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ABSTRACT

Raw text documents are the most common way documents are written, that is, unstruc-
tured text. So, they contain most of the information available. Thus, it is desirable that
there are tools capable of extracting the core content of each document and, through it,
identify the group to which it belongs, since in unstructured texts there is usually no fore-
seen place for indicating the document class. Nowadays, English is not the only language
documents appear in the available repositories. This suggests the construction of tools
that, if possible, do not depend on the language in which the texts are written, which is a
challenge.

This dissertation focuses mainly on clustering documents according to their content,
using no class labels, that is, unsupervised clustering. It aims to mine and to create
features from text in order to achieve that purpose. It is also intended to classify new doc-
uments, in a supervised approach, according to the classes identified in the unsupervised
training phase.

In order to solve this, the proposed solution finds the best features inside the docu-
ments, and uses their discriminative power to provide clustering. In order to summarise
the core content of each cluster found by this approach, key expressions are automatically

extracted from their documents.

Keywords: Information Retrieval Systems, Natural Language Processing, Feature Selec-

tion and Extraction, Text Mining, Document Classification, Document Clustering
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ReEsumMmo

Documentos de texto bruto sao a forma mais comum de escrita de documentos, ou seja,
texto nao estruturado. Assim, eles contém a maioria das informacgodes disponiveis. Deste
modo, é desejavel que existam ferramentas capazes de extrair o conteido mais importante
de um documento e, por este meio, identificar o grupo ao qual o documento pertence, pois
em textos nao estruturados geralmente nao ha uma previsao de indicacao da classe do
mesmo. Atualmente, o Inglés ndo ¢é a Ginica linguagem em que os documentos aparecem
nos repositorios disponiveis. Isto sugere a construcao de ferramentas que, se possivel, nao
dependam da linguagem em que os textos sao escritos, sendo isto um desafio.

Esta dissertacao foca-se principalmente em agrupar os documentos de acordo com
o seu contetdo, sem usar rétulos de classes, ou seja, agrupamento nao supervisionado.
O objetivo sera alcancado através da extracao e criacao de atributos a partir do texto.
Pretende-se também classificar novos documentos, numa abordagem supervisionada, de
acordo com as classes identificadas na fase de treino nao supervisionado.

De modo a tentar resolver este problema, é proposta uma solug¢ao que encontra os
melhores atributos nos documentos, e usa o poder discriminativo das mesmas para fa-
zer o agrupamento. De modo a sumarizar o conteudo principal destes agrupamentos,

expressoes chave sao automaticamente extraidas dos documentos.

Palavras-chave: Sistemas de Extracao de Informacao, Processamento de Linguagem Na-

tural, Selecao e Extracao de Atributos, Mineracao de Texto, Classificagao de Documentos,

Agrupamento de Documentos
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meronym

GLOSSARY

A set of well defined and finite rules to be executed by a com-

puter.

The act of running a computer program or other operations, for

the purpose of assessing the relative performance of an object.

A collection of written or spoken material stored on a computer.
A method that uses different folds of the data to test and train a

model.

In machine learning, a feature is an independent, measurable
characteristic of a data object.
A split of the data into training and test sets, used during the

various iterations of cross-validation.

Parameters that are manually set, that are used to control the

training/learning process of a model.

In linguistic morphology, it is the process of word formation
in which a word is modified to express different grammatical

categories.
A collection of resources used by a program or software.
A function from one vector space to another, that respects the

structure of each vector space.

Term that denotes part of something, but refers to the whole of

said part.
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meta-class
metric
parsing
production
Python
string
vector space

XML

Document classes unknown by the system, but known by the
developers.
Measurement of characteristics that are quantifiable or count-

able, that help evaluate results.

Dividing a string into its singular components.

The final stage of software development.

A high-level, general-purpose programming language.
A sequence of characters.

A group of vectors, added collectively and multiplied by scalars.

A markup language and file format for storing, transmitting,

and reconstructing data.
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INTRODUCTION

This chapter serves as an introduction and contextualization of the problem at hand,

as well as motivations and expected contributions of this dissertation to said problem.

1.1 Context

In the recent years, there has been a booming growth of online text libraries and docu-
mentation, as well as raw sources of data that often need to be categorized so that they
may be organized more easily. As such, there has been an increase in the concern of
having robust and reliable unsupervised text labelling and categorization systems in an
Information Retrieval (IR) context, as these systems allow us to more easily find interest-
ing information on the World Wide Web (WWW) that arises everyday, and classify them

accurately.

But, due to the dynamic nature of these sources, it is much more difficult to cluster
and label these sources correctly within a limited set of options than otherwise antici-
pated. Another problem arises when we’re dealing with multi-language data sources as
they introduce a new layer of abstraction where the metrics used for phrasing and word
extraction may not work for certain languages (take for example Russian language with

Cyrillic alphabet versus Portuguese language with Latin Alphabet in a corpus).

In the past, researchers have tried to use machine learning approaches [2], but these
approaches often used either supervised or semi-supervised techniques. One example of
a supervised approach would be the usage of a pre-labeled set of documents for training
data, with which the classifier would be trained with. With this approach, apart from
needing to be manually labeled, the labels are somewhat static and limited to previously
labeled, that is, the system does not have the capability of learning new classes. New

classes will only be learned with the aid of human labelling.

1



CHAPTER 1. INTRODUCTION

1.2 Motivation and challenges

Using supervised approaches may yield some very positive results [3] but, as mentioned
previously, they require some prep-work done before the classifiers can be used. Knowing
which documents belong to which class is already something very useful in training the
text classifiers but the lack of this information poses a challenge in unsupervised learning,
where the classifier does not previously know which category those documents belong
to. This lack of support suggests that there are expressions in text that, by having strong
semantic meaning, must not be ignored in order to build a possible set of features to
discriminate document classes.

Some semi-unsupervised classification techniques also began surfacing [4], where
some labels would be extrapolated from previously known labelled documents, ulti-
mately having the same problem as supervised approaches.

Hence grows the motivation to create a fully autonomous unsupervised classifier in
order to classify and organize massive amounts of data into more easily distinguishable
clusters, for easier retrieval of information.

The unsupervised categorization of the documents is a difficult task because there is a
need to create new features capable of capturing the “essence” of a category from written
text. In fact, there are groups of words in text that may allow for easier categorization
of text, for example: if “economic crisis” is found in text it is quite likely that this text
document can be categorized as “economy” or “finances”. On the other hand, if we find an
expression like “at this moment” we do not expect this expression to better help correctly
categorize the document.

Another motivation is that, once the clusters are built through unsupervised catego-
rization, these may be used to classify new entry documents as if we were in a supervised
classification context.

For a classifier to correctly identify the labels of each document, the features need
to be very carefully selected from the corpus and, since we want language independent
classification, these discriminating features must be even more judiciously selected. The
goal and main motivation of this dissertation is to carefully select the best features, and
mine labelling categories in a given corpus.

As such, several metrics and approaches will be taken into account when extracting
the features. Words and sentences will need to be transformed into suitable representa-
tions to be given to the classifiers (for example, separating punctuation and other special
characters in text), but their meaning should not be altered. An example of this would be
in the sentence “Maria, Joao, Almeida”; if, by chance, we removed the commas from the
sentence, we would have a valid Portuguese compound name — “Maria Joao Almeida” —
instead of an enumeration consisting of 3 different people, thus completely altering the
meaning of the sentence.

Features in text classification are very abundant, since we may look at every word as a

potential feature and, as such, every word must then be accounted for as a potential source

2



1.3. CONTRIBUTION

of information. This in turn creates a very large feature space, which implies a feature
reduction process that must be elaborated in order to reduce them to a manageable size.
Another challenge is to be able to extract the core content of each cluster that were

built in the unsupervised learning phase, in order to be understood by users.

1.3 Contribution

In this dissertation, the following objectives were achieved:

* To build an unsupervised approach capable of clustering documents according
to their categories. For that, appropriate features had to be created in order to
mine similarities between documents of the same class and dissimilarities between

documents of different ones.

* To keep language independence. For that, specific morphosyntactic information
and and other language dependent tools were avoided in the development of the

approach.

* To classify new documents. Once clusters are created with high enough precision in
the unsupervised phase, new document samples can be classified accordingly, now
that groups/classes were found.

* To extract the main contents of the clusters. Once documents are grouped in the
unsupervised phase, the main content of each cluster can now be automatically

extracted.

1.4 Structure

Besides the introductory chapter, this document is comprised of the other following

chapters:

* Chapter 2 - Background and state of the art. This chapter aims to define some very
important concepts related to this dissertation. Furthermore, it will also explore and

discuss results obtained from other researchers that used other tools and techniques
in this field.

* Chapter 3 - Proposed solution. This section presents our implemented solution and

explains the techniques used in further detail.

* Chapter 4 - Results. Results obtained during testing and experimentation regarding

different metrics will be outlined here.

* Chapter 5 - Conclusion. The final chapter will review the work that was done, and

present possible improvements for future work.



2

BACKGROUND AND STATE OF THE ART

This chapter serves as an small introduction and overview to previous work done in
this field, from important topics and concepts to tools and techniques, used by previous

researchers.

2.1 Overview

The whole process of building and training a system to correctly classify and cluster
text documents is quite complex, usually divided into several major phases [3, 5], which
will all be explained succinctly and whose techniques and tools will be detailed in the
following sections. It is worth noting that, due to the vast amount of available techniques,
certain ones will not be explained due to its specificity or sparse usage by researchers in
this field, in favor of more used tools.

At the end of this chapter, and in Sec. 2.6, we will discuss empiric results of tests

conducted on the more prevalent techniques.

