
DEPARTMENT OF
COMPUTER SCIENCE

TIAGO LOPES SOARES
Bachelor in Computer Science and Engineering

HANDLE WITH CARE AND
CONFIDENCE – EXTENDING
CAMELEER WITH ALGEBRAIC EFFECTS
AND EFFECT HANDLERS
AN ANALYSIS OF ALGEBRAIC EFFECTS AND TECHNIQUES TO
DEDUCTIVELY VERIFY THEM

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
December, 2022

DEPARTMENT OF
COMPUTER SCIENCE

HANDLE WITH CARE AND CONFIDENCE –
EXTENDING CAMELEER WITH ALGEBRAIC
EFFECTS AND EFFECT HANDLERS
AN ANALYSIS OF ALGEBRAIC EFFECTS AND TECHNIQUES TO
DEDUCTIVELY VERIFY THEM

TIAGO LOPES SOARES
Bachelor in Computer Science and Engineering

Adviser: Mário José Parreira Pereira
Assistant Professor, NOVA University Lisbon

Co-adviser: António Maria Lobo César Alarcão Ravara
Associate Professor, NOVA University Lisbon

Examination Committee

Chair: Maria Armanda Simenta Rodrigues Grueau
Associate Professor, School of Science and Technology
NOVA University Lisbon

Rapporteur: François Pottier
Principal Investigator, Inria Paris

Adviser: Mário José Parreira Pereira
Assistant Professor, School of Science and Technology
NOVA University Lisbon

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
December, 2022

Handle with Care and Confidence – Extending Cameleer with Algebraic Effects
and Effect Handlers
An analysis of algebraic effects and techniques to deductively verify them

Copyright © Tiago Lopes Soares, NOVA School of Science and Technology, NOVA Univer-

sity Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LAT
E
X processor and the NOVAthesis template (v6.10.16) [29].

https://github.com/joaomlourenco/novathesis

I dedicate this thesis to all the haters and losers.

Acknowledgements

I would like to first thank my thesis supervisor Mário Pereira for all the support he has

given me over the past three years. I feel immensely grateful for having you by my side

for this extremely difficult journey. When I compare my experience with some of my

colleagues’, I know I made the right choice in going into program verification under your

wing. It’s hard to explain how much help and kindness you’ve given me in just one short

paragraph, so I’ll just say thank you for always giving me what I needed and always

making me feel like I had someone watching my back.

I would like to thank professor António Ravara for his contributions to this project.

Additionally, I would also like to thank professor François Pottier for being the rapporteur

for this thesis. Finally, I would also like to extend a thanks to professor João Lourenço for

providing this incredible LaTex template [29] (if you’re reading this for whatever reason,

let me tell you, you’re a saint for doing this for free. Also you should be paid more).

I would like to thank my five best friends colleagues, Carolina, Diogo and Xavier. Even

though none of you helped with or really even understood my thesis, I would never have

gotten this far without all of you. The only thing that kept me from going insane from all

the work these 5 years have entailed is being able to share this crazy ride with people as

unhinged as me.

Também queria agradecer à minha mãe, ao meu pai e à minha irmã pelo apoio que me

deram nestes difíceis 5 anos. Sempre puseram o meu bem estar acima de tudo o resto, e só

por isso estarei sempre grato. Eu sempre senti-me amado incondicionalmente: mesmo se

não acabasse a tese, sabia que teria sempre a minha família ao meu lado. Sem este apoio

crítico, eu nunca teria conseguido fazer tudo o que fiz nestes 5 anos. Esta tese é tanto

minha quão é vossa. Eu já vos disse isto tantas vezes, mas em caso de dúvida, amo-vos

tanto.

iv

“There can be no freedom without the abolition of the state.
When there is no state there will be freedom. ”

(Lenin)

Abstract

The new major release of the OCaml compiler is set to be an important landmark in the

history and ecosystem of the language. The 5.0 version introduces Multicore OCaml, a

multi-threaded implementation of the OCaml runtime. Two new important paradigms

shall arise in the language: parallelism via domains and direct-style concurrency via

algebraic effects and handlers. In this work, we focus precisely on the latter and try to

answer the following research question: "what tools and principles must be developed

in order to apply automated deductive proofs to OCaml programs featuring effects and

handlers?".

Algebraic effects and handlers are a powerful abstraction to build non-local control-flow

mechanisms such as resumable exceptions, lightweight threads, co-routines, generators,

and asynchronous I/O. All of such features have very evolved semantics, hence they pose

very interesting challenges to deductive verification techniques. In fact, there are very

few proposed techniques to deductively verify programs featuring these constructs, even

fewer when it comes to automated proofs. In this report, we outline some of the currently

available techniques for the verification of programs with algebraic effects. We then build

off them to create a mostly automated verification framework by extending Cameleer, a

tool which verifies OCaml code using GOSPEL and Why3. This framework embeds the

behavior of effects and handlers using exceptions and defunctionalized functions.

Keywords: Deductive Verification, Algebraic Effects, Effect Handlers, Multicore OCaml,

GOSPEL, Why3, Cameleer

vi

Resumo

A próxima iteração do compilador OCaml será histórica no que diz respeito ao ecosistema

da linguagem. A versão 5.0 introduzirá Multicore OCaml, uma implementação multi-
threaded do runtime OCaml. Nesta versão, dois paradigmas serão adicionados: paralelismo

utilizando domains e concorrência em estilo direto na forma de efeitos algébricos e handlers.
Neste relatório, focar-nos-emos no segundo ponto, tentado responder à seguinte questão:

"que ferramentas e princípios deveremos desenvolver de modo a applicar provas dedutivas

automáticas a programas com efeitos e handlers?".

Efeitos algébricos e handlers são uma abstrações poderosas que nos permite construir

mecanismos para controlar o curso de um programa como, por exemplo, exceções que

nos permitem recomeçar a computação, threads lightwheight, corotinas, geradores e I/O

asíncrono. Todos estes paradigmas são um grande desafio no contexto de verificação

dedutiva pois têm semanticas bastante complexas. Neste relatório iremos abordar algumas

das técnicas existentes para provar programas com efeitos algébricos. Ademais, propomos

uma estratégia de verificação para provar automáticamente programas com handlers. Para

este efeito,extendemos a ferramenta Cameleer,um verificadorde código OCaml que utiliza

a linguagem de especificação GOSPEL e o prover Why3. Esta extensão visa aproximar o

comportamento de handlers utilizando exceções e funções desfuncionalizadas.

Palavras-chave: Verificação dedutiva,Efeitos Algébricos,EffectHandlers,Multicore OCaml,GOSPEL,

Why3, Cameleer

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Definition . 2

1.3 Goals and Contributions . 2

1.4 Thesis Structure . 3

2 Background 4
2.1 Functional Languages . 4

2.2 Hoare Logic . 5

2.2.1 Separation Logic . 6

2.3 GOSPEL and Cameleer . 7

2.4 Effect Handlers . 9

2.4.1 Deep and Shallow handlers . 11

2.4.2 Joining Streams . 11

2.5 Peeking Under the Curtain : Handler Implementation 16

2.5.1 Implementing Handlers With Exceptions 17

2.5.2 Okay, But Why Does This Matter? 18

2.6 Exceptions: What Are They Good For? . 18

3 State of the Art 20
3.1 Typing Programs With Algebraic Effects 20

3.2 Modelling Algebraic Effects Using Equational Theory 21

3.3 Verification of Algebraic Effects with Separation Logic 21

3.3.1 Language Syntax . 22

3.3.2 Protocols . 23

3.3.3 Definition of Protocols . 24

3.3.4 Formal Interpretation of Protocols 25

viii

4 Defunctionalization 27
4.1 Defunctionalization in a Nutshell . 27

4.2 Defunctionalization Coupled with Verification 28

4.3 Defunctionalization with State . 31

5 Reasoning about Effects and Handlers in Why3 33
5.1 GOSPEL Extension . 33

5.1.1 GOSPEL Protocols . 33

5.1.2 Effect Handlers . 34

5.1.3 Performs Clause . 35

5.1.4 The Remaining Grammar . 36

5.2 WhyML Formalization . 36

5.3 Proving an OCaml program with protocols 38

5.3.1 Translating effects into WhyML . 41

5.3.2 Representing continuations in WhyML 41

5.3.3 Specifying continuations . 42

5.3.4 Verification of the Program . 44

5.4 General Translation Scheme . 46

5.5 Limitations . 53

6 Case Studies 56
6.1 Cameleer Implementation . 56

6.2 Division Interpreter . 57

6.2.1 Interpreter Specification . 57

6.2.2 Translating The Interpreter . 58

6.2.3 Verifying the Interpreter . 60

6.2.4 Translation of the Handler . 60

6.2.5 Verifying the handler . 60

6.3 Mutable Reference . 61

6.3.1 Client implementation and Specification 61

6.3.2 Handler Implementation and Specification 62

6.3.3 Verification of the Handler . 65

6.4 Generators . 66

6.4.1 Client Specification . 66

6.4.2 Handler Implementation . 68

6.4.3 Handler Specification . 69

6.4.4 Verification . 70

6.5 Shallow Handlers . 72

6.5.1 Extending The Grammar . 72

6.5.2 Shallow to Deep . 73

6.5.3 Translation . 74

ix

6.5.4 Verification . 77

6.6 Overview . 79

7 Conclusions 80
7.1 Contributions . 80

7.2 Future Work . 82

Bibliography 83

x

List of Figures

2.1 Stream join. 13

2.2 An OCaml fiber [38]. 17

4.1 Fully defunctionalized length. 29

4.2 Fully annotated length. 30

4.3 Defunctionalized proof of length_cps. 31

5.1 Extended GOSPEL Syntax. 37

5.2 WhyML Syntax. 38

5.3 Full OCaml program and GOSPEL specification. 44

5.4 WhyML proof. 45

5.5 State Definition. 47

5.6 Top Level Declarations. 48

5.7 Effect Translation Rule. 49

5.9 Defunctionalization Rule. 51

5.10 Translation rule for effect handlers. 54

5.11 Inductive Translation Rules. 55

6.1 Handler for the xchg function implemented in OCaml. 57

6.2 Division Interpreter. 57

6.3 Specified Division Interpreter with Handler. 59

6.4 Complete sum_fun handler. 64

6.5 Client Specification. 67

6.6 Axiomatized Definition of iter_inv . 70

6.7 Handler for the iter function. 71

6.8 Partial translation of a shallow handler. 76

6.9 Complete translation of the deep function. 77

6.10 Fully Translated Program. 78

xi

1

Introduction

1.1 Motivation

Our physical lives are becoming evermore intertwined with the digital realm, seeing as

entertainment, communications and global finances have all migrated to virtual platforms,

essentially flattening many limitations posed by the physical world. With such a great

load to bear, it is not a bold statement to say that all these mechanisms must not only be

efficient and easy to use but must also provide some sort of guarantee that they will always

present the expected result and will never suffer any catastrophic failure. This is without

a doubt one of the biggest (arguably impossible) challenges that computer scientists have

struggled with for as long as computer science has been a respectable field. Although

overcoming this challenge involves many different areas of study, in this thesis we will

focus on one: the correctness of code.

The most widespread way of checking if a program produces the expected result is

testing. However, as Djikstra put it, "program testing can be a very effective way to show

the presence of bugs, but is hopelessly inadequate for showing their absence" [14]. In

order to prove such a rigid condition, we need formal proofs of a program’s correctness.

Seeing as writing these proofs by hand would be far too cumbersome, especially for the

complex systems that warrant such a methodology, we will use automated verifiers that

will dispatch proof obligations and feed these into SMT (Satisfiability Modulo Theory)

solvers [25], programs that can determine if a mathematical formula is valid or not; this is

referred to as deductive verification [16].

This style of verification is best applied to software written in functional languages,

mainly because these tend to avoid effectful constructs, making it easier to apply a log-

ical model on them. Another reason being that functional conventions such as pattern

matching and recursion go hand in hand with a mathematically minded approach. For

this project, we will consider OCaml as our target language.

More specifically, the class of OCaml programs we will consider are those that feature

effects and effect handlers [33]. In short, effect handlers behave similarly to try-catch blocks:

when an effect is performed, execution is halted, and control is given to the handler. The

1

CHAPTER 1. INTRODUCTION

main difference lies in the fact that an effect handler exposes a continuation: a function

that, when called, will resume computation at the point the effect was performed.

Effect handlers can be employed for a myriad of applications: they can be used in

creating lightweight threads, developing highly modular code and exposing control of

higher-order iteration. Handlers have been gaining popularity as a way of encoding the

interactions a program has with its environment. As such, they have been, over the course

of the past decade, implemented in a series of research programming languages [6, 4, 12,

26, 19]. More recently, the latest alpha release of Multicore OCaml features effect handlers

with delimited one-shot continuations [38].

1.2 Problem Definition

Although handlers enable us to write functional programs in interesting new ways, they

are not trivial to write proofs for, given the fact that the computation might be suspended

and restarted, breaking the normal control flow we would expect from a sequential

program. Luckily, some research has been done [13] that presents reasoning rules for this

kind of program, albeit none of them explore automated proofs. Therefore, the research

question of this work is

what tools and principles must be developed in order to apply automated deductive
proofs to OCaml programs featuring effects and handlers?

1.3 Goals and Contributions

This thesis proposes a framework to automatically verify programs that employ algebraic

effects. To achieve this, we support to prove these programs to Cameleer [31], a deductive

verification tool for OCaml whose specifications are written in GOSPEL [10] (Generic

OCaml SPEcification Language) and then translated to Why3 [5], an automatic theorem

prover. Cameleer is also the only automated deductive verification platform (we are aware

of) that targets OCaml programs, making it an ideal choice for this thesis.

To achieve this goal we must be able to represent the continuation function exposed

by the handler in our proofs, which we will do using a translation of algebraic effects

into Why3 that employs defunctionalization [37], a transformation that turns higher

order programs into first-order ones. Although some research has been done using this

technique in the context of program verification [40], we will refine it further in order to

employ it to algebraic effects. Our goals are twofold:

1. to develop an embedding of OCaml handlers and effects into WhyML, employing

defunctionalization; and

2. extending Cameleer to automatically translate GOSPEL annotated programs into

this embedding.

2

1.4. THESIS STRUCTURE

1.4 Thesis Structure

• Chapter 2 covers the necessary grounds to understand the problem at hand, such

as existing techniques to verify and specify programs, as well as a clearer definition

of what algebraic effects are.

• Chapter 3 explains the existing methodologies with which to prove programs with

algebraic effects. We will give special emphasis to protocols.

• Chapter 4, we show how defunctionalization can help with the verification of higher-

order programs with side effects such as mutable state.

• Chapter 5 contains the formalization of two ML languages similar to GOSPEL

annotated OCaml and WhyML. We will also showcase the translation rules that will

allow us to encode the meaning of the specifications of our OCaml-like language

into our WhyML-like language.

• Chapter 6 shows four concrete examples of OCaml annotated GOSPEL programs

proved using our encoding.

• Chapter 7 will summarize our contributions, limitations and future prospects.

3

2

Background

2.1 Functional Languages

A common critique of projects of this type is: why OCaml? Or why functional languages

in general? This sort of reasoning usually springs from the fact that OCaml and its peers

never seem to reach the same level of notoriety as their imperative counterparts [1], mostly

because the learning curve for functional languages is quite steep, especially if one is

already ingrained in imperative patterns. However, sidelining these languages simply due

to their popularity would be a grave error, seeing as many small and major corporations

rely on OCaml code to implement a wide variety of systems [11]. One of the biggest sharks

that use OCaml is Jane Street, an extremely large Wall Street firm, who have been writing

OCaml code for over 15 years and developed Core, one of the most commonly used open

source OCaml libraries [18].

OCaml applies a combination of features that, although quite pervasive in many other

languages, are rarely wedded in a single tool. For example, we do not need to declare a

variable’s type, like in Python; nonetheless, we have static type checking, like in Java, since

the compiler can infer, by context alone, if each variable is used in a safe manner. Like in

Javascript and Python, we have first class functions that can be used as ordinary values.

Additionally, we also have access to many other features that, although quite useful, are

rarely seen in more popular languages such as algebraic data types, pattern-matching and

parameterized modules [18].

More generally, the main difference between the imperative and functional style of

programming is that functional languages take a more declarative approach. Value and

function definitions are commonly trees of expressions, unlike in imperative languages

where they are a list of instructions that may modify or access the global state of the

program. Functional programs also make extensive use of recursion coupled with pattern

matching as opposed to loops, as well as a greater focus on purity than stateful effects.

These qualities make functional languages more amenable to deductive verification,

seeing as these programs are already quite similar to mathematical formulas, both in

style and substance. Nonetheless, OCaml still gives us access to a rich ecosystem that

4

2.2. HOARE LOGIC

encompasses many imperative features, most notably, mutable references and exceptions,

making it more versatile than other functional languages such as Haskell.

2.2 Hoare Logic

In deductive verification, we generally aim to express some relation between the arguments

a function takes and its result. For this purpose we can use Hoare Logic [21], a formal

system built on top of Hoare Triples, which consist of a precondition P , a postcondition

Q and a piece of code s. The Hoare triple {P}s{Q} is said to be valid under Hoare logic if

an execution of s starting in any state in which P holds implies that, after s halts, Q will

be true.

Although Hoare Logic is very useful, it can fall short when verifying effectful programs,

given that it can lead to very complex specifications. To demonstrate this problem, we

will present a method which copies the contents of an input array to an output array,

written in Dafny [27], a program verifier built on top of Hoare Logic and implicit Dynamic

Frames [39]. Although the most obvious postcondition we want to prove is that the

contents are copied, we could also try to ensure that the contents of the input array are

unmodified.

method copyArray (output : array <int >,

input : array <int >, offset : int)

ensures ∀ i • 0 ≤ i < input. Length =⇒
old(input[i]) = input[i] ∧ input[i] = output [i + offset]

modifies output

// rest of the specification omitted
{

var i := 0;

while (i < input. Length) {

output [i + offset] := input[i];

i := i + 1;

}

}

The ensures clause allows us to define our postcondition, in this case, that the input array

is unmodified and that the contents of the input array have been copied to the output

array at the correct offset. We also have a modifies clause which states which variables

this program will modify. The immutability of the input array appears trivial to prove,

seeing as it is not accessed and we omitted it from the modifies clause. However, Dafny

is unable to prove it, given that the input and output array may be aliased, meaning that

modifying the output array would imply changing the input array. The only way to fix

this problem is to add the clunky precondition : input ! = output. This specification is a

5

CHAPTER 2. BACKGROUND

clear example of Hoare Logic interpreting specifications with state variables in ways that

do not make intuitive sense.

The fundamental issue is that, with Hoare Logic, we must have a clear and complete

definition of the state of memory in all our proofs. Since these issues can crop up even

in relatively small programs, using Hoare Logic with state variables is an invitation for a

great deal of complications.

2.2.1 Separation Logic

Naturally, an extension of Hoare Logic was created which aimed to patch these problems:

Separation Logic [8]. The general idea is similar to Hoare Logic: we have a triple made

up of a precondition, a postcondition and a piece of code. Only this time, our logical

assertions reason over a fragment of memory instead of having to model it completely.

We do this using heap predicates, of type Heap → Prop, which describe the state of

the memory fragment that this program operates over. Another important element in

Separation Logic is the star operator: given two heap predicates H1 and H2, H1 ∗ H2
means not only that H1 and H2 are valid, but that they refer to disjoint fragments of

memory, one that validates the predicate H1 , the other validates H2. But if we are only

describing a fragment of memory, what is to be said of the rest we are effectively ignoring?

Separation Logic includes a very powerful rule known as the frame rule. Essentially, it

states that any piece of memory not explicitly referred to in our precondition will not be

accessed nor modified. More formally, given two disjoint heap predicates H and H ′
, if

the triple {H}t{Q} is valid then {H ∗ H ′}t{Q ∗ H ′} is also valid for any arbitrary heap

predicate. This is described by the following inference rule:

{H} t {Q}

Frame rule

{H * H’} t {Q * H’}

Additionally, if a piece of memory is referred to in our precondition, but not in our

postcondition, then that memory fragment is now inaccessible.

Another important operator is x; v, which states that the value the memory reference

x holds can be defined by the logical value v. To assert a pure predicate P (i.e not a heap

dependent predicate) holds we write P . Finally, if we do not wish to reason over any

memory fragment we use , essentially asserting an empty state. In order to show these

operators in action and their expressive power, let’s examine a very simple specification

for an allocation of a memory cell (this example is taken from [8]):

{ } ref v { λr.∃p.r = p ∗ p; v } (2.1)

Assuming the r argument is the result of evaluating expression ref v, the postcondition

states that the program allocates a memory cell p that holds the value v. Interestingly, it is

left implicit that this pointer is different from every other pointer in the program, due to

the frame rule: seeing as we started with the empty state, we can infer that any existing

6

2.3. GOSPEL AND CAMELEER

memory references are disjoint from the pointer p, seeing as none were accessed, without

any extra guidance from the logician.

To make our proofs slightly easier, we will use an extension of separation logic which

adds read only permissions [9]. Essentially, predicates marked as read-only can only be

read, and therefore they need only to appear in the precondition and not the postcondition.

More formally:

{H * RO(H’)} t {Q}

Read only frame rule

{H * H’} t {Q * H’}

We should note here that this variant of Separation Logic has not been proven to be sound

in a language with effect handlers.

