
DEPARTMENT OF
COMPUTER SCIENCE

DINA DOS SANTOS BORREGO

Bachelor Degree in Computer Science

VERIFYING AND ENFORCING APPLICATION
CONSTRAINTS IN ANTIDOTE SQL

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
September, 2022



DEPARTMENT OF
COMPUTER SCIENCE

VERIFYING AND ENFORCING APPLICATION
CONSTRAINTS IN ANTIDOTE SQL

DINA DOS SANTOS BORREGO

Bachelor Degree in Computer Science

Adviser: Carla Ferreira
Associate Professor, NOVA University Lisbon

Co-adviser: Nuno Manuel Ribeiro Preguiça
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
September, 2022



Verifying and Enforcing Application Constraints in Antidote SQL

Copyright © Dina dos Santos Borrego, NOVA School of Science and Technology, NOVA University

Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the right, perpet-

ual and without geographical boundaries, to file and publish this dissertation through printed copies

reproduced on paper or on digital form, or by any other means known or that may be invented, and to

disseminate through scientific repositories and admit its copying and distribution for non-commercial,

educational or research purposes, as long as credit is given to the author and editor.



To my parents.



Acknowledgements

This thesis would not have been possible without the support of my supervisors, Professor Carla

Ferreira and Professor Nuno Preguiça, who helped me greatly throughout the year by providing

constant feedback and continuous guidance. Thank you for the patience, perseverance, and helpful

insights that enabled me to overcome this challenge.

I would like to thank Kevin de Porre for his time on providing me with all the help to understand

and use the verification tool used in this work. Thank you as well for your opinions, ideas, support,

and advises.

I would also like to thank some close and special friends, as well as my sisters, for all the good

moments that made the elaboration of this thesis much easier. A very special thanks also goes to

Afonso Vilalonga, who has always supported and put up with me throughout the process.

Finally, I would like to thank my parents, Maria Inês Borrego and Alfredo Borrego, for all their

support at the good and bad moments during my academic journey, for their patience, and also for

their love and emotional support. Without them, I could never have reached this stage in my life.

Thank you for everything.

v



Abstract

Geo-replicated storage systems are currently a fundamental piece in the development of large-scale

applications where users are distributed across the world. To meet the high requirements regarding la-

tency and availability of these applications, these database systems are forced to use weak consistency

mechanisms. However, under these consistency models, there is no guarantee that the invariants are

preserved, which can jeopardise the correctness of applications. The most obvious alternative to solve

this problem would be to use strong consistency, but this would place a large burden on the system.

Since neither of these options was feasible, many systems have been developed to preserve the

invariants of the applications without sacrificing low latency and high availability. These systems,

based on the analysis of operations, make it possible to increase the guarantees of weak consistency

by introducing consistency at the level of operations that are potentially dangerous to the invariant.

Antidote SQL is a database system that, by combining strong with weak consistency mechanisms,

attempts to guarantee the preservation of invariants at the data level. In this way, and after defining

the concurrency semantics for the application, any operation can be performed without coordination

and without the risk of violating the invariant. However, this approach has some limitations, namely

the fact that it is not trivial for developers to define appropriate concurrency semantics.

In this document, we propose a methodology for the verification and validation of defined prop-

erties, such as invariants, for applications using Antidote SQL. The proposed methodology uses a

high-level programming language with automatic verification features called VeriFx and provides

guidelines for programmers who wish to implement and verify their own systems and specifications

using this tool.

Keywords: Antidote SQL, Invariants, Static analysis, Weak consistency

vi



Resumo

Os sistemas de armazenamento geo-replicados são atualmente uma peça fundamental no desenvolvi-

mento de aplicações de grande escala em que os utilizadores se encontram espalhados pelo mundo.

Com o objetivo de satisfazer os elevados requisitos em relação à latência e à disponibilidade destas

aplicações, estes sistemas de bases de dados vêem-se obrigados a recorrer a mecanismos de consistên-

cia fracos. No entanto, sob estes modelos de consistência não existe qualquer tipo de garantia de que os

invariantes são preservados, o que pode colocar em causa a correção das aplicações. A alternativa mais

óbvia para resolver este problema passaria por utilizar consistência forte, no entanto esta incutiria

uma grande sobrecarga no sistema.

Sendo que nenhuma destas opções é viável, muitos sistemas foram desenvolvidos no sentido de

preservar os invariantes das aplicações, sem contudo, abdicar de baixas latências e alta disponibilidade.

