrics for Capture the Flag game

Metric
C1 Teams Win Ratio
C2 Episode Times
C3 Rewards
C4 Times when Winning

avoiding penalties. Lastly in metric C4 we will compare the teams’ performance during

play, by comparing average episode times on wins, and the average rewards obtained by

the bots on those teams. This allows us to infer a few conclusions on which conditions the

bots can obtain wins when in a certain team, if the win spread is similar to both teams or

if one team learned better than the other.

To evaluate the level of the bot after the training, we are going to look at averages and

deviations of the previous mentioned metrics and compare it to the human level obtained

during demonstration records. To evaluate the bots of imitation learning we are going to

see the progression of these metrics when different demonstration samples are used, with

some added variances. One of these variances is the average episode time. For this one,

we will study the average times with all episodes, and exclude draw games to how these

times progress with different amounts of demos and if removing the episodes where the

bots defected and were unable to complete the game affects in any way the comparisons

between averages.

5.2 Training Results

In this section we are going to see the results obtained in the metrics explained in the

previous section for each of the games, with the aim to understand how well bots learned

each of the games and try to answer the research question of wetter these methods of

teaching bots are worthwhile to create game ready bots.

5.2.1 Clean the Bush

To train the bots in the game of clean the bush, the bots were put in an environment

with a total of twelve bushes to clean and some spread obstacles to create difficulty to

the bot. For better training results, in each episode the spawn point of the bot and of the

bushes are randomized to increase variance and to encourage the bots to actually learn to

clean the bushes instead of memorizing a set of commands that will always successfully

complete the task.

When the bots are training, six parallel environments are running simultaneously to

increase learning speeds. Since each bot will have comparable behaviour to its parallel

foes only the results of a single environment will be viewed.

58



5.2. TRAINING RESULTS

0 200 400 600 800 1000
Episode

40

60

80

100

120

140

160

Episode Time (s)
Time at 6 Bushes (s)

Time at 10 Bushes (s)

Figure 5.1: Episode time progression through the reinforcement learning training process.

5.2.1.1 Reinforcement Learning

In Figure 5.1 we can see the progression of the time, in seconds, each episode took

through the training process. We can see that in the beginning, the bots couldn’t complete

the game. Very quickly the bot started learning that it should be cleaning bushes and

near episode 100 it could already clean half the bushes in approximately 70 seconds,

while still struggling to clear the 10 bushes checkpoint. Then after the 200th episode, it

0 200 400 600 800 1000
Episode

10

20

30

40

Ti
m

e 
sp

en
t i

ns
id

e 
bu

sh
es

 (s
)

Figure 5.2: Time spent inside bushes by the bots through the reinforcement learning
training process.

59



CHAPTER 5. EVALUATION

0 200 400 600 800 1000
Episode

0

5

10

15

20

Am
ou

nt
 o

f p
ol

lu
tio

n 
cle

an
ed

Figure 5.3: Amount of pollution cleaned from bushes by the bots through the reinforce-
ment learning training process.

started being able to clear the 10 bushes check point consistently seeing it time gradually

drop to 110 seconds by episode 400 and getting times between 90 seconds to 100 seconds

by the end of training. By episode 400 the time needed for half the bushes had already

stabilized near the 50 seconds. As for cleaning all the bushes, after episode 250 the bots

started seeing some successes, but with times very near to the time limit and still very

inconsistently. Until the end of training it gained some consistency in cleaning all 12

bushes and had an average episode time near the 140 seconds.

In Figure 5.2 it is exhibited the amount of time, in seconds, the bot spent inside the

bushes throughout the training episodes. This progression has similar tendencies with

the episode times, as bush times increase in a similar faction that episode times decreased.

Since it takes the bot 4 seconds to clean each bush, to clean all 12 bushes the bot needs at

least 48 seconds. We can see that during training, the bot could not consistently achieve

those values, but could get really close and on some occasions achieve them from episode

300 forwards. These values also show that the bot early on realised that it should be

performing the cleaning action, and that the difficulty was in finding the bushes. If

the opposite were to happen (it knew how to find the bushes but couldn’t perform the

cleaning action), then the bush times would have increased faster then the episode times

would have decreased as the bots would spend time inside bushes without cleaning them.

This last conclusion is further reinforced by Figure 5.3 where it is shown the amount

of pollution cleaned per episode over the training process. The values displayed are

piratically the same as time spent inside the bush, that strengthens the conclusion that

the bot learned right away that it should be cleaning and that the biggest obstacle in

training was finding the bushes.

60



5.2. TRAINING RESULTS

0 200 400 600 800 1000
Episode

50

60

70

80

90
Ti

m
e 

sp
en

t c
le

an
in

g 
(s

)

Figure 5.4: Time spent performing the clean action per episode through the reinforcement
learning training process.

In Figure 5.4 we can see the progression of the amount of time, in seconds, the bot

spent performing the cleaning action. The amount of time the bot spent cleaning was

irregular throughout the the training process. The only consistency is that in all episodes

the bot spent more time cleaning than it is necessary to clean all bushes, since the lowest

value was 50 seconds while only 48 seconds are needed to clean all 12 bushes. This

means that the bot has a problem of over-cleaning (cleaning while outside a bush, or

inside an already cleaned bush). Over training, we can also see that evolution of cleaning

times often shift between increasing values and decreasing values. This means that there

are times the bots sees it is receiving reward penalties for cleaning when not necessary

and tries to decrease the action, but soon after that it sees some prejudice in the other

rewards (not cleaning while inside a polluted bush), and decides that the insurances of

over-cleaning outweigh the penalties. A possible solution to this problem is increasing

the penalties for cleaning when not necessary to make it strong enough to force the bot

to learn to clean only when inside the bushes.

After the training was over, we used the obtained result to make a bot play the game

for some time, and see how it performed. In Figure 5.5 it is exhibited the episode and

checkpoint times obtained by the bot during the course of nearly 250 episodes to see

how was the performance compared to the end training values and if it was consistent

in obtaining them. As it was to be expected, the performance of the bot in the course

of the episodes played was consistent, having an acceptable level of variance that can be

justified by the randomness of each episode bush dispersion. As for the times obtained

during the episode, they tend to be very similar to the values obtained in the last episodes

of training, with a tendency to be slightly lower which means that the final result has a

61



CHAPTER 5. EVALUATION

Table 5.4: Average metric values obtained in the game by the bots and humans.

Bot Human
Average StdDev Average StdDev

Episode Time (s) 127.28 26.16 69.95 2.33
Time at 10 Bushes (s) 84.00 16.26 58.31 2.60
Time at 6 Bushes (s) 43.79 7.69 35.29 2.15
Time Spent in Bush (s) 47.22 2.17 48.88 1.39
Time Spent Cleaning (s) 76.58 11.06 51.29 2.13
Amount of Pollution Cleaned 23.42 1.05 24.00 0.00

slight better performance than in training.