2.2 Preprocessing phase and techniques

Firstly we need to select the necessary features from raw text. To do so, it is necessary to
preprocess the text into more relevant information to then extract the features from. This
phase is usually comprised of several steps that may change depending on how the text
is intended to be used, and how the text appears in the corpus. For example, removal of
XML tags may be optional in some cases, while in others these may be used as source of

information [6].

2.2.1 Stemming

Suffix Stripping or Stemming [7] is an useful technique in Information Retrieval (IR)
systems as it allows a reduction of a group of terms into a single term — the stem. Take

the term “Wander” for example; It may assume many forms, be it a noun “Wanderer”,

4



2.3. FEATURE SELECTION AND EXTRACTION TECHNIQUES

the past participle “Wandered” or another possible conjugation “Wandering” (Present
Continuous), but it may also be condensed into a single term — “Wander”. What this
technique aims to do, is to remove suffixes in order to return the word to its stem form, as
to reduce the amount of different variations of the same word into a more digestible size
for the system to work with. There are however several stemming algorithms, each with

their own differentiated outputs which may or may not be more useful in some cases [8].

2.2.2 Lemmatization

On the same topic as stemming, there also exists Lemmatization [9], which is the process
of grouping inflected forms of certain terms, allowing them to be reduced to a single term
as well. This differs from stemming as the resulting singular term is the basis of all its
inflected parts — stemming a word may not result in a morphological correct word — for
example, the removal of the suffix “ed” through stemming in the word “tied”, results in
“ti” but lemmatizing it would result in “tie”. Lemmatization offers a more morphologically
correct representation of the lemmatized word, but it is more computationally intensive

than Stemming.

2.2.3 Tokenization, punctuation, digits, and stop-word removal

Tokenization is the process of parsing the text into tokens. The resulting tokens are then
used in the remaining procedures.

Other preprocessing techniques usually include punctuation, digits, and stop-words
removal [3, 10], as according to some authors, these rarely discriminate possible features
in a document. Expressions and terms such as “the”, “and” and “but” are good examples
of stop-words. As for punctuation, and as mentioned previously in Ch. 1, completely
removing it may strongly alter the meaning of a sentence, and we want to avoid it as
much as possible. In most cases, digits are ignored due to their weak discriminant power,

though sometimes they may be important.

2.3 Feature selection and extraction techniques

Feature selection is very important, as the central premise of this selection is to eliminate
or discard redundant and irrelevant features. Primarily in text classification, there are
quite an abundance of features that are not at all discriminating of what we exactly need.
For example, and as mentioned previously in Sec. 1.2, certain words are of no use in
document category discrimination, while others may be of very valuable use.

It is also worth noting the difference between “feature selection” from “feature extrac-
tion”. The fundamental difference is that feature extraction creates new features from the
original ones, whereas feature selection simply selects a subset of the original features.

After obtaining the most relevant features, it may be necessary to reduce their dimen-

sions to a more manageable size to input to the classifiers, without sacrificing a lot of
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CHAPTER 2. BACKGROUND AND STATE OF THE ART

classification accuracy and retaining as much possible variance contained in the original
features. To do so, Principal Component Analysis (PCA) may be employed. PCA works
by computing new principal components, which are linear combinations of the initial
variables, by combining them in a way that most of the information is set in the first
few components — meaning that even if we have a lot of components, only the first few
will actually have meaningful data. These principal components represent data orienta-
tion with maximal amounts of variance, as the higher the variance, the higher the data
point dispersion along those vectors. Often times, using PCA improves classification and

clustering results [11].

2.3.1 WordNet

WordNet links words into semantic relations, such as synonyms, antonyms and meronyms
in a lexical database [12]. The main interest in using WordNet is that it was built with the
support for automatic text analysis and artificial intelligence in mind, as it improves the
quality of resulting clustering due to semantic similarities. It works through grouping
words into synsets, that each represent a lexical concept which can then be used to create

features [5].

2.3.2 TEF-IDF - Term Frequency-Inverse Document Frequency

This metric assesses how important a term ¢ is in a document d. Although Term Fre-
quency regularly suggests the absolute frequency of term ¢ in d, lately this factor has been
surpassed by the use of the relative frequency of t in d, TF(t,d), in order to take into

account the size of the document, thus normalizing the occurrence frequency of t.

fra
TFE(t,d)= S foa (2.1)
In the above equation, f; ; is the absolute frequency count of ¢ in d whilst ¢" is any term
occurring in document d. Although it is acceptable that the higher the relative frequency
TF(t,d) the more important ¢ is in d, t will be more important in d, if ¢ is rare in the
other documents. So, the inverse of the regular document frequency (IDF) is a weight
indicating in how many documents the word appears — the higher this number, the lower

the value.
D

([@eDAfr>0] (2.2)

IDF(t) =log |

Therefore, TF—1DF(t,d) is the resulting statistic of combining TF(t,d) and IDF(t).
This is very valuable as it ensures that lower frequency terms are much more discriminat-
ing, as opposed to more regular ones like “the”, “and” and so forth, due to the normaliza-
tion imposed by IDF(t).

TF-IDF(t,d) = TE(t,d) x IDE(t) (2.3)
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2.3.3 Term Contribution (TC) and Term Strength (TS)

Another feature selection method is Term Contribution, where the contribution of a term
is measured by how it affects the the documents’ similarity [13]. The similarity between

two documents, d; and d, can be computed as such:
similarity(dy,dy) = Zf(t,dl) X f(t,dy) (2.4)
t

Where f(t,d,) represents the TF—IDF(t,d) statistic.
On the other hand, the overall contribution of a term to the similarities of the docu-

ments in the corpus can be computed as:

TC(H= ) fltd)xf(td) (2.5)

i,j i i#]

Term strength is a technique whose core idea is to measure how informative a term ¢

is, relating two documents d; and d,. It was defined in [14] as:

S(t) = P(t (S dllt € dz), dl,dz eDA similarity(dl,dz) > /3 (26)

Where f is a threshold parameter to determine if the pairs are related.

2.3.4 Word2Vec and Doc2Vec

Word2Vec is an algorithm created by Tomas Mikolov et al. [15] that uses a Neural Network
model, which is trained to learn association between words. The model, after training,
is able to detect word correlations and synonyms. Training the can be done using two

different architectures:

1. Continuous Bag-of-Words (CBOW), in which the model predicts the word from its

surrounding words;

2. And Skip-Gram, where it weighs context words based on distance from current

word.

Each word is represented as a vector, which are then further processed in order to find
semantic similarities between those vector represented words.

The Doc2Vec is an extension to Word2Vec, done by T. Mikolov as well [16, 17], in
which the Word2Vec architecture was extended by allowing the model to take a token of
a document as input. By using the CBOW model with some slight additions to the way
it works, Doc2Vec now, instead of exclusively using words to predict the next word, uses
another feature vector unique to the document, that is trained alongside the word vectors

and holds a numeric representation of the document by the end of its training.
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2.3.5 Information Gain

Information Gain measures changes in entropy when a certain feature t is absent or
present. In classification problems, Information Gain can be used to measure how com-
mon a feature is in a particular label when comparing to all other labels. For example, if
the occurrence of the word “finances” in a corpus makes the entropy drop less than the

term “association”, then “finances” is more qualified to use as a feature [18].

IG(t)== ) Pci)logP(c;)+ Po(t) ) Plcilt)logPi(eilt) + P() ) Pr(cilP)logP(cilf)  (2.7)
i=1 i=1 i=1

Where P,(c;) stands for the a priori probability of category/class c;; P,(t) and P,(f) are the
a priori probabilities of the presence and absence of t respectively.

2.3.6 Chi Squared x?

The x? statistic compares the difference in measurement of the data towards the expected
distribution, and so measures the lack of independence between a term t and a class/cate-
gory c;. If the term t and category c are independent, then the value of the x? is zero [19].
A high value of x? reflects strong dependence.

Nd[P(thi)P(t_f _i)_P(tIC_i)P(trCi)]z
P(t)P(£)P(c;)P(c;)

x*(tci) = (2.8)
In the above equation, P(t,c;) denotes the probability of the feature/term t occurring
in a document which belongs to category c;. The constant N; denotes the cardinality of

the document set.

2.3.7 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model that is able to extract
latent (or hidden) topics from a corpus [20]. Documents are viewed as a mixture of latent
topics, which themselves are constructed from a mixture of the probability of words or
phrases found inside the documents of the corpus.

LDA has two major hyperparameters — a and . The a parameter controls the dis-
tribution (probabilities) of all topics to assign to each document. For example, a low
value of a tends to assign a single topic to each document. The  parameter controls the
distribution of different words or phrases to assign to each topic. Higher values of  tend
to assign a more homogeneous mixture of words and phrases to each topic.

Another parameter that is also needed for LDA to function is the topics parameter,
which means, the number of topics LDA extracts. One common drawback is that this
number needs to be stated, which at times is not possible to do or hard to estimate.
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2.4. TEXT AND DOCUMENT CLASSIFICATION ALGORITHMS AND
TECHNIQUES

2.3.8 N-grams and LocalMaxs

In computational linguistics, an n-gram is a sequence of n items from a sample of text.
A Multiword Lexical Unit (MWU) is any string of text or speech that makes up for a
compound nouns, adverbial and prepositional locutions, to name a few.

LocalMaxs is an algorithm that is able to extract MWUs from text, based on statistical
calculations between n-grams. The core idea of the algorithm is that n-grams are held
together by “glue” and different n-grams have different values of “glue” — for example a bi-
gram compound noun has a much stronger glue than a bi-gram composed of a preposition
and a verb, as prepositions and verbs tend to appear more often and in conjunction with
other words, thus lowering the glue value.