Another operator that will be relevant in Chapter 3 is the separating implication, most

commonly referred to as the magic wand H1 −∗ H2. In short, this is very similar to a normal

implication where instead of propositions we have heap predicates: if H1 is true of a heap

fragment, H1 * (H1 −∗ H2) is equivalent to H2. Important to note that H1 and H2 don’t

necessarily need to describe two disjoint pieces of memory. The magic wand principle is

captured by the following rule:

H1 * (H1 −∗ H2)

Magic Wand

H2

2.3 GOSPEL and Cameleer

Although Separation Logic is a much more convenient way of handling mutable state, the

proofs can still be rather verbose, which is why we will use GOSPEL [10] (Generic OCaml

SPEcification Language), a higher level specification language built on top of Separation

Logic with read-only permissions. GOSPEL’s syntax is very different from what we have

seen thus far in regards to Separation Logic. Nonetheless it is much simpler, seeing as it

makes certain assumptions about state variables that simplify the process of writing our

specifications. Generally speaking, we assume that only variables that are read-only can

be aliased. By making this assumption we are technically reducing the program space we

can verify.

To demonstrate the expressive power of GOSPEL specifications, we will specify the

copyArray function from section 2.2 as follows:

GOSPEL + OCaml

val copyArray (input : 'a array) (output : 'a array) (offset : int)

(*@ requires length input >= offset + length output

ensures forall i. 0 <= i < length input ==>

input[i] == output[i + offset] && old(input[i]) == input[i]

modifies output *)

7

CHAPTER 2. BACKGROUND

Note that GOSPEL specifications are added as comments beginning with @ at the end

of the function definition. These conditions are quite similar to the Dafny specification,

however, since we state that the output array is in the modifies clause, we can infer it is

not aliased with input. This is because GOSPEL is built on Separation Logic, unlike Dafny,

which is built on Dynamic Frames[39], an extension of Hoare Logic that remedies some

of the problems in verifying programs with mutable data, but is still more verbose then

Separation Logic.

GOSPEL, nonetheless, is only a specification language; it is not geared towards any

specific tool [10]. Indeed, if one so desires, GOSPEL specifications can act only as a sort

of formal documentation. If we wish to prove these, we must translate them in such a

way that they can be used by some program verifier. One of the most obvious tools we

could use is CFML [7], the only deductive verification tool we are aware of that is built

specifically for OCaml code. Another option would be Iris [23], an extremely powerful

and expressive logic which can handle concurrency, higher-order effectful functions and

many other constructs. Nevertheless, these two fall outside the scope of our project, since

we focus on automated theorem provers and both of these are based on interactive proof

assistants. The main difference between these two categories is that the latter requires some

assistance from the user to build proofs, whereas the former builds them automatically.

Given this, we turn to Cameleer, which translates GOSPEL annotated OCaml into

Why3, an automated theorem prover which dispatches proofs written in WhyML, a

language belonging to the ML dialect, making it very similar to OCaml. Like Dafny, Why3

is also built on top of Hoare Logic, but disallows untracked aliasing. For example:

WhyMLlet x = ref 0

let y = x

Is allowed seeing as Why3 can keep track that x and y are the same reference. However,

if we have a function where we pass two references, these cannot be aliased, unless they are

read-only. Although these limitations line up very neatly with GOSPEL’s infrastructure,

problems arise when we introduce recursive data structures with mutable fields, such as:

WhyMLtype link_list 'a = Nil | Cons 'a (ref (link_list 'a))

Since Why3 cannot keep track if this type forms a closed loop, seeing as the Cons

constructor’s second argument is a reference to a link_list, it will not allow constructs

of this nature to be used in WhyML, specifically, recursive types with mutable fields. If we

wanted to prove an OCaml program that uses this list, we would eventually have to use

some other verifier, such as CFML, or alternatively, use a memory model implemented in

Why3 [32].

8

2.4. EFFECT HANDLERS

2.4 Effect Handlers

Effect handlers have been around for over a decade [33], but have recently picked up

momentum as a unique approach to model effectful behavior in a functional setting. To

illustrate their usage, let’s first examine the following function written in standard OCaml.

type exp = Int of int | Div of exp * exp

exception Div_by_zero

let rec eval (e : exp) : int = match e with

|Int x -> x

|Div(l, r) ->

let eval_l = eval l in

let eval_r = eval r in

if eval_r = 0

then raise Div_by_zero

else eval_l / eval_r

let main e =

try Printf.printf "%d\n" (eval e) with

|Div_by_zero -> print_endline "Division by zero. Exiting"

In this example we have a simple program which evaluates an expression that can be

either a constant or a division. However, if the right hand size of the division evaluates

to 0, the interpreter raises an exception, since divisions by zero are undefined. As we

mentioned in section 2.1, programs written in functional languages are stylistically very

similar to mathematical definitions, and this interpreter is no exception. Indeed, if we were

to write an inductive definition for this function’s behavior, it would be nearly identical

to eval’s implementation, barring the exception, since in standard logic functions are

assumed to terminate with a result. Naturally, if we wish to specify this function, we will

need additional rules and syntax to model exceptions.

Since in most programming languages it is quite common to control the flow of

a program using exceptions, virtually every prover (Why3 included) has support for

specifying and proving exceptional behavior. In this case, we would like to prove that an

exception is thrown whenever there is a sub-expression whose right-hand evaluates to

zero. To do so, we could use the following WhyML program.

WhyMLfunction eval_ind (e : exp) : int = match e with

|Int n -> n

|Div e1 e2 -> eval_ind e1 / eval_ind e2

end

9

CHAPTER 2. BACKGROUND

predicate has_zero (e : exp) = match e with

|Int n -> false

|Div e1 e2 -> eval_ind e2 = 0 || has_zero e1 || has_zero e2

end

let eval (exp : exp) : int

raises{Div_by_zero -> has_zero exp} = (*implementation omitted*)

We first define the evaluation of expressions using the logical function eval_ind. This

function also uses the division operator. In WhyML logical functions, when we attempt

to divide by 0, no exceptions are thrown. Instead the result is undefined, meaning it

cannot be used constructively in our specifications. We then define a predicate has_zero

which checks if there are any invalid sub expressions. In the raises clause attached to

the eval function, we state that when a Div_by_zero exception is thrown, there was a

sub-expression whose right hand side evaluated to zero. Since our focus for the time being

is in capturing exceptional behavior we will not add any additional specification clauses.

As we stated in chapter 1, however, our goal is to prove programs with effects, meaning

they may restart at the point the effect was performed. This adds a much higher burden

of proof: not only must we prove the conditions in which the effect is performed, we must

also specify the conditions in which control is returned to the function. Before discussing

strategies for proving these, let us examine the following implementation of the division

interpreter using effects. Important to note that OCaml does not have a dedicated syntax

for effect handlers as of yet, they are simply exposed with functions from the novel Effect

module. Nevertheless, in order to increase clarity, we have created our own syntax which

we will formalize in section 5.1.2. This syntax is inspired by what was proposed in an

experimental branch of Multicore OCaml [2].

OCamleffect Div_by_zero : int

let rec eval (e : exp) : int = match e with

|Int x -> x

|Div(l, r) ->

let eval_l = eval l

let eval_r = eval r in

if eval_r = 0

then perform Div_by_zero

else eval_l / eval_r

let main e =

try Printf.printf "%d\n" (eval e) with

|effect Div_by_zero k -> continue k max_int

10

2.4. EFFECT HANDLERS

The only difference between this and our previous approach is that Div_by_zero is

now an effect, not an exception, and it has type int. This means when this effect is

performed it will generate a suspended continuation, which receives as argument an

integer: the value the caller wants the undefined division to hold.

To expose this continuation, we use a try-with expression, thereby installing a handler

that will catch any effects performed by the call to eval. Whenever an effect is performed,

this handler will have access to the suspended continuation by means of the variable

k. It will then call k and pass it as argument max_int, an OCaml constant that defines

the largest int the runtime environment can represent. This call will resume the call

to eval at the point the effect was performed. We cannot call k directly, we must use

the continue function, which takes a continuation and its argument, due to certain

implementation decisions that we will explain in section 2.5. When this continuation is

called, the function returns to where the effect was performed and resumes execution,

replacing the perform Div_by_zero expression with max_int. We could also call the

discontinue function which receives as argument the continuation. This function simply

discards the continuation and raises a special exception.

2.4.1 Deep and Shallow handlers

If we call a continuation, what happens if it performs another effect? Does the handler

keep catching them or will we need a new one? This will depend if the handler is shallow or

deep. Shallow handlers only catch one effect: the continuations they generate will perform

more effects. Deep handlers however, will remain installed and continue handling any

other effects that are performed.

Deep handlers are more commonly used then their shallow counterparts. They are

also easier to reason over since, if a deep handler catches every effect a function produces,

its continuations will not produce effects. This is important since our encoding for

continuations makes it difficult to represent effectful behavior. We will go over this in

more detail in Chapter 6. Because of this, they will be the main focus of this thesis.

Therefore, any instance when we show implementations using handlers, the reader can

assume the handler is deep, unless explicitly stated otherwise.

2.4.2 Joining Streams

Although the example in section 2.4 is illustrative of how effects work, it confines them to

the niche of resumable exceptions. In truth, effects are extremely versatile: in a general

sense, we can think of effects as abstract operations and effect handlers as their concrete

implementation [24]. One of the most powerful ways one can use handlers is by storing

the continuation for later use instead of consuming it immediately, which can lead to new

possibilities for asynchronous programming. For example, let’s say we are working with

a finite, ascending stream of integers, exposed by a function of the following type:

11

CHAPTER 2. BACKGROUND

type int_stream = (int -> unit) -> unit

This stream takes a single argument: a lambda with one argument of type int, which

represents the current element in the stream, and returns unit, an OCaml type that is

inhabited by the element () which represents a void value. The stream also returns unit.

When values of type int_stream are called, they will produce an int value, apply the

lambda by passing it as an argument, and repeat until the stream has been exhausted.

Since this function effectively has no return value, any non-trivial application of a stream

would use a lambda that writes to some mutable data structure, such as an array.

Our goal is to implement a function which takes a list of int_stream and combine all

their values into a single sorted array. This is possible without effects: we simply call each

stream, add each element into an array

let res_arr : int array = ...

let join (l : int_stream list) =

let i = ref 0 in

List.iter (fun () -> l (fun x -> res_arr.(!i) <- x; i:=!i+1)) l;

Array.sort res_arr compare

However, there is a more efficient alternative: since we know that streams are already

sorted, we could suspend a stream using an effect when we know there is another stream

whose next value is smaller than the one the current stream has just produced. An

implementation of this function is presented in figure 2.1 (this example is original)

In lines 1-2, we define the int_stream type, which is the same as ourprevious definition

and the Yeild effect of type int -> unit, meaning that in order to perform it, we must

give it an argument of type int. Additionally, the continuation exposed by the handler

will receive as argument a value of type unit

OCamltype int_stream = (int -> unit) -> unit

effect Yield : int -> unit

We then declare the join function which takes a list of streams and returns an array of

integers. On lines 5-8 we define four state variables: res_arr stop_at, i and n_end.

OCamllet res_arr : int array = Array.init 0 10000

let stop_at = ref min_int in

let i = ref 0 in

let n_end = ref 0 in

The res_arr variable is the array we will return at the end of the function with all the

values from each stream. This array is initialized with an initial capacity of 10000. To keep

the code relatively simple, we do not resize the array when it has reached full capacity.

The next variable is used by the stream which is currently iterating: if the value saved

in stop_at is smaller then the value we are currently iterating, then that means there is a

12

2.4. EFFECT HANDLERS

OCaml1 type int_stream = (int -> unit) -> unit
2 effect Yield : int -> unit
3

4 let join (l : int_stream list) : int array =
5 let res_arr : int array = Array.init 0 10000
6 let stop_at = ref min_int in
7 let i = ref 0 in
8 let n_end = ref 0 in
9

10 let add (elt : int) =
11 if elt > !stop_at then perform (Yield elt) else ();
12 res_arr.(!i) <- elt;
13 i := !i + 1 in
14

15 let block_stream stream =
16 let rec curr = ref (fun () ->
17 try stream add;
18 n_end := !n_end + 1;
19 max_int
20 with effect (Yield x) k -> (curr := continue k; x)) in
21 fun () -> !curr () in
22

23 let map_fun = fun stream ->
24 let bs = block_stream stream in bs, bs () in
25 let it_list = List.map map_fun l in
26

27 let it_arr = Array.of_list it_list in
28 let sort = (fun (_, n1) (_, n2) -> compare n1 n2) in
29

30 while !n_end <> Array.length it_arr do
31 Array.sort sort it_arr;
32 let next_it, _ = it_arr.(0) in
33 stop_at := (let _, n = it_arr.(1) in n);
34 let block_value = next_it () in
35 it_arr.(0) <- next_it, block_value;
36 done;
37 res_arr

Figure 2.1: Stream join.

13

CHAPTER 2. BACKGROUND

stream whose next value will be smaller then the one we are currently iterating, meaning

we should yield and surrender control to that stream. This reference is initialized with

min_int, an OCaml constant that represents the smallest possible integer.

The variable i will hold the current index in the array and the n_end variable stores

how many streams have finished processing.

We then define the ancillary add function, defined within the scope of join. This will

be the function our stream will execute at each element: it first checks if it should yield,

sets the current index of the array to the current element and increments i.

OCamllet add (elt : int) =

if elt > !stop_at

then perform (Yield elt) (*yields control to another stream*)

else ();

res_arr.(!i) <- elt;

i := !i + 1 in

We then define the block_stream function, which will transform a normal int_stream

into a stream that will block when necessary and returns the value it stopped at. We do

this using curr, a reference to a function which will hold the current step in the iteration,

defined within the scope of block_stream. This reference holds a function that calls the

stream by passing it the add function defined previously. Once completed, the n_end

counter is incremented and we return max_int. If at any point a value is yielded, we set

curr to be the suspended continuation and return the yielded element. The implication

being that curr will be a function that updates itself depending on the current state of the

iteration. The return of block_stream will simply be a lambda which calls curr.

OCamllet block_stream stream =

let rec curr = ref (fun () ->

try

stream add; (* start stream iteration *)

n_end := !n_end + 1;

max_int with

|effect (Yield x) k -> (curr := continue k; x)) in

(* update curr, return yeilded value *)

fun () -> !curr () in

In lines 23-28 we create an array where each element will be a tuple comprised of a

blocking stream and the first element that blocking stream will handle. We do this by

applying a map over the list of streams. To get the first element in the stream, we simply

call it; since stop_at was set to min_int, the stream will surrender control immediately

and return the current value.

14

2.4. EFFECT HANDLERS

OCamllet map_fun = fun stream ->

let bs = block_stream stream in bs, bs () in

let it_list = List.map map_fun l in

We then turn the resulting list into an array and define a sort function to order the

array by the next element in each stream. This function takes two arguments, both tuples,

the first element of both is ignored and we simply compare the second (the compare

function used is part of the OCaml standard library).

OCamllet it_arr = Array.of_list it_list in

let sort = (fun (_, n1) (_, n2) -> compare n1 n2) in

Finally, we have the loop in which we call fill the res_arr by the appropriate blocked

stream.

OCamlwhile !n_end <> Array.length it_arr do

Array.sort sort it_arr;

let next_it, _ = it_arr.(0) in

stop_at := (let _, n = it_arr.(1) in n);

let block_value = next_it () in

it_arr.(0) <- next_it, block_value;

done;

At each step of the loop we do the following:

• check if all streams have completed

• sort the array using the sort function

• get the stream whose current element is the smallest (the one at position 0)

• set the stop_at variable to the current element of the stream at position 1

• call the stream and change the element at position 0 with the value the stream

blocked at, or max_int if the stream is complete; this way, after the array is sorted,

completed streams remain at the back of the array. (for simplicity’s sake, we assume

that streams never contain values equal to max_int)

Once this algorithm terminates, our result array is returned having every element

from each stream as well as begin sorted. One might wonder however, if the overhead

necessary to stop and re execute these streams might cancel out any performance gains

we achieve by not having to sort the array after adding all the elements. To test which

is faster, we created three streams with one million elements, each constructed in a way

that we are forced to yield at every step of all iterations. After testing the initial solution

solution and the effectful solution with these three streams, we concluded that the effectful

15

CHAPTER 2. BACKGROUND

implementation beats the direct style program with almost twice the speed (2.16 seconds

vs 5.03 seconds).

This example is a much more realistic, albeit more complicated, use case of effect

handlers. Although they can be useful for error recovery, where they truly shine is in

asynchronous scheduling. Proving this program would be much more difficult then our

previous example: we would have to prove at each step of the loop we are calling the

correct stream, model the current state of each stream and prove that the array is sorted. To

do this, we will need to reason over the suspended continuation the streams call and then

save. One obstacle we have to address is the fact that Why3 only allows using functions as

first order values if they do not produce side effects, seeing as these continuations, along

with the add function, modify the res_arr variable, thereby mutating the global state.

2.5 Peeking Under the Curtain : Handler Implementation

Before we further digress into strategies for proving programs with effects, let us journey

under the hood and see how the OCaml runtime implements these. The OCaml execution

stack is built using heap fibers [38], which are made of a list of stack frames and a handler

closure, which is itself made of a handler and its environment. Fibers are stored in the

C heap and are freed when their execution has completed. This last detail is important:

OCaml continuations are one-shot, meaning we can only execute them at most once.

Therefore, fibers never need to be copied after they finish executing, which allows the

runtime to release them from the heap immediately. This makes switching between fibers

very fast. When an effect is performed, we pop the top most fibers which in turn become

our continuation; when continue is called, we push these fibers back on top of the stack.

As we can see in figure 2.2, the base of the fiber is made of a pointer to the parent fiber,

the enclosing exception and effect closure (clos_hexn and clos_heffect), which are invoked

when the fiber raises an exception or throws an effect. The last frame in the handler_

info section is the clos_hval, which is the closure that will be executed when the fiber

finishes its execution naturally and control has been returned to the parent fiber. The next

important element in our fiber are OCaml frames: these represent the code that the fiber

is currently running; if the size of this region exceeds a certain threshold (stored outside

the fiber) then the stack has overflowed and the entire contents of the fiber are copied to a

region in memory with twice the size. The red zone is used for optimizing the verification

of a stack overflow: if the frame size for a function is smaller then the red zone, then we

skip the stack overflow check. At the top, we have the pointer to the closest exception

frame and the pointer to the top of the stack. When we switch fibers we must first store

the value of these two pointers and load these on to the target stack and resume execution.

16

2.5. PEEKING UNDER THE CURTAIN : HANDLER IMPLEMENTATION

Figure 2.2: An OCaml fiber [38].

2.5.1 Implementing Handlers With Exceptions

Although the OCaml team chose to implement effects by changing the OCaml runtime,

there is another strategy: CPS (Continuation Passing Style) and exceptions. CPS is a

style of programming where the programmer explicitly controls the flow of a program

by having all functions take an extra parameter: a continuation. Instead of returning

naturally and delegating control to the program’s runtime, we call the continuation and

pass as argument the return value of the function. For example, our division interpreter

from section 2.4 could be implemented with the following encoding:

OCamllet eval (e : exp) (k : int -> 'a) : 'a =

match e with

|Int x -> k x

|Div l r -> eval l (fun eval_l ->

eval r (fun eval_r ->

if eval_r = 0

then raise (Div_by_zero k)

else k (eval_l / eval_r)))

17

CHAPTER 2. BACKGROUND

Although this program would be equivalent to our implementation with effects, apply-

ing this kind of transformation to an entire program would render it extremely inefficient.

Moreover, since we don’t explicitly call functions, we no longer have an explicit call stack,

making programs which aim to analyze the contents of the stack mid execution useless.

Interestingly, the translation WhyML we present in this thesis also uses exceptions, albeit

in a different way (more on this matter in Chapter 5).

2.5.2 Okay, But Why Does This Matter?

There is an argument to be made that the underlying implementation of effect handlers in

OCaml is irrelevant for this project, since we are simply trying to model, in an axiomatic

context, the behavior of suspended computations. Therefore, how this behavior is im-

plemented in the physical world is irrelevant to our proofs. We disagree, for two basic

reasons:

• Understanding how effect handlers are implemented gives us a stronger mental

model of their behavior, something that is invaluable when working on program

verification.

• It is critical to understand the physical limitations of the programs we are trying to

verify. For example, if we were to make a new framework to prove OCaml programs

that performed basic arithmetic, and we didn’t model the fact that OCaml integers

overflow, this hypothetical framework would be useless in verifying programs with

arbitrarily large integers. In the case of effect handlers, the only implementation

decision we can identify that will make a significant impact in the shape of our

proofs is the fact continuations can only be executed once. We will go over this

property in more detail in the next chapter.

2.6 Exceptions: What Are They Good For?

As we have seen from the previous examples we have shown, as well as our brief overview

of their implementation, performing an effect is syntactically similar to raising an exception

while also being a very lightweight operation. This raises the question: what is the use

of functions that raise exceptions if we could use an effect and give the caller of the

function the option of resuming (using continue) or discarding (using discontinue) the

computation?