The results of the play session with the final bot result were also computed to calculate

the averages and standard deviations of the metrics analyzed during training. In addition,

these same values were also computed for all the demonstration recording sessions played

with human users, so that a comparison with the human level can be made. These values

are displayed in Table 5.4.

In a first look, the first thing that stands out is that the bot still fall short of the human

level by a significant margin. In time needed to complete the game, the bot averages 127

seconds, while humans only average a time of 70 seconds. This difference of 57 seconds

mean that on average humans only need 55% of the time the bot needs to complete

the game which is nearly half. If we analyze the times obtained in each checkpoint we

can see that this difference is significantly reduced. To clean 10 of the 12 bushes the

difference falls to 26 seconds, and now the human users on average needed 69% the time

the bot needs, and on the 6 out of 12 bushes check point the difference is of 9 seconds and

0 50 100 150 200
Episode

40

60

80

100

120

140

Episode Time (s)
Time at 6 Bushes (s)

Time at 10 Bushes (s)

Figure 5.5: Time spent inside a bush and amount of pollution cleaned from bushes by the
final result bot after training.

62



5.2. TRAINING RESULTS

represents the humans taking on average 80% of the time the boots took to clean those

bushes. This means that the bot falls short to the humans in finding bushes. While most

of the bushes are still polluted and finding one is easy the bot can stay relatively close to

the human times, but as fewer bushes are available the more time the bot takes to find a

bush compared to humans.

Looking into time spent inside a bush and amount of pollution cleaned, the values

between humans and bots were very similar. Since both are able to consistently complete

the game, it makes since that there is not much variance in these values since for the most

part they only correlate with the ability to complete the game and not the speed in which

the game was beaten (only case where this is not true is when the player stays in the bush

without cleaning, which is no the case as seen before). The last metric left to be seen is the

time spent performing the clean action. Once again, the bots perform considerably worse,

as on top of the 47 average seconds they spend inside a bush the spend an additional

30 seconds performing the clean action when they shouldn’t be. Meanwhile the human

users only spent on average an additional 2 seconds cleaning which can be justified by

reaction times. Although this last metric doesn’t have a direct impact on performance, it

is still important this means that visually the bot is doing the cleaning animation while

outside of bushes which is not ideal for a video game experience.

As for variance of the results, once more the bots perform worse than the human

users, as the humans had very little standard deviation in all metrics, while the bots have

high deviation in time related metrics. This shows that humans were very consistent in

completing the game independently of the random dispersion of bushes. Meanwhile the

bots are heavily affected by this randomness as some bush dispersions can create to the

bots more difficulties in finding the bushes which influence a lot the time the bot takes to

beat the game.

5.2.1.2 Imitation Leaning

A total of twelve distinct ten minute game sessions were played to obtain demonstra-

tion recordings. The results for these demonstration games are displayed in Table 5.4.

In these results, the most relevant numbers are the average time that each episode took,

which was 72.96 seconds, the time spent in a bush per episode which was 49.50 seconds,

and that the amount of time spent cleaning in each episode averages 51.86 seconds which

is only 2.36 seconds more to the time spent in a bush which tells us that the users who

player were efficient in their clean action usage. To train the bots, diverse training ses-

sions were carried out started by using 20 minutes of demonstration and adding extra 20

minutes each new train until all 120 minutes were used.

In Figure 5.6 we can see the progression of episode times and the cleaning checkpoints

as more time of demonstration was used to train the bots. In these results is is possible

to see that bots trained with up to 40 minutes of demonstrations, couldn’t even complete

the first checkpoint of cleaning 6 bushes, and when using 60 minutes of demonstrations

63



CHAPTER 5. EVALUATION

0
20
40
60
80

100
120
140
160
180

20 40 60 80 100 120

A
v
e
ra

g
e
 T

im
e
 (

s)

Demonstration Time (min)

Average Times

Episode Time Time at 10 Time at 6

Figure 5.6: Average episode times obtained in bots trained by Imitation with different
demonstration samples. Each episode has a time limit of 160 seconds.

the bots could complete the 6 bushes checkpoint, but still couldn’t complete the others.

Only after using a sample size with over an hour of demonstrations the bots became able

of completing all the checkpoints consistently and start beating the game. After the bots

became capable of completing the game it can be seen that as more demonstration time

was used the faster they became having every checkpoint drop its time. To clean 6 bushes,

bots trained with 60 minutes of demonstrations needed on average 107 seconds while bots

trained with all 120 minutes only needed on average 48 seconds to clean the same amount.

To clean 10 bushes the same drop can be seen as the times dropped from 138 seconds

to 96 seconds with bots trained with 80 and 120 minutes of demonstrations respectively.

The total episode time also decreases going from 158 seconds to 140 seconds.

In Figure 5.7 we see the average amount of pollution the bots trained with different

demonstration times were able to clean along with the standard deviation of these time.

This metric provides a bit more insight into how the level of the bots progresses as it isn’t

depended in bots achieving a certain checkpoint. Once more, it is possible to see that

the level of the bots gradually increase as more demonstration time was used to train,

as in the beginning the bots could barely clean any pollution, then with 40 minutes of

demonstration bots could clear the equivalent of 2.5 bushes (each bush has an amount of

2 pollution), and the gradually increasing the amount cleared up until the end where bots

could clear an amount of 23 pollution which means on average it cleaned 11.5 bushes per

game. Looking at the deviations, we can see that overall all bots were consistent in the

amount they would clean as the amount cleaned never tented to deviate more than 2.5

from the average amount.

In Figure 5.8 we see the times the bots spent inside a bush and performing the cleaning

action. Looking at times spent in bush first, we can see that once more this time increases

64



5.2. TRAINING RESULTS

as more samples were used to train, and that the times are very close to the minimum

time needed to clean the amount of pollution each bot cleaned on average (each unit

of pollution cleaned corresponds to 2 seconds cleaning). This shows that the bots don’t

spent more time than necessary inside of a bush independently of how much time of

demonstrations was used to train. Looking at times spent performing action, we can see

that even in imitation the bots have a hard time of understanding that they should only

clean while inside a bush, spending way more time doing the cleaning action than they

were inside a bush.

To summarize what can be concluded, it can be seen that more time of demonstrations

means increase of performance for the bots. When more samples were used the bots got

faster at doing their tasks and were able to clean more bushes. As for comparison to both

human level and reinforcement learning, it can be seen that even when all 120 minutes

of demonstrations were used, this method falls short to reinforcement learning trained

bots and these last ones were faster at cleaning the bushes. This means that both these

methods are still quite far to the human level, as time needed to clear the first check point

of 6 bushes are 8 to 11 seconds faster compared to both RL and Imitations, and the time

humans needed to clear the game on average are 57 to 70 seconds faster than the bots

trained with both these methods.