In order for an n-gram to be classified as a MWU, its glue score must be a local
maximum concerning its neighbourhood. To do so, we need the glue values of every
(n—1)-gram contained in the current n-gram, and the glue values of every (n + 1)-gram
in which the current n-gram is contained. Let W be our current n-gram, QQ,,_;(W) be the
set of all glues of the n-grams contained in W, and Q,,,; (W) be the set of all glues of the
n-grams that contain W. LocalMaxs states that, for a n-gram W, it is a MWU if and only
if:
max(Q, 3 (W) + max(Q,, (W)

(length(W) > 2 A freq(W)>1Ag(W) > 7

)

v (2.9)

(length(W) =2 A freq(W) > 1A g(W)>max(Q,,1(W)))

Where g(W) stands for a generic function for measuring the glue of W. When W is
composed by more than two words (2-gram), the n-gram W must be transformed in a
pseudo 2-gram for obtaining a normalized glue value. For that, the n—1 dispersion points
of W are considered by dividing the n-gram W in all different several left and right pair
parts: for example the 5-gram “the sky is beautiful today” can be broken down into the
following set of (n — 1) left-right pairs: { “the”, “sky is beautiful today”}, {“the sky”, “is
beautiful today”}, {“the sky is”, “beautiful today”}, {“the sky is beautiful”, “today”}. Then,
the pseudo 2-gram glue value will be the average glue values of the different 2-grams
pairs.

There are various possible ways of calculating the “glue” values of n-grams, such as
the SCP (Symmetrical Conditional Probability), the ¢p? Coefficient, the Dice Coefficient

and SI (Specific Mutual Information) [21]. These metrics will be compared in Sec. 2.6.

2.4 Text and document classification algorithms and techniques

The process of classification corresponds to the usage of an algorithm to sort and label
classes of information, being able to be performed in both types of data (structured or
unstructured). It uses a function which is applied to the input of the classifier, that maps
the objects to classity, to discrete output variables. In other words, the classifier model

9
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uses previously learnt knowledge to predict a possible label (in our case, category) for a
document based on its features.

Classification problems may fall into several categories such as binary (for example
Boolean classification - true or false), multi-class (each sample is only assigned to one
and only one label) and multi-label (each sample is assigned to a group of labels). In
document classification cases, albeit rare, it is possible that the document may be labelled
as two or more different categories.

One possible way of measuring the performance of the classifiers is the use of Recall
and Precision measurements of the model. Precision is the percentage of correctly pre-
dicted documents (True Positives) by the classifier, out of the total number of documents
that it predicted for the label (True Positives plus False Positives), while Recall is the
percentage of predicted documents of a label (True Positives) out of the total number of
documents it should have predicted for that given label (True Positives plus False Nega-
tives). Another possible measurement is the F-measure, in which the harmonic mean of
Precision and Recall is calculated. Yet another measure for performance is the Accuracy
which is calculated by dividing True Positives plus True Negative by the sum of True
Positives, True Negatives, False Positives and False Negatives.

Recall = labels found and correct

total labels correct
(2.10)

labels found and correct
total labels found

Precision =

2.4.1 Naive Bayes

The Naive Bayes classifier is based on the Bayes’ Theorem. It returns the class k which
maximizes the sum of the logarithm of the a priori probability of the class k plus the sum

of the logarithm of the conditional probability of each feature x;, given the class k.

N

C = argmax In P(Cy)+ Zln(P(xilck)) (2.11)
kef0,1,....K) o

The classifier assumes that the different features are independent from each other
within any class, meaning that features do not influence each other despite being present
at the same time.

In most of the practical cases, complete feature independence does not occur, however,

this classifier can be used to produce good results.

2.4.2 K-Nearest Neighbors

K-Nearest Neighbors is a classification algorithm in which it tries to predict a class of an
element x by selecting the most common class of the K nearest points to x. In other words,

the gist of this algorithm is that known data is arranged in a space defined by features
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and, when new data is given, it will compare the classes of the closest K-neighbors to
determine the class of the new data. In text and document classification, K-Nearest
Neighbors takes as input a document represented as a vector of word weights, outputting
a list of categories with a confidence score for each of them [18].

Figure 2.1 shows a visual example of how the K-Nearest Neighbors algorithm works.
Depending on the value of K given as a parameter, it calculates the distances to nearest
points, selects the K nearest data points, and votes for the label through majority inside
the set.

Different types of data obviously require different values of K, as small alterations to

its value can completely change the resulting classification.

Initial Data Calculate Distance
A New example cl A A Class A
lassif ass
* e Class B * * Class B
5| * x X §l * x X
| X kya AA KK i A AA
. A A L. A A
A A A A A A
XAds XA

Finding Neighbors & Voting for Labels
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*x * * Class B

*{K_\;{A‘; AA
‘\\K=3 \A\\;(I A A
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) =
) o
\
1
’
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Figure 2.1: K-Nearest Neighbors visualization. Extracted from [22]

2.4.3 Support Vector Machines

Support Vector Machines (SVM) are based on the premise that we find an hypothesis & for
which we can achieve the lowest true error possible. This true error is the probability that

this current hypothesis fails on correctly classifying a new and random example [23]. SVM
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work by constructing a hyperplane, or a set of hyperplanes, on the dimensional space,
which are then used for classification. The goal is to form a hyperplane whose distance
to the nearest point of data is the largest possible, in order to provide a validation error
as low as possible. In a text classification problem, SVM performs very well since their
ability to learn does not depend on the dimension of the features, meaning that SVM can
handle very large feature spaces, as such is the case of text classification. This classifier
may use the concept of Soft Margins to solve slight overlap problems. However, when
data is strongly not linearly separable, SVM provides different kernels to deal with this

problem.

2.4.4 Decision Trees

Unlike the Naive Bayes, which is a probabilistic approach, Decision Trees use a set of rules
to make decisions, categorizing them as rule-based approaches. As a tree like structure
indicates, nodes are connected through branches, terminal nodes are called leaves and
are situated at the bottom of the tree and the root, which contains all the examples that
are to be classified, is at the top.

More specifically, the C4.5 Decision Tree, which is based on the ID3 algorithm [24] and
is widely used, is a statistical classifier that works as follows. It initially uses a classified
set as input, with each sample in the set consisting of the features as well as the class it
belongs to. The algorithm then chooses the feature that split the set into subsets of several
classes — the attribute with the highest Information Gain (explained in Subsec. 2.3.5) is
the feature upon which the decision is made. It does this recursively until all the data is
processed and classified.

A new version of the Decision Tree was created, named C5 Decision Tree, that has
many upgrades over the C4.5. It is of faster execution than C4.5, has better memory
efficiency, and uses smaller trees whilst achieving the same results, to name a few im-

provements.

2.4.5 Rocchio Algorithm

The Rocchio algorithm uses a feedback approach, which in sum, is the idea of recursively
gathering feedback on queries made on the previous results. Through feedback on those
previous queries, we can make decisions about performing a new query, based on the
relevancy of the resulting data.

The algorithm represents each document as a vector in a vector space in a way that
similar documents have similar vectors, with each space in the vector representing a
selected feature. It uses a word weighting heuristic that aims to give more importance
to regularly occurring words, while other less regularly occurring words are given less
importance [25]. The classifier learns by combining the vectors into prototype vectors,
which are created by adding document vectors to all other documents of the class, for

every possible class.
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To finally classify a new document, it uses the cosine of the prototype vector of each
class with the document’s vector. After calculating the value of the cosine angle between

both vectors, the highest value of the cosine is used to classify the document.

H(d') = argmax cos( _)’,c_)) (2.12)
ceC

2.4.6 Neural Networks and deep learning

Neural Networks are structures that are composed of artificial neurons (or nodes), that
use a mathematical or computational model for information processing. These neurons
are organized in layers, often divided into input, output and hidden layers, with each
neuron in a layer usually being connected to all other neurons of the next layer.

Much like the synapses in a biological brain, these neurons transmit signals to the
other neurons in subsequent layers which are then processed until an output is produced
with the neurons in the output layer.

Each neuron and each connection have weights that either increase or decrease the
strength of the signal passed through by neurons, and these are altered as the neural
network learns. As such, each neuron has a different influence on the output depending
on its weight and bias (or threshold).

The output of these neurons is obtained through the weighted sum of the previous
neurons’ output, to which a bias is then added. This weighted sum with the bias of
the neuron is then passed through an activation function to determine if that particular
neuron activates, and feeds the information to neurons in the next layer.

For example, if a neuron N has a bias By, and it receives signals from three previous
neurons with values ngy, n; and n,, and with wy(, wy; and wy, weighted connections

respectively, then the neuron N’s output is:

@ [(ng xwyo+ny Xwyy + 1y Xwy;)+ By (2.13)

In the above equation, ¢ represents the activation function, which may or may not
activate depending on the bias value of N, the signal values of n, n; and n,, and the type
of activation function.

Deep Learning can be seen as a tool based in Artificial Neural Networks [26], which
can use many layers of interconnected nodes. It has the ability to provide good accuracy
results in supervised classification, but it usually needs substantially large datasets to

train.

2.5 Document clustering algorithms and techniques

Clustering is the task of grouping unlabelled data into clusters, a group of data points
that are similar to one another based on relations with their surroundings. This can
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be achieved through different algorithms each with their own way of handling different
kinds of data.

Density based clustering algorithms group data based on density in a certain area. The
higher the density of data points, the higher the probability of that being assigned as a
cluster. Being based on density allows the clusters to form any shape, but lack the ability

to assign possible outliers to clusters, thus being ignored.