Before we answer, we must first understand how exceptions are used in modern

programming. There are two common use cases. The first is when we write a function

where in some cases there is no logical return value. For example, if we are writing a

function that returns the first element of a list, we may raise an exception in case the list is

empty

18

2.6. EXCEPTIONS: WHAT ARE THEY GOOD FOR?

The second use case is when our program has reached an invalid state from which we

can not recover and computation must be aborted. For example, if we are implementing a

compiler, we might want to throw an exception in case of a syntax error.

Instead of using exceptions to deal with both of these use cases, algebraic effects can be

used for the former and exceptions can be used for the latter. Although this might seem

like an artificial separation, the choice between effects and exceptions will have important

implications in the context of programs with typed algebraic effects. In short, programs

that use exceptions are considered to be pure, whereas programs that use effects are

considered impure. We will explore this further in the next chapter.

19

3

State of the Art

In this section, we will dive into some of the work done in regards to the verification of

effects and handlers. We will fist go over type systems for programs with effects and the

guarantees they can provide. Next, we will look at how we may verify programs using

equational theory. Finally, we will go over the state of the art in the verification of programs

with algebraic effects using Separation Logic

3.1 Typing Programs With Algebraic Effects

The most common type of static verifications programmers use for their programs is type-

checking. There are many advantages to using a language with a type system: it can act

as a very expressive and straightforward documentation while also statically eliminating

a wide class of bugs.

A possible way of extending a type system’s reach is by adding an effect system [3].

In normal type systems, we generally have type signatures such as f : α −→ β, where f

is a function that receives an argument of type α and returns a value of type β. When

using an effect system, type signatures have an additional parameter: a row ρ. A row

is simply a list of signatures indicating which effects this function performs. With this

typing information, we can determine, at compile time, if a program will perform any

unhandled effects, thereby removing yet another common source of errors.

Effect systems can be used to track not only algebraic effects, but any kind of impure

behavior such as mutable state and divergence [26]. This means we can imbue within the

typing information whether or not a function is pure. Although typing effects is already

possible by employing monadic style, effect systems allow us to have our cake and eat

it too, letting us write programs in direct style while also having more assurances from

the type system. These will be less relevant to our project seeing as Cameleer already has

mechanisms for tracking changes in state variables as well as non-terminating functions.

As we mentioned in section 2.6, there is still a place for exceptions in a language

with algebraic effects, namely in unrecoverable errors. An unofficial OCaml effect system

developed by Jane Street [15] proposed that functions that throw exceptions should be

20

3.2. MODELLING ALGEBRAIC EFFECTS USING EQUATIONAL THEORY

considered pure and not tracked by the type system. This is mostly so the programmer can

still conveniently use assert false and other terminating expressions without having to

change the entire type signature of their program.

Although effects and handlers have been introduced into an alpha release of Multicore

OCaml, there is still no effect system, although there are plans to implement one [2].

Details however, are sparse: we do not know when it will be released or what impure

behavior (besides algebraic effects) it will track.

For our tool to be sound in proving OCaml code, it must reject any programs that do

not adhere to its type system. This is difficult to do in our case since we don’t know how

exactly the OCaml type system will evolve. Since we know that the type system will track

at least algebraic effects, our tool will also ensure that no effects are unhandled.

3.2 Modelling Algebraic Effects Using Equational Theory

Type systems in ML languages can help catch large swaths of bugs in programs with little

to no user written annotations. Regardless, if we wish for a high degree of security that

our program does what we wish, there is no better substitute than formal verification.

Although effect handlers are relatively niche, there has been some work in modelling

their behavior using equational theory. The vanguard of this approach was Plotkin and

Power [34] where they reason over effects as equations of effectful computations. Some

research has been done by applying this algebraic approach to effects and handlers. For

example, Plotkin and Pretnar [35, 36] developed a logic where the semantics of effects was

captured using this approach and handlers were verified by determining if they satisfied

a set of equalities. Additionally, some implementations have been developed that embed

these reasoning rules into Coq, an interactive theorem prover [28, 42].

The existing body of work that verifies algebraic effects using equational theory has two

main setbacks. Firstly, they do not allow for user defined effects. Second, these reasoning

rules are embedded into pure languages, meaning they have no support for mutable state

and other forms of effectful programming. Additionally, the implementations into Coq

fall outside the scope of this thesis seeing as we are focusing on more automated forms of

verification.

3.3 Verification of Algebraic Effects with Separation Logic

Instead of equational theory, we will use a more natural form of reasoning: Separation

Logic. Although the body of work to draw from is a bit more limited, some research

has been done to model the concurrent behavior of effects and handlers into Separation

Logic. For instance, Timany and Birkedal [41] developed a framework for the verification

of full stack continuations in a language with call/cc. Additionally, Hinrichsen, Bengtson,

and Krebbers [20] developed an extension of Coq [23] for reasoning over programs with

message passing using protocols that define the rules that two agents must respect in their

21

CHAPTER 3. STATE OF THE ART

exchange. Drawing inspiration from this research, de Vilhena and Pottier [13] developed

a simplified version of protocols for programs with algebraic effects. Their framework

interprets effects and effect handlers as a communication between two agents: the one

who raised the effect and its handler. To model this communication, they use protocols

which describe the values that can be sent in either direction during this communication.

The logic that governs these protocols is built on top of Iris, a higher order separation

logic encoded in Coq. We will use protocols as described by de Vilhena and Pottier as a

foundation for our project.

As is the case of Multicore OCaml, the suspended continuations de Vilhena and Pottier

consider are one-shot, which means that if a function begins a communication by raising an

effect, it can only receive at most one reply. We mentioned in chapter 2 that this decision

was made for efficiency’s sake. Although this is technically correct, it is incomplete;

one-shot continuations are also preferable because they are easier to reason about, given

that if we allowed continuations to be executed multiple times, we would be permitting

functions to be entered once, but exited twice, thereby breaking a fundamental tenant of

program reasoning. An example of why such a construct might prove problematic would

be the following (taken from [13]):

let x = ref 0 in (* initialize x to zero *)
f (); (* f has no access to x, which remains zero *)
x := !x + 1; (* increment x from zero to one *)
assert (!x = 1)

In standard OCaml, it is clear that the assertion must succeed, seeing as x starts at 0

and is incremented once. Moreover, the call to f will never modify x, since x is defined

outside its scope. With one-shot effect handlers, this assertion still holds: even if f performs

an effect, x will have the value of 1 when the assertion is reached, seeing as x remains at

0 when the computation is resumed . However, in a hypothetical version of OCaml with

multi-shot continuations, we can no longer make any expectations of what x’s value is,

since every time we call the continuation, its value is incremented by 1. Since there are no

plans to add multi-shot continuations to OCaml in the future, creating proofs for these

falls outside the scope of this project.

3.3.1 Language Syntax

The language the authors used in their proofs is a call-by-value λ-calculus with support

for mutable references, recursion, and, most importantly, effect handlers. To raise an effect,

we use do e, which evaluates expression e to a value and performs an effect. Important to

note that unlike OCaml’s perform keyword, which only accepts values of a specific type

(effects, which OCaml represents with the internal type eff), the do keyword accepts any

possible value, meaning its effects are unnamed.

22

3.3. VERIFICATION OF ALGEBRAIC EFFECTS WITH SEPARATION LOGIC

To handle effects, we may use shallow − try or deep − try, which installs a shallow

or deep handler, respectively. Since both are syntactically very similar, we will focus on

shallow-try for now: shallow-try ewith |h | r, where h and r are both functions, evaluates

expression e and, if an effect was performed, calls h by passing it two arguments: the value

sent by the effect and the suspended continuation. If e terminated without performing an

effect, r is called with the return value of e passed as an argument.

3.3.2 Protocols

We described in chapter 2 how effects work and their implementation in Multicore OCaml.

However, if our goal is to deductively verify them, we must map these concepts into a

more abstract model. We must then translate this model into standard logical definitions

in order to reason over them in an axiomatic fashion.

One of the possible abstract interpretations of effects is as catalysts for a communication

between the agent that performs the effect (which we will refer to as Client) and the

nearest enclosing handler (which we will refer to as Server). To describe this, the authors

introduce the concept of a protocol step, which is used to describe what requests Client

will send and the replies that the Server will produce. Moreover, these steps can also

delegate control of resources and track changes to mutable variables. For a specific example

of the type of communications we want to model, let us examine the following example

using effects (a similar example was presented in [13]):

let xchg (x : int) : int =

let old = !p in

p := x;

old

This is a very simple program which modifies some global reference p by setting it to

a value x and returning the old value. The specification for xchg would be

{p; v} xchg x {λr. r = v ∗ p; x}

Now, let us examine a program where xchg does not write to p directly, but instead

delegates this responsibility to the nearest enclosing handler:

let xchg (x : int) : int = do x

let main () =

try xchg x with

|effect v k ->

let old = !p in

p := v;

k old

23

CHAPTER 3. STATE OF THE ART

Note that the handler is irrelevant in the specification of xchg, it is merely laid out to

give an example of how we would like a hypothetical handler to communicate with the

function. We want the pre and postconditions for xchg to be the same as before: when

it completes, we will have set the value of pointer p to x. Moreover, the return value of

xchg must be the old value of p. However, in this program, this behavior is not assured

solely by Client (xchg) but also by Server (the nearest enclosing handler). To prove

xchg’s specification, we must outline rules as to how Server and Client communicate.

Firstly, we must state that, whenever Client performs an effect, it must send some integer

x to Server. Moreover, it must allow Server to write to variable p. Conversely, if Server

wishes to respond, it must first set p to the value Client sent. Additionally, the value it

returns must be the value p pointed to when the effect was performed. Let us assume

these set of rules are captured by ψ, a protocol. If Client and Server both obey ψ, the

post condition will naturally be met.

To verify a specification with protocols, we must prove that the values Client sends

are valid in regards to ψ and that Client is prepared to accept any possible reply that

Server may produce that is also valid under ψ. Finally, it is important to note that a

function may exploit its protocol more then once:

let xchg_twice (x : int) : int =

let old = do x in

let _ = do old in

old

Here, the communication between Client and Server must have the same behavior

we previously outlined, the difference being we perform the effect twice. Therefore, our

protocol remains ψ, seeing as the set of rules that a communication must obey has not

changed.

3.3.3 Definition of Protocols

By this point, we hope to have conveyed an intuitive grasp on what protocols mean within

a specification. We will now outline their formal definition. A protocol has a precondition,

which encompass the set of rules Client must obey if they wish to perform an effect, and

a postcondition, which encompasses the set of rules Server must obey if they wish to

respond. Finally, in order to give Client a wide range of requests to send, and conversely

for Server to reply, we will also have two binders
−→x and

−→y . A protocol step ψ is defined

as follows:

ψ := ! −→x v {P}. ? −→y w {Q} (3.1)

Intuitively, this definition means that Client will send v, which may be any of the

variables defined in binder
−→x , assuming P holds. Similarly, Server may reply with w,

24

3.3. VERIFICATION OF ALGEBRAIC EFFECTS WITH SEPARATION LOGIC

which may be any variable defined in binders
−→x or

−→y , assuming Q holds. If we wish to

define the protocol we used to specify the xchg function, it would be as follows:

XCHG ≜!x x′x{p; x′}.? x′{p; x} (3.2)

The XCHG protocol binds two variables x and x′
. These variables are essentially

universally quantified, their concrete values will depend on what Client will send. The

protocol states that Client will send x to Server and that p points to x′
. The assertion

{p ; x′} also states that Server will have access to pointer p. As for Server, it must

send x′
, the old value p pointed to and update p by setting it to x, the value Client sent

This definition, however, only encompasses one cycle of request and reply: what if

a program exchanges the value stored in pointer p multiple times? Indeed, if we only

consider a single exchange between Client and Server, we would have no means to track

such modifications to our program’s state. For this reason, protocol steps are interpreted

as being repeated any time an effect is performed; this repetition is itself the protocol. By

selecting an appropriate protocol step, we can model multiple modifications to mutable

variables. To show how one could do this, we will rewrite the xchg function to the language

defined in section 3.3.1 and specify it. Additionally, we will also specify a function xchg2
that calls xchg within the context of a handler and returns the old value of pointer p.

xchg x ≜ λp. do x

xchg2 x ≜ λp. deep− try in xchg x with |λx k. λold. p := x; k old !p |λ r.r

The specification for xcgh is roughly the same, the only difference is we specify that it

obeys protocol XCHG

{p; v} xchg x ⟨XCHG⟩{λr. r = v ∗ p; x}

With xchg specified, let’s move over to xchg2: this function calls xcghwithin a handler

that respects the XCHG protocol, seeing as this handler satisfies the postcondition of

protocol XCHG. The specification for this function would be

{p; v} xchg2 x ⟨⊥⟩ {λr. r = v ∗ p; x}

Important to note that the protocol that xchg2 must obey is ⊥, a special protocol which

indicates that the function will never perform an unhandled effect.

3.3.4 Formal Interpretation of Protocols

We have shown an example of a specification which uses a protocol and how we might

prove it. However, this was done in a very informal manner, mostly to impart an intuitive

understanding of the reasoning rules and definitions surrounding protocols, which we

will now formalize. First, let’s define what proof obligations a protocol impose on a

25

CHAPTER 3. STATE OF THE ART

program. If a program with the postcondition ϕ uses a protocol ψ and performs the effect

do v it must prove the predicate ψ allows do v{ϕ}, whose definition is

!−→x v {P}. ? −→y w {Q} allows do v′ {ϕ} ⊣⊢ ∃−→x v = v′ ∗ P ∗ ∀−→y Q −∗ ϕw

This is the bedrock law regarding the proofs of protocols. When Client performs an

effect, they must choose the concrete values of
−→x and make a request v′

, relinquishing

control of P . Server then chooses how to instantiate
−→y , meaning Client’s postcondition

ϕ must hold regardless of what is sent. As we have previously mentioned, these protocols

were made for Iris’s logic, which includes a construct known as the persistence modality P □,

which states that assumption P is duplicable. Since this law doesn’t have a persistence

modality, we conclude that the implication ∀−→y Q −∗ ϕw can only be exploited at most

once, guaranteeing that our continuations are one-shot.
Although not strictly necessary, the authors also included two additional operators to

simplify building protocols.

⊥ allows do v′ ϕ ⊣⊢ False

ψ1 ψ2 allows do v
′ ϕ ⊣⊢ ψ1 allows do v ϕ ∨ ψ2 allows do v ϕ

The first is the empty protocol ⊥, which disallows performing effects. Additionally, the +

operator gives Client the choice between two protocols ψ1 and ψ2.

26

4

Defunctionalization

If we wish to use protocols with Cameleer, we must find a way to encode continuations

into Why3. This will be challenging seeing as Why3 does not allow effectful functions to be

used as first class values. To get around this limitation, we will use defunctionalization [37],

a program transformation technique used to turn a higher order program into a first class

equivalent. Although mostly used in compilers, there has been some exploratory work

on its usage in proofs involving higher order functions with side effects [40].

4.1 Defunctionalization in a Nutshell

To demonstrate this process, let us first defunctionalize the following simple OCaml

program that returns the length of a list, written in CPS.

OCamllet length_cps (l : 'a list) (k : int -> 'a) : 'a =

match l with

|[] -> k 0

|_::tail ->

length_cps tail (fun tail_length -> k (tail_length + 1))

let length (l : 'a list) : int = length_cps l (fun x -> x)

The length_cps function takes two arguments, the list and the continuation. If the list

is empty, we call the continuation with the value 0, otherwise we call length_cps passing

the tail of the list and a continuation that increments the return value. We also define a

length function that calls length_cps with the identity function, thereby returning the

length of the list. The first step in defunctionalizing length_cps is to first identify the

functions used as higher order values: in this case we have two, the increment function

and the identity function. Thus, we will have the following type

OCamltype (_, _) lambda =

|Ident : ('a, 'a) lambda

|Inc : (int, 'a) lambda -> (int, 'a) lambda

27

CHAPTER 4. DEFUNCTIONALIZATION

This is a generalized algebraic data type (GADT) with two type parameters, the first

representing the function’s argument and the second its result. This type has two con-

structors, the first representing the identity function. Additionally, this constructor has

type ('a, 'a) lambda, meaning it represents a function where the type of the result is

the same as the type of the argument. The next constructor represents the lambda we

build in length_cps, which represents a function that receives an integer and returns

some arbitrary type. Unlike Ident, this constructor will receive an argument of type

(int, 'a) lambda, which will represent the free variable k in line 5. Now that we are

equipped with a first order representation of functions, we may now defunctionalize

length_cps as such:

OCaml
1 let length_cps (l : 'a list) (k : lambda int 'a) : int =

2 match l with

3 |[] -> apply k 0

4 |_::tail -> length_cps tail (Inc k)

5

6 let length (l : 'a list) : int = length_cps l Ident

This program is equivalent to our previous, except now every first order function has

been replaced replaced with our lambda type and calls to these use the apply function, as

we can see in line 3 above, which matches each constructor with its corresponding code,

as follows:

OCamllet rec apply : type a b. (a, b) lambda -> a -> b =

fun f arg -> match f with

| Ident -> let x = arg in x

| Inc -> let tail_length = arg in

apply k (tail_length + 1)

As was the case in our original program, KIdent simply returns its argument and KInc

returns the application of k to the incremented tail_length. The full program is shown

in figure 4.1.

In short, defunctionalization consists of the following steps: identifying the functions

used as first order values, creating constructors for each function using its free variables,

transferring the code of these functions into an apply function and, finally, replacing

every lambda and their call with a constructor of the lambda type and the apply function,

respectively.

4.2 Defunctionalization Coupled with Verification

With defunctionalization briefly covered, let us examine how it can aid us in proving

higher order programs. First, we must provide a specification to our non-defunctionalized

length and length_cps functions. For simplicity’s sake, we will use GOSPEL instead of

28

4.2. DEFUNCTIONALIZATION COUPLED WITH VERIFICATION

OCaml1 type (_, _) lambda =
2 | Ident : ('a, 'a) lambda
3 | Inc : (int, 'a) lambda -> (int, 'a) lambda
4

5 let rec apply : type a b. (a, b) lambda -> a -> b =
6 fun f arg -> match f with
7 | Ident -> let x = arg in x
8 | Inc k -> let tail_length = arg in
9 apply k (tail_length + 1)

10

11 let rec length_cps (l : 'a list) (k : (int, 'a) lambda) : 'a =
12 match l with
13 |[] -> apply k 0
14 |_::tail -> length_cps tail (Inc k)
15

16 let rec length l =
17 length_cps l Ident

Figure 4.1: Fully defunctionalized length.

pure separation logic. The length function is simple, we want the result to be equal to the

length of the list (we assume that length_ind is a logical function that inductively defines

the length of a list):

GOSPEL + OCamllet length (l : 'a list) : int = ...

(*@ result = length l

ensures length_ind l = result *)

The post condition for length_cps is a bit trickier. Since in CPS we call the function

with the result of our computation, we essentially want to prove that the result of our

function is equal to the application of the continuation to the length of the list we pass as

argument:

GOSPEL + OCamllet length_cps (l : 'a list) (k : int -> int) : int = ...

(*@ result = length_cps l k

ensures k (length_ind l) = result *)

Although this is the most natural translation to the proposed post condition, it is nev-

ertheless unsound: unlike length_ind, a logical function, k is a function belonging to

our program, which means it may produce some impure behavior, such as divergence

or modification of mutable variables. In order to reason over it, we will treat k as a pair

of predicates, its pre and post-conditions, instead of a callable function. To access these,

we use the pre and post predicates, which, for any function f of type τ1 −→ τ2, have the

following types:

pre f : τ1 −→ prop

post f : τ1 −→ τ2 −→ prop

29

CHAPTER 4. DEFUNCTIONALIZATION

GOSPEL + OCamllet length_cps (l : 'a list) (k : int -> int) : int =
match l with
|[] -> k 0
|_::tail ->length_cps tail

(fun (*@ ensures post k (tail_length +1) result*)
tail_length -> k (tail_length + 1))

(*@ ensures post k (length_ind l) result *)

let length (l : 'a list) : int =
length_cps l (fun x -> x)

(*@ ensures length_ind l = result *)

Figure 4.2: Fully annotated length.

Naturally, pre holds if the argument we passed satisfies f ’s precondition and post holds

if f ’s post condition is satisfied, assuming the first argument is what pass to f and the

second argument is the result. Using this post predicate, we can rewrite our previously

unsound specification as follows:

GOSPEL + OCamllet length_cps (l : 'a list) (k : int -> int) : int = ...

(*@ ensures post k (length_ind l) result*)

We must provide post conditions to the functions we use as first order values. The

identity function’s specification is trivial, its argument is equal to its result. As for the

increment function, its specification must reflect that it calls k with the argument it receives

plus 1. We present the fully specified GOSPEL annotated program in Figure 4.2. Note that

named functions’ specifications appear after their definition’s end and the anonymous

functions’ appear in between the fun keyword and their argument’s name.