Estes sistemas, baseados na análise das operações, permitem aumentar as garantias de consistência

fraca com a introdução de consistência ao nível das operações potencialmente perigosas para o invari-

ante.

O Antidote SQL é um sistema de base de dados que através da combinação de mecanismos de

consistência fortes com mecanismos de consistência fracos tenta garantir a preservação dos invariantes

ao nível dos dados. Desta forma, e depois de definidas as semânticas de concorrência para a aplicação,

qualquer operação pode ser executada sem coordenação e sem perigo de quebra do invariante. No

entanto esta abordagem apresenta algumas limitações nomeadamente o facto de não ser trivial para

os programadores definirem as semânticas de concorrência adequadas.

Neste documento propomos uma metodologia para a verificação e validação de propriedades defi-

nidas, como os invariantes, para aplicações que usam o Antidote SQL. A metodologia proposta utiliza

uma linguagem de programação de alto nível com capacidade de verificação automática designada

por VeriFx, e fornece as diretrizes a seguir para que o programador consiga implementar e verificar

os seus próprios sistemas e especificações, utilizando a ferramenta.

Palavras-chave: Antidote SQL, Invariantes, Análise estática, Consistência fraca

vii



Contents

List of Figures xi

List of Tables xii

List of Algorithms xiii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5

2.1 Consistency Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Strong Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Weak Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Mixed Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Conflict Resolution Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Last-Writer-Wins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Invariant Analysis Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Indigo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 CISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Hamsaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Blazes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.6 Repliss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.7 ECROs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



CONTENTS

2.3.8 Lucy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Background 27

3.1 Antidote SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Concurrency Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 VeriFx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Invariants Mapping 34

4.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Referential Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Numeric Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Attribute Equality/Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Aggregation Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Aggregation Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Linear Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Materialized Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Implementation 45

5.1 Data Convergence Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Last-Writer-Wins Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 First-Writer-Wins Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.3 Multi-Value Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.4 Enable-Wins Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.5 Positive-Negative Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.6 Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Invariant Maintenance Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Bounded Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Referential Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Verification of Conflict Resolution Policies . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Methodology 75

6.1 Methodology for Implementation and Verification of Applications . . . . . . . . . . . 75

6.2 Applying the Methodology to a Concrete System . . . . . . . . . . . . . . . . . . . . . 79

6.3 Approach Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusion 83

ix



CONTENTS

Bibliography 85

Appendices

A Bounded Counter for Upper Bounds 88

B Operation-based Exclusive Locks 89

x



List of Figures

2.1 Reduction rules for component paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Reconciliation rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Workflow for developing RDTs (taken from [9]). . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Concurrent inserts on Antidote SQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Example of foreign key constraint violation. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Update-wins semantics. (taken from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Delete-wins semantics. (taken from [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Problems of using a counter with aggregation inclusion invariants. . . . . . . . . . . . . . 41

4.6 Example of a solution using a set CRDT to maintains the “number” of albums. . . . . . . 41

5.1 Counterexample returned by the associativity proof. . . . . . . . . . . . . . . . . . . . . . 52

5.2 Test scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Representation of the scenario checked in the Listing 5.18. . . . . . . . . . . . . . . . . . 67

5.4 Execution scenario without using locks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Counterexample returned if the subscribe method did not use locks. . . . . . . . . . . . . 70

5.6 Counterexample returned by VeriFx for the Transaction_holds_invariant proof. . 72

6.1 Fragmentation of the system class to simplify the complexity of the system and check if it

converges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Workflow of the proposed analysis tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi



List of Tables

3.1 CRDTs supporting the different update-update semantics. . . . . . . . . . . . . . . . . . . 29

4.1 Management of rights depending on limit type and operation performed. . . . . . . . . . 39

4.2 Overview of the invariants mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xii



List of Listings

3.1 Table definition in Antidote SQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Definition of Integrity Constraints in Antidote SQL. . . . . . . . . . . . . . . . . . . . 30

3.3 Trait for the implementation of CvRDTs in VeriFx (taken from [9]). . . . . . . . . . . . 32

3.4 Trait for the verification of CvRDTs in VeriFx (adapted from [9]). . . . . . . . . . . . . 32

3.5 Trait for the implementation of CmRDTs in VeriFx (taken from [9]). . . . . . . . . . . 33

5.1 Last-Writer-Wins Register implementation in VeriFx (taken from [9]). . . . . . . . . . 46

5.2 merge method for FWW Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Time assumptions (taken from [9]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Multi-Value Register implementation in VeriFx (taken from [9]). . . . . . . . . . . . . 50