5.2.2 Carry the Box

To train the bots in the game of carry the box, the bots were place in an environment

with two levels (the upper and the lower level), where the upper bot had to carry a total of

6 boxes and the lower bot had to carry a total of ten boxes (four initial boxes to accelerate

learning plus the six boxes from the upper level). For better training results, in each

0

5

10

15

20

25

20 40 60 80 100 120

A
m

o
u

n
t 

C
le

an
ed

Demonstration Time (min)

Pollution Cleaned

Avg Pollution Cleaned Std Deviation

Figure 5.7: Average amount of pollution cleaned from bushes by bots trained with Imita-
tion.

65



CHAPTER 5. EVALUATION

0

20

40

60

80

100

120

20 40 60 80 100 120

Ti
m

e 
(s

)

Demonstration Time (min)

Bush and Cleaning Times

Avg Time in Bush Avg Time Cleaning Std. Dev Time in bush Std. Dev Time Cleaning

Figure 5.8: Average time spent inside of bush and average time spent performing the
cleaning action by bots trained with Imitation.

episode the spawn point of the bot and the boxes are randomized to increase variance and

to encourage the bots to actually learn to find and carry the boxes instead of memorizing

a set of commands that will always complete the game successfully.

When the bots are training, six parallel environments are running simultaneously to

increase learning speeds. Since each pair of bot will have comparable behaviour to its

parallel foes only the results of a single environment will be viewed.

5.2.2.1 Reinforcement Leaning

The first metric seen for the game of Carry the Box is the time each of the bots needed

to complete their task which can be seen in Figure 5.9. Throughout the training process

the bots got gradually faster at carrying their boxes, only stabilizing their times after

episode 1000. One noticeable difference is that the lower level bot has a more steady

decrease of times as well as them being more consistent while the upper level bot have

bigger spikes in time decreases as well as having more inconsistent times. This can be

explained due the fact that every box in the upper level is randomly place having different

distances to the destined box drooping spot, while the lower level bot only has the initial 4

boxes with randomized positions while the 6 that drop from the upper level have similar

positions. This causes the upper level times to have higher variance as luck in spawn

positions can influence the times a lot while the lower level has some variance in the

first boxes but most of them have the same position to the destination leading to more

consistent and less luck dependent times.

In Figure 5.10 we see the progression of the number of boxes carried in each episode

66



5.2. TRAINING RESULTS

0 200 400 600 800 1000 1200 1400
Episode

40

50

60

70

80

90

100

110

120
Ti

m
e 

to
 c

ar
ry

 a
ll 

bo
xe

s (
s)

UpperLevel Bot
LowerLevel Bot

Figure 5.9: Progression of the time of each game iteration (episode) through the reinforce-
ment learning training process

0 200 400 600 800 1000 1200 1400
Episode

0

2

4

6

8

10

Nu
m

be
r o

f b
ox

es
 c

ar
rie

d

UpperLevel Bot
LowerLevel Bot

Figure 5.10: Number of boxes successfully carried to the destination by both bots during
the reinforcement learning training process.

by each bot. With this we can see that the bots took about 200 episodes for the upper

level bot, and 300 episodes for the lower level bot, to learn how to carry all the boxes

to the objective zone. This can be seen as it was near these marks the bots successfully

carried 6 and 10 boxes respectively during training. After this mark, each bot needed

near 100 extra episode to consistently carry all boxes in nearly all remaining episodes

with exception of a few.

67



CHAPTER 5. EVALUATION

In both of the metrics viewed so far, it can be seen that both bots tend to learn at similar

rates, with the lower level bot taking some more time to carry all boxes and needed a

few extra episodes to successfully carry all boxes as it has to deliver more boxes than its

upper level counterpart. This strengthens the idea the even though they are performing

in different places with slight differences in their task, the same behaviour can be used

for each bot as the core of their job is the same, so knowing how to perform in one level

means the bot also knows how to perform in the other level.

In Figure 5.11 we see the time each bot spent carrying a box. The progression of this

metric is similar to the progression of boxes carries, as they peak and stabilize around the

same number of episodes. This shows that by the time the bots consistently carried all

boxes, they knew how to go to the box delivery spot as fast as they could. This also means

that the variance in time to complete the objective is in getting to the boxes and not in

carrying them to the objective area. With this it is also possible to conclude that most of

the learning done from episode 300 further was in picking up the boxes faster as this is

the only way left to decrease the times since the time spent carrying boxes was constant

throughout the episodes.

In Figure 5.12 we see the rewards obtained by the bots over the episodes they played

during the training process. With these values we can see how the bots did in terms of

learning how to do the positive actions but also avoid the negative ones. We can see that

the rewards increased very quickly, only having negative rewards in the first few episodes

and stabilizing after 200 episodes for the upper level bot and 400 episodes for the lower

level bot. This just reinforces that the bot could complete the game consistently after 400

episodes of learning and that afterwards all progression was on time as this doesn’t affect

0 200 400 600 800 1000 1200 1400
Episode

0

10

20

30

40

Ti
m

e 
Sp

en
t C

ar
ry

in
g 

Bo
xe

s (
s)

UpperLevel Bot
LowerLevel Bot

Figure 5.11: Time a bot spent carrying a box through the reinforcement learning training
process.

68



5.2. TRAINING RESULTS

Table 5.5: Averages obtained by bots after training with Reinforcement Learning.

Upper Bot Lower Bot
Average StdDev Average StdDev

Episode Time (s) 84.02 10.59 84.02 10.59
Time at 3/4 Boxes (s) 14.37 6.84 24.39 4.25
Time at 6/8 Boxes (s) 46.70 20.34 61.50 8.23
Time Carrying Boxes (s) 15.52 3.67 43.53 3.18
Boxes Carried 5.97 0.28 9.97 0.38
Rewards 4.3 0.39 7.40 0.37

rewards.

In Tables 5.5 and 5.6 we see the average results for each metric obtained firstly by the

bots after the training process, then by the human users during demonstration recording

sessions. If we compare the human level with the lower bot which played with the same

condition, carrying 10 boxes total, we see that once more the level of reinforcement

learning still falls short quite a bit. On average the bots take 84.02 seconds to carry

all boxes while humans only needed 69% of the time (58.38 seconds) to carry the same

amount. This difference is seen in all the check points with the humans only taking 69%

and 68% of the time the bots took to get to the 4 boxes and 8 boxes checkpoint. A good

portion of this time is spent while carrying a box, since on average the bots spend more

14.54 seconds with a box in their hands. As for rewards the values are very close since

both successfully complete the task, but the bots still fall short by a tenth for occasionally

colliding against the borders getting them a penalty.