To prove this implementation adheres to the given specification, we must defunctional-

ize this program and convert it into WhyML. Although we will employ a similar strategy

as we did before when we defunctionalized length_cps, we will use a conversion that

doesn’t technically use GADTs. This is to avoid having to define apply and its specification,

meaning we simplify the translation. It is fortunate that this is the simplest option seeing

as WhyML doesn’t support GADTs. First we create our lambda type, the apply function

and the post, all of which will not have an implementation, as follows:

WhyMLtype lambda 'a 'b

predicate post (lambda 'a 'b) 'a 'b

val apply (f : lambda 'a 'b) (arg : 'a) : 'b

ensures{post f arg result}

Now all that is left to convert are the lambdas. To do so, we create a lambda value whose

post predicate matches its GOSPEL specification. This is achieved by creating a function

30

4.3. DEFUNCTIONALIZATION WITH STATE

WhyMLlet length_cps l (k : lambda int 'a) : 'a
ensures{post k (length_ind l) result} =

match l with
|Nil -> apply k 0
|Cons _ t ->

let vc tail_length
ensures{post k (tail_length + 1) result} =

apply k (tail_length +1) in

val f unit : lambda int 'a
ensures{let f = result in

forall tail_length result.
post f tail_length result <->
post f (tail_length + 1) result} in

length_cps t (f ())

Figure 4.3: Defunctionalized proof of length_cps.

that generates a lambda with the appropriate post predicate instantiation.

WhyMLval f unit : lambda int 'a

ensures{let f = result in

forall tail_length result.

post f tail_length result <->

post k (tail_length + 1) result} in

Important to note that k in the post condition is the free variable the lambda calls.

Additionally, we must dispatch verification conditions to prove the body of the function

adheres to its specification. To do this, we simply create an auxiliary function vc with

the same body and specification as the original function. This function is never called

an exists only to generate verification conditions. Converting the anonymous increment

function from our previous example we would get the following:

WhyMLlet vc tail_length

ensures{post k (tail_length + 1) result} =

apply k (tail_length +1)

The full translation of length_cps is in figure 4.3. All the VCs generated by Why3 for

the defunctionalized program are automatically discharged with the Alt-Ergo [22] SMT

solver.

4.3 Defunctionalization with State

As mentioned previously, the reason we use the pre and post predicates is to avoid creating

logical inconsistencies by calling impure functions in the pure setting of specifications.

31

CHAPTER 4. DEFUNCTIONALIZATION

The length_cps example, illustrative as it was, contains no side effects and therefore

technically does not require post. To show how we can use this predicate to capture

effectful functions, let us look at a simpler example in WhyML:

WhyML

val r : ref int

let mk_gen (n : int) = r := 0; fun () -> (r := !r + n; !r)

The mk_gen function resets the global reference to 0 and returns a function that

increments the reference by a fixed value and returns the value the reference holds. Since

the returned function modifies a state variable, we will need to extend our post predicate

to not only encompass the argument and the result, but also the program’s state.

pre f : τ1 −→ state −→ prop

post f : τ1 −→ state −→ state −→ τ2 −→ prop

In Why3, we will represent the function’s state as a record type that can hold the value

of all mutable references. Since we only have one reference to an integer in this program,

our record type will hold a single integer.

WhyMLtype state = {_r : int}

The post and apply will now be as follows

WhyMLpredicate post (lambda 'a 'b) 'a state state 'b

val apply (f : lambda 'a 'b) (arg : 'a) : 'b

ensures{post arg {_r = old !r} {_r = !r} result}

One of the disadvantages of this representation is that all references must be declared

in the same scope as the apply function, meaning there can be no local state references

in our programs. With the necessary modifications in place, we may finally specify the

mk_gen function as follows:

WhyMLval mk_gen (n : int) : (lambda unit int)

ensures{!r = 0}

ensures{let f = result in

forall old_state state result.

post f () old_state state result <->

(old_state._r + n = state._r && result = state._r)}

One of the conditions is that the reference r is set to 0. The second states that that each

application of this function leads to a state where the r reference is equal to its old value

plus n. Additionally, we also state that the result is equal to the current value of r.

32

5

Reasoning about Effects and

Handlers in Why3

Although protocols are a powerful abstraction to reason about effects, they were originally

developed for Iris, with a rich Separation Logic embedded in Coq that can handle concur-

rency and higher order programs. Hence, we translate our OCaml programs into a WhyML

embedding that can prove programs annotated with protocols in a mostly-automated

fashion.

We present two languages which aim to capture a core fragment of OCaml (as well as

GOSPEL) and WhyML. They will be quite similar to one another, since both are ML-style

languages featuring type definitions, anonymous functions and mutable references. The

main difference is that only the former will have effects and protocols. Although most

of our grammar is fairly standard in regards to functional and specification languages,

we will briefly discuss some of the more novel aspects, namely protocols and handler

specifications.

5.1 GOSPEL Extension

We will first go over the language that aims to approximate GOSPEL annotated OCaml

programs. We will focus particularly on our proposed extensions to specify and reason

about protocols and effects.

5.1.1 GOSPEL Protocols

In chapter 3, we explained what protocols are on a conceptual level and how we can

fit them into Separation Logic. We will now explain our proposed syntax for effects in

GOSPEL. Let’s imagine a program with some effect E that receives and int and returns

an int.

GOSPEL + OCamleffect E : int -> int

If we want to specify that:

33

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

• A Client performing E can only send integers greater than zero

• A Server to E can only send integers smaller then zero

• A Server to E may modify some pointer p

we propose the following protocol, written with our novel GOSPEL extension:

GOSPEL + OCaml(*@ protocol E x :

requires x > 0

ensures reply < 0

modifies p *)

The first line of the protocol states that it will refer to the conditions under which

effect E is performed with argument x. The second line is a simple precondition, similar

to a standard function, except instead of referring to a condition that must be respected

before calling a function, it refers to those that one needs to perform E. The next line

is a post condition stating that the reply Server sends must be smaller then zero. The

reply variable used in the postcondition is similar to the result variable exposed by

postconditions in most specification languages. Finally, the last line states that Server has

write permissions to p. Protocols are top-level declarations that can be placed anywhere

in the program, after the effect has been defined. This means we cannot reason over local

state variable within our protocols. The full grammar for protocol specification clauses is:

Sp := Protocol Specifications

| requires s

| ensures s

| modifies x

The meta variable s symbolizes GOSPEL terms and x stands for an identifier. The x

notation indicates we may have an indefinite amount of identifiers.

5.1.2 Effect Handlers

With this extension of the GOSPEL language tool we will, naturally, provide support for

effect handlers. In chapter 2 we have shown some examples of these in real code and now

we will provide them with a formal syntax. Effect handlers are, syntactically speaking, very

similar to exception handlers; they are try-with blocks where every branch corresponds

to the instructions to be executed depending on the effect. The only real difference is the

fact that handlers also expose a continuation. The syntax for effect handlers is as follows.

try e with effect Ex k −→ e

The meta variable E represents an identifier for an effect.

Interestingly, this syntax is not the same as Multicore OCaml’s. In fact, as of writing,

OCaml has no syntactic support for effect handlers, only exposing them in the form of

34

5.1. GOSPEL EXTENSION

functions from the novel Effect module. This is because OCaml doesn’t have an effect

system, meaning that we cannot determine, at compile time, if all effects are handled. The

OCaml developers, therefore, have chosen to only expose handlers syntactically when

their effect system arrives. Nevertheless, we are introducing our own syntax (which will

likely be very similar to what OCaml will have in the future), since programs written

using the current functional approach are very difficult to read. One particular aspect

about our handlers is the fact they do not have a branch for a non-exceptional return.

The other major addition to the GOSPEL syntax is handler specifications. At first

glance, this addition might seem a little strange: Why do we need to give handlers a

specification? Why not simply specify the functions that use them? The reason why this

is needed is to be able to give post conditions to the generated continuations. As we

previously mentioned, when continuations are called, execution is resumed with the same

handler installed. This means when the continuation terminates execution, it will have

exited the handler, either via an effect or a normal return. Given this, the postcondition

of the continuation will be the same as the handler’s postcondition. Therefore, since we

can’t generate this postcondition automatically, it must be manually inserted by the user.

Effectively, what we are actually doing is inserting invariants that must hold every time the

handler is exited, whether it be from the function exiting naturally or from an exceptional

branch. We will then take these invariants and have the generated continuations use them

as postconditions.

Handler specifications have two clauses: try_ensures, which encapsulates a post

condition of the handler, and a returns clause, where we will annotate the return type of

this handler. One might wonder why this last clause is necessary as OCaml has automatic

type inference. Although OCaml can technically infer the type of these expressions, this

would require using the OCaml typed parse tree. For the moment this is out of scope

for tools such as GOSPEL and Cameleer, as the typed parse tree implementation in the

OCaml compiler is not stable. With the lack of external tools such as ppxlib, the only

solution would be to rely on a specific version of the OCaml compiler, which would result

in several maintainability issues.

The full grammar for handler specifications is:

Sh := Handler Specifications

| try_ensures s

| returns τ

5.1.3 Performs Clause

Finally, the last addition to the GOSPEL syntax is the performs clause in function specifi-

cations. This is simply used to list all the effects this function is allowed to perform. The

full grammar for function specifications is:

35

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

S := Specifications

| Sp
| performs E

This information isn’t strictly necessary for our proofs, seeing as we can statically check

which effects, if any, a function performs. Nonetheless, we find it useful to force the user

to explicitly annotate this information for the sake of clearer documentation. We will then

use this information to check if handlers catch every effect, thereby compensating for the

lack of an effect system.

5.1.4 The Remaining Grammar

The remaining of our syntax is quite standard, but we would like to give a few brief

overview on some particular aspects on the complete grammar, which can be found in

figure 5.1:

• The x metavariable encompasses all valid variable identifiers

• The p metavariable encompasses all valid patterns

• The E metavariable encompasses all valid effect identifiers

• The n metavariable encompasses all valid numbers

• The smetavariable encompasses all valid GOSPEL terms. We do not define a proper

grammar for these seeing as it would be mostly identical to a standard first order

logic.

• Curried functions are not allowed.

• The only expressions we allow as arguments to perform are effect identifiers coupled

with their arguments. This means we do not accept more complex expressions such

as, for example perform (if b then E1 else E2). We do not believe that this

impacts our tool’s expressiveness, seeing as it is rare to use effects like this.

• As explained in chapter 2, the only state variables we allow are top level references.

• All functions and state variables must have their types explicitly annotated.

5.2 WhyML Formalization

We will now move on to formalize our target language, which approximates a core

fragment of WhyML. There is nothing specially of note regarding the grammar in figure

5.2 since it is rather similar to OCaml’s syntax. The only constructs missing are effect

handlers, which have been replaced with exception handlers; the performs clause, which

36

5.2. WHYML FORMALIZATION

e ::= Expressions

| a
| let x = e in e
| a⊕ a
| !x | e ; e
| if a then e else e
| fun Sf x : τ : τ −→ e
| match a with p −→ e
| try e with Sh effect Ex k −→ e
| perform Ex

a := Values

| x
| n
|
| true
| false

Sp := Protocol Specifications

| requires s
| ensures s
| modifies x

Sf := Sp Anonymous Function Specifications

S := Specifications

| Sp
| performs E

Sh := Handler Specifications

| try_ensures s
| returns τ

Ψ := protocol Ex : Sp Protocols

G := Gospel Declarations

| Ψ
| function x : τ : τ = s?
| predicate x : τ = s?

d := Declarations

| effect E : τ
| let ?rec S f : τ = e
| let v : τ ref = ref e
| type T = t
| G

t := Types

| τ
| {x : τ}
| Dτ

pr := d Program

Figure 5.1: Extended GOSPEL Syntax.

37

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

e ::= Expressions

| a
| let x = e in e
| a⊕ a
| !x | e ; e
| if a then e else e
| fun Sf x : τ : τ −→ e
| match a with p −→ e end
| try e with Ex k −→ e end
| perform Ex

a := Values

| x
| n
|
| true
| false

S := Specifications

| requires {s}
| ensures {s}
| raises E −→ s?
| modifies {x}

d := Declarations

| effect E : τ
| let ?rec S f : τ = e
| let v : τ ref = ref e
| type T = t
| function x : τ : τ = s?
| predicate x : τ = s?

t := Types

| τ
| {x : τ}
| Dτ

pr := d Program

Figure 5.2: WhyML Syntax.

has also been replaced, now by the raises clause. Additionally, this language doesn’t

have protocols.

5.3 Proving an OCaml program with protocols

Before we move on to our general translation scheme, we will give a bird’s eye view of the

techniques we will use to verify handlers. To illustrate, we will return to the xchg example

in Chapter 3. Defining this protocol using our new GOSPEL syntax yields:

38

5.3. PROVING AN OCAML PROGRAM WITH PROTOCOLS

GOSPEL + OCamleffect XCHG : int -> int

let p : int ref = ref 0

(*@ protocol XCHG x :

ensures reply = old !p && !p = x

modifies p *)

First, we define an effect XCHG which receives an int and returns an int. Additionally,

we also define p, an integer reference. Next, we define a GOSPEL protocol which ensures

that, when Server returns control to Client, the reference will hold the value passed and

Server will return p’s old value. Additionally, we also state that Server may modify p.

Let us now move on to specifying a Client that uses this effect.

GOSPEL + OCamllet some_fun (n : int) : int = perform (XCHG n)

(*@ ensures !p = n && result = old !p

performs XCHG *)

When we covered protocols in chapter 3, we explained that programs that use protocols

must prove that each request Client makes adheres to the protocol’s precondition and that

Client’s postcondition holds for any reply Server sends. When translating this program

into WhyML, we must do so in a way that it generates verification conditions that prove

this. We will start by creating a predicate that encapsulates the protocol’s postcondition

as well as a function that will mimic performing an XCHG effect. This function will have

the same specification as the protocol and have no implementation.

WhyMLtype state = {_p : int}

let p : ref int = ref 0

(*Predicate that encapsulates the protocol's postcondition*)
predicate post_XCHG (arg : int) (old_state : state)

(state : state) (reply : int) =

let x = arg in reply = old_state._p && state._p = x

(*Special perform function*)
val perform_XCHG (x : int) : int

ensures{post_XCHG x {_p = old !p} {_p = !p} result}

writes{p}

Now that we can mimic calls to perform, we can translate our client into WhyML, as

follows.

WhyMLlet some_fun (n : int) : int = perform_XCHG n

ensures{!p = n && result = old !p}

39

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

By using the perform_XCHG function, we can check if the request made satisfies the

protocol’s precondition and if the function’s postcondition holds for any possible reply.

The former is proved trivially: seeing as there is no precondition, Client can always make

a request. As for the latter, seeing as Server can only reply after setting the p pointer to

the sent value and can only return the pointer’s old value, the body of some_fun can be

proven to adhere to its specification.

Using this embedding, proving a Client is no different than proving functions that

call other functions. We will now move on to the difficult part of the verification process:

proving each Server reply is correct. Let’s assume a fairly standard OCaml handler that

correctly follows the proposed protocol:

GOSPEL + OCamltry some_fun 3 with

|effect (XCHG n) k ->

let old_p = !p in

p := n;

continue k old_p

With our handler defined we will now give it an invariant. As mentioned in section

5.1.2, the invariant must hold whether the function exits through an exceptional branch or

the function ends normally. In the latter case, we can state that the function’s postcondition

holds. If we reach an exceptional branch, we know that the final instruction was a call

to continue. Since this is a deep handler, this handler will remain installed, meaning

that if any other effects are performed, continue will keep being called until some_fun

terminates. Since continue terminates when sum_fun terminates, we can infer that it’s

postcondition holds at the end of the effect branch as well. Therefore, the specification for

this handler would be:

GOSPEL + OCamltry some_fun 3 with ...

(*@ try_ensures !p = 3 && result = old !p

returns int *)

Although this handler is quite trivial, proving it will require some work, as we have

many problems to solve:

• How are we going to translate OCaml’s effects into WhyML?

• The Why3 some_fun function we defined doesn’t have any kind of exceptional return,

it merely calls a function that simulates the handler’s behavior. How do we embed

this in Why3?

• How do we represent continuations (as well as OCaml’s continue function) in

Why3?

• What kind of specification should these continuations have?

40

5.3. PROVING AN OCAML PROGRAM WITH PROTOCOLS

5.3.1 Translating effects into WhyML

Let us begin by tackling the first problem: in order to represent these effects, we are simply

going to use exceptions. More specifically, we create an exception that receives the same

arguments as the original effect. In the case of XCHG, it receives a single int, which means

the translated exception will also receive an int:

WhyMLexception XCHG int

Its return type is irrelevant for the time being. Now that we have some way of

representing effects, we can now get to work translating handlers into WhyML using

exception handlers. The previous OCaml handler is translated as follows:

WhyMLtry some_fun 3 with

|XCHG n ->

let old_p = !p in

p := n;

continue k old_p

Although we have created a WhyML program that is very similar to our OCaml

counterpart, the k continuation is undefined, seeing as this is a normal exception handler.

But before we get to that, there is another issue: the Why3 sum_fun function we defined

doesn’t throw any exception. To fix this, we simply add the following raises clause to the

perform_XCHG function.

WhyMLraises{XCHG}

We also replace the performs clause of sum_fun with this raises clause. Note that

the original GOSPEL program remains unchanged; all we are doing is changing how we

verify the specification using Why3.

5.3.2 Representing continuations in WhyML

Now that we have effectively translated the performs clause into WhyML, we can now

get to work on the trickiest part of the proof process: the continuations. The first step

is to work out how to represent and call them. Seeing as continuations are essentially

just functions, we might be tempted to simply use the the lambda type we defined when

we introduced defunctionalization in chapter 3. However, continuations have a special

property that regular lambdas don’t: their one-shot check. In order to enforce this, we will

introduce the following Why3 type, coupled with a continue function:

WhyMLtype continuation 'a 'b = {

_k : lambda 'a 'b;

mutable _valid : bool

}

41

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

meta coercion function _k

type state = {_p : int}

val contin (k : continuation 'a 'b) (arg : 'a) : 'b

requires{k._valid}

requires{pre k arg {_p = !p}}

ensures{post k arg {_p = old !p} {_p = !p} result}

writes{k._valid, p}

Our Why3 continuations are made up of a lambda and a mutable boolean value to

determine whether the function has been called or not. Previously, we stated that the

only mutable values we allowed are top-level references; these one-shot checks are the

only exception. The next line is rather cryptic, but essentially it states that if Why3 find

a value of type continuation when it expected a value of type lambda, it will use the

continuation’s _k field instead. This replacement only applies in pure settings such as

specifications and is only done to simplify the code.

The next thing we do is define our state. Since our program only has one mutable

reference to an int, the state will be a record type consisting of a single int. Finally, all

that’s left is to define our continue function. This function in Why3 will have to be named

contin seeing as continue is a keyword in Why3. This function will be very similar to our

apply function from chapter 2, the only difference being that it has as a precondition that

the continuation must be valid i.e. it hasn’t been called yet. Moreover, it invalidates the

continuation. The pre and post predicates aren’t defined, however they have the same

meaning as the ones we defined in Chapter 4.

5.3.3 Specifying continuations

With all these different pieces, we can now conclude our WhyML proof by creating a value

k of type continuation, similarly to how we did for functions in Chapter 4:

WhyMLtry some_fun 3 with

|XCHG n ->

val k : continuation int int in

let old_p = !p in

p := n;

contin k old_p

We must now give gen_k some specification. Naturally, the first thing we must say is that

the continuation that gen_k creates is valid. To do this, we will assume the following

statement.

WhyMLassume{k._valid}

42

5.3. PROVING AN OCAML PROGRAM WITH PROTOCOLS

Next we must define the continuation’s precondition. Since when we call the continu-

ation we are surrendering control back to Client, the protocol’s postcondition must hold.

This is done as follows:

WhyML|XCHG n ->

let old_state = {_p = !p}

val k : ...

assume{k._valid}

assume{

forall reply state.

pre k reply state <-> post_XCHG n old_state state reply

}

Before we define the continuation, we create a variable old_state that will represent

the state at the time the effect was performed. Now we focus on the continuation’s

postcondition. Since this is a deep handler, the handler remains installed to respond to

any further effects. This means this continuation will have the same postcondition as the

handler. The handler’s postcondition was:

GOSPEL + OCamltry_ensures !p = 3 && result = old !p

Where old !p refers to p’s state before the handler expression. Therefore, the full WhyML

handler is the following:

WhyMLlet init_state = {_p = !p} in

try some_fun 3 with

|XCHG n ->

...

val k : ...

assume{

forall arg irrelevant_old_state state result.

post arg irrelevant_old_state state result <->

let old_state = init_state in

state._p = 3 && result = old_state._p}

In order to access the state before the handler, we create an init_state variable which

we then use when defining the continuation’s post condition using the post predicate.

As we mentioned, the post predicate receives as argument the state before and after the

function is called, but in this instance we ignore the old state. This is because the state in

which the continuation is called is only relevant to know if it is allowed to surrender control

back to Client, which we check in the precondition. In the case of the continuation’s

postcondition, we only care about the state before the handler.

With the continuation fully specified all that is left is to determine if the handler in

fact respects the postcondition. To do this, we simply wrap the WhyML exception handler

43

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

GOSPEL + OCamleffect XCHG : int -> int
let p = ref 1

let some_fun (n : int) : int = perform (XCHG n)
(*@ performs XCHG

ensures !p = x && result = old !x *)

let n =
try some_fun 3 with
|effect (XCHG n) k ->

let old_p = !p in
p := n;
continue k old_p

(*@ try_ensures !p = 3 && result = old !x *)

Figure 5.3: Full OCaml program and GOSPEL specification.

in a function with the original GOSPEL postcondition and then immediately call it.