5.5 merge method of the first implementation of the EW Flag CRDT. . . . . . . . . . . . 51

5.6 Enable-Wins Flag implementation in VeriFx. . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 PN-Counter implementation in VeriFx (taken from [9]). . . . . . . . . . . . . . . . . . 54

5.8 Implementation in VeriFx of the Table Element data type. . . . . . . . . . . . . . . . . 55

5.9 mergeValues assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10 Implementation in VeriFx of the Table data type. . . . . . . . . . . . . . . . . . . . . 57

5.11 Proof of the correct functioning of concurrent updates and removals in an update-wins
table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.12 Implementation in VeriFx of the bounded counter CRDT for invariants of the type

greater or equal to K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.13 Proof to verify that the bounded counter maintain the invariant. . . . . . . . . . . . . 62

5.14 Implementation in VeriFx of the album management system (part 1). . . . . . . . . . 63

5.15 Implementation in VeriFx of the album management system (part 2). . . . . . . . . . 64

5.16 Adaptation of the containsAlbum function for the delete-wins foreign key policy. . . 65

5.17 Generic proof to verify the preservation of referential integrity. . . . . . . . . . . . . . 66

5.18 Proof with a specific scenario to prove referential integrity with the ON DELETE CAS-

CADE setting enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.19 Example with exclusive locks in VeriFx. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.20 Proof to verify the preservation of the invariant using exclusive locks. . . . . . . . . . 69

5.21 Example with shared locks in VeriFx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiii



LIST OF TABLES

5.22 Invariant checking proof for the example with shared locks. . . . . . . . . . . . . . . . 72

5.23 Definition of a system for testing the effects of conflict resolution strategies on specific

invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Model proof to verify the preservation of invariants in CvRDTs. . . . . . . . . . . . . . 77

6.2 Generic model for the implementation of referential integrity relations. . . . . . . . . 78

6.3 Definition of the albums system tables in Antidote SQL. . . . . . . . . . . . . . . . . . 79

6.4 Definition of the Artist data type in Antidote SQL. . . . . . . . . . . . . . . . . . . . 80

6.5 Definition of the Album data type in Antidote SQL. . . . . . . . . . . . . . . . . . . . . 80

A.1 Implementation in VeriFx of the bounded counter CRDT for invariants of the type less
or equal to K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1 Example with exclusive locks in VeriFx (operation-based replication model). . . . . . 89

B.2 Proof to verify the preservation of the invariant using exclusive locks (operation-based

replication model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiv



1

Introduction

1.1 Context

Today, many applications are user centered and are used by thousands of users around the world.

Examples include social networks such as Facebook, Instagram and Twitter, and e-commerce appli-

cations such as e-Bay and Amazon. In turn, users are becoming increasingly demanding and require

applications to have high availability, short response times (i.e., low latency) and good scalability [7].

To meet these requirements, many modern distributed systems are developing microservices

applications where data storage is delegated to databases replicated on multiple machines in several

globally distributed data centers [22, 28].

Data replication in itself enables the development of applications with high availability guarantees,

even in the presence of failures. However, when replicas are scattered all over the world, in addition

to high availability, it is also possible to significantly improve the latency of responses to users by

redirecting them to the geographically closest replicas [17, 5, 4].

Despite these benefits, geo-replication presents a trade-off between low latency coupled with high

availability and strong consistency [20, 14]. To achieve consistency in replicated systems, there is the

need to coordinate the replicas. Nevertheless a low latency and high availability, is not compatible

with coordination. For that reason, programmers have to choose what best suits the application they

are developing.

As far as databases are concerned, they can be divided into two major groups: SQL and NoSQL.

For many years, the databases used were mostly SQL databases. SQL databases provide a relational

model in which the structure of the database is organized into tables. This type of database emphasizes

data integrity and consistency, and enforces the ACID1 properties. It also provides a structured

query language (SQL) for querying the databases. However SQL databases are not optimized to scale

horizontally, that is, to scale by using more machines.