0 200 400 600 800 1000 1200 1400
Episode

0

1

2

3

4

5

6

7

8

Re
wa

rd
s O

bt
ai

ne
d

UpperLevel Bot
LowerLevel Bot

Figure 5.12: Rewards obtained by both bots through the reinforcement learning training
process.

69



CHAPTER 5. EVALUATION

Table 5.6: Averages obtained by the human users during demonstration recording ses-
sions.

Average StdDev
Episode Time (s) 58.38 6.07
Time at 4 Boxes (s) 16.94 2.35
Time at 8 Boxes (s) 41.88 5.01
Time Carrying Boxes (s) 28.99 3.19
Boxes Carried 10.0 0.0
Rewards 7.5 0.0

5.2.2.2 Imitation Learning

A total of twelve distinct ten minute game sessions were played to obtain demonstra-

tion recordings for a total of 120 minutes of demonstration time. The setting for these

game sessions was a single level with a total of ten boxes. The results for these demonstra-

tion games are displayed in Table 5.6. In these results, the most relevant numbers are the

average time that each episode took, which was 58.38 seconds, the time spent carrying

a box per episode which was 28.99 seconds, and that the amount of rewards obtained

in each episode averages 7.5. To train the bots, diverse training sessions were carried

out started by using 20 minutes of demonstration and adding extra 20 minutes each new

train until all 120 minutes were used.

In Figure 5.13 we can see the progression of the episode times as more demonstration

time was used to train the bots. Overall we can see that independently of which level

the bots played, the times the bots needed to complete both the checkpoint and the game

dropped as more demonstrations were used to train. This progression shows that even

though the demonstrations were recorded in a scenario with a single level of boxes to carry,

this doesn’t affect the learning capability of neither bot as they only need to learn how to

pick up a box and how to drop it at the desired locations which works the same for both

levels of play. As for the speed the bots carried the box, we can see that even with only 20

minutes of demonstration, the upper level bot could already complete it’s objective even

if barely. As it needs to carry more boxes, the lower level bot only managed to complete

its task within the time limit after training with at leas 60 minutes of demonstration.

0

20

40

60

80

100

120

140

20 40 60 80 100 120

Ep
is

o
d

e 
Ti

m
e 

(s
)

Demonstration Time (min)

Upper Level Bot Times

Time at 3 Boxes Time at 6 Boxes

0

20

40

60

80

100

120

140

20 40 60 80 100 120

Ep
is

o
d

e 
Ti

m
e 

(s
)

Demonstration Time (min)

Lower Level Bot Times

Time at 4 Boxes Time at 10 Boxes

Figure 5.13: Average episode times obtained by the bots trained with imitation.

70



5.2. TRAINING RESULTS

0

2

4

6

8

10

12

20 40 60 80 100 120

Demonstration TIme (min)

Upper Level Bot

Boxes Carried Rewards

0

1

2

3

4

5

6

7

20 40 60 80 100 120

Demonstration Time (min)

Lower Level Bot

Boxes Carried Rewards

Figure 5.14: Number of boxes successfully carried to the destination and rewards ob-
tained by the bots trained with imitation.

In Figure 5.14 we see the number of boxes successfully carried and the rewards ob-

tained by the bots trained with different demonstration times. Analyzing the number of

carried boxes, we can see that with any amount of demonstrations the bots could com-

plete at least a part of their jobs, with the upper level bot having an average of 4.5 boxes

with 20 minutes of demonstration which is nearly half of the objective, and the lower

level bot having an average of 3.6 boxes which is more than half of its objective. It is also

possible to see that with only an hour of demonstration time, both bots could complete

their objective consistently. Looking at rewards we can see that they grow linearly with

the growth of boxes carried, which indicates that at no point in the different training the

bots had any form of penalties. This shows that even with 20 minutes of demonstrations,

the bots could avoid colliding against the walls.

In Figure 5.15 we see the amount of time each of the trained bots spent on average

carrying a box. This metric is used to measure how much time a bot spends with a box

in its hands to see whether the bots are efficient and deliver the box to the destined place

right away or if they take long to accomplish that task thus spending more time carrying

a box. Looking at the results for the first time we can see different behaviour depending

on which level the bot is playing. The lower level bot saw its times decrease as more

demonstration time was used to train, which demonstrates that the bot got increasingly

0

10

20

30

40

50

60

70

20 40 60 80 100 120

Ti
m

e 
(s

)

Demonstration Time (min)

Lower Level Bot

Avg Time Carrying Boxes Std. Dev Time Carrying

0

10

20

30

40

50

60

20 40 60 80 100 120

Ti
m

e 
(s

)

Demonstration Time (min)

Upper Level Bot

Avg Time Carrying Boxes Std. Dev Time Carrying

Figure 5.15: Average times that a bot spent carrying boxes and standard deviation of the
values obtained by the bots trained with imitation.

71



CHAPTER 5. EVALUATION

more efficient in delivering the boxes once it got the hold of it. Meanwhile the same

behaviour cannot be seen in the lower level bot as in the beginning it sees the carrying

times increase and then after 60 minutes of demonstration only sees a slight decrease

in times. This can be justified by the fact the the lower level bot saw an increase in the

number of boxes it had to carry as the other carried all boxes to the lower level. More

demonstration time would be needed to see if the carrying times would keep decreasing

as the bot got more efficient.

In conclusion, it can be said that the tendencies seen in the clean the bush game can

be also seen in this game. Firstly, the more time of demonstrations used to train means

increase of performance for the bots. When more samples were used the bots got faster

at doing their tasks and were able to carry all the boxes faster. As for comparison to both

human level and reinforcement learning, it can be seen that even when all 120 minutes of

demonstrations were used, this method falls short to both RL trained bots and the human

level.

5.2.3 Capture the Flag

To train the bots in the game of capture the flag, the bots were place in an environment

with four obstacle walls and six randomly dispersed balls both evenly scattered in each

teams field. For better training results, in each episode the spawn point of the balls are

randomized to increase variance and to encourage the bots to actually learn to find find

the balls to throw at enemies. When the bots are training, four parallel environments are

running simultaneously to increase learning speeds. Since each pair of teams will have

comparable behaviour to its parallel foes only the results of a single environment will be

0 200 400 600 800 1000
Episodes

600

700

800

900

1000

Ti
m

e 
(s

)

Figure 5.16: Time progression of each game iteration (episode) through the reinforcement
learning training process.

72



5.2. TRAINING RESULTS

Blue Team Draw White team

80 262 82

Blue Team 80

Draw 262

White Team 82

0% 20% 40% 60% 80% 100%

Win Ratio

Blue Team Draw White Team

Figure 5.17: Win ratio of the teams during the reinforcement learning training process.

viewed.