WhyMLlet handler () : int =

ensures{!p = 3 && result = old !p}

... in handler ()

This way, Why3 will check if the body of the handler function respects the postcondition.

The WhyML Client and handler, along with the original Cameleer program can be found

in figures 5.4 and 5.31.

5.3.4 Verification of the Program

We will now show what verification conditions Why3 generates in order to prove the

correctness of the program. Beginning with some_fun, Why3 generates one VC, proving

if some_fun’s postcondition is valid. Seeing as its postcondition is equivalent to the

perform_XCHG’s, Why3 easily discharges it.

Finally, we analyze the four VCs generated for the handler. The first one proves if

some_fun ending non-exceptionally satisfies the handler’s invariant. Once again, seeing

as the handler’s invariant is the same as some_fun’s, Why3 proves it as well without an

issue. Next, seeing as we call contin, Why3 will try to prove its two preconditions: that

the continuation is valid and that the protocol’s precondition is met. The first one is trivial,

seeing as the generated continuation is marked as valid and is never invalidated until

contin is called. As for the second precondition, since we changed p to the value passed

in the effect and call the continuation with p’s old value, this condition is proved as well.

As for the fourth and final condition, it checks if the handler’s invariant is valid at the

1
Although this encoding works for this example, we would run into problems with polymorphic contin-

uations. To remedy this, our actual WhyML translation is slightly more verbose but functionally identical

44

5.3. PROVING AN OCAML PROGRAM WITH PROTOCOLS

WhyMLexception XCHG int

val perform_XCHG (x : int) : int
ensures{ let reply = result in

reply = old !p && !p = x}
raises{XCHG}
writes{p}

let some_fun (x : int) : int =
ensures{!p = x && result = old !p}
raises{XCHG}
perform_XCHG x

let n =
let handler () =

let init_state = {_p = !p} in
try some_fun 3 with
|XCHG n ->

let old_state = {_p = !p} in
val k: continuation int int
ensures{result._valid}
assume{

forall reply state.
pre k reply state <-> reply = old_state._p && state._p = n

}
assume{

forall arg irrelevant_old_state state result.
post k arg irrelevant_old_state state result <->
let old_state = init_state in
state._p = 3 && result = old_state._p} in

let old_p = !p in
p := n;
contin k old_p end in

handler ()

Figure 5.4: WhyML proof.

45

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

end of the exceptional branch. Since our last instruction is a call to contin, whose post

condition is the handler’s invariant, Why3 can prove this as well.

What Does This Mean? With all the generated verification conditions met, it is time to

step back and reflect on what we can infer from them. In the case of some_fun, we can

conclude that all requests made are valid and all possible replies satisfy the function’s

postcondition.

As for the handler, we can prove that all replies are valid and that the continuations are

never exploited more then once. Additionally, we can prove that the handler’s invariant

is respected regardless of whether the handler is exited through an exceptional branch

or terminates normally. This proof rests on an underlying assumption that the generated

continuations’ postcondition is the handler’s invariant.

Proving The Continuation’s Postcondition To prove that, for any arbitrary handler, its

generated continuations’ postcondition will be the handler’s invariant, we will consider

the following OCaml effect handler.

GOSPEL + OCamltry f () with

|effect E1 k -> ...

|effect E2 k -> ...

...

(*@ try_ensures I)

As stated in subsection 5.3.4, one of the generated verification conditions is that

expression f () satisfies the invariant I . Additionally, we also prove that each of the effect

cases satisfies I , assuming a continuation that also respects I . Knowing this, if an effect is

performed, calling the generated continuation will have one of two outcomes.

• Client resumes and terminates, performing zero effects, leading to the completion of

the expression f (). Seeing as this expression must satisfy I , calling the continuation

respects the invariant.

• Client resumes execution, but will perform nmore effects before completion, where

n > 0. This means the continuation will enter one of the effect cases, generating a

new continuation. Seeing as each effect case must respect I , assuming the generated

continuation also respects I , calling the continuation also respects I if the generated

continuation respects I . To prove this, we can use simple induction, seeing as the

generated continuation will resume a Client who will perform n− 1 effects.

5.4 General Translation Scheme

Although our translation of Multicore OCaml to WhyML is admittedly complex, the

underlying ideas are simple:

46

5.4. GENERAL TRANSLATION SCHEME

WhyML
type state = {

_Sx1 : Sτ1;
_Sx2 : Sτ2;
...
_Sxn : Sτn

}

let Sx1 : ref Sτ1 = ...
let Sx2 : ref Sτ2 = ...
...
let Sxn : ref Sτn = ...

Figure 5.5: State Definition.

• Turn effect declarations into exceptions.

• Create special perform functions for each effect declaration with the same specifica-

tion as the corresponding protocol.

• Replace all instances of perform with the correct functional versions.

• As for the handlers, create special continuation values with the same precondition as

the protocol’s postcondition and the same postcondition as the handler’s invariant.

• Finally, replace all calls to continue with contin

Along with these five basic steps, we also defunctionalize all higher order functions

using the same process detailed in chapter 2. We will now formalize these ideas into a

concrete translation scheme. In Figure 5.5 we have the generalization of the state type.

In a program with the reference variables Sx1; Sx2 ..., with types ref Sτ1; ref Sτ2 the state

type will be the record type {_Sx1 : Sτ1; _Sx2 : Sτ2;...} Note how each field name is equal

to a state variable’s name with an underscore in the start, this is because WhyML doesn’t

allow top level variables with the same name as record fields.

Next, we have all the top level definitions we will need to make our transformations

valid in figure 5.6. We have already gone over all these definitions in previous sections,

so we won’t spend too much time on them. The only novel aspect is the Sx symbol, which

is just a short hand for the following expression:

WhyML{

_Sx1 = !Sx1;

_Sx2 = !Sx2;

...

_Sxn = !Sxn

}

47

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

WhyML
type lambda 'arg 'result

type continuation 'arg 'result = {
ghost f : lambda 'arg 'result;
ghost mutable valid : bool

}

predicate pre (lambda 'a 'b) 'a state

predicate post (lambda 'a 'b) 'a state state 'b

val apply (f : lambda 'a 'b) (arg : 'a) : 'b
requires{pre f arg Sx}
ensures{post f arg (old Sx) Sx result}

val contin (k : continuation 'a 'b) (arg : 'a) : 'b
requires{pre k.f arg Sx}
requires{k.valid}
ensures{post k.f arg (old Sx) Sx result}
ensures{not k.valid}
writes{k.valid}

Figure 5.6: Top Level Declarations.

Finally, we present the concrete rules to translate OCaml programs to WhyML. We

show how to translate each construct presented in 5.1, with the exception of t (types),

G (top-level GOSPEL declarations, with the exception of protocols), s (GOSPEL terms),

and Sf (function specifications). This is because these are isomorphic to their WhyML

counterparts. Additionally, we will not be presenting rules for the translation for top-level

references. We assume, before we translate the program, that they have been consumed

and the declarations in figure 5.5 have been generated.

Each rule in our translation scheme is of the following form:

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jt1K ; t2 ⊣ Σ′ ◦ ∆′ ◦ ν ′ ◦ µ′

meaning translating t1 under environment Σ ◦ ∆ ◦ ν ◦ µ produces the term t2 and a new

environment Σ′ ◦ ∆′ ◦ ν ′ ◦ µ′
. These environments are made up of four elements,

1. A function Σ that, given the name of an effect, will produce a pair. The first element

of that pair is a sequence consisting of the types of the arguments the effect takes.

The second element will be the effect’s return type. To illustrate, after parsing an

effectE of type t1 -> t2 -> t3 -> ... -> tn, then the Σwe produce must satisfy

ΣE = t1, t2, t3, ..., tn−1, tn

2. A function ∆ that maps function identifiers to a set composed of the state variables

it modifies. For example, if our program has a function f that modifies the state

48

5.4. GENERAL TRANSLATION SCHEME

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jeffect E : τK ; exception E ⊣ ΣE −→ T τ
(TEffect)

T τ1 −→ τ2 −→ τ3 =

let s = T τ2 −→ τ3 in

τ1 :: π1s, π2s

T τ1 −→ τ2 −→ τ3 =

τ1 −→ τ2 = τ1, τ2

T τ1 −→ τ2 −→ τ3 =

T τ = unit, τ

Figure 5.7: Effect Translation Rule.

variables S1 and S2, then any ∆must satisfy ∆f = {S1, S2}.

3. A set ν consisting of identifiers that are function parameters. For example, given

the following expression fun x : τ −→e, when we translate e, ν must satisfy x ∈ ν.

This will be useful when choosing whether to call functions normally or when to

use apply.

4. A set µ which consists of the identifiers of all the state variables that are modified

by the expression we are evaluating. For example, when translating the expression

x:=e, the µ we produce must satisfy x ∈ µ.

One last note about environments: some rules will never modify certain elements

of the environment. For example, seeing as we only allow top-level effect declarations,

parsing an arbitrary expression will never modify Σ. For this reason, we will adopt a

shorthand where if a piece of the environment is not present in the right hand side of the

translation, we can assume it hasn’t been modified. As an example of this shorthand, the

following two statements are equivalent

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jt1K ; t2 ⊣ ∆′ ◦ ν ′ ◦ ∆′

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jt1K ; t2 ⊣ Σ ◦ ∆′ ◦ ν ′ ◦ ∆′

We now turn to the (TEffect) rule (fig 5.7), which turns effect declarations into WhyML

exceptions, while also modifying the environment so that the effect’s name maps its type

in the aforementioned format. To achieve this we use the T logical function which takes an

OCaml type and returns a sequence with the arguments’ type along with the effect’s return

type. Note that the last case of T is the special case when the effect has no arguments, in

which case we assume it receives a unit argument.

49

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

The next rule, (TPerform), is quite simple: any instance of perform is substituted with

one of our automatically generated perform_E functions.

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jperform EćxK ; perform_E ćx ⊣
(TPerform)

Naturally, before these special perform functions can be called they have to be generated.

To do so, we use the (TProtocol) rule (fig 5.8), which creates the special perform function

for that effect which has write permissions too all variables listed in the modifies clause.

Additionally, we also generate two predicates which encapsulate the protocol’s pre and

postcondition. The names of these predicates will be pre_ and post_ followed by the

name of the effect. The types of these predicates will be, for any Σ:

preE : π1ΣE −→ state

postE : π1ΣE −→ state −→ state −→ π2ΣE

To generate these predicates, we must translate the protocol’s requires and ensures

clauses and turn the sequence of pre and post conditions of the protocol into a single term

using the S logical function. As mentioned, we will not be translating GOSPEL terms,

seeing as the result would be identical to the original program. Nevertheless, there is one

small difference in regards to specification clauses: any instance of !x is replaced with

state._x and old !x is replaced with old_state._x. Seeing as defining a translation

scheme for GOSPEL terms just for something this simple would be overkill, we will assume

a translation function h that performs this transformation.

Our next rule (TFun) (fig 5.9) pertains to the translation of anonymous functions. When

functions are declared using fun notation, we assume they will be used as first order values

and are therefore defunctionalized using the D translation function. This is admittedly

very ad hoc, however this choice was implemented mainly to simplify the translation. To

make the translation more robust, we could to do some kind of full program analysis to

see what functions need to be defunctionalized.

This function is simply a formalization of the process we described in chapter 2: create

a function with the same specification and body to check if there are any inconsistencies

between the two; create a function that returns a value of type lambda and, finally, call the

function. Although this expression is admittedly much longer than the original, it returns

a value of type lambda and generates the appropriate verification conditions.

Before translating the function’s expression, we must add its arguments to ν and have

µ = Svars as such Σ ◦ ∆ ◦ ν ∪ x ◦ ∅ ⊢ JeK ; et ⊣ µ′
. Although translating this function

produces a set of modified variables, it is unused. Since apply has write permissions to

all state variables, we assume calling a defunctionalized function will modify all state

variables.

Next up we have the (TPerformsClause) rule, which turns performs clauses into

raises clauses. Moreover, the raises clause also ensures the protocol’s precondition

50

5.4. GENERAL TRANSLATION SCHEME

SSprequires = termpre SSpensures = termpost

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jprotocol Ex : SpK ; PE, x, Σ, termpre, termpost, Spmodifies ⊣
(TProtocol)

Sterm :: xs = hterm ∧ Sxs
Sϵ = true

PE, x, Σ, termpre, termpost, mod =

WhyMLpredicate pre_E (arg : π1ΣE) (state : state) =
let x = arg in
termpre

predicate post_E (arg : π1ΣE) (old_state : state)
(state : Sτ) (reply : π2ΣE) =

let x = arg in
termpost

val perform_E (arg: π1ΣE) : π2ΣE
requires{pre_E arg Sx}
ensures{post_E arg (old Sx) Sx result}
writes{mod}

Figure 5.8: Protocol Translation Rule.

Σ ◦ ∆ ◦ ν ∪ x ◦ ∅ ⊢ JeK ; et ⊣ µ′ SSrequires = pre SSensures = post

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jfun S x : τarg : τret −→ eK ; D x : τarg τret et S pre post ⊣
(TFun)

D args = x1 : τ1, x2 : τ2, ..., xn : τn) τr et S termpre termpost =

WhyMLlet f args S = et in
val gen_f () : lambda τ1, τ2, ..., τn τr

ensures{
forall arg state. pre result arg state <->

let x1, x2 ... = arg in
termpre

}
ensures{

let f = result in
forall arg old_state state result.
post f arg old_state state result <->
let x1, x2 ... = arg in
termpost

} in gen_f ()

Figure 5.9: Defunctionalization Rule.

51

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

using the pre_E predicate generated using rule (TProtocol).

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jperforms EK ; raises{E arg −→ E_pre arg Sx} ⊣
(TPerformsClause)

Next, we present the rules for the translation of function applications. Since in our

translation we have some functions that are defunctionalized and others that are not we

need rules to handle both cases: one that uses the apply function and another that calls it

normally. We will use the apply rule if the expression e0 e1 satisfies one of the following:

1. The e0 expression is not a function identifier.

2. If the e0 expression is a function identifier, then it must be a value passed as a

parameter, and therefore will be contained in ν

If neither of these conditions are met, we can assume the function has not been

defunctionalized and we can apply the function normally. The two rules are as follows:

∀i Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ µi1 e0 = x =⇒ x ∈ ν

Σ ◦ ∆ ◦ ν ◦ µ0 ⊢ Je0 e1 ... enK ; apply e0 e2, e3, ..., en ⊣ Svars

(TAppDefun)

∀i Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ µi1 ¬x ∈ ν

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jx e0 e1 ... enK ; x e0t e1t . . . ent ⊣ ∆x ∪ µn1
(TApp)

In the case of (TAppDefun), seeing as we add a call to apply, which has write per-

missions to all state variables, the set of modified variables it produces is Svars. This set

contains the identifiers of all the top level state variables in this program. In the case

of (TApp), the set of modified variables is composed of the variables modified by each

argument expression, as well as the variables modified by calling x

Finally, we move on to the crème de la crème of our translation rules: (TTry) (Fig 5.10).

This rule creates an expression which consists of calling a function that consists of an

exception handler using the H translation function. This translation function first creates

a snapshot of the state before we enter the handler init_state. Then, we wrap the

translated e0t expression in an exception handler. For each handled effect we will create

an equivalent exceptional case with the same name and arguments. For each of these

cases we create another snapshot of the state eff_state, this time right after control is

surrendered to the handler. We then create a function that generates a continuation. This

function will ensure the continuation satisfies the following conditions:

1. The continuation’s one-shot check is valid.

2. The continuation’s precondition is the same as the protocol’s postcondition.

3. The continuation’s postcondition is the same as the handler’s invariant.

52

5.5. LIMITATIONS

4. Any state variable that is not modified by the handler is also not modified by the

continuation.

The first three conditions are similar to what we saw in section 5.3. To express the

fourth, however, we must state in the postcondition, for each variable x that isn’t modified:

WhyMLforall arg state_old state result.

... state.x = state_old.x

To create this condition for all the variables in Svars \µn1, which contains all state variables

except those modified by the handler, we use the logical function O.

Oϵ = true

Ox :: t = state.x = state_old.x ∧ Ot

Now that we have fully specified the function that generates the continuation, we

then call it and add the translated expression. After doing this for each case we wrap

the complete exception handler in a function named handler whose postcondition is the

handler’s invariant.

Although our scheme has a few more rules, they are quite straightforward and are

therefore not worthy of a lengthy explanation. The full translation scheme can be found

in Figure 5.11

5.5 Limitations

Althoughour translation scheme can coveran interesting subsetofprograms withhandlers,

there are a few limitations on what programs we can verify using this approach:

1. This scheme does not support shallow handlers. More generally, it does not support

any handler that generates continuations that produce effects.

2. The only stateful variables allowed are references declared in the top level (with the

exception of continuations’ one-shot check).

3. In case of higher order functions, any functions passed as parameters are only

allowed to perform effects explicitly listed in the performs clause. For example:

GOSPEL + OCamllet f (g : 'a -> 'a) = ...

(*@ performs E*)

when calling f, the g function we pass as an argument can only perform the E effect.

53

CHAPTER 5. REASONING ABOUT EFFECTS AND HANDLERS IN WHY3

∀i.0 < i ≦ n =⇒ Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ µi1
SShensures = termpost Shreturns = τ etry = try e0 with Sh effect Ex k −→ e

Σ ◦ ∆ ◦ ν ◦ ∅ ⊢ JetryK ; HEx, e, Shensures, termpost, τ, Σ, OSvars \ µn1 ⊣ µn
(TTry)

He0t, Ex, e, Shensures,termpost, τ , Σ, termstate) =

WhyMLlet handler () =
ensures{Shensures1}
ensures{Shensures2}
...

let init_state = Sx in
try e0t with
|...
|Enx ->

let eff_state = Sx in
val gen_k unit : continuation π2ΣEn τ
ensures{valid result}
ensures{

forall arg state.
pre result arg state <->
E_post arg eff_state state result

}
ensures{

let f = result in
forall arg irrelevant_old_state state result.
post f arg irrelevant_old_state state result <->

let state_old = init_state in
termpost ∧ termstate

} in let k = gen_k () in ent

|...
in handler ()

Figure 5.10: Translation rule for effect handlers.

4. Our defunctionalized functions are called using apply, which is non-divergent. This

means that our system rejects programs that need to defunctionalize divergent

functions, since these would be called using the non-divergent apply, generating an

inconsistency.

Although these limitations simply place restrictions on what programs we can verify,

they do not introduce any inconsistencies. However, one way this scheme is unsound is

in that we cannot prove that Server only modifies variables listed in the modifies clause

of the protocol. Although the other limitations are as a result of some intractable problem

our WhyML representation, this one is mainly due to time constraints. We believe that this

can be ensured by expanding the continuations’ precondition by stating that any variable

not listed in the modifies clause must not have been altered.

54

5.5. LIMITATIONS

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jeffect E : τK ; exception E ⊣ ΣE −→ T τ
(TEffect)

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jperform EćxK ; perform_E ćx ⊣
(TPerform)

SSprequires = termpre SSpensures = termpost

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jprotocol Ex : SpK ; PE, x, Σ, termpre, termpost, Spmodifies ⊣
(TProtocol)

Σ ◦ ∆ ◦ ν ∪ x ◦ ∅ ⊢ JeK ; et ⊣ µ′ SSrequires = pre SSensures = post

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jfun S x : τarg : τret −→ eK ; D x : τarg τret et S pre post ⊣
(TFun)

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jperforms EK ; raises{E arg −→ E_pre arg Sx} ⊣
(TPerformsClause)

∀i Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ µi1 e0 = x =⇒ x ∈ ν

Σ ◦ ∆ ◦ ν ◦ µ0 ⊢ Je0 e1 ... enK ; apply e0 e2, e3, ..., en ⊣ Svars
(TAppDefun)

∀i Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ µi1 ¬x ∈ ν

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jx e0 e1 ... enK ; x e0t e1t . . . ent ⊣ ∆x ∪ µn1
(TApp)

∀i.0 < i ≦ n =⇒ Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ µi1
SShensures = termpost Shreturns = τ etry = try e0 with Sh effect Ex k −→ e

Σ ◦ ∆ ◦ ν ◦ ∅ ⊢ JetryK ; HEx, e, Shensures, termpost, τ, Σ, OSvars \ µn1 ⊣ µn

(TTry)

Σ ◦ ∆ ◦ ν ◦ ∅ ⊢ JeK ; et ⊣ µ e ≠ fun ... x ≠ ϵ =⇒ ∆′ = ∆f −→ µ x = ϵ =⇒ ∆′ = ∆

Σ ◦ ∆ ◦ ν ◦ ∅ ⊢ Jlet S f x = eK ; let S f x = et ⊣ ∆′ (TLet)

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Je1K ; e1t ⊣ µ′ Σ ◦ ∆ ◦ ν ◦ µ′ ⊢ Je2K ; e2t ⊣ µ′′

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jif a then e1 else e2K ; if a then e1t else e2t ⊣ µ′′ (TIf)

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Je1K ; e1t ⊣ µ′ Σ ◦ ∆ ◦ ν ◦ µ′ ⊢ Je2K ; e2t ⊣ µ′′

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Je1 ; e2K ; e1 ; e2 ⊣ µ′′ (TSeq)

x ≠ ϵ =⇒ µ = ∅ Σ ◦ ∆ ◦ ν ◦ µ ⊢ Je1K ; e1t ⊣ µ′ e ≠ fun ...
x ≠ ϵ =⇒ ∆′ = ∆f −→ µ′ x = ϵ =⇒ ∆′ = ∆ Σ ◦ ∆′ ◦ ν ◦ µ′ ⊢ Je2K ; e2t ⊣ µ′′

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jlet S f x = e1 in e2K ; let S f x = e1t in e2t ⊣ µ′′ (TLetIn)

∀i.0 ≦ i < n =⇒ Σ ◦ ∆ ◦ ν ◦ µi ⊢ JeiK ; eit ⊣ Σ ◦ ∆ ◦ ν ◦ µi1

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jmatch a with p −→ eiK ; match a with p −→ eit ⊣ Σ ◦ ∆ ◦ ν ◦ µn
(TMatch)

Σ ◦ ∆ ◦ ν ◦ µ ⊢ Jmodifies sK ; writes{s} ⊣
(TModifies)

Σ ◦ ∆ ◦ ν ◦ µ ⊢ JϵK ; ϵ ⊣ (Tempty)

Σ ◦ ∆ ◦ ν ◦ ∅ ⊢ JdK ; dt ⊣ Σ′ ◦ ∆′ Σ′ ◦ ∆′ ◦ ν ◦ ∅ ⊢ JdK ; dtl ⊣ Σ′′ ◦ ∆′′

Σ ◦ ∆ ◦ ν ◦ ∅ ⊢ Jd :: dK ; dt :: dtl ⊣ Σ′′ ◦ ∆′′ (TDecl)

Figure 5.11: Inductive Translation Rules.