1Atomicity, Consistency, Isolation, Durability

1



CHAPTER 1. INTRODUCTION

With the emerging need for highly available and scalable applications where data is replicated

across multiple locations around the world, NoSQL databases have become more attractive. This

type of database follows a non-relational model and supports multiple structural and data modeling

options, such as graphs, document-oriented, key-value, and others. NoSQL databases are mainly

used for their flexibility, availability, scalability, and performance. However, they also have some

drawbacks: they only provide weak consistency and many of these systems provide a very simple and

limited interface that makes it difficult to model and access data efficiently [19].

1.2 Motivation

In geo-replicated settings, clients can access the data by contacting one of the replicas (usually the

closest one). Ideally, regardless replication, the system should behave as if there were only one replica,

i.e., it should provide strong consistency. However, strong consistency requires synchronization

between replicas, to enforce a total order of operations in each replica [22]. This would have a large

impact on the response times of replicated systems, and for large geo-replicated systems, the complete

ordering of all operations becomes too expensive due to the large number of replicas and the distance

between them.

In order to avoid the cost of synchronization, many systems opt for weak consistency models [17]

because operations can be performed without coordination. In these models, operations are prop-

agated in the background, which can lead to different execution orders in different replicas [10].

Although these models provide a better performance, they can lead to temporary or permanent state

divergence [4] between replicas and sometimes violate application-defined properties.

Permanent divergence is not admissible by users in this type of application, but this problem can

be solved by conflict resolution mechanisms such as CRDTs [25, 23]. These mechanisms are defined

at the data level and ensure that replicas have the same state after applying the same set of operations.

Nonetheless, as long as the operations are not replicated to all replicas, clients may see different states.

The second problem mentioned was the violation of data integrity properties defined by the

application. These properties, also called invariants, are properties that must be checked throughout

the execution of the program, but can be violated by the concurrent execution of some operations.

Since the problem lies in concurrency, many systems today try to combine strong and weak consistency

mechanisms by coordinating only the necessary operations and letting the others execute without

synchronization.

Many proposals have emerged in an attempt to strengthen invariants, mostly based on analysing

code and introducing consistency mechanisms. Some examples are RedBlue [17], IPA [4], and

ECROs [10]. However, these solutions are not easy to put into practice, since they are defined at

the level of operations and the behaviour of each operation must be thoroughly analysed.

Antidote SQL [20] has emerged as an alternative to these proposals and takes a different approach:

Antidote SQL defines the properties that applications must maintain associated with the data (unlike

other approaches that define these properties at the operation level) and guarantees that the appli-

cation properties are maintained regardless of the executed operations. In addition, Antidote SQL

has developed an interface that provides SQL functionalities for the NoSQL database, solving the

problem of a limited and inefficient interface mentioned in Section 1.1.

2



1.3. PROPOSED SOLUTION

Nevertheless, Antidote SQL poses some problems. The first problem is the correct definition of

invariants by developers, which can be a challenging task, especially for complex applications. Once

invariants are defined, it is difficult to understand how the defined invariants apply to Antidote SQL

and what conflict resolution strategies are appropriate. The third problem occurs when more than

one application needs to use the same database at the same time. In this case, it is necessary to verify

that the applications have mutually compatible invariants.

1.3 Proposed Solution

The main goal of this dissertation was to address some of the limitations of Antidote SQL. The

Antidote SQL presents an innovative approach with respect to the treatment of invariants. However,

this approach requires experience on the part of programmers to choose the right semantics for

the application. Even after being defined it is not always clear that the semantics chosen are the

appropriate ones for the application.

One possible solution to this problem is to use an analysis tool that allows developers to automati-

cally check whether the defined concurrency levels and conflict resolution strategies are correct for an

application using Antidote SQL, i.e. whether the invariants are preserved throughout the execution.

Unfortunately, and taking into account the differentiating approach of Antidote SQL, none of the

analysis tools available in the literature allow the analysis to be performed immediately, and many of

them require a high level of expertise in verification to be used.

Therefore, in this work we propose the use of a sophisticated programming language called Ver-

iFx [9] to verify the concurrency levels defined for tables in Antidote SQL. To enable programmers

to implement their applications in this language, we have implemented in VeriFx all the CRDTs used

in Antidote SQL that are not included in the VeriFx CRDT library and developed a methodology that

describes the guidelines that the programmer must follow to be successful in the verification task.

After analysing the weaknesses and limitations of the developed methodology, we also propose

the automation of the methodology and present a workflow of the proposed analysis tool.