5.2.3.1 Reinforcement Leaning

In Figure 5.16 we see the time progression each episode took through the training

process with reinforcement learning. In this game we see that reinforcement learning

trained bots are having a harder time learning the game. At any point of the process

we see a clear consistent decrease in episode times, and game draws keep happening as

neither team is capable to consistently beat the other.

Looking into Figure 5.17 where the win ratio of the teams during the training process

is displayed, it is possible to verify that the draw is the most common result with it being

the end result of slighly over 60% of games played. As for the games that ended with a

team winning, it is also possible to see that the teams won a similar amount of games

0 200 400 600 800 1000
Episodes

20

10

0

10

20

Re
wa

rd
s

Blue Team
White Team

Figure 5.18: Reward progression of both team through the reinforcement learning train-
ing process.

73



CHAPTER 5. EVALUATION

Table 5.7: Recording Games Results

Blue White Avg Time(s) StdDev
(1vs1) 58 22 35.481 12.273
(2vs2) 34 19 31.839 17.224
(2vs2) 30 14 34.306 9.547
Total 122 55 34.098 10.248
% 68.9 31.1

both having nearly 20% of game wins.

In Figure 5.18 it is shown the progression of the reward of both teams through the

reinforcement learning training process. Once more these results are not very indicative

of performance evolution from the bots as the rewards keep floating through the course

of training. The only inference possible to make from this is that the bots interact with

the ball and throw them as rewards are not symmetric and both teams manage to get

positive rewards simultaneously. But is is also seen that the bots are having a hard time

avoiding the obstacles as rewards tend to be negative.

5.2.3.2 Imitation Learning

Three distinct game sessions were played to obtain demonstration recordings. In total

300 minutes demonstrations were obtained. These game sessions were played in a set of

1vs1 and two sets of 2vs2. The results for these games are displayed in Table 5.7. In these

results, the most relevant numbers are the average time that episodes took to finish which

is 34 seconds, and the fact that the blue team won every game set played with an episode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30 60 120 180 300

Demonstration Time (min)

Win/Lose/Draw Ratio

Win Lose Draw

Figure 5.19: Win/Lose/Draw ratio from the blue team team perspective in bot teams
trained with different demo samples.

74



5.2. TRAINING RESULTS

30 min 60 min 120 min 180 min 300 min
0

100

200

300

400

500

600

700

800

900

1000

Se
co

nd
s

517.33

235.19 240.99

190.94 165.79

Mean (seconds)

Figure 5.20: Average episode times obtained in games with bots trained with different
demonstration samples.

win rate of 68.9%. This disparity in wins can be an interesting detail as we’ll analyze how

this affects the win rates of both teams when the trained bots play. If we only train a bot

with the winning team we could get better results.

Using the recordings we trained bots in two teams. Once again, the blue and white

teams were used. Each bot trained using every demonstration available independently if

it was a blue human team or a white human team recording. The correlation between the

bot and human teams is that the blue bot team starts on the same side as the blue human

team, and the same for both white teams.

As mentioned in Section 5.1.3, the first metric that is going to be viewed is the ratio

between wins, losses, and draws in the blue team perspective (white team win ration is

symmetric) which is displayed in Figure 5.19. After analyzing these numbers and the

context behind them there are a number of conclusions one can infer. First, it that the blue

team winning most of the game during the recording sessions impacts the bots’ results

as the blue team maintains a higher chance to win than the white team. This occurrence

seems to intensify the more demonstration time was used, as bots seem to become more

proficient, and random results seem to dissipate. Secondly is that draws seem to be an

odd event, that occurs randomly when the bots find themselves in a state where they are

unable to know what to do, and can’t find a way to win. Expectations were that this value

75



CHAPTER 5. EVALUATION

30 min 60 min 120 min 180 min 300 min
0

100

200

300

400

500

600

700

800

900

1000
Se

co
nd

s

396.66

212.01
171.99

137.00
96.28

Mean (seconds)

Figure 5.21: Average episode times throughout all episodes excluding games finished
with a draw result.

would reduce the more demonstrations used, but with the samples used it seems to be

more related to randomness, although the number of samples used also seems to have

impact on it.

To better analyze the idea that the time of demonstration used influences the quality

of play of the bots, we’re going to analyze the overall average episode time for the bots

trained with different times of demonstration as well as see what happens to this average

if we remove the draws as these seem to be odd events. These numbers are shown in

Figures 5.20 and 5.21 respectively.

The results on episode times seem to be pointing in the same direction as the other

games trained before. The more demonstration time was used for training, the average

episode times become shorter and more compact. The only oddity in these numbers is for

60 and 120 minutes of demonstration where the range of times is larger in bots trained

with 120 minutes of demonstration. But even this can be explained on the random

occurrence of the draw, as if we exclude the episodes finished with a draw from the times,

the time ranges normalise with bots trained with 120 minutes of demonstration having

more compact results than bots trained with 60 minutes.

As for comparing the results of the times with and without draws, as obvious without

draws the averages times drop. This drop has more effect in plays with more draws.

76



5.2. TRAINING RESULTS

0

50

100

150

200

250

300

350

400

450

30 60 120 180 300

Ti
m

e 
(s

)

Demonstration Time (min)

Average Times on Wins

Blue Team White Team

Figure 5.22: Average times obtained in episodes where winning was the final result in
bots trained with different demonstration samples for each team.

Besides this, analyzing the averages without draws provides a more regular progression

curve of the time drops while the time of demonstration used is increased. If we compare

these times with the ones of the users that recorded the demonstrations obtained, we

see that it’s still far off from those times, as in the best scenario with 300 minutes of

demonstration used, the average is 60 seconds slower than the users. But the average

curve seems to point out that with more demonstrations for training, the bots could

eventually achieve similar average times.

Next, we are going to compare the episode times on the games won between both

teams in an attempt to understand in which conditions each team was able to obtain

wins, and how this progresses the more demonstrations were used during training. This

results can be seen in Figure 5.22.

The analysis of the times during wins by a team, reinforces the idea that the teams’

results in recording sessions influence the teams’ results for the bots. Overall we can

see that for the same time of demonstration, the average on win times begins shorter for

the blue team and after 120 minutes of demonstration time used the white team has a

shorter times on wins. This is due the fact that in the beginning when both team are

really inefficient at the game, the wins are more distributed between teams but the blue

one understands the game a bit better which makes them be able to win a bit faster. After

they become more proficient at the game, the situation subverts because the games are

less random, and the blue team manages to get wins in both short and long games since

they understand the game better, while the white team need to get their "perfect game"to

obtain a win otherwise they can’t beat blue team.