55

6

Case Studies

We will now put our scheme to the test and prove four different programs. We start

with the division interpreter we presented in 2.4. We then present a program which

implements mutable state using algebraic effects. Next, we show a program which turns

an iterator into a generator; essentially a simpler version of the joining streams example

from section 2.4.2. Finally, we show an example created by hand that shows how we may

prove functions with shallow handlers using Why3 as well as going over the limitations

which prevented us from generalizing this approach.

All these examples, with the exception of the one with shallow handlers, were proved

using an extension of Cameleer that implements the translation rules we showed in

section 5.4. The complete implementation is publicly available1.

6.1 Cameleer Implementation

Before we go over our verified case studies, we will briefly discuss some of the decisions we

made when our implementation of the translation scheme. As we mentioned, the target

language we present in Chapter 5 is an approximation of a core fragment of the OCaml

language. Nevertheless, some of the syntactic constructs presented do not exist as of yet in

OCaml, the most notable of which being effect handlers. Although these technically exist

in the alpha release of OCaml 5.0, they are exposed with functions and therefore have no

syntactic support. To illustrate how one might write a handler in OCaml, we present, in

Figure 6.1 a handler for the xchg function from section 5.3.

All case studies detailed in this chapter were implemented and proved using this

notation. However, for the sake of maintaining legibility, we will present them using the

syntax from Chapter 5.

1https://github.com/mrjazzybread/cameleer/tree/effects

56

https://github.com/mrjazzybread/cameleer/tree/effects

6.2. DIVISION INTERPRETER

OCamllet _ =
try_with (fun x -> xchg x) 3
{effc =

(fun (type a) (e : a Effect.t) ->
match e with
|XCHG n -> (Some (fun (k : (a, _) continuation) ->

let old_p = !p in
p := n;
continue k old_p))

|_ -> None)}

Figure 6.1: Handler for the xchg function implemented in OCaml.

GOSPEL + OCamleffect Div_by_zero : int

let rec eval (e : exp) : int = match e with
|Int x -> x
|Div(l, r) ->
let eval_l = eval l in
let eval_r = eval r in

if eval_r = 0
then perform Div_by_zero
else eval_l / eval_r

let main e =
try eval e with
|effect Div_by_zero k -> continue k max_int

Figure 6.2: Division Interpreter.

6.2 Division Interpreter

We start with the division interpreter. The program, showed in figure 6.2 is exactly as we

detailed in section 2.4.

6.2.1 Interpreter Specification

The first step in writing our specification should be finding an appropriate protocol. When

replying to an effect, Server is giving meaning to divisions by zero. Although Server can

choose any value it wants, this value must remain consistent. For example, if we call eval

and reply to an effect with the value 1000, every other effect that Client performs must

also be replied with this same value. To enforce this, we will create a ghost variable that

will save the value that Server chose for divisions by zero. Since this variable will only

be relevant for our specifications, it will be defined (and later modified) within a GOSPEL

comment:

GOSPEL + OCaml(*@ val v0 : int *)

57

CHAPTER 6. CASE STUDIES

Next, we define a protocol stating that Server must reply with v0:

GOSPEL + OCaml(*@ protocol Div_by_zero :

ensures result = !v0)

Note how this protocol does not have a modifies clause. This means that Server cannot

choose a new value for v0.

Now that we have a protocol defined, let us now consider the specification for eval.

In section 2.4, we defined a logical function eval_ind to describe how we evaluate an

expression. We will define a similar function where we explicitly handle the case of a

division by zero by returning a default value v0.

GOSPEL + OCaml(*@ function eval_ind (exp : exp) (v0 : int) : int =

match exp with

|Const n -> n

|Div exp1 exp2 ->

if eval_ind exp2 v0 = 0

then v0

else div (eval_ind exp1 v0) (eval_ind exp2 v0)

*)

With this function in place, we may now specify eval as follows:

GOSPEL + OCamllet eval (e : exp) = ...

(*@ ensures eval_ind e !v0

performs Div_by_zero*)

If we wish to write a handler for this function, we need only to set the v0 variable with

the value with which we want to define divisions by zero before calling. In this case, we

chose the value 1000. The postcondition will be roughly the same as the postcondition for

eval

GOSPEL + OCamllet main (e : exp) =

try v := 1000; eval e with

|effect Div_by_zero k -> continue k 1000

(*@ try_ensures eval_ind e 1000

returns int *)

The full program (without any GOSPEL declarations) is in figure 6.3

6.2.2 Translating The Interpreter

We will now move over the interpreter’s translation. This will be the only case study

(barring the shallow handler) in which we detail the WhyML translation. This is mostly

due to the fact that none of the translations have any major structural differences. First,

58

6.2. DIVISION INTERPRETER

GOSPEL + OCamllet rec eval (e : exp) : int =
match e with
|Const n -> n
|Div(e1, e2) ->

let eval_l = eval e1 in
let eval_r = eval e2 in
if eval_r = 0

then perform Div_by_zero
else eval_l / eval_r

(*@
ensures eval_ind e !v0 = result
performs Div_by_zero
variant e

*)

let main (e : exp) =
try v := 1000; eval e with
|effect Div_by_zero k -> continue k 1000

(*@try_ensures eval_ind exp 1000 = result
returns int *)

Figure 6.3: Specified Division Interpreter with Handler.

we must define the state type. Since there is only one reference in this program (v0), the

state is represented by the following record type:

WhyMLtype state = {_v0 : int}

Next, we must set up the Div_by_zero effect. Naturally, we will need an exception

with the same name. Additionally, we will need a specialized perform function with the

same specification as the protocol. We will assume two predicates pre_Div_by_zero and

post_Div_by_zero that encapsulate the postconditions of the protocol, as follows.

WhyMLexception Div_by_zero

val perform_Div_by_zero () : int

ensures{post_Div_by_zero (old Sx) Sx result}

In this case, Sx is shorthand for the expression {_v0 = !v0}. The translation of the

specification and the body of the eval function will be identical to its GOSPEL and

OCaml counterparts. The one difference is that the call to perform will be replaced by the

perform_Div_by_zero function. Additionally, the performs clause will be replaced by a

raises clause. The full specification is as follows:

WhyMLensures{eval_ind (!curr_exp) = result}

raises{Div_by_zero}

variant{e}

59

CHAPTER 6. CASE STUDIES

6.2.3 Verifying the Interpreter

Verifying the eval function mostly amounts to discharging a series of verification condi-

tions we would normally find for this kind of recursive function (i.e., proving termination,

proving the base case and the inductive case respect the function’s postcondition, and

proving the raises clause) . There are a few verification conditions, nevertheless, that are

specific to programs with protocols.

This verification condition is validated. We must also prove that the postcondition

of this function is met after we perform the effect. Since we only perform Div_by_zero

when the right hand side of the division evaluates to 0 and Server always replies with v0,

Why3 is able to prove that this function respected the eval_ind predicate

6.2.4 Translation of the Handler

Translating the handler into WhyML will be quite verbose, but not dissimilar to what we

have seen thus far. Therefore, we will focus specifically on the creation and specification

of the continuation. Firstly, as always, we must specify that the continuation is valid:

WhyMLval k : continuation int int

assume{k._valid}

Next, we must state that the precondition of the continuation is the protocol’s postcondi-

tion.

WhyMLassume{forall reply state.

pre k reply state <->

reply = state._v0}

Finally, we must ensure that the postcondition of the continuation is the handler’s invariant.

WhyMLassume{ forall reply old_state state result.

post k reply old_state state result <->

eval_ind exp old_state._v0}

6.2.5 Verifying the handler

This handler generates four VCs. The first states the handler’s invariant holds in case of a

non-exceptional return. Since the handler’s invariant is equivalent to eval’s postcondition,

this is proved trivially. Next, in case of an exceptional return, we must prove that the

continuation is valid and that the continuation’s precondition (that is, the protocol’s

postcondition) holds. For the former, since the continuation starts valid and we haven’t

called it, Why3 easily verifies this. As for the latter, since we set v0 to equal 1000, Why3

can also prove this. Finally, we must prove that in case of an exceptional return, the

invariant still holds. Since the exceptional branch ends with a call to the continuation,

60

6.3. MUTABLE REFERENCE

whose postcondition is the invariant, this is also proved. All of these conditions are proved

using the Alt-Ergo prover [22]

6.3 Mutable Reference

Our next example will involve the creation of an ambient state using algebraic effects. In

short, we will simulate the behavior of a single mutable integer reference by having two

effects. A Get effect that will retrieve the value of the reference and a Set effect that will

receive as argument a single integer and change the value of the reference. Important to

note that the implementation of the OCaml program will be written without any mutable

values.

6.3.1 Client implementation and Specification

As stated, our program will have the following effects.

GOSPEL + OCamleffect Get : int

effect Set : int -> unit

The Get effect will simply return the current value of the ambient reference. The Set effect

will receive the integer and set the value of the reference. As we have stated, there is no

explicit mutable value. However, to model this behavior, we will have a ghost GOSPEL

reference that will hold the value of this abstract state.

GOSPEL + OCaml(*@ val ghost r : int ref *)

Using this ghost reference, we can create a protocol for both effects. We then create two

functions that simply call these two effects.

GOSPEL + OCaml(*@ protocol Get :

ensures result = !r *)

(*@ protocol Set x :

ensures !r = x

modifies r*)

let set (n : int) : unit = perform (Set n)

(*@ performs Set

ensures !r = n*)

let get () : int = perform Get

(*@ performs Get

ensures result = !r*)

61

CHAPTER 6. CASE STUDIES

Since the get and set functions are essentially just reading and writing from a ghost

reference, proving a Client that uses these would be no different from proving one that

uses normal references. Nevertheless, we will give a small example to give the reader an

idea of the kinds of specifications a Client of this nature might have:

GOSPEL + OCaml

(*@ predicate fun_post (old_r : int) (r : int) (result : int) =

result = r * r && r = old_r * 2 *)

let some_fun () : int =

set(get () + get ()); get() * get()

(*@ ensures fun_post (old !r) !r result

performs Get

performs Set*)

Verifying this function is quite simple: it produces a single VC proving that some_fun

satisfies fun_post, seeing as neither Get nor Set have preconditions.

6.3.2 Handler Implementation and Specification

Although writing and proving Client was very simple, this handler will be the most

complex out of all the ones we have seen. Instead of calling the continuation, it will return

a function that (potentially) calls a continuation. The returned function will be of type

int -> int. This will be the first time we see a handler that doesn’t have the same return

value as Client. The argument it receives is the initial value the reference will holds. Its

result is the result of some_fun assuming that the initial value of the ambient reference is

the argument of the function.

To achieve this, we first consider the function we return after some_fun completes.

Since some_fun has terminated, the function we will return will ignore the argument

passed and simply return whatever some_fun returned.

GOSPEL + OCamltry

let ret = some_fun () in

fun _ -> ret

with ...

Now, we must specify this anonymous function. Seeing as the specification of some_fun

is fun_post applied to the initial and final values of r as well as the result. Therefore, the

specification is as follows:

GOSPEL + OCamltry let ret = some_fun in

(*@ let final_r = !r in)

fun (*@ ensures fun_post init_state._r final_r result*) _ -> ret

with ...

62

6.3. MUTABLE REFERENCE

A reminder that the init_state variable represents the state before the handler began

execution. Our next example will be the case of a Get effect. Here, we want to return a

function that calls the continuation by passing the current value of the reference. In other

words we call the continuation using the argument of the fun we return.

GOSPEL + OCaml|effect Get k ->

fun n -> continue k n

This call to continue, however, will return another function, since that is the return type of

the handler. This function also receives as argument the current value of the state. Seeing

as Get effects do not modify the reference, we simply call the function with the argument,

just like we did with the continuation.

GOSPEL + OCaml|effect Get k ->

fun n ->

let env = continue k n in

env n

As for this function’s specification, its postcondition will, once again, be the same

as some_fun. It will, nonetheless, require a precondition stating that the argument this

function receives is equal to the ghost reference. Moreover, we will also state that the

value of the ghost reference hasn’t been changed since the this effect was called. The full

specification would be:

GOSPEL + OCamlfun

(*@ requires n = !r

ensures fun_post init_state._r !r result *)

n -> ...

Finally, we move on to the last case, which is the Set effect. The general structure will

be similar to the previous lambda. The main difference will be in the arguments we pass.

Since Set has type int -> unit, the continuation can only be resumed by passing unit.

Moreover, the argument we will pass to the function the continuation returns is the value

passed when the effect was performed.

GOSPEL + OCaml|effect (Set n) k ->

fun (*@ ensures fun_post init_state._r !r result *) _ ->

let env = continue k () in

env n

The full handler can be found in figure 6.4. All that is left now to give the handler

its specification. Specifying the handler will be equivalent to specifying the function it

returns. Regardless of which branch the handler will fall into, each function has the same

postcondition. Therefore, one of the invariants will be:

63

CHAPTER 6. CASE STUDIES

GOSPEL + OCamltry
let res = some_fun in
(*@ let final_r = !r in)
fun (*@ ensures fun_post init_state._r final_r result*) _ -> res

with
|effect Get k ->

fun
(*@ requires n = !r

ensures fun_post init_state._r !r result *)
n ->

let env = continue k n in
env n

|effect (Set n) k ->
fun (*@ ensures fun_post init_state._r !r result *) _ ->

let env = continue k () in
env n

Figure 6.4: Complete sum_fun handler.

GOSPEL + OCamltry_ensures

let g = result in

forall arg state_old state result.

post g arg state_old state result ->

fun_post (old !r) state._r result

Note that old !r refers to the value r holds at the start of the handler expression.

Moving on to the function’s precondition, we would like to state that it can only be

called with the current value of the r reference. Additionally, we would like to state that

it can only be called once. As we mentioned in section 5.5 however, we cannot directly

prove the one-shot rule for functions that call continuations. To work around this, we will

create a new ghost reference va that will track if the continuation has been called or not.

GOSPEL + OCaml(*@ val va : bool ref *)

We then add the following invariant.

GOSPEL + OCamltry_ensures forall arg state.

state._va && state._r = arg ->

pre result arg state

Although the natural reading of a condition of type (... -> pre f arg state) f’s
precondition is ... what we are actually saying is An equivalent or stronger condition relative to
f’s postcondition is This means that even though the function returned when some_fun

ends doesn’t have a precondition, it still satisfies this invariant.

We will however, have to change the two functions returned in case of an effect, seeing

as the function’s returned by the continuation require the va flag to be set to true. In short,

64

6.3. MUTABLE REFERENCE

we add a precondition to both functions simply stating !va. The full handler specification

is:

GOSPEL + OCaml(*@

try_ensures forall arg state.

state._va && state._r = arg ->

pre result arg state

try_ensures let g = result in

forall arg state_old state result.

post g arg state_old state result ->

fun_post (old !r) state._r result

returns int -> int

*)

6.3.3 Verification of the Handler

We will now go over the VCs this program generates. The first VC states the body of the

function returned after some_fun ends adheres to its specification. Since its postcondition

is:

GOSPEL + OCaml

fun (*@ ensures fun_post init_state._r final_r result*) _ -> res

and it simply returns the value returned by some_fun, this VC is validated. The next two

state the returned function respects the two invariants. The first one is simple, seeing as

this function has no precondition, in other words pre f arg state <-> true.

As for the next invariant, since it technically states

fun_post (old !r) state._r result

and the postcondition for the function states

fun_post init_state._r final_r result,

Why3 can’t prove that

state._r = final_r.

In simpler terms, we cannot prove the final value that r holds at the end of the returned

function equals final_r. Since r is simply a ghost variable to aid in our specification,

we can use it in whatever way makes our proofs easier, as long as we don’t introduce

anything that breaks the underlying logic of what we are trying to model. Therefore, we

will modify the function slightly so that Why3 can reach the conclusions we want:

GOSPEL + OCamlfun (*@ ensures fun_post ... && !r = final_r *)

_ -> (*@ r:= final_r; *) ret

With this new postcondition, Why3 can now prove that this function satisfies both invari-

ants.

65

CHAPTER 6. CASE STUDIES

The next two verification conditions refer to the Get effect. We wish to prove the

preconditions for calling continue. Namely if the continuation is valid and if the protocol’s

postcondition is met. The former is verified trivially. The latter is verified using the

precondition stating that the argument passed must be equal to !r.

Next we prove the precondition for the env function that the continuation returns.

According to the first invariant, the precondition of this function can be assured if the va

variable is set to true and the r variable equals the argument. Both of these facts can be

proven from the function’s precondition.

We must also prove the body of this function respects the postcondition. Seeing as its

postcondition is the same as the postcondition of the function returned by the continuation,

this is easily proved.

Finally, we have to prove this lambda term respects the invariants. Since its precondi-

tion and postcondition are equivalent to what is presented in the invariants, Why3 proves

this trivially.

There are also the VCs generated for the Set effect. We will skip these since they are

effectively the same as those generated for Get.

6.4 Generators

In section 2.4.2, we showed how effects can be used to control the flow of the iteration

of a stream of integers. This case study will be a simpler version of that example where

we have a higher order function that applies a function received as argument to a stream

of integers. We will use an algebraic effect so as to turn this iteration over a stream of

integers into a function that generates integers one by one.

6.4.1 Client Specification

To specify the original iterator, we use a reference to a ghost list of integers.

GOSPEL + OCaml(*@ val ghost l : (list int) ref *)

(*@ predicate permitted (l : list int) (n : int) *)

(*@ predicate complete (l : list int)*)

This list represents the values which the iterator has already enumerated. We will also

have two predicates permitted and complete. The former is used to verify if n is a valid

next element, given a list of iterated values l. The later is used to check if iteration has

completed. Given these predicates, our client will have the following specification.

GOSPEL + OCamllet iter (f : int -> unit) : int = ...

(*@ requires forall arg s. permitted s._l arg -> pre f arg s

ensures complete !l *)

The precondition of iter states that the strongest precondition possible for f is that

it only allows values that are permitted next elements in the iteration. Furthermore, the

66

6.4. GENERATORS

GOSPEL + OCaml(*@ val ghost l : (list int) ref *)
(*@ predicate permitted (l : list int) (n : int) *)
(*@ predicate complete (l : list int)*)

effect Yield : int -> unit

(*@ protocol Yield x :
requires permitted !l x
ensures !l = x::(old !l)
modifies l*)

let iter (f : int -> unit) : int = ...
(*@ requires forall arg s. permitted s._l arg -> pre f arg s

ensures complete !l
performs Yield *)

Figure 6.5: Client Specification.

postcondition ensures that once iter terminates, l will satisfy complete, which is another

way of saying the iteration has ended.

All that is left is to include a performs clause. Ideally, we would like to state that this

function performs any effect that f, its argument, may perform. However, translating this

kind of assertion into WhyML would be very difficult due to certain limitation regarding

specifying higher-order functions that perform effects. We will go over these limitations

in section 6.5. Therefore, we will not give iter a proper implementation and instead add

the following performs clause

GOSPEL + OCamlperforms Yield

where Yield is the following effect.

GOSPEL + OCamleffect Yield : int -> unit

The basic idea is very similar to the join_stream example: we use the Yield effect to

stop the iteration and expose the current value. The l list should be updated to reflect

that we have just iterated another element. With this in mind, the protocol for Yield is as

follows:

GOSPEL + OCaml(*@ protocol Yield x :

requires permitted !l x

ensures !l = x::(old !l)

modifies l*)

The full program can be found on figure 6.5

67

CHAPTER 6. CASE STUDIES

6.4.2 Handler Implementation

We will now show how we implement our handler so as to create a generator. This function

will have type unit -> int option. The expected behavior of our generator function is

as follows:

1. If the iteration has completed and there are no more elements to generate, the

function should return None.