Centroid based clustering uses centroids in data to form clusters around the data, and

each data point is assigned to a cluster based on its distance to the centroid of a cluster.

Hierarchical based clustering (or connectivity based) is usually used on hierarchical
data, a type of data that is structured in parent-child relationships in a tree structure
(an example would be taxonomy or a file system). The result of the application of the

algorithm is a top-down tree of clusters.

Distribution based clustering is based on the probably of a data point being part of a
cluster, depending on the distance of the point to said cluster. The higher the distance to
the center of the cluster, the lower the probability of it being assigned to it, being inversely
proportional.

A possible way to validate clustering consistency is through the Silhouette Method.
This method provides a measurement of similarity between a data point and its own
cluster, as well as to other clusters. Higher average values of comparison between data
points inside a cluster mean appropriate clustering configuration, whereas the opposite

means that there are either missing or abounding clusters [27].

2.5.1 Agglomerative Clustering

Agglomerative Clustering is a broad term that shelters several other algorithms and tech-
niques. It is also another name for Hierarchical Clustering which builds nested clusters
by successively merging or splitting the data, and is usually represented in a tree-like
manner.

The “agglomerative” keyword indicates a “bottom-up” approach, with pairing clusters
being merged when moving up the hierarchy, while the contrary (“divisive” clustering)
indicates the opposite — instead of merges, splits are done when moving down the hierar-
chy.

The decision of the action to take is based on a dissimilarity of observed sets, with
an appropriate metric and a linkage criterion. The metric can be Euclidean distance,
Squared Euclidean Distance and Manhattan Distance for example, while the linkage

criteria determines the distance between observations.
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2.5.2 BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is a clustering
algorithm devised to handle large quantities of data by incrementally and dynamically
clustering them.

Important advantages of BIRCH are that each cluster is made without the scanning of
all data, using only the measurements that reflect how close each point is to one another,
and it uses the notion that not every data point is relevant for clustering purposes.

It uses Clustering Feature (CF) trees, which are height-balanced trees with a branching
factor B and a threshold T - non leaf nodes contain at most B entries, but always satisfying
the T threshold, which is the diameter of the branch [28].

The algorithm is divided into 4 phases:

* Phase 1 is the first step in scanning the data and building the CF trees

* Phase 2 is an optional phase that does something akin to phase 1; it scans the
leaf entries in the initial trees, to rebuild a smaller one, thus saving memory and

grouping together sub-clusters into bigger ones.

* Phase 3 is the clustering phase, which clusters leaf entries together. The result of
this phase is a set of clusters that encapsulates the major distribution pattern in the
data.

* Phase 4 is also optional, but it is a refinement phase where the algorithm tries to
correct inaccurate measurements and refine clusters. It uses the centroids produced

in phase 3, and redistributes the data to obtain new sets of clusters.

2.5.3 DBSCAN and HDBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a clustering
algorithm which groups data points based on density. Clusters are high density areas
while outliers are usually in low density areas.

The parameters needed for this algorithm to work are Epsilon (¢) and a minimum
number of points (1,) which acts as a threshold on the density value. The € is the distance
used to locate points near a certain other point.

The algorithm starts by choosing a random starting point, which it considers a po-
tential centroid. Depending on the € value, it counts the neighboring data points to the
centroid and compares the number of points inside € range to the threshold value (n,,).
An easier way to visualize this is to imagine a circle with e radius from the centroid,
and whichever point meets the requirement of being inside the circle, it counts towards
the density value. If the value is higher than the minPoints threshold, then it is a valid

centroid and assign all neighboring points to the same cluster.
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Within the newly created cluster, it will sample each point contained inside the €
radius circumference, using them to expand the initial cluster through the same proce-
dure as before: find out the neighbors within € range and count them - if the number is
bigger than the threshold assign them to the same cluster. It does so iteratively through
all neighbors in order to expand the cluster until it can do so no more.

If the cluster can no longer be enlarged, it will repeat the procedure for the remaining
non-clustered data points, by picking one randomly and repeating the process previously
described [29].

Hierarchical DBSCAN (HDBSCAN) is an extension to the DBSCAN algorithm whose
major difference from DBSCAN is, very succinctly, allowing the algorithm to vary the

epsilon values, resulting in variable density clusters [30].

2.5.4 Expectation Maximization and Gaussian Mixture Models

The Expectation Maximization (EM) algorithm is used in problems involving two sets of
random variables, where one is observable and the other is not, or in other words, it works
upon incomplete data by trying to compute the missing values. It consists of estimating

the maximum likelihood in two major steps — E-Step and M-Step — in several iterations.

E-step is the expectation estimation steps, where it initially performs the classification
of each unlabeled document. The following step is the M-step where it maximizes the

likelihood of those estimated values being the true ones.

The ability of the EM algorithm to extrapolate missing data is particularly useful
in conjunction with other classifiers and clustering algorithms [4], since it can extrapo-
late missing values from incompletely classified inputs (a bit like in a semi-supervised

approach).

EM is regularly used in order to estimate the parameters for the Gaussian Mixture
Model (GMM), which are probabilistic models with the basic assumption that all data

was generated from different Gaussian distributions with unknown parameters.

GMM function similarly to the K-Means clustering algorithm (in Subsec.2.5.5) but
with key differences: with the help of the EM algorithm, it calculates the probabilities of
a document belonging to a cluster through one or more probability distributions, instead
of distance from the center. As such, it is able to handle certain shapes of data more
efficiently than K-Means, like for example, an oblong shape, because it provides a more
statistical approach with variance and standard deviation from the norm, rather than a

fixed distance.

It is worth noting that GMM do not produce good results for data distributions that
are not Gaussian, making it somewhat hard to use in text clustering, as the features used

in this context tend to not be of Gaussian distribution.
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2.5.5 K-Means

K-Means falls into the centroid based partitioning clustering techniques, since its main
objective is to split data into K partitions, with the constant K being a hyperparameter
defined previously relating to the number of total clusters.

Initially, the algorithm may start with a set of documents from the corpus and, based
on similarity, assigns more documents to these initial representatives. Following this
starting approach, a new seed is defined that better indicates the center of the cluster.
This seed redefinition is done until the point converges into an unmovable spot and what
the algorithm assumes it is the best choice of center for the cluster.

Thus, the main goal of K-Means is to form clusters where the maximum distance
between each data point inside the cluster is the minimum possible, whilst maintaining
a possible maximal distance between each pair of cluster centroids. The distance may be
calculated in several ways, such as Euclidean Distance or Manhattan Distance.

One of the main advantages of K-Means is that it requires very few iterations to con-
verge and can work on very large data sets, but a big drawback is that it is really sensitive
to input data and initial centroid creation, as well as higher complexity in similarity
calculation if the centroid has a lot of words [31]. Furthermore, if real clusters are not

hyper-spherical, K-Means cannot obtain correct clustering.

2.5.6 Spectral Clustering

Spectral Clustering works with graph theory, through graph-based distances between
neighboring points. It uses the mathematical notion of the eigenvalues and eigenvec-
tors. The latter is a nonzero vector that, when a linear transformation is applied to it,
changes by a scalar factor, while the eigenvalue is the factor by which it is scaled. Besides
these mathematical notions, it also uses the Laplacian matrix to represent the graph and
search the eigenvalues of the graph’s Laplacian matrix in order to find a low dimensional
embedding of it.

After calculating the Laplacian matrix and the first eigenvectors, the algorithm uses
the first eigenvectors to form another matrix, in which one row defines the features of the
graph.

After finding the defining row, it clusters the graph based on those features through
another clustering algorithm, like for example K-Means.

2.5.7 Affinity Propagation

The main concept upon which the Affinity Propagation algorithm was based upon, is the
concept of passing messages through data points. The clusters are formed through the
finding of data points which are representative of potential clusters.

Instead of taking as input the number of estimated clusters in the data set, it uses
similarities between data points which indicate how well some specific point is suited
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to be the “exemplar” (or in other words the representative) for another data point. The
number of exemplars found through the computation of the similarity of each data point
is the resulting number of clusters.

The algorithm works iteratively by building two matrices - the responsibility matrix r
and the availability matrix a. The r matrix quantify how well suited a data point serves
as the exemplar for another data point. The 4 matrix represents how fit a data point is to
be selected as the exemplar of another data point.

These matrices are updated throughout the iterations and these iterations stop when
either a predefined number of iterations is reached, or when the cluster boundaries remain
unchanged [32]. Exemplars whose sum of values for both matrices are positive, are then
extracted from the resulting matrix and every point which the exemplar represents is

clustered together.

2.6 State of the art

Several researchers have attempted to study and test several techniques in the field of
information retrieval, obtaining somewhat interesting results at times and often verifying
theoretical results empirically, thus validating the theory behind them.

Within the scope of this dissertation, we are interested in techniques that are proven
to work in handling large amounts of text documents in a corpus and correctly extracting
the necessary features for classification and clustering. We will analyse both supervised
and unsupervised approaches in order to help grasp the techniques’ strengths and weak-

nesses.

Preprocessing The preprocessing techniques used depend heavily on the type of data,
the used classifiers/clustering algorithms and the type of feature selection metrics. For
example, some authors may prefer stemming [7] over lemmatization [9] in some cases be-
cause, despite lemmatization offering better morphological comprehension of processed
words, it has a much higher computation complexity than that of stemming. Most of the
times, the important part of word preprocessing relies on shrinking the terms down to
their “primitive” forms - in an algorithm’s perspective, if we want to know the term fre-
quency of the terms in the document, it makes little difference computing said frequency

with the lemmatization or stemmatization of a word.