Lastly, we will take a look at how the average rewards for both teams progress as more

77



CHAPTER 5. EVALUATION

-30
-25
-20
-15
-10

-5
0
5

10
15
20
25
30

30 60 120 180 300

R
ew

ar
d

s

Demonstration Time (min)

Average reward by team

Blue Team White Team

Figure 5.23: Average rewards obtained through all episodes in bots trained with different
demonstration samples.

demonstrations were used for training as shown in Figure 5.23. As for the rewards it goes

as was to be expected, the blue team tends to have higher rewards as they win more. If

we exclude the game with bots trained with only 30 minutes of demonstration time, as

this one tends to be more random, we see that the rewards go up for the blue team and

down for the white team the more demonstrations were used for the training. There is a

big jump in rewards from using 120 minutes of demonstration while training, to using

180 minutes while training as this corresponds to the moment when the blue team starts

dominating with win rates higher than 80% as the win rates correlate directly with the

average amount of rewards obtained.

78



6

Conclusion

In this thesis, we present a method to create game engine self-learning bots in the

Unity3D that use reinforcement learning and imitation learning algorithms. This tech-

nique was achieved using the described ML-Agents plugin. This method was based in

the idea that we can create any game environment in Unity, and use the game bots as

agents for the simulation to teach them how to play the games. Then based on both visual

and numeric results the bots will either have achieved a desired level, or still fall short in

which the process can be repeated to improve performance further.

To demonstrate this method, first we created two simple games: Clean the Bush and

Carry the Box. Training with reinforcement learning we could see that the bots manage

to start consistently beating their games within the time limit after each individual bot

played 300 episodes, which amounts to a total of 1800 learning episodes as each training

had 6 parallel environments. Less positive, is the fact that in both games learning stabi-

lized before the training finished, and the end results were still far off from the human

level, with the humans being on average 45% faster in the clean the bush game and 30%

faster in carry the box. Since learning stabilized it is hard to think that increasing training

time would improve the performance further but changing the rewards policy certainly

could help. For instances the most obvious way to try and improve the performance is

making the rewards time dependent creating an explicit incentive for the bots to be faster.

Training these games with imitation learning, it was possible to see that the core idea

that we can loop the training process to improve the bots performance works. Considering

that each training with 20 minutes of demonstration is an iteration of the loop described

in Section 3.2.2, each increment of 20 minutes of demonstration in training represents

the repetition of the process in recording more demonstrations and training once more

as a means to improve the performance. As more demonstration time was added the

performance saw an improvement and at no point this improvement saw a stabilization

where the performance stop improving. As a downside, once more the performance

never achieved a level close to human level, staying at a similar level to bots trained with

reinforcement learning.

Then we created a 3vs3 game of capture the flag and created a multiplayer component

79



CHAPTER 6. CONCLUSION

for the game that could coexist with the ML-Agents plugin, so that we could have multiple

people recording demonstrations that could be later used for training. In reinforcement

learning, sadly we saw negative results as the bots were unable to successfully learn how

to play the game. As for the imitation learning training some more interesting results

were seen. During the recordings with humans, the blue team won around 70% of the

games, which allowed us to conclude that in team games, a team performing better than

the other during the demonstration recordings will also affect the bots’ performance

depending on which team they are as the bot’s blue team also performed better.

Analyzing the training results, it was possible to conclude that the bots do indeed get

better the more demonstrations they were provided. This impacted metrics such as, the

blue team win rate, which was about 60% when using fewer amounts of demos but then

skyrocketed to 80% when more demonstrations were provided (Figure 5.19). After train-

ing the level of the bots was still worse than the humans since with 10 demonstrations

they performed 3 times slower than humans. That said, the tendency for average times to

drop shows that with more demonstrations, the bots could get to a closer level to humans.

After considering the results of the experiments, we can look into our research ques-

tions. The first research question on how to integrate off-the-shelf machine learning

algorithms in a game-engine in order to execute and see the simulations, we saw that we

can easily use game bots as simulation agents, by converting movement and actions to

numeric values, such as 0 to stay still and 1 to move forward, and numeric representation

of the observations of the bot. By having this numeric representation, it is possible to

integrate the algorithms, as they only need to receive the set of observations to process the

calculations, and have a set of numbers it can manipulate to command the bot agent. The

second question how the bots behaved depending on which training process they used. In

the simpler games, we saw that both methods performed similarly, but neither performed

optimally so it one could still perform better or differently than the other as the training

was tuned to perform better. In the more complex game of capture the flag, imitation

learning performed much better than reinforcement learning, as in the first one the bots

were able to comprehend how to play and beat the game in a consistent manner even if

performing worst than humans, the bots trained with RL simply couldn’t consistently

finish a game within the time limit and when they did, would be really slow to do so. As

for the last research question of these methods of self-learning bots are worthwhile to

teach game ready bots, the answer so far is that it is not, as the level of play of these bots

could at best be considered beginner level, as most new players of the games would still

be able to perform better than the bots. In the future with improvements to the teaching

method and training process, a better level could be achieved but with the result obtained

it is not possible to consider the method worth for creating bots for games.

As for improvements of the current work, we intend to test the same scenarios by

tweaking the reward and observation functions to observe the effects it has on the bots

and attempt to improve the performance. For Imitation Learning, we intent to increase

substantially the sample of demonstrations available to train, to confirm if the bots can

80



actually get to a better level with an increased sample size. Lastly, we intend to test

different types of games with varying levels of complexities and different variables to the

games already tested, so different kinds of results can be obtained so that it is possible

to infer new conclusions about this method as well as to solidify the conclusions already

obtained in this experiment.

For future work, it is interesting to explore the idea of segmented learning, where

a game is segmented into incremental parts that can be though sequentially. The idea

with this is that a bot can master a complex task quicker, if it is though how to play each

part of the task individually, and gradually joining them together. Besides this, it is also

interesting to study the concurrent use of both Reinforcement Learning and Imitation

Learning to teach bots, as it can be the best of both worlds where the imitations serve as a

starting point for the bots to start playing the games, and then gradually learning further

from the starting point by creating new knowledge through reinforcement learning.

81



Bibliography

[1] H. A. Ameden et al. “An Agent-Based Model of Border Enforcement for Inva-

sive Species Management”. In: Canadian Journal of Agricultural Economics/Revue
canadienne d’agroeconomie 57 (4 Dec. 2009), pp. 481–496. issn: 00083976. doi:

10.1111/j.1744-7976.2009.01166.x (cit. on p. 1).

[2] A. Bąk and M. Wojciechowska. Using the game engine in the animation production
process. 2020. doi: 10.1007/978-3-030-14132-5_16 (cit. on pp. 16, 17).