2. If there is at least one x left to iterate, the generator should return Some x. Addition-

ally, the generator should update itself so that the next time it is called, it produces

the next element in the iteration (or None, potentially).

In order to implement a function that updates itself, we will need the following top-level

variable:

GOSPEL + OCamllet gen : (unit -> int option) ref = (fun () -> None)

Since Server modifies this variable, we must add it to the modifies clause of the

protocol.

GOSPEL + OCaml(*@ protocol Yield x :

...

modifies l, gen *)

We are now ready to begin implementing the handler. As usual, we start with the

expression between the try_with. Naturally, we begin with a call to iter. This call will

be done using a function that simply performs a Yield effect. Once iter has completed,

there are no more elements to return. This means the gen function must be modified so

as to return None:

GOSPEL + OCamltry

iter (fun x -> perform (Yield x));

gen := (fun () -> None)

with ...

Interestingly, this handler returns unit. In other words, it has no meaningful return

value, all it does is update gen. As for the case where Yield is performed, we update

gen with a function that updates the l reference, returns the yielded value and calls the

continuation. This will resume iteration and update gen once more.

GOSPEL + OCaml|effect (Yield x) k ->

gen := (fun () ->

l := x::!l; continue k (); Some x)

68

6.4. GENERATORS

6.4.3 Handler Specification

We start by specifying the function we pass when calling iter. We state this function

performs Yield and its precondition is that the argument it receives must be a valid next

step in the iteration.

GOSPEL + OCamlfun (*@ requires permitted !l x

performs Yield*) x -> ...

The specification of this handler will be rather complex, since we are dealing with

a function that updates itself. To specify this handler, we stae the postcondition of the

generator functions it produces will have as their postcondition the inter_inv predicate.

This predicate must hold after calling any generator this handler may produce. It will

receive the state of the program before and after the generator was called as well as the

result.

GOSPEL + OCaml(*@ predicate iter_inv

(s_old : state) (s : state) (result : option int) *)

Now we move on to defining this predicate. In case the result is None, we want to state

that the iterator is complete and that there was no modification to any state variable:

GOSPEL + OCaml(*@ predicate iter_inv ... =

match result with

|None -> complete s._l && s_old = s

|... *)

As for the case where the result is Some x, we want to state x is a valid next step in the

iteration. Moreover, we want to state that the l list was modified by adding x to the head.

GOSPEL + OCamlpredicate iter_inv

(s_old : state) (s : state) (result : option int) =

match result with

|None -> ...

|Some x -> permitted s_old._l x && s._l = x::s_old._l && ...

We also want to state that after the generator function is called, the gen reference will

be updated with a new function. This function must also have as its postcondition the

iter_inv predicate. We would also like to state that each new function can only be called

at most once, due to the one-shot rule. Unfortunately, as we mentioned in section 5.5, this

cannot be done for functions that call continuations

GOSPEL + OCamlforall old_next_state next_state next_result.

post s._gen () old_next_state next_state result ->

iter_inv old_next_state next_state result

69

CHAPTER 6. CASE STUDIES

GOSPEL + OCaml(*@
axiom iter_inv1 :

forall state_old state.
iter_inv state_old state None <-> complete state._l && state = state_old

*)

(*@
axiom iter_inv2 :

forall state_old state r. (
permitted state_old._l r
&& state._l = r::state_old._l
&& forall state_old1 state1 result.

(post state._gen () state_old1 state1 result ->
iter_inv state_old1 state1 result)

) <-> iter_inv state_old state (Some r)
*)

Figure 6.6: Axiomatized Definition of iter_inv

Alas, this predicate is rejected by Why3 during our translation. Since this predicate is

recursively defined, Why3 tries to prove its termination, to no avail. One way around this

is to define iter_inv using axioms as shown in figure 6.6.

With this predicate defined, we can now specify the lambdas and the handler. As for

the former, their specifications are quite simple, we will simply state that they satisfy the

iter_inv predicate with the state before and after the function is called:

GOSPEL + OCamlfun (*@ ensures iter_inv (old Sx) Sx result *) -> ...

The handlers specification simply states that the function the gen reference points to

satisfies the iter_inv predicate.

GOSPEL + OCaml(*@ try_ensures

forall s_old s result.

post !gen () s_old s result ->

iter_inv s_old s result*)

The full handler can be found in figure 6.7

6.4.4 Verification

The first generated VC for this example state that the call to perform satisfies the precon-

dition of the protocol, which is next !l x, where x is the yielded value. This is proved

using the lambda’s precondition, which is equivalent to the protocol. Next, Why3 proves

that the function we pass as a parameter when calling iter satisfies its precondition

GOSPEL + OCamlrequires forall arg s. next s._l arg -> pre f arg s

70

6.4. GENERATORS

GOSPEL + OCamltry
iter (fun (*@ requires permitted !l x

performs Yield*)
x -> perform (Yield x));

gen := (fun (*@ ensures iter_inv (old Sx) Sx result *)
() -> None)

with
|effect (Yield x) k ->

gen := (fun (*@ ensures iter_inv (old Sx) Sx result *)
() -> l := x::!l; continue k (); Some x)

(*@ try_ensures
forall s_old s result.

post !gen () s_old s result ->
iter_inv s_old s result*)

Figure 6.7: Handler for the iter function.

Since the precondition of f is the same as the precondition for the lambda we pass, this

condition is also proven.

We may now move on to the next instruction where we set gen to be equal to a function

that returns None. First, we prove that the function satisfies the iter_inv predicate. Since

this function always returns None, does not modify the state and is only generated when

the iteration has completed, Why3 is able to prove such condition. Next, we prove the

handler’s invariant when the handler terminates without an effect. Since we’ve stated that

gen contains a function that satisfies iter_inv, this is proven trivially.

Coming up to the Yield case, we first prove that the precondition for continue (in

other words, the protocol’s postcondition) is met. Since the protocol’s postcondition is

!l = x::(old !l) and modify l by adding x to the head, this condition is met. Next, we

prove the continuation’s one-shot check. Finally, we prove that this function satisfies the

invariant. This implies proving three things:

1. The result is a valid next step in the iteration

2. The l list has been updated with the newly yielded value

3. The gen function still holds a function that satisfies the iter_inv

The first is proved from the protocol’s precondition. The second one is proven knowing

we update the list with x before returning. The final condition is proven knowing that

the continuation’s postcondition (the handler’s invariant) is that gen will hold a function

that satisfies iter_inv. Finally, Why3 proves the handler’s invariant for this case, which

is proven trivially just like the base case.

71

CHAPTER 6. CASE STUDIES

6.5 Shallow Handlers

As we have mentioned in previous chapters, our translation scheme only works for deep

handlers. Although it is technically possible to specify and verify programs with effects

with Why3 using a similar strategy, there are a few limitations that we will go over that

make this approach inviable. The case study we will present in this section is somewhat

trivial, we are mostly using it to demonstrate some of the difficulties in encoding effectful

continuations.

6.5.1 Extending The Grammar

Before delineating our case study, we first present how we will extend OCaml’s GOSPEL’s

syntax to encompass shallow handlers. Like with deep handlers, OCaml does not yet have

a proper syntax for these. Nevertheless, the syntax we are presenting will most likely be

similar to what will be available in OCaml in the future. The basic syntax will be almost

identical to deep handlers:

resume k, e with effect Ex k −→ e

There are a few differences, the most notable of which is that instead of try...with we

have resume...with. Another difference is that instead of an e in between the resume...with

we have k, e, a tuple consisting of a shallow continuation (that is, a continuation with no

handler) and its argument. If k doesn’t evaluate to a continuation or e’s type is not valid,

the program is rejected.

A shallow handler resume k, e with... will evaluate e and call k using the return

value of e. The rest is quite similar to what we have seen, with the exception that the

continuations this handler generates will not reinstall the handler and may perform effects.

Important to note that there is no continue function for shallow continuations, the only

way to call these is with a handler. Moreover, shallow continuations are also one-shot
The final difference is that these handlers do not have an invariant clause. As we

explained in section 5.1.2, we needed these invariants to give the generated continuations

a postcondition. However, this is unnecessary in the context of shallow handlers. This

is because when we resume some continuation k1 and generate a new continuation k2,

the postcondition of k2 will be equivalent to k1’s. Therefore, we do not need the user to

manually insert an invariant.

We will also introduce a function fiber with the following type:

fiber : α −→ β −→ continuation α β

All this function does is turn a function into a continuation. This is necessary since to

use a handler we need a continuation and, without this function, we would have no way

of generating one.

72

6.5. SHALLOW HANDLERS

Lastly, we will go over how we extend GOSPEL so we may reason over shallow

continuations. To reason over the effects a function may perform, we will introduce

the may_perform binary predicate. Stating f may_perform E1, E2, E3 means that the

function (or continuation) f is allowed (although doesn’t strictly need) to perform effects

E1 E2 and E3.

6.5.2 Shallow to Deep

We will now present a program which implements a deep handler for an effect E using

shallow handlers. Let us consider the following annotated OCaml program:

GOSPEL + OCamleffect E : unit

let rec deep (k : ('a, 'b) continuation) (arg : 'a) : 'b =

resume k, arg with

|effect E -> deep k ()

(*@ requires k may_perform E

ensures post k arg result *)

let handler (f : 'a -> 'b) (arg : 'a) : 'b = deep (fiber f) arg

(*@ requires f may_perform E

ensures post f arg result *)

The deep function is very simple: it calls k using arg and if any effects are performed,

it calls itself recursively, reinstalling the handler. The handler function receives a normal

function, turns it into a continuation and then calls deep.

The specifications for these two functions allow f and k to perform the effect E.

Therefore, we are not allowed to call these functions by passing lambdas that perform

other effects. Additionally, both these functions ensure the postcondition of their lambda.

We will not provide any protocol for E seeing as we are only interested in proving if

each effect is handled correctly. This is much harder then when we were dealing with deep

handlers since now we have to prove programs with higher order functions that perform

effects. Additionally, since we have no state variables, we will assume the versions of post

without the state arguments. Since we have no protocol, we will also be dismissing the

pre predicate for this example.

Before moving on to the WhyML translation, we will assume our program also has

the following effect defined:

effect Wildcard : unit This effect will not be used by our case study and will only

be here to highlight a limitation that we will discuss onwards.

73

CHAPTER 6. CASE STUDIES

6.5.3 Translation

The first step in proving a shallow handler is, similarly to their deep counterparts, turning

all effects into exceptions:

WhyMLexception E

exception Wildcard

Next, we translate the deep function. We will translate shallow handlers using, much

like our previous case studies, exception handlers. The transformation will be slightly

different, however: we turn

GOSPEL + OCamlresume k, arg with ...

into

WhyMLtry continue k arg with ...

This way k is called with arg and its one-shot check is invalidated. The full translation

of deep is as follows:

WhyMLlet deep (k : continuation 'a 'b) (arg : 'a) : 'b

try contin k arg with

|E ->

val new_k : continuation unit 'b in

deep new_k ()

end

This program, aside from being incomplete (we haven’t specified gen_k nor deep), is

also invalid, seeing as we wrapped a call to contin, a function that throws no exceptions,

with an exception handler. To fix this, we must give contin permission to throw any

arbitrary exception. First, we will create a new predicate throws similarly to pre and post.

throws f : τ1 −→ exn −→ prop

Where exn is the type of exception constructors. Using this predicate, we can state the

conditions under which a function f may perform an effect (which we codify as exceptions

in WhyML). For example, if we say

∀arg e. throwsf arg e

We allow f to throw any exception for any argument it may receive. Using this new

predicate, we would like to add the following clause to the contin function.

WhyMLpredicate throws (lambda 'a 'b) 'a exn

val contin (k : continuation 'a 'b) (arg 'a) : 'b

raises{e -> throws k arg e}

74

6.5. SHALLOW HANDLERS

This clause states that k can throw a generic exception e as long as it satisfies the

throws predicate This, however, is not allowed in Why3, seeing as exceptions can’t be

used as normal values. Exceptions in WhyML are identifiers that can only be used in three

specific instances: raising an exception, catching an exception and in raises clauses. We

cannot use them in predicates nor reason over them with in a generic way.

To get around this limitation, we will have to create our own exn type which will have

one constructor for each effect in our program.

WhyMLtype exn = E | Wildcard

Note that we still keep the exceptions we declared at the start of this section. Next, we

will add the following clauses to contin

WhyMLval contin (k : continuation 'a 'b) (arg : 'a) : 'b

...

raises{E -> throws k arg E}

raises{Wildcard -> throws k arg Wildcard}

Now that contin throws exceptions, we can resume the translation of deep. Our next

step is to translate the specification into WhyML. To recap, the GOSPEL specification was.

GOSPEL + OCamlrequires k may_perform E

ensures post k arg result

The postcondition is quite simple and can be translated directly. The precondition will

be a bit trickier. Naturally, we will need to use our new throws predicate, but in a bit of

an unnatural way. Since we are saying that k may perform E, we know that we cannot

pass continuations that perform any effect other then E. Therefore, the translation of the

GOSPEL requires clause to WhyML would be:

WhyMLrequires{forall arg e. e <> E -> not throws k arg e}

Note how we didn’t state that throws k arg E is true, since we allow passing continu-

ations that don’t perform any effects. All that is left is to specify the generated continuation.

As usual, we will start by saying that the continuation is valid.

WhyMLval new_k : continuation unit 'b in

assume{valid result};

Next, we state the postcondition of the generated continuation. Since this is a shallow

handler, it will simply resume where k left off, meaning its postcondition will be the same

as k’s.

WhyMLassume{forall result. post new_k () result <-> post k arg result};

Finally, we say that the generated continuation throws the same exceptions as k

WhyMLassume{forall exn. throws new_k () exn <-> throws k arg exn}

75

CHAPTER 6. CASE STUDIES

WhyMLlet rec deep (k : continuation 'a 'b) (arg : 'a) : 'b =
requires{forall arg e. e <> E -> not throws k arg e}
ensures{post k arg result}

try contin k arg with
|E ->

val new_k : continuation unit 'b in
assume{valid new_k};
assume{forall arg1 result.

post new_k arg1 result <-> post k arg result};
assume{forall exn.

throws new_k () exn <-> throws k arg exn};
deep new_k ()

end

Figure 6.8: Partial translation of a shallow handler.

The full program thus far can be found in figure 6.8

Although this is quite close to what we want, there are still a few unresolved issues.

The easiest one to solve is the fact that, when we call contin, Why3 has no way to verify if

the continuation is valid. To this end, we will insert the following precondition.

WhyMLrequires{valid k}

This should be something that Cameleer adds automatically, not something that a

logician should be expected to insert into their GOSPEL specifications, since there is no

reason to pass a continuation as an argument if we assume it to be invalid.

Another issue is the fact that, since contin may throw exceptions other than E, we must

add an additional exceptional clause to our handler, stating that this will never happen by

calling contin with k. What would be most natural is to use a wildcard pattern such as:

WhyMLtry ... with

|E -> ...

|_ -> absurd

As we have mentioned, nonetheless, Why3 doesn’t allow using exceptions in this way,

meaning we must add an exceptional branch for each known effect. In this case, since

there is only one other (Wildcard), we simply add:

WhyMLtry ... with

|E -> ...

|Wildcard -> absurd

The final problem left to solve is divergence. Since this program calls itself recursively

anytime there is an exception, Why3 tries to prove its termination. Intuitively, we know

the program eventually terminates, since, as we have stated in 5.5, we assume all functions

passed as parameters are non-divergent. Since when we call deep recursively the generated

continuation is simply resuming k, we know that it is also non-divergent. However, there

76

6.5. SHALLOW HANDLERS

WhyMLlet rec deep (k : continuation 'a 'b) (arg : 'a) : 'b =
requires{valid k}
requires{forall arg e. e <> E -> not throws k arg e}
ensures{post k arg result}
diverges

try contin k arg with
|E ->

val new_k : continuation unit 'b in
assume{valid new_k}
assume{ forall result.

post new_k () result <-> post k arg result}
assume{forall exn.

throws new_k () exn <-> throws k arg exn}
deep new_k ()

|Wildcard -> absurd
end

Figure 6.9: Complete translation of the deep function.

is no way for Why3 to piece together this proof with the encoding we are using, since there

is no notion of the continuation’s "progress". Therefore, we will simply add a diverges

clause to our complete program (Fig. 6.9).

Seeing as the handler function’s specification will be identical to deep, we will not go

over its translation. The only aspect worth noting is the fact that it uses the fiber function

which turns functions into continuations. In order to use this in Why3, we will use the

following logical function:

WhyMLlet function fiber (f : lambda 'a 'b) : continuation 'a 'b =

{_k = f; _valid = true}

The handler function’s specification is identical to deep’s, and its body is unmodified.

The full program is found in figure 6.10.

6.5.4 Verification

We will first go over the verification conditions generated by deep. The call to contin

generates a verification condition proving that its one-shot check is valid, which is trivially

proven from the precondition we inserted. Next, we must prove that the postcondition

holds in the case of a non-exceptional exit. Since the postcondition for contin is the same

as deep’s, this is also proven trivially.

Next, the exceptional branch generates three VCs, the first two being the preconditions

for the recursive call to deep. We must prove that the continuation we pass is valid and that

it does not throw any exceptions other than E. The former is easily proven seeing as one of

the postconditions to gen_k is that the generated continuation is valid. The later is proven

by knowing that the continuation raises the same exceptions as the continuation. Since

77

CHAPTER 6. CASE STUDIES

WhyMLval contin (k : continuation 'a 'b) (arg : 'a) : 'b
requires{k.valid}
ensures{post k arg result}
ensures{not k.valid}
writes{k.valid}
raises{E -> throws k arg E}
raises{Wildcard -> throws k arg Wildcard}

let function fiber (f : lambda 'a 'b) = {_k = f; valid = true}

let rec deep (k : continuation 'a 'b) (arg : 'a) : 'b =
requires{valid k}
requires{forall arg e. e <> E -> not throws k arg e}
ensures{post k arg result}
diverges

try contin k arg with
|E ->

val new_k () : continuation unit 'b in
assume{valid new_k};
assume{forall result.

post new_k () result <-> post k arg result};
assume{forall exn.

throws new_k () exn <-> throws k arg exn};
deep new_k ()

|Wildcard -> absurd
end

let handler (f : lambda 'a 'b) (arg : 'a) : 'b =
requires{forall arg e. e <> E -> not throws f arg e}
ensures{post f arg result}
diverges

deep (fiber f) arg

Figure 6.10: Fully Translated Program.

we know that the continuation never throws any exceptions other then E, this condition is

also met.

The final condition is that the Wildcard exception is never thrown. If we reach this

case by calling contin, the following condition is met throws k arg Wildcard. However,

since we know that, for any exception besides E, this predicate cannot by satisfied, it is

impossible for this branch to be reached. The fact we generate a verification condition for

each possible exception contin could throw was the main reason we chose to focus on

deep handlers. If we have programs with n effects, any time contin would be called, n

verification conditions would be generated, leading to an incredibly cumbersome proof

to interpret. The only way to work around this problem would be to extend Why3’s type

system so that we could reason over exceptions in a more general sense.

As for the handler function, it generates a verification condition proving that deep’s

78

6.6. OVERVIEW

precondition is met and that the call to deep satisfies its precondition. Since these

two functions have identical specifications, this is easily proven. Additionally, Why3 also

generates a VC proving the continuation passed as argument is valid. This is done knowing

that the continuation returned by fiber is valid. All of these verification conditions are

proved using the Z3 prover [30]

6.6 Overview

In this chapter, we were able to show how our encoding can be used to verify several non

trivial programs which encompass some of the most common use cases for effects and

handlers. Although these show promise for this approach, there are still problems which

hold it back from matching the level of expressiveness and modularity of other methods.

The main one is the lack of support for hidden state. Not only does it prevent us from

covering more complex use cases, it also means our case studies are forced into a style that

only permits top level references. This leads to code that, although technically correct, is

unlike real world OCaml code. Another weakness is in how we represent functions in

specifications. The usage of the pre and post predicates in GOSPEL leads to specifications

that are difficult to read and unnatural to write. These two points feel like the two most

important to address to make this approach practical.

79

7

Conclusions

We developed an extension of the GOSPEL specification language that allows one to

declare protocols, effect handlers and handler specifications. We also created a WhyML

encoding that simulates algebraic effects and handlers without extending Why3. Finally,

we developed a series of translation rules that transform GOSPEL annotated OCaml

programs into the aforementioned encoding, as well as implementing these rules into the

Cameleer tool.

7.1 Contributions

Extension to GOSPEL. We extended GOSPEL so users could have the expressive power

to specify programs that use effects. We did this by adding a performs clause, which

allows the user to specify what effects a function is allowed to perform. Additionally, we

also added handler specifications where users can define a series of conditions that the

handler must respect whenever it is exited. The most notable contribution to the GOSPEL

language, however, was the addition of protocols which allow us to define the rules we

must respect when performing and handling effects.

Important to remember that GOSPEL is a standalone tool (the G stands for generic),

even though we mostly used it in this project in the context of Cameleer. We believe that

the aforementioned additions are sufficient for modelling the behavior of algebraic effects

and handlers, regardless of what context we wish to use GOSPEL.

Since the current version of OCaml 5.0 was released without an effect system, the

performs clause is useful even when divorced from a verification context, seeing as it is a

piece of helpful documentation marking which effects a function may perform. However,

when we eventually have this information in the type system, this clause will be redundant

and most likely deprecated, barring some fundamental shift with OCaml’s approach to

typing effects.