Feature Selection Yiming Yang and Jan O. Pedersen [18] put to the test five different
feature selection methods, these being Document Frequency, Information Gain, Mutual
Information, x? statistic and Term Strength, with the help of two classifiers — K-Nearest
Neighbors and Linear Least Squares Fit (LLSF).

Regarding results of the metrics used (Precision and Recall), Document Frequency,
x? and Information Gain all performed exceptionally well, with Information Gain and

x? being elected as most effective in feature selection, followed by Document Frequency,
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then Term Strength and finally Mutual Information. The authors theorized that the poor
performance of Mutual Information was due to favoring rare terms and having a strong
sensitivity to probability estimation errors. Document Frequency, Information Gain and
x? performances indicate that common terms are informative for these feature selection
techniques, since by using a term-removal threshold, up to 98% of unique terms were able
to be removed with Information Gain and x2, and around 90% for Document Frequency,

without losing accuracy.

George Forman presented an in-depth and extensive study on feature selection met-
rics for text classification [33], following the results from Yang and Pedersen. On this
study, Forman measured the performance of each metric in several ways, reaching in
the best case, for the Binary Separation metric, values circa 0.7, 0.84 and 0.76 for Recall,
Precision and F-measure respectively, in a dataset that was preprocessed with the suffix-
stripping algorithm by Porter [7] and a stopword list. Besides the preprocessed dataset,
Forman added another dataset of abstracts from computer science papers. In total, they
amount to 19 multi-class datasets representing 229 binary classification problems, featur-

ing about an average of 149 classes.

In regard to the metrics previously presented in this dissertation, Information Gain,
alongside x2, were the metrics that performed better — although Information Gain’s per-
formance depended on the number of features used, outperforming x2 by a small margin,
and being the best overall technique if the validation metric used is solely Precision.
Forman also stated that, if one chooses to use two different metrics for cross-validation
selection, )(2 and Information Gain both share a striking correlation in which when one

fails to perform correctly, the other may fail as well.

A possible way to extract other features that can be further processed, is to use the
n-gram approach to extract important expressions or words from a corpus. Joaquim Silva
et al. [21] provided an empirical evaluation of different LocalMaxs iterations featuring dif-
ferent n-gram “glue” computation metrics. These metrics were put to the test on a corpus
with 919254 total words, corresponding to the Lusa - a Portuguese news Agency - news
broadcasts. Results indicate that using the fair dispersion point normalization provided an
increase in MWU extraction precision in all metrics, with the top three performing met-
rics being SCP_f (with “_f” denoting fair) with the average precision of 84.90%, followed
by (j)}% with 83.33% and SI_f with 81.80% [21]. Another study of the LocalMax algorithm,
was conducted on another corpus, this being a multilingual European Parliament debate
collection. Results further verified SCP_f as the elected best metric to use in contiguous
(an uninterrupted sequence) MWU extraction with LocalMax. After this election, SCP_f
was tested on different languages, providing an above 70% precision across 4 different
languages - English, French, German and Medieval Portuguese [34]. However, for non-
contiguous MWU extraction, Mutual Expectation was tested on a Portuguese Political
Debates corpus with approximately 300000 words and provided the best results, featuring
90% average precision.
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David M. Blei, Andrew Y. Ng and Michael I. Jordan proposed the generative proba-
bilistic model, Latent Dirichlet Allocation (LDA), and tested the model as a dimension-
ality reduction/feature selection approach in two binary classification experiments on
the Reuters-21578 dataset, composed of 8000 documents and 15818 word features [20].
By using a LDA model, with estimated parameters on all the documents on the dataset,
and by using a SVM trained on the resulting features reduced by LDA, the authors were
able to attain a reduction of 99.6% and still have good classification results. The authors
suggested that topic-based representation of the corpus may be employed as a fast filtering

approach for feature selection.

Classifiers In the text classification field, Yonghong Li and Jain Anil [35] studied the
effectiveness of some classifiers. They used the Bag-of-Words feature representation for
the documents, meaning that the order of the words does not matter, and with each
feature vector representing the words appearing in said document. Stop-words were
removed and low frequency words were culled in order to improve the effectiveness of
the classifiers. Naive Bayes, K-Nearest Neighbors, Decision Trees and Subspace Model
were tested with Yahoo’s news data by extracting the human indexed news in which
seven categories were present. Besides testing the models alone, they also combined the
classifiers to form an Adaptive Classifier Combination (ACC) but the most important
results in this scope, are how the classifiers performed.

Despite all performing reasonably well, Naive Bayes outperformed Nearest Neighbors
and Decision Trees, and Subspace Model on some testing. Furthermore, by reducing the
number of classes from seven to five, all classifiers suffered an average of 7% increase in
accuracy. Concerning dimensionality reduction, the authors noted that the performance
of both Naive Bayes and Subspace model classifiers rose in accordance to the highest
number of features, meaning that they are more accurate the more features there are.
Additionally, feature extraction helped improve Decision Tree’s accuracy by 4% while not
being of any advantage in K-Nearest Neighbors.

Thorsten Joachims [23] explored the usage of SVM in text classification. Joachims
theorized that due to the nature of the problem at hand, SVM would be a good classifier
since they are able to handle high dimensional inputs and have overfitting protection.
Moreover, by assuming most of the features are irrelevant, SVM still performs well by
using some of these irrelevant features, when compared to other classifiers. Another
point in favor of SVM is that most text categorization problems are linearly separable,
and document vectors are sparse - meaning that each document vector has little entries
which are not nil. Due to SVM’ ability to generalize well in high input spaces, the need
for feature selection and dimensionality reduction is lessened.

During the experiments, Joachims compared SVM to other four classfiers: Naive Bayes,
Rocchio Algorithm, K-Nearest Neighbor and C4.5 Decision Tree, tested on two different
datasets, with performance being measured with Precision and Recall metrics. Results

heavily favored SVM as the best classifier, outperforming the conventional methods on
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both test sets, regardless of chosen parameters for both versions. This does not mean
however that SVM is not prone to parameter sensitivity, as the authors from [3] noted.
Out of the four conventional methods that were tested, K-Nearest Neighbors was the best
performing classifier on both datasets.

Another study that further proves SVM competence in this domain was conducted
by Rikta Sen and Ashish Kumar Mandal [3]. The corpus was built by the authors, being
composed of 1000 documents with a total of 22218 words, and five possible document
categories. After preprocessing the documents by removing stop-words, digits, punctu-
ation and applying the stemming algorithm, the total words in the corpus were reduced
to 18190. The feature selection metric used was a length normalized TF—-IDF weighting
vector.

Classifier performance evaluation was again conducted with the Precision, Recall and
F-measure metrics, and four classifiers were tested: Naive Bayes, C4.5 Decision Trees,
SVM and K-Nearest Neighbors. Results further prove that SVM outperforms the other
3 classifiers as the average accuracy of the SVM on this corpus was 89.14%, followed by
Naive Bayes with 85.22%, then C4.5 Decision Tree with 80.65% and finally K-Nearest
Neighbors being the worst with an average accuracy of 74.24%. Other tests were con-
ducted, namely by varying the input to the classifiers by 30 documents between the 5
steps they were trained and tested through. By varying the number of training documents,
it is clear that SVM started performing better the more documents there are present in the
training set, suffering the highest variation in F-measure score and ultimately having the
best accuracy at 150 test documents in the training set. This leads to the assumption that
with smaller and more concise training sets, other classifiers perform better, but SVM is
still the best classifier in handling large data.

These previously stated approaches were mostly supervised approaches, and to try
and contradict that, Bing Liu et al. [4] proposed the usage of the EM algorithm alongside
the Naive Bayes classifier in what the authors called “a semi-supervised approach”. The
main idea behind this approach is the usage of the EM algorithm to estimate the missing
values, since EM can help assign a probabilistic class label in each non-labelled document.
Two large corpora were used, from which 30 different datasets were created, one with 4
main categories — Computer, Recreation, Science and Talk - the other with 6 categories
— Student, Faculty, Course, Project, Staff, Department. Results lead us to believe that
using the EM algorithm in conjunction with another classifier would result in extremely
accurate results, even if only knowing one positive class of the document.

Bhawna Nigam et al. [36] further proved EM’s ability to help create semi-autonomous
classifiers, able to estimate missing document labels through previously known ones.
The dataset used for this experiment was a “car evaluation” dataset, with 5 features and
3 pre-defined classes, which was split in half in order to create test and training sets.
Performance was analysed through the same methods as before, and the main takeaway
is that the semi-supervised performed better than the supervised technique. The authors

however, note that despite EM being able to effectively estimate and extrapolate data
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from previously labeled examples, it may not completely translate to other real world
scenario as the complexity of most of the text data may not be completely encapsulated
in a statistical model.

In an attempt to create a fully unsupervised approach, Youngjoong Ko and Jungyun
See [37] proposed a new unsupervised approach, which eliminated the need of manual
training document creation. The method consists of creating keyword lists of each cate-
gory automatically, using “representative sentences” and word and sentence similarity
matrices, which are then used to train and classify the documents. In this paper, they
focus solely on x? for feature extraction and Naive Bayes as the classifier. Experimen-
tation was conducted on 47 total categories, with a total of 2286 documents - 1383 for
training and 903 for testing. Performance evaluation was computed with the F-measure
on both supervised and unsupervised tests, culminating in a 3.8% difference favoring
the supervised approach, averaging 75.6%, over the unsupervised approach, averaging
71.8%. Ultimately, this difference between supervised and unsupervised is negligible as

the trade-off between performance and corpus preprocessing is decent.