[3] B. Baker et al. “Emergent Tool Use From Multi-Agent Autocurricula”. In: ICLR
2020 (Sept. 2019). url: http://arxiv.org/abs/1909.07528 (cit. on pp. 10, 14).

[4] C. Bartneck et al. “The Robot Engine - Making the Unity 3D Game Engine Work

for HRI”. In: 24th IEEE International Symposium on Robot and Human Interactive
Communication (2015). doi: 10.0/Linux-x86_64. url: https://www.openrobots.

org/wiki/morse/ (cit. on pp. 16, 17).

[5] P. Baudiš and J.-L. Gailly. Pachi: State of the Art Open Source Go Program. 2011

(cit. on p. 22).

[6] M. G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform

for General Agents”. In: Journal of Artificial Intelligence Research 47 (July 2012). doi:

10.1613/jair.3912 (cit. on p. 22).

[7] R. Boca et al. “Ultra-Flexible Production Systems for Automated Factories”. In:

2016 IEEE International Conference on Automation Science and Engineering (2016)

(cit. on pp. 18, 19).

[8] G. Brockman et al. OpenAI Gym. June 2016. url: http://arxiv.org/abs/1606

.01540 (cit. on pp. 2, 21, 22).

[9] A. Carlos et al. “Using a Game Engine for VR Simulations in Evacuation Planning”.

In: IEEE Computer Society (2008). url: http://udn. (cit. on pp. 1, 17, 18).

[10] W. Chen et al. “Dynamic Future Net: Diversified Human Motion Generation”.

In: Association for Computing Machinery, Inc, Oct. 2020, pp. 2131–2139. isbn:

9781450379885. doi: 10.1145/3394171.3413669 (cit. on p. 15).

82

https://doi.org/10.1111/j.1744-7976.2009.01166.x
https://doi.org/10.1007/978-3-030-14132-5_16
http://arxiv.org/abs/1909.07528
https://doi.org/10.0/Linux-x86_64
https://www.openrobots.org/wiki/morse/
https://www.openrobots.org/wiki/morse/
https://doi.org/10.1613/jair.3912
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://udn.
https://doi.org/10.1145/3394171.3413669


BIBLIOGRAPHY

[11] A. Cohen et al. On the Use and Misuse of Absorbing States in Multi-agent Reinforce-
ment Learning. 2022. url: www.aaai.org (cit. on p. 33).

[12] Y. Duan et al. “Benchmarking Deep Reinforcement Learning for Continuous Con-

trol”. In: 33rd International Conference on Machine Learning (Apr. 2016). url:

http://arxiv.org/abs/1604.06778 (cit. on p. 22).

[13] R. Dunlop. Production Pipeline Fundamentals For Film and Games. 2014. isbn:

0415812291 (cit. on p. 17).

[14] P. Ghadai et al. “A Study on Agent Based Modelling for Traffic Simulation”. In:

International Journal of Computer Science and Information Technologies (2016). url:

www.ijcsit.com (cit. on pp. 1, 9).

[15] T. Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. 2018. doi: 10.48550/ARXIV.1801.01290. url:

https://arxiv.org/abs/1801.01290 (cit. on p. 33).

[16] K. Horák and B. Bošansk´bošansk´y. “Solving Partially Observable Stochastic

Games with Public Observations”. In: 33rd AAAI Conference on Artificial Intel-
ligence (2019), p. 19. url: www.aaai.org (cit. on p. 23).

[17] W. Hu, Z. Wang, and X. Fan. “Contained fluid simulation based on game engine”.

In: Institute of Electrical and Electronics Engineers Inc., June 2017, pp. 545–549.

isbn: 9781509055074. doi: 10.1109/ICIS.2017.7960052 (cit. on pp. 15, 19, 20).

[18] A. Hussein et al. Imitation learning: A survey of learning methods. Apr. 2017. doi:

10.1145/3054912 (cit. on p. 13).

[19] P. Johnson and D. Pettit. Machinima: The Art and Practice of Virtual Filmmaking.

2012. isbn: 0786461713 (cit. on p. 16).

[20] A. Juliani et al. Unity: A General Platform for Intelligent Agents. Sept. 2018. url:

http://arxiv.org/abs/1809.02627 (cit. on pp. 2, 15, 25).

[21] Ł. Kaiser et al. “Model Based Reinforcement Learning for Atari”. In: ICLR 2020
(2020). url: https://goo.gl/itykP8 (cit. on p. 11).

[22] K. M. Khalil et al. “An Agent-Based Modeling for Pandemic Influenza in Egypt”. In:

Handbook on Decision Making: Vol 2: Risk Management in Decision Making. Ed. by J.

Lu, L. C. Jain, and G. Zhang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,

pp. 205–218. isbn: 978-3-642-25755-1. doi: 10.1007/978-3-642-25755-1_11.

url: https://doi.org/10.1007/978-3-642-25755-1%5C_11 (cit. on p. 2).

[23] F. Klugl and A. L. C. Bazzan. Agent-Based Modeling and Simulation. 2012 (cit. on

pp. 6, 7).

[24] F. Klügl, M. Fehler, and R. Herrler. “About the role of the environment in multi-

agent simulations”. In: vol. 3374. Springer Verlag, 2005, pp. 127–149. doi: 10.10

07/978-3-540-32259-7_7 (cit. on p. 7).

83

www.aaai.org
http://arxiv.org/abs/1604.06778
www.ijcsit.com
https://doi.org/10.48550/ARXIV.1801.01290
https://arxiv.org/abs/1801.01290
www.aaai.org
https://doi.org/10.1109/ICIS.2017.7960052
https://doi.org/10.1145/3054912
http://arxiv.org/abs/1809.02627
https://goo.gl/itykP8
https://doi.org/10.1007/978-3-642-25755-1_11
https://doi.org/10.1007/978-3-642-25755-1%5C_11
https://doi.org/10.1007/978-3-540-32259-7_7
https://doi.org/10.1007/978-3-540-32259-7_7


BIBLIOGRAPHY

[25] M. Lanctot et al. OpenSpiel: A Framework for Reinforcement Learning in Games. Aug.

2019. url: http://arxiv.org/abs/1908.09453 (cit. on p. 23).

[26] E. Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”. In:

35th International Conference on Machine Learning (Dec. 2017). url: http://arxiv.

org/abs/1712.09381 (cit. on p. 23).

[27] P. U. Lima et al. “RoCKIn and the European Robotics League: Building on RoboCup

Best Practices to Promote Robot Competitions in Europe”. In: RoboCup 2016: Robot
World Cup XX. Ed. by S. Behnke et al. Cham: Springer International Publishing,

2017, pp. 181–192. isbn: 978-3-319-68792-6 (cit. on p. 14).

[28] R. D. Lisio et al. The Convergence of the SPH Method. 1998, pp. 95–102 (cit. on

p. 19).