Verifying With Defunctionalization. One of the challenges we faced with this project

was how we would represent continuations in a system that did not allow stateful functions

80

7.1. CONTRIBUTIONS

to be usedas first ordervalues. With defunctionalization, we were able notonly to represent

continuations, but any arbitrary higher order function. Although we had already explored

this approach [40], this thesis further refined it, solving a number of limitations such as a

lack of support for polymorphism and an inability to prove divergence.

Automated Verification framework. The main contribution of this thesis is the devel-

opment of an automated verification framework for programs with algebraic effects and

handlers. As mentioned in Chapter 3, the most common approaches for the verification

of effects and handlers (and other forms of non-parallel concurrency) were done using

interactive provers, namely Coq. Nevertheless, we showed how protocols, as defined by

de Vilhena and Pottier [13] can be encoded within an automated proof assistant such as

Why3.

We did this by presenting a translation scheme that converts programs with effects and

handlers into a proof aware language without these constructs by means of an embedding

using exceptions and defunctionalization. Although this translation scheme was made

with GOSPEL annotated OCaml and WhyML in mind, we believe that the ideas presented

are general enough that they could be applied to other automated theorem provers with

a similar logic to Why3. We also showed how our translation scheme could be adapted to

translate shallow handlers if Why3 could reason over exceptions in a more general way.

One limitation of our scheme stands out. Namely, we must always specify the handler

if we wish for the continuations to have any meaning in the verification process. This is

because neither Cameleer nor WhyML are able to automatically generate specifications

for the used continuations.

Framework Implementation. In addition to the theoretical formalization of our em-

bedding, we also implemented this translation scheme into Cameleer. We then tested

this implementation (and, by extension, our translation scheme) by attempting to prove

three case studies: a division interpreter, a state reference implemented with effects and a

generator created from an iterator. These case studies, in our view, are not only distinct

but encompass the most common use cases for effects and handlers (resumable exceptions,

creation of an ambient environment and granular control of iteration). One use case we

would like to have proved but were ultimately unable was a scheduler for asynchronous

tasks. The main limitation that held us back was our inability to capture hidden state,

which is invaluable when implementing this kind of program.

This is, in our opinion, the most important part of our work: we have shown that

our translation scheme is robust enough that it can prove complex, real world OCaml

programs in a completely automated fashion.

81

CHAPTER 7. CONCLUSIONS

7.2 Future Work

As mentioned, one of our biggest limitations is our inability to capture hidden state. We

made various attempts to axiomatize a completely general Why3 state type that would

allow us to reason over dynamically generated state variables. In spite of our best efforts,

we always ran into a brick wall that would leave us short of our goal. Although there

might be some reasonably simple solution we have not considered, we are almost certain

that some Why3 extension will be required to fully verify handlers.

Another limitation is the fact that our continuations cannot perform any effects. This

means we cannot represent shallow handlers, nor deep handlers that don’t handle all

effects that Client may perform. This stems from a fundamental lack of generalization

power that Why3 has in regards to exceptions. One possible solution would be to add

extendible types [17] to Why3 and attempt to implement exceptions in that way. The only

solution that does not involve an overhaul to Why3’s exception system is to translate effects

into some kind of monadic encoding, although such a transformation might complicate

the resulting program in such a way that Why3 would be unable to verify it.

Even though we tested our approach with a series of non trivial test cases, we would

like to verify even more complex examples. A good target for verification would be the

eio library, which will likely be OCaml’s standard API for concurrent code. This would

show how robust our Cameleer extension is when put up against real world OCaml code.

Additionally, it would also be a significant contribution to the OCaml community to verify

a library that will likely be very popular in the future.

Finally, we believe that the pre and post predicates, although invaluable in our WhyML

encoding, might be too low level for a language like GOSPEL. In the future, we would

like to be able to nest GOSPEL specifications as follows.

GOSPEL + OCamllet f (g : int -> int) ...

(*@ requires forall arg r.

(*@ r = g a

requires ...

ensures r = 0 *)

ensures ... *)

This way, we could state the function that f can only receive functions that return 0.

Naturally, we would then create a translation scheme that would turn these nested

specifications into an equivalent representation using pre and post

82

Bibliography

[1] 2020 Developer survey. https://insights.stackoverflow.com/survey/2020

#technology-most-loved-dreaded-and-wanted-languages-wanted. Accessed:

2022-1-15 (cit. on p. 4).

[2] Avsm et al. Multicore ocaml: September 2021, Effect Handlers Will be in ocaml 5.0!
2021-10. url: https://discuss.ocaml.org/t/multicore-ocaml-september-202

1-effect-handlers-will-be-in-ocaml-5-0/8554 (cit. on pp. 10, 21).

[3] A. Bauer and M. Pretnar. “An Effect System for Algebraic Effects and Handlers”.

In: Algebra and Coalgebra in Computer Science. Ed. by R. Heckel and S. Milius. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–16. isbn: 978-3-642-40206-7

(cit. on p. 20).

[4] A. Bauer and M. Pretnar. “Programming with algebraic effects and handlers”. In:

Journal of Logical and Algebraic Methods in Programming 84.1 (2015). Special Issue:

The 23rd Nordic Workshop on Programming Theory (NWPT 2011) Special Issue:

Domains X, International workshop on Domain Theory and applications, Swansea,

5-7 September, 2011, pp. 108–123. issn: 2352-2208. doi: https://doi.org/10.1

016/j.jlamp.2014.02.001. url: https://www.sciencedirect.com/science/

article/pii/S2352220814000194 (cit. on p. 2).

[5] F. Bobot et al. “Why3: Shepherd Your Herd of Provers”. In: Boogie 2011: First
International Workshop on Intermediate Verification Languages (2012-05) (cit. on p. 2).

[6] J. I. Brachthäuser, P. Schuster, and K. Ostermann. “Effects as Capabilities: Effect

Handlers and Lightweight Effect Polymorphism”. In: Proc. ACM Program. Lang.
4.OOPSLA (2020-11). doi: 10.1145/3428194. url: https://doi.org/10.1145/34

28194 (cit. on p. 2).

[7] A. Charguéraud. “Characteristic Formulae for the Verification of Imperative Pro-

grams”. In: 46.9 (2011-09), pp. 418–430. issn: 0362-1340. url: https://doi.org/1

0.1145/2034574.2034828 (cit. on p. 8).

83

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-wanted
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-wanted
https://discuss.ocaml.org/t/multicore-ocaml-september-2021-effect-handlers-will-be-in-ocaml-5-0/8554
https://discuss.ocaml.org/t/multicore-ocaml-september-2021-effect-handlers-will-be-in-ocaml-5-0/8554
https://doi.org/https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/https://doi.org/10.1016/j.jlamp.2014.02.001
https://www.sciencedirect.com/science/article/pii/S2352220814000194
https://www.sciencedirect.com/science/article/pii/S2352220814000194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/2034574.2034828
https://doi.org/10.1145/2034574.2034828

BIBLIOGRAPHY

[8] A. Charguéraud. “Separation Logic for Sequential Programs (Functional Pearl)”.

In: Proc. ACM Program. Lang. 4.ICFP (2020-08). doi: 10.1145/3408998. url:

https://doi.org/10.1145/3408998 (cit. on p. 6).

[9] A. Charguéraud and F. Pottier. “Temporary Read-Only Permissions for Separation

Logic”. In: Programming Languages and Systems. Ed. by H. Yang. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2017, pp. 260–286. isbn: 978-3-662-54434-1 (cit. on p. 7).

[10] A. Charguéraud et al. “GOSPEL — Providing OCaml with a Formal Specification

Language”. In: Formal Methods - The Next 30 Years - Third World Congress. Vol. 11800.

Lecture Notes in Computer Science. Springer, 2019, pp. 484–501. url: 10.1007/97

8-3-030-30942-8%5C_29 (cit. on pp. 2, 7, 8).

[11] Companies using OCaml. https://ocaml.org/learn/companies.html. Accessed:

2022-1-15 (cit. on p. 4).

[12] L. Convent et al. “Doo bee doo bee doo”. In: Journal of Functional Programming 30

(2020-03). doi: 10.1017/S0956796820000039 (cit. on p. 2).

[13] P. E. de Vilhena and F. Pottier. “A Separation Logic for Effect Handlers”. In:

Proc. ACM Program. Lang. 5.POPL (2021-01). doi: 10.1145/3434314. url: https:

//doi.org/10.1145/3434314 (cit. on pp. 2, 22, 23, 81).

[14] Dĳkstra, Edsger W. “The humble programmer”. In: Commun. ACM 15.10 (1972),

pp. 859–866 (cit. on p. 1).

[15] Effective programming: Adding an effect system to OCAML. url: https : / / www .

janestreet.com/tech-talks/effective-programming/ (cit. on p. 20).

[16] J.-C. Filliâtre. “Deductive Software Verification”. In: International Journal on Software
Tools for Technology Transfer (STTT) 13.5 (2011-08), pp. 397–403. issn: 1433-2779. url:

10.1007/s10009-011-0211-0 (cit. on p. 1).

[17] B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records and
variants. Tech. rep. Citeseer, 1996 (cit. on p. 82).

[18] J. Hickey, A. Madhavapeddy, and Y. Minsky. Real World OCaml. 2014. isbn:

144932391. url: http://www.worldcat.org/isbn/144932391 (cit. on p. 4).

[19] D. Hillström, S. Lindely, and R. Atkey. “Effect handlers via generalised continua-

tions”. In: Journal of Functional Programming 30 (2020), e5. doi: 10.1017/S09567968

20000040 (cit. on p. 2).

[20] J. K. Hinrichsen, J. Bengtson, and R. Krebbers. “Actris: Session-Type Based Rea-

soning in Separation Logic”. In: Proc. ACM Program. Lang. 4.POPL (2019-12). doi:

10.1145/3371074. url: https://doi.org/10.1145/3371074 (cit. on p. 21).

[21] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun.
ACM 12.10 (1969-10), pp. 576–580. issn: 0001-0782. doi: 10.1145/363235.363259.

url: https://doi.org/10.1145/363235.363259 (cit. on p. 5).

84

https://doi.org/10.1145/3408998
https://doi.org/10.1145/3408998
10.1007/978-3-030-30942-8%5C_29
10.1007/978-3-030-30942-8%5C_29
https://ocaml.org/learn/companies.html
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3434314
https://www.janestreet.com/tech-talks/effective-programming/
https://www.janestreet.com/tech-talks/effective-programming/
10.1007/s10009-011-0211-0
http://www.worldcat.org/isbn/144932391
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3371074
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259

BIBLIOGRAPHY

[22] M. Iguernelala. “Strengthening the Heart of an SMT-Solver: Design and Implemen-

tation of Efficient Decision Procedures”. Thèse de Doctorat. Université Paris-Sud,

2013-06 (cit. on pp. 31, 61).

[23] R. Jung et al. “Iris From the Ground Up: A Modular Foundation For Higher-order

Concurrent Separation Logic”. In: Journal of Functional Programming 28.e20 (2018).

doi: 10.1017/S0956796818000151. url: https://hal.archives-ouvertes.fr/

hal-01945446 (cit. on pp. 8, 21).

[24] O. Kammar, S. Lindley, and N. Oury. “Handlers in Action”. In: SIGPLAN Not.
48.9 (2013-09), pp. 145–158. issn: 0362-1340. doi: 10.1145/2544174.2500590. url:

https://doi.org/10.1145/2544174.2500590 (cit. on p. 11).

[25] D. Kroening and O. Strichman. Decision Procedures - An Algorithmic Point of View,
Second Edition. Texts in Theoretical Computer Science. An EATCS Series. Springer,

2016. isbn: 978-3-662-50496-3. doi: 10.1007/978-3-662-50497-0. url: https:

//doi.org/10.1007/978-3-662-50497-0 (cit. on p. 1).

[26] D. Leĳen. “Koka: Programming with Row Polymorphic Effect Types”. In: Electronic
Proceedings in Theoretical Computer Science 153 (2014-06). doi: 10.4204/EPTCS.153.8

(cit. on pp. 2, 20).

[27] R. Leino. “Dafny: An Automatic Program Verifier for Functional Correctness”. In:

16th International Conference, LPAR-16, Dakar, Senegal. Springer Berlin Heidelberg,

2010-04, pp. 348–370. url: https://www.microsoft.com/en- us/research/

publication/dafny-automatic-program-verifier-functional-correctness-

2/ (cit. on p. 5).

[28] T. Letan et al. “Modular Verification of Programs with Effects and Effect Handlers

in Coq”. In: FM 2018 - 22nd International Symposium on Formal Methods. Vol. 10951.

LNCS. Oxford, United Kingdom: Springer, 2018-07, pp. 338–354. doi: 10.1007/978

-3-319-95582-7_20. url: https://hal.inria.fr/hal-01799712 (cit. on p. 21).

[29] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on pp. ii, iv).

[30] L. M. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Ed. by C. R. Ramakrishnan and J. Rehof. Vol. 4963. Lecture Notes in Computer

Science. Springer, 2008, pp. 337–340. doi: 10.1007/978-3-540-78800-3_24. url:

https://doi.org/10.1007/978-3-540-78800-3%5C_24 (cit. on p. 79).

85

https://doi.org/10.1017/S0956796818000151
https://hal.archives-ouvertes.fr/hal-01945446
https://hal.archives-ouvertes.fr/hal-01945446
https://doi.org/10.1145/2544174.2500590
https://doi.org/10.1145/2544174.2500590
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.4204/EPTCS.153.8
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://doi.org/10.1007/978-3-319-95582-7_20
https://doi.org/10.1007/978-3-319-95582-7_20
https://hal.inria.fr/hal-01799712
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24

BIBLIOGRAPHY

[31] M. Pereira and A. Ravara. “Cameleer: A Deductive Verification Tool for OCaml”.

In: Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual
Event, July 20-23, 2021, Proceedings, Part II. Ed. by A. Silva and K. R. M. Leino.

Vol. 12760. Lecture Notes in Computer Science. Springer, 2021, pp. 677–689. doi:

10.1007/978-3-030-81688-9_31 (cit. on p. 2).

[32] M. J. P. Pereira. “Tools and Techniques for the Verification of Modular Stateful Code”.

PhD thesis. University of Paris-Saclay, France, 2018. url: https://tel.archives-

ouvertes.fr/tel-01980343 (cit. on p. 8).

[33] G. Plotkin and J. Power. “Algebraic Operations and Generic Effects”. In: Applied
Categorical Structures 11 (2003-02), pp. 69–94. doi: 10.1023/A:1023064908962

(cit. on pp. 1, 9).

[34] G. Plotkin and J. Power. “Computational Effects and Operations: An Overview”.

In: Electronic Notes in Theoretical Computer Science 73 (2004). Proceedings of the

Workshop on Domains VI, pp. 149–163. issn: 1571-0661. doi: https://doi.org/1

0.1016/j.entcs.2004.08.008. url: https://www.sciencedirect.com/science/

article/pii/S1571066104050893 (cit. on p. 21).

[35] G. Plotkin and M. Pretnar. “A Logic for Algebraic Effects”. In: Proceedings of the
2008 23rd Annual IEEE Symposium on Logic in Computer Science. LICS ’08. USA: IEEE

Computer Society, 2008, pp. 118–129. isbn: 9780769531830. doi: 10.1109/LICS.20

08.45. url: https://doi.org/10.1109/LICS.2008.45 (cit. on p. 21).

[36] G. Plotkin and M. Pretnar. “Handlers of Algebraic Effects”. In: Programming
Languages and Systems. Ed. by G. Castagna. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 80–94. isbn: 978-3-642-00590-9 (cit. on p. 21).

[37] J. C. Reynolds. “Definitional Interpreters for Higher-Order Programming Lan-

guages”. In: Proceedings of the ACM Annual Conference - Volume 2. ACM ’72. Boston,

Massachusetts, USA: Association for Computing Machinery, 1972, pp. 717–740.

isbn: 9781450374927. doi: 10.1145/800194.805852. url: https://doi.org/10.1

145/800194.805852 (cit. on pp. 2, 27).

[38] K. Sivaramakrishnan et al. “Retrofitting Effect Handlers onto OCaml”. In: Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. PLDI 2021. Virtual, Canada: Association for Computing

Machinery, 2021, pp. 206–221. isbn: 9781450383912. doi: 10.1145/3453483.34540

39. url: https://doi.org/10.1145/3453483.3454039 (cit. on pp. 2, 16, 17).

[39] J. Smans, B. Jacobs, and F. Piessens. “Implicit Dynamic Frames”. In: ACM Trans.
Program. Lang. Syst. 34.1 (2012-05). issn: 0164-0925. doi: 10.1145/2160910.21609

11. url: https://doi.org/10.1145/2160910.2160911 (cit. on pp. 5, 8).

[40] T. Soares and M. Pereira. “Verificação de Programas OCaml Imperativos de Ordem

Superior, através de Desfuncionalização”. In: INForum 2021. 2021-09. url: INForum_

2020_paper_45.pdf (cit. on pp. 2, 27, 81).

86

https://doi.org/10.1007/978-3-030-81688-9_31
https://tel.archives-ouvertes.fr/tel-01980343
https://tel.archives-ouvertes.fr/tel-01980343
https://doi.org/10.1023/A:1023064908962
https://doi.org/https://doi.org/10.1016/j.entcs.2004.08.008
https://doi.org/https://doi.org/10.1016/j.entcs.2004.08.008
https://www.sciencedirect.com/science/article/pii/S1571066104050893
https://www.sciencedirect.com/science/article/pii/S1571066104050893
https://doi.org/10.1109/LICS.2008.45
https://doi.org/10.1109/LICS.2008.45
https://doi.org/10.1109/LICS.2008.45
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/2160910.2160911
INForum_2020_paper_45.pdf
INForum_2020_paper_45.pdf

BIBLIOGRAPHY

[41] A. Timany and L. Birkedal. “Mechanized Relational Verification of Concurrent

Programs with Continuations”. In: Proc. ACM Program. Lang. 3.ICFP (2019-07). doi:

10.1145/3341709. url: https://doi.org/10.1145/3341709 (cit. on p. 21).

[42] L.-y. Xia et al. “Interaction Trees: Representing Recursive and Impure Programs in

Coq”. In: Proc. ACM Program. Lang. 4.POPL (2019-12). doi: 10.1145/3371119. url:

https://doi.org/10.1145/3371119 (cit. on p. 21).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.16) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. url : https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 87).

87

https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

Ti
ag

o
So

ar
es

H
an

dl
e

wi
th

Ca
re

an
d

Co
nfi

de
nc

e
–

Ex
te

nd
in

g
Ca

m
ele

er
wi

th
Al

ge
br

ai
c

Eff
ec

ts
an

d
Eff

ec
t

H
an

dl
er

s
20

22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures

	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Goals and Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Functional Languages
	2.2 Hoare Logic
	2.2.1 Separation Logic

	2.3 GOSPEL and Cameleer
	2.4 Effect Handlers
	2.4.1 Deep and Shallow handlers
	2.4.2 Joining Streams

	2.5 Peeking Under the Curtain : Handler Implementation
	2.5.1 Implementing Handlers With Exceptions
	2.5.2 Okay, But Why Does This Matter?

	2.6 Exceptions: What Are They Good For?

	3 State of the Art
	3.1 Typing Programs With Algebraic Effects
	3.2 Modelling Algebraic Effects Using Equational Theory
	3.3 Verification of Algebraic Effects with Separation Logic
	3.3.1 Language Syntax
	3.3.2 Protocols
	3.3.3 Definition of Protocols
	3.3.4 Formal Interpretation of Protocols

	4 Defunctionalization
	4.1 Defunctionalization in a Nutshell
	4.2 Defunctionalization Coupled with Verification
	4.3 Defunctionalization with State

	5 Reasoning about Effects and Handlers in Why3
	5.1 GOSPEL Extension
	5.1.1 GOSPEL Protocols
	5.1.2 Effect Handlers
	5.1.3 Performs Clause
	5.1.4 The Remaining Grammar

	5.2 WhyML Formalization
	5.3 Proving an OCaml program with protocols
	5.3.1 Translating effects into WhyML
	5.3.2 Representing continuations in WhyML
	5.3.3 Specifying continuations
	5.3.4 Verification of the Program

	5.4 General Translation Scheme
	5.5 Limitations

	6 Case Studies
	6.1 Cameleer Implementation
	6.2 Division Interpreter
	6.2.1 Interpreter Specification
	6.2.2 Translating The Interpreter
	6.2.3 Verifying the Interpreter
	6.2.4 Translation of the Handler
	6.2.5 Verifying the handler

	6.3 Mutable Reference
	6.3.1 Client implementation and Specification
	6.3.2 Handler Implementation and Specification
	6.3.3 Verification of the Handler

	6.4 Generators
	6.4.1 Client Specification
	6.4.2 Handler Implementation
	6.4.3 Handler Specification
	6.4.4 Verification

	6.5 Shallow Handlers
	6.5.1 Extending The Grammar
	6.5.2 Shallow to Deep
	6.5.3 Translation
	6.5.4 Verification

	6.6 Overview

	7 Conclusions
	7.1 Contributions
	7.2 Future Work

	Bibliography
	Back Matter
	Back Cover
	Spine