Clustering Regarding clustering algorithms, George Seif provided an high-level overview
of 4 of the previously mentioned clustering algorithms in [38]. This article glances over
the main advantages, disadvantages of the following algorithms: K-Means, DBSCAN,
GMM with EM and Agglomerative Hierarchical Clustering, alongside Mean-Shift Clus-
tering. Starting with K-means advantages and disadvantages — K-means offers a linear
complexity O(n), since the gist of the algorithm is distance measuring between points and
centroids, culminating in few computations overall. But the main problem is that the
results heavily depend on the starting cluster “seeds”, providing inconsistent results, and
the input to K-means requires the user to know exactly how many possible clusters there
are, which most of the times it is not possible.

DBSCAN offers some advantages, mainly in the form of noise-detection, not requiring
a pre-defined number of clusters and working relatively well with arbitrarily sized and
shaped clusters. A major flaw however, is that due to the way the algorithm works with
fixed € and a minimum number of points threshold, it may not find variable density
clusters. This flaw is remedied in the HDBSCAN extension of the algorithm, allowing the
algorithm to find variable density clusters.

EM and GMM provides a bigger level of flexibility when handling different types of
data. As previously mentioned in Subsec. 2.5.4, EM and GMM are able to handle ellipsoid
shapes due to the way it handles covariance and standard deviation of the cluster. By
being a probabilistic model it also supports mixed-membership, meaning a point can
effectively belong to two or more classes. A huge drawback to GMM, is that for any
non-gaussian distributed dataset, they perform very poorly.

Finally, Agglomerative Hierarchical Clustering does not require the user to specify the
number of clusters like K-Means, being advantageous in some cases, and it is somewhat

universal when it comes to distance metric selection, contrary to most other clustering
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algorithms which are metric sensitive. The main drawback is the enormous time com-

plexity, being that of 6(n3).

For more information regarding comparisons between clustering algorithms and their
benchmark performances and scaling on datasets, HDBSCAN Documentation [39] pro-
vides a comparison of ten different clustering algorithms on different increasingly larger
datasets, randomly generated with Numpy Python library. Alongside this performance
comparison, the Scikit-learn, a Python machine learning library, documentation also fea-
tures visual comparison of how clustering algorithms clustered different types of datasets
and in-depth explanation of the algorithms and their parameters in the implementa-
tion [40].

Now regarding published papers with algorithm comparisons in the text and docu-
ment clustering field, in [41], the authors compared K-Means, Spectral Clustering and
Affinity Propagation. They began by tokenizing and stemming the text and weighing
the terms with TF—-IDF, followed by a similarity matrix using cosine similarity. The
supervised corpus was composed of 60 problems, with each problem containing 20 texts,
and algorithm performance was evaluated with F-measure, Recall and Precision. Post-
experimentation, the authors noted that Affinity Propagation had the best averaging
Precision, followed by Spectral Clustering then K-means, with 0.704, 0.694, 0.619 re-
spectively. With the Recall measure, the order changed to Spectral Clustering being the
best performing, then K-means, then Affinity propagation, with 0.833, 0.747, 0.606 re-
spectively. Finally, with the F-measure metric, the order stayed the same as the Recall
metric with the following values: 0.758, 0.677, 0.651 for Spectral Clustering, K-means,
and Affinity Propagation.

The authors theorized that Spectral Clustering performed better than the other two
algorithms because of the dataset in question; as Spectral Clustering works better with
few clusters, while Affinity Propagation works better with a large number of clusters.
K-means was the worst of the three, possibly because it is randomly initialized, that is,
before it tries to converge to a local optimum it randomly assigns a centroid as a “seed” for
a cluster to grow around, and this initial randomness may heavily impact the final results.
It is worth noting again that Affinity Propagation, besides the previously mentioned
attribute of working better with large amounts of data, does not take as input the number
of clusters a priori, meaning that Affinity Propagation is a good algorithm to use when

the number of possible clusters is not known at the start.

Focusing on cluster topic identification, Michael Snow [10] empirically tested the us-
age of Singular Value Decomposition (SVD) to extract possible cluster topics. SVD is a
linear algebra technique to decompose a matrix into three other matrices, with which we
are able to create the best low rank approximation of the initial matrix. Michael Snow
initially processed the text with removal of words that do not contribute to the learn-
ing of the system, alongside punctuation and digits. Post-processing, documents were
vectorized with Doc2Vec in order to create a vector space in which every document is
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embedded in. Clustering was done with HDBSCAN, post t-Distributed Stochastic Neigh-
bourhood Embedding dimensionality reduction [42], which provided a two dimensional
representation of the Doc2Vec vector space upon which the clusters were built. Results on
nearly 87000 documents comprising of paragraphs describing businesses showed more
than 4000 identified separate clusters through HDBSCAN, which makes manual cluster
labelling near impossible. By assuming that each document in a cluster is highly simi-
lar to one another, SVD can be applied to each of the document vectors for each cluster.
This results in a rank 1 representation of the matrix which is then compared with cosine
distance to all other documents” matrices in the original vector space, with the closest
vector being returned. This document can then be used as the descriptor of the cluster as
a whole, or can be used to manually infer the topic. The authors state that in a very noisy
case, SVD may not be applicable as it may chose a noisy vector as the representative of

that cluster.

2.7 Chapter conclusion

The text mining field is a very vast and technologically dense field, with a plethora of
possible usable algorithms and techniques, each with their own pros and cons. The choice
of these techniques heavily depends on the type of problem at hand as well as the final
objective, the approach — supervised or unsupervised — and also language dependency.
This, in turn, makes it quite difficult to accurately say which of these techniques is the
best overall. However, there are some empirical studies that prove that some algorithms
may be more suitable than others in the text-mining domain.

Previously, the most used and most known techniques have been laid out and ex-
plained at a very high level in hopes of providing the necessary knowledge to understand
more complex and newer techniques in the field, often built upon the foundations of
these techniques, as well as the proposed solution that will be explained in the following

section.
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3

PROPOSED APPROACH FOR UNSUPERVISED
CLUSTERING AND CLASSIFICATION OF

DOCUMENTS

The following chapter goes into further detail about the proposed approach and our

contribution to the problem at hand.

Unsupervised approaches to clustering and classification problems face a big chal-
lenge as, since the documents classes are not known, we can not train the system the
same way we would in a supervised approach. To do so, it is imperative to extract the

best possible features as to correctly identify the documents classes.

3.1 Feature selection

Since there are no class labels, the assessment of the quality of each candidate feature is not
easy to obtain. Nevertheless, there are some metrics that may indicate how informative
a candidate feature is. As we are dealing with unstructured text, words with stronger
semantics tend to discriminate the topic of the document — take for example the average
length of the candidate feature words and the TF—-IDF (Subsec. 2.3.2) value of the singular
words. In fact, the candidate feature “biological conservation”, having an average length
of 11 characters, is semantically stronger than “shoe’s sole”, whose average length is 4.5;
And it is expected that “biological conservation” discriminates the documents of a corpus
much more than “shoe’s sole”.

Firstly, we need to select the best candidate words and expressions (candidate features)
in the text documents to further apply those metrics. This step was done with the ap-
plication of the LocalMaxs algorithm (Sec. 2.9) to extract relevant expressions of size
between two and seven. Do note that it is not possible to apply LocalMaxs to singular
words, as for there to be glue between words there needs to be a minimum of two words
composing a relevant expression. As such, distinct unigrams were all accounted for and

further refined, as succinctly explained in the next subsection.
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3.1.1 Stop-word removal

Most of the singular words comprising the documents hold little to no semantic meaning,
that is, they provide nothing of value in regards to understanding a document’s class.
Usually, these words appear quite commonly throughout the texts and can be discarded
with barely any information loss.

As such, stop-words were removed through a stop-word array of the Natural Language
Toolkit (NLTK) [43] Python library, by selecting only the words that do not appear on
this stop-word array.

Previously extracted n-grams were also refined through the usage of the NLTK stop-
word array by purging all n-grams (with n > 2) that started with, or ended with, any of
the stop-words appearing in the stop-word array or any special characters.

The usage of the NLTK library stemmed from the need of having readily available
stop-words at our disposal, as using another approach - such as the “elbow method” —
required a bigger corpus in order to correctly identify the stop-words.

It is important to note that, by using NLTK’s stop-word array, we are not adopting a
language independent approach, since the stop-word array only accounts for words in
the English language. The usage of the “elbow method” or any other statistical approach
would ensure language independence and, as such, would be preferable in a production
setting.

Throughout the following sections, and unless stated otherwise, the usage of the
expression “n-gram” also encapsulates unigrams, “relevant expressions” include both n-

grams and unigrams, and “term(s)” is used interchangeably with “relevant expression(s)”.

3.2 Feature dimensionality reduction through Similarity

Matrices

By using the relevant expressions extracted by the LocalMaxs (Subsec. 2.3.8) algorithm
and in order to reduce the number of obtained features, a similarity matrix between doc-
uments was built in such a way that the quality of features should ensure that similarity
values are high between pairs of documents that we know to be of the same class, and
low between documents of different classes.