[29] C. Macal and M. North. “Agent-based modeling and simulation”. In: Dec. 2009.

doi: 10.1109/WSC.2009.5429318 (cit. on pp. 1, 2, 6, 8).

[30] S. S. Noh, S. D. Hong, and J. W. Park. “Using a Game Engine Technique to Produce

3D Entertainment Contents”. In: 16th International Conference on Artificial Reality
and Telexistence–Workshops (ICAT’06). 2006, pp. 246–251. doi: 10.1109/ICAT.20

06.139 (cit. on p. 15).

[31] J. Oh et al. Self-Imitation Learning. 2018 (cit. on p. 13).

[32] M. Pasternak et al. “Simgen: A Tool for Generating Simulations and Visualizations

of Embedded Systems on the Unity Game Engine”. In: MODELS 2018. MODELS

’18. Copenhagen, Denmark: Association for Computing Machinery, 2018, pp. 42–

46. isbn: 9781450359658. doi: 10.1145/3270112.3270135. url: https://doi.

org/10.1145/3270112.3270135 (cit. on pp. 17, 19).

[33] Robocup. url: https://www.robocup.org/research/ (cit. on p. 14).

[34] M. Samvelyan et al. “The StarCraft Multi-Agent Challenge”. In: 33rd Conference on
Neural Information Processing Systems (Feb. 2019). url: http://arxiv.org/abs/1

902.04043 (cit. on p. 23).

[35] J. Schulman et al. Proximal Policy Optimization Algorithms. 2017. doi: 10.48550

/ARXIV.1707.06347. url: https://arxiv.org/abs/1707.06347 (cit. on p. 33).

[36] D. Silver et al. “Mastering Chess and Shogi by Self-Play with a General Reinforce-

ment Learning Algorithm”. In: CoRR abs/1712.01815 (2017). arXiv: 1712.01815.

url: http://arxiv.org/abs/1712.01815 (cit. on p. 10).

[37] R. S. Sutton and A. G. Barto. Reinforcement Learning An Introduction second edition.

2018. isbn: 978-0-262-19398-6 (cit. on p. 21).

[38] D. A. Swayne et al. “Exploring Forest Management Practices Using an Agent-Based

Model of Forest Insect Infestations”. In: 2010 International Congress on Environ-
mental Modelling and Software Modelling for Environment’s Sake (2010). url: http:

//www.iemss.org/iemss2010/index.php?n=Main.Proceedings (cit. on p. 1).

84

http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
https://doi.org/10.1109/WSC.2009.5429318
https://doi.org/10.1109/ICAT.2006.139
https://doi.org/10.1109/ICAT.2006.139
https://doi.org/10.1145/3270112.3270135
https://doi.org/10.1145/3270112.3270135
https://doi.org/10.1145/3270112.3270135
https://www.robocup.org/research/
http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1902.04043
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings
http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings


BIBLIOGRAPHY

[39] J. K. Terry et al. “PettingZoo: Gym for Multi-Agent Reinforcement Learning”. In:

35th Conference on Neural Information Processing Systems (Sept. 2020). url: http:

//arxiv.org/abs/2009.14471 (cit. on pp. 2, 23, 24).

[40] G. Tesauro. “Temporal Difference Learning and TD-Gammon”. In: Commun. ACM
38.3 (Mar. 1995), pp. 58–68. issn: 0001-0782. doi: 10.1145/203330.203343.

url: https://doi.org/10.1145/203330.203343 (cit. on p. 10).

[41] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based con-

trol”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109 (cit. on p. 22).

[42] Unity ML-Agents Toolkit. url: https://github.com/Unity-Technologies/ml-

agents (cit. on p. 26).

[43] S. Vanfossan, C. H. Dagli, and B. Kwasa. “An agent-based approach to artificial

stock market modeling”. In: vol. 168. Elsevier B.V., 2020, pp. 161–169. doi: 10.1

016/j.procs.2020.02.280 (cit. on p. 1).

[44] T. Wang et al. “Influence-Based Multi-Agent Exploration”. In: ICLR 2020 (2020).

url: https://sites. (cit. on p. 12).

[45] J. Yang et al. “CM3: Cooperative Multi-Goal Multi-Stage Multi-Agent Reinforce-

ment Learning”. In: ICLR 2020 (2020) (cit. on p. 12).

[46] L. Zarco et al. “Scope and delimitation of game engine simulations for ultra-flexible

production environments”. In: vol. 104. Elsevier B.V., 2021, pp. 792–797. doi: 10

.1016/j.procir.2021.11.133 (cit. on p. 18).

[47] B. Zheng et al. “Imitation Learning: Progress, Taxonomies and Challenges”. In:

(June 2021). url: http://arxiv.org/abs/2106.12177 (cit. on p. 13).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 85).

85

http://arxiv.org/abs/2009.14471
http://arxiv.org/abs/2009.14471
https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://doi.org/10.1109/IROS.2012.6386109
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://doi.org/10.1016/j.procs.2020.02.280
https://doi.org/10.1016/j.procs.2020.02.280
https://sites.
https://doi.org/10.1016/j.procir.2021.11.133
https://doi.org/10.1016/j.procir.2021.11.133
http://arxiv.org/abs/2106.12177
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf



	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 State of the Art Review
	2.1 Agent-Based Models and Simulation
	2.1.1 Self Play Simulation
	2.1.2 Imitation Learning
	2.1.3 Visualization of Agent Learning

	2.2 Game Engine Visualization
	2.2.1 Human-like Models and Animation
	2.2.2 Visualization of Simulations

	2.3 Visualization and Interaction with Simulation Libraries
	2.3.1 OpenAI Gym
	2.3.2 PettingZoo
	2.3.3 Unity Machine Learning Agents

	2.4 Discussion

	3 Simulation and Training Workflow
	3.1 Architecture
	3.2 Simulation and Training
	3.2.1 Reinforcement Learning
	3.2.2 Imitation Learning

	3.3 Games
	3.4 Used Technologies

	4 Games with Self-Learning Agents
	4.1 Implemented Games
	4.1.1 Clean the Bush
	4.1.2 Carry the Box
	4.1.3 Capture the Flag

	4.2 Game Implementation
	4.2.1 Reinforcement-Learning
	4.2.2 Imitation
	4.2.3 Multiplayer

	4.3 Training

	5 Evaluation
	5.1 Metrics
	5.1.1 Clean the Bush
	5.1.2 Carry the Box
	5.1.3 Capture the Flag

	5.2 Training Results
	5.2.1 Clean the Bush
	5.2.2 Carry the Box
	5.2.3 Capture the Flag


	6 Conclusion
	Bibliography
	Back Matter
	Back Cover