These similarities were computed through the Pearson Correlation Coefficient, that
will have into account the discriminating power, that is, the quality of each feature. Note
that each document is initially characterized by the number of occurrences of each feature
already then weighed by its quality. Thus, each document will be characterized by the
similarity it has with all other documents of the entire corpus, forming a new set of
features equal in size to the number of documents, which represents a stronger reduction
as the initial number of attributes was composed of all extracted and filtered relevant

expressions.
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MATRICES

Covariance measures how the variation of a variable is related to the variation of
another. In the context we are dealing with, two documents d; and d; can be taken as
two variables. It is measured as followed, with |T| denoting the cardinality of the set of

n-grams:

and
V(t, dn) :P(tr dn) X Q(t)

Where Q(t) can be any combination of the metrics explained in the following subsections.
Through results shown in Ch. 4, it is visible that the usage of any singular metric was
not enough to obtain the needed quality of the similarity matrices, such that good re-
sults are achieved in clustering. This imposes some experiments on the usage of several
combinations of metrics.

By interpreting this formula (Equation 3.1), it is clear that if a certain term t appears
in both documents, it is a positive influence on the covariance, and it is also a positive
influence if it does not appear in either document. The influence of a term ¢ is only
negative if its occurrence is only in one of the documents in the expression.

And finally, the Pearson Coefficient reflects the correlation between two documents:

S(d:, d;) = cov(di,d;) (3.2)

ir%j
yeov(d;, d;) x \[cov(d}, d;)

S(d;, d;) is one of the N x N cells of the similarity matrix. The resulting matrix has N

rows and N columns, where N is the number of documents that were used to compute the

matrix. Values inside the matrix are within the range of [-1, 1], meaning positive values
signal that the documents share some features/expressions. The higher the positive value
and the closer to 1, the higher the similarity between the documents and thus the desired
result for documents of the same class.

Obviously, in a production scenario, classes will be unknown as these must be sug-
gested by the approach. However, during the development of this dissertation’s proposed
approach, we needed to evaluate the quality of the obtained results. To do so, we need
to work with human supervision, which is provided by the classes that we know each
document belongs to. Let us call these meta-classes.

3.2.1 Variation Coefficient

The Variation Coefficient tries to measure how disperse the probability of each term ¢
is. It is computed by the standard deviation of the probability of term ¢ through the
documents, divided by the average probability of t in the same documents. As such, the
equation for the Variation Coefficient is:
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o
Co(t) = 21
HPp(t)

(3.3)

With ¢ being the n-gram term whose Variation Coefficient we are calculating, P(t,-) in
Equation (3.4) is the average probability of the n-gram’s appearance in a document of the

corpus, and |[Docs| is the number of documents in the corpus.

\/|Dzl7_cs| ZdieDocs(P(tl dl) —P(t,-))2
v(t) =

¢ 1
[Docs| Zdz-eDocs P(t,d;)

3.2.2 Skewness Coefficient

The main idea behind the usage of the Skewness Coefficient measurement is to try and
understand which terms show to be outliers in the distributions of their probability
through the documents. Thus, if a term t has a significantly higher probability in a
small set of documents than in others, then the Skewness Coefficient value is positive,
suggesting that t is characteristic of that small set. If the Skewness Coefficient of ¢ is close
to zero, it means that t does not characterize that set of documents. Cases of negative
Skewness Coefficient of t are usually close to zero, meaning that ¢ is also irrelevant. From
now on, in this dissertation document, we can write “Skewness” or “3rd Moment” to
reference the Skewness Coefficient.

Besides the 3rd Moment, which is usually the statistical moment used in the Skewness
metric, we also attempted to calculate the 5th Moment of Skewness, alongside Kurtosis
(4th Moment), in order to empirically test if there are any improvements in the document
similarity matrices obtained through them.

We define a general metric Sk(t,n) in Equation (3.5), with ¢ being the n-gram on which
we want to calculate the coefficient of Moment 7, |Docs| being the number of documents in
the corpus, and P(t,-) is the average probability of the n-gram’s appearance in a document
of the corpus. When n = 3, we are calculating the Skewness; If n = 4 the Kurtosis will be

returned, etc..

e Zasenoes P, di) = P(t,)" > s

Sk(t,i’l) = mgx<0’ _
m Z'd,-EDocs [(P(t, d;) —P(t,.))z] 2

3.2.3 Probability Jump

The Probability Jump metric — or Jump for short — aims to detect significant changes in
the word’s probability inside the documents of the corpus. To do so, for every term ¢,
we order the documents the term appears in by descending order of probabilities. The
reasoning behind this ordering is that we intend to single out terms that only appear with
higher probabilities in certain classes, as these tend to better discriminate the class of

the document. The formula is as such, with t being the n-gram we want to compute the
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Jump of, P(t) is the average probability of t in the corpus, and A(t) is the difference in
probability of t in documents d; and d;,:

1 i=n-1
. A2 E.
Jump(t) = o Zl F(5)x F;
- (3.6)
and

Aj(t)=P(t,d;)—P(t,d;,1), P(t,d;) > P(t,di1) Vi

To further illustrate how this metric works, take, for example, two terms t; and t and

the ordered probabilities of said terms in ten documents, five for each class:

P(t;) =[0.400, 0.380, 0.370, 0.370, 0.365, 0.360, 0.350, 0.340, 0.340, 0.310]

P(t;) = [0.200, 0.190, 0.185, 0.183, 0.180, 0.020, 0.018, 0.015, 0.014, 0.014]

By applying this metric to these two terms, t; would be more valued in comparison
to t;, as it appears more often in a select few group of documents, and we can assume
that it is a term characteristic of that class, contrary to t; as it has very little variation in
probability in all ten documents, signaling it as very common in both classes. In order to
further increase the significance of the probability difference between documents, A(t) is

squared and is multiplied by F;, which is the attenuation factor being measured as such:

N

(2): i<
F; = (3.7)
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Ordering according to the probability of the term in the set of documents

Figure 3.1: Graphical example of Attenuation Factor (F; in Equation (3.6) and Equa-
tion (3.7)) with n = 60
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This factor aims to provide higher weight to terms whose biggest jumps in probability
occurs close to 5, considering the ordering of the n documents of the corpus, according
to the probability of t. In other words, the later the biggest jump appears in the ordered
probabilities, the higher it will be valued. In turn, if the jump occurs after the 5 position,
we start devaluing the difference in probabilities as the term is too common. This can
be visualized more easily in Figure 3.1, where it’s clear to see that F; gives a higher
weight to the first and second markers, but gives a lower weight to the third marker, as it
appears in a lot more documents and the function starts devaluing after the 5 mark (in
this case, n is equal to 60). The curve in Figure 3.1 favours terms where a high jump in
probability occurs “before” 4, in comparison to those where the jump occurs after that
point. For example, if a term t occurs in % of the documents of a corpus, it is more likely
that it is characteristic of some class(es) of documents, rather than if ¢ occurs in % of the

documents.

3.2.4 Additions to the metrics

Besides having used the previous metrics in the V(t,d,) expression in the covariance
computation (Equation (3.1)) of the Pearson Correlation Coefficient (Equation (3.2)), and
in the hopes of increasing the resulting similarities, the previous metrics were multiplied
by several other factors used alternatively, that we deemed as plausibly good additions.
This in turn changed the previous expression to V(t,d,) = P(t,d,) x Q(t) x Addition with
Addition being one of the following factors in Subsubsec. 3.2.4.1, 3.2.4.2, and 3.2.4.3,
and Subsec. 3.2.5.

3.2.4.1 Average term length

_ 1 1=n
L(Wy ey wy) = — X Zlen(wi) (3.8)
i=1

Average term (or word) length is one way to give more weight to longer, more dis-
criminating expressions. Take for example the following expressions: “Biological Agri-
culture” (average 10.5), “Football Championship” (average 10), “Politics” (average 8),
"Albeit"(average 6); It is clear that those expressions whose average word length is higher,
are more discriminative of the document topic. This leads to the assumption that, in
general, discriminating expressions tend to be longer than non-discriminating ones, even

regarding unigrams.

3.2.4.2 Median

The median aims to achieve the same as the average term length, that is, value expressions
that posses a higher amount of characters. However it offers better results in certain cases,
mainly where the expression has small words - such as definite articles like “a”/“an” —

which weigh the average down. For example “International Astronomical Union” has an
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average term length of 10, while the median is 12. Thus, by ignoring the lengths that are

smaller, it tends to favors the longer words, which are more semantically meaningful.

3.2.4.3 Expression size

There is no doubt that, generally speaking, expressions consisting of two or more terms
are more discriminative than others. The idea behind the usage of the size of an expres-
sion is to give more weight to expressions such as “International Union of Chemistry”
or “Milky Way Galaxy” as opposed to singular terms that commonly hold little to no

discriminative power.

3.2.5 W function

The W function aims to give more weight to terms based on a few following character-
istics: the popularity of a term, the distinct number of n-grams of the same size in the
document, and the average length of the words in the relevant expression.

Term popularity is defined by being the logarithm of the number of document this
term appears in. Much like the F; equations explained beforehand (Equation (3.7)), we
intend to give higher value to expressions that appear in several documents at the same
time. € is an infinitesimal value, as to ensure that very common terms are extremely
undervalued when compared to not so common terms. With ¢ being a term we wish to

compute the popularity of, and n the number of documents t appears in, we get:

|[Docs|
log(n+1) ,1<n<=

Popularity(t) = (3.9)

D
€ ,n>%

To give further importance to the terms, we use the number of distinct terms in a
document to boost the value of the metric. For all relevant expressions of size equal to the
relevant expression we want to compute the W function for, we count the total distinct
relevant expressions in said document. It is worth noting that “size” refers to the number
of words in the relevant expression — so for example “Chemical Properties” has size two.
Let t be a term and d the document we want to compute the total number of terms of size

equal to f:

D(t,d)=|t'ed At =t Asize(t') = size(t)| (3.10)

These two previously explained notions, along with the average length of the expres-
sion (Subsubsec. 3.2.4.1), culminate in the following expression which is then used in

conjunction with the metrics in the covariance computation (Sec. 3.2):

W(t,d) = Popularity(t)x D(t,d) x L(t) (3.11)

Ultimately, only the Skewness (3rd Moment) metric was tested with the W function,
as it was our elected metric to compute the similarity matrices, due to attaining the best
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results in general, by comparison with Variation Coefficient (Subsec. 3.2.1), Probability

Jump (Subsec. 3.2.3) and other Skewness Moments.

3.3 Feature reduction through PCA

Despite being a major improvement over the tens of thousands of features (relevant
expressions) extracted by the LocalMaxs algorithm, the computation of the similarity
matrix still yielded a big feature space that needed further reducing.

Principal Component Analysis is a widely used and highly effective method of reduc-
ing features that works by summarizing how each feature relates through one another
through their covariance.

Through the computation of the covariance matrix between the features of a multidi-
mensional feature set, and after finding the eigenvectors and eigenvalues of said matrix,
PCA is then able to select the N best principal components that capture most of the
cumulative variance of the dataset.

The number of principal components vary depending on the use case, and there is no
standardized way of selecting the optimal number of principal components. One possible
way to determine the optimal number of components is to see the cumulative explained
variance ratio and select the one which has the best trade-off of dimensionality reduction
and variance retention - in other words, the higher the number of components, the higher
the cumulative variance of the features, but the higher the number of retained features.

For our specific case, we use two principal components as they provided better results

overall, and easier visualization of the resulting data.

3.4 Clustering

After the application of the PCA to our similarity matrix, it is now possible to cluster
the documents into singular categories. This was done by giving the results of the PCA
transform to several clustering algorithms — BIRCH (Subsec. 2.5.2), Spectral Clustering
(Subsec. 2.5.6) and GMM (Subsec. 2.5.4) — whose results will be displayed in Ch. 4.

One problem that arose was the necessity of explicitly stating the number of clusters
for the algorithms to function correctly. It is worth noting that, as our approach was
developed and tested, documents needed to be labeled for human confirmation of the
resulting clusters, and we had to know a priori the number of clusters — which isn’t
possible in unsupervised problems. But there is a way to know what is the optimal
number of clusters, which is based on the Silhouette Method.

The Silhouette Method measures how similar a data point is to its own cluster when
compared to other clusters. Resulting values range from -1 to +1 and it reflects how well
the point was clustered. The average of all points of the dataset validate how well the
clusters were built, with values closer to 1 being a good result. The method is defined as
such, with a(i) being the mean distance between sample i and all other points in same
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cluster, and b(i) the mean distance between the sample i and all other points of the nearest

different cluster:

. b(i)—a(i)
= 3.12
S0 = S ax (a0, b)) (3.12)
After testing the algorithms with several iterations of the number of clusters param-
eter, and obtaining the Silhouette Coefficients of said iterations, the best coefficient is

chosen and the appropriate number of clusters is obtained.

3.5 Classification of new documents

Post-clustering, we want to classify new documents based on what the system has learned
through the previous phases. New entries to the system are raw text, which means that
for these entries to be classified as one of the learnt classes, we need to transform the text

the same way we previously did, with a few key differences.

Classification cross-validation was done with Leave-One-Out technique that consists
in using all of the instances of data in the dataset with the exception of one, which is later
used in testing. So for example, in a corpus of 60 documents, we would get 60 folds of
cross validation with the first one being Test: [0] and Train: [1,2...,59], then Test: [1] and
Train: [0,2...,59] and so forth. Since we are testing with smaller datasets it is possible to
apply this cross-validation technique, as it can be very costly for big datasets due to the
amount of folds equaling the number of samples.

For the sets of training documents, we need to compute the relevant expressions and
their corresponding SCP_f glue values through the LocalMaxs algorithm (Subsec. 2.3.8)
— if they’re composed of two or more terms — and metrics (stated in Sec. 3.2), as these
obviously change depending on the documents used in training.

After the extraction of the relevant expressions we then proceed to the computation
of the similarity matrix using the Pearson Correlation Coefficient (Equation 3.2) for the
N -1 training documents in the fold. PCA is used to reduce the number of features, and
is fit with the resulting training documents’ PCA scores, which will be used to transform
the test document matrix entry into the feature space of the training documents.

But before the test document is transformed by PCA and subsequently classified, it
needs to be compared with those existing in the training set. As such, a new matrix entry
is computed that consists of the similarity between the test document and those in the
training similarity matrix — this will result in an entry of (N — 1) size, consisting of the
test document’s similarity to those in the training set.

These similarities will be transformed by the PCA into the feature space of the training
data and classified by SVM (Subsec. 2.4.3), which was given the predicted labels of the
training document group and the PCA score of the test document entry to classify.
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It is also worth noting that all the words and expressions that consist in the new
entry are not taken into probability and metric calculations. This means that only words

appearing already in the system and in the new entry are used for computations.

3.6 Extracting the content of the clusters

In order to understand the given topic of a cluster, as the clustering algorithm just la-
bels the clusters numerically, the most important expressions were extracted from the
documents inside the clusters. This provides the user with some insight on what the
given cluster topic is about, which is very important for human readability and result
validation.

In order for an expression to be elected as a topic discriminant, it needs to be ranked
among other relevant expressions found in documents of the same cluster.

In the case of being an n-gram consisting of two or more words, we used the SCP_f
glue of the LocalMaxs algorithm (Subsec. 2.3.8) since higher glue values usually mean
that those expressions have high semantic meaning and, as such, are good candidates as
discriminants of a cluster’s topic. For n-grams of length two and higher we compute the

quality initially computed as such:

|d € Docs(C;) A f(RE,d) > 0]

Qu(RE,C;)=SCP_f(RE) x |d € Docs(C;)|

x G(RE) (3.13)

The second factor of Equation (3.13) stands for the ratio of documents that contain
the relevant expression. The factor G(RE) will be fulfilled with combinations of Skewness
and Median metrics. Results will be shown in Sec. 4.5.1.

However, some variations regarding the addition of other metrics and word length
were taken into consideration and will be shown in Ch. 4.

For unigrams, the equation above needs to be different as firstly, they do not have
the SCP_f glue as it is purely intrinsic to the LocalMaxs algorithm (Subsec. 2.3.8) and
requires at least two or more words to compute the glue, and secondly, unigrams tend to
be more common in several other categories instead of just one. To counteract this, an
adaptation of TF—IDF (Subsec. 2.3.2) was used, as this variation shows how important a

term is in relation to a cluster:

|Docs|
TF-IDF ,d) = P(t, | .14
Cluster(t d) (t d) X Og(ldZ c DOCS(CZ) Af(t,'dl > O)l (3 )
Which is used in the following equation:
1
Qu(t,Cj) = Docs(C))| E TF-IDF pyster(t,d) x G(2) (3.15)

deDocs(C;)

The factor G(t) in Equation (3.15) will be fulfilled with the inclusion, or not, of the
length of the single word. Results will be shown in Sec. 4.5.2.
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After the computation of these values for all the relevant expressions in the cluster’s
documents, we order them in descending order and choose ten in total. We extracted five
n-grams and five unigrams, as we deemed them sufficient in understanding the cluster’s
topic. Do note that this choice was somewhat subjective and arbitrary, as we could’ve
chosen more or less expressions. Still, we needed a good equilibrium on readability and
understanding of a cluster’s topic — for example having only two expressions may be
insufficient in understanding the topic, whilst having twenty expressions would help

understand the topic better but have unnecessary and redundant information.

3.7 Proof of concept - Indirect Expressions

At times, certain documents of the same meta-class do not share many expressions. This
can happen quite often in very broad topics such as “Politics” and “Philosophy”, that

often have highly different subtopics within their scope.

To counteract this, we propose a new concept in this domain — the usage of Indirect
Expressions. Initially, pairs of expressions are computed in such a way that every unique
term that is directly adjacent to any other term is accounted for. Afterwards, it is just
a matter of finding pairs of expressions in the likes of t, & t;, & t,, with t, being the

expression that links ¢, and ¢, and both ¢, and ¢, do not appear in the same document.

To fully understand Indirect Expressions, we need to understand the notion that a
direct expression is one that directly contributes to the similarity of a document with

another document. That is, an explicit expression of both documents.

For example, if a document d; has the expression “Atom”, then “Atom” is an explicit
expression of document d;. If we now take into consideration documents d; and d;, and
if d; has the explicit expression “Hydrogen”, it is possible to define “Hydrogen” as an
indirect (or implicit) expression of d;. This can occur if and only if, there is an expression
that links both “Atom” and “Hydrogen”, that exists in both documents (d; and d;), and is
adjacent to both “Atom” and “Hydrogen”. Do note that the usage of the word “expression”

encompasses both unigrams and n-grams up to seven words in size.

For a visual representation, let t,, be the expression existing in both documents, that
links both expressions “Atom” and “Hydrogen” and admit the following correlation S(.,.)

values:

S(Atom,t,)=0.5 S(t,,Hydrogen)=0.8
Atom ty Hydrogen

S(.,.) is computed through the Pearson Correlation Coefficient, as such:

35



CHAPTER 3. PROPOSED APPROACH FOR UNSUPERVISED CLUSTERING AND
CLASSIFICATION OF DOCUMENTS

COV(ti, t])
S(ti,tj) =
COV(tl', ti)X COU(t]', t])
(3.16)
cov(ti,t]-) = |D(1)—CS| Z (P(tird)_P(ti")) X (P(tj’d)_P(t]'"))

deDocs

This correlation defines how similar an expression is to one another with regards
to their common documents. Higher valu