1.4 Contributions

The main contributions of this work are:

• Mapping between the different types of invariants that exist in the literature, and mechanisms

for strengthening invariants in Antidote SQL (these mechanisms attempt to exploit the concur-

rency levels of the system whenever possible).

• A library that implements all the CvRDTs used by Antidote SQL, such as counters, registers,

tables, and flags (some of the CvRDTS were provided in [9]) in VeriFx. These CvRDTs allow

developers to implement their most complex systems by composing the provided CRDTs.

• Implementation and verification of some of the invariant maintenance mechanisms used by

Antidote SQL, namely the bounded counter, the referential integrity mechanism for the update-
wins policy, and exclusive and shared locks.

3



CHAPTER 1. INTRODUCTION

• Implementation of a running example and verification of convergence properties and correct-

ness of invariants for the implemented system.

• Methodology for implementing and verifying applications defined in Antidote SQL in VeriFx.

• Generic model for the implementation of referential integrity relations in VeriFx whose foreign

key resolution policy is update-wins.

• Generic model of a proof for verifying the maintenance of invariants in CvRDTs.

• Publication of a research paper for the INForum conference (“Verificação e Reforço de Invari-

antes Aplicacionais no Antidote SQL”). This paper presents some of the results of this disserta-

tion, namely an overview of the types of invariants and mechanisms for maintaining different

types of invariants while exploiting concurrency, as well as illustrative examples of how to

proceed in software verification.

1.5 Document Structure

The remaining of the document is structured as follows:

• Chapter 2: In this chapter, we present related work. First, we introduce some of the existing

consistency models and their properties. This is followed by a brief presentation of some conflict

resolution mechanisms. Finally, we conclude this chapter by presenting some of the analysis

tools available in the literature.

• Chapter 3: In this chapter we provide the necessary background for this dissertation and de-

scribe the main systems and tools that support this work. First we give a summary overview of

Antidote SQL, then we set the context to VeriFx and explain some important details.

• Chapter 4: In this chapter, we present a theoretical study of the different types of invariants.

For each type, a description and examples are presented to understand how they are defined.

For the types supported by Antidote SQL, the mechanisms used by the system to ensure that

the invariants are not violated are also presented. On the other hand, for the types that are

not currently supported, suggestions are made for possible mechanisms that could be used if

Antidote integrates them in the future.

• Chapter 5: In this chapter we discuss the implementations of CRDTs and invariant reinforce-

ment mechanisms used by Antidote SQL in VeriFx. We also discuss some details of the verifica-

tion process of the implemented data types.

• Chapter 6: In this chapter we describe a methodology for implementing and verifying systems

that use Antidote SQL in VeriFx. The chapter ends with a critical analysis of the limitations of

the approach.

• Chapter 7: In this chapter we conclude this thesis with a review of the work done and discuss

some possible future work.

4



2

Related Work

In this chapter, we present relevant related work, taking into account the conducted work in this

dissertation. First, we discuss consistency models and present some types of strong, weak, and mixed

consistency (Section 2.1). Then, we introduce some conflict resolution protocols (Section 2.2). Finally,

we present some of the existing invariant analysis systems (Section 2.3).

2.1 Consistency Models

A consistency model can be viewed as a contract between the processes and the database that specifies

precisely the results of write and read operations when they execute concurrently, and specifies under

what conditions different results can be obtained. Each of the consistency models provides a trade-off
between the levels of consistency and availability provided due to the CAP theorem impossibility

result.

The CAP [6] theorem states that it is impossible for a distributed system to simultaneously provide

the following guarantees:

• Strong Consistency: the multiple replicas of the system contain the same value after an opera-

tion is performed, which means that clients observe the most recent write regardless of which

node they connect to.

• High Availability: although replicas may fail, the system is still accessible through other nodes

and continues to respond to clients.

• Partition Tolerance: the system maintains the correct execution of operations in the presence

of network partitions.

Distributed systems cannot avoid partitions, so they must choose between strong consistency or

availability. While strong consistency models prioritise consistency over availability, weak consistency

models provide weaker consistency guarantees to ensure availability.

5



CHAPTER 2. RELATED WORK

2.1.1 Strong Consistency

With strong consistency, systems behave exactly like a single-threaded system, giving the illusion that

only a single replica exists, even though operations are performed in multiple replicas. As a result of

this behaviour, a total order of the operations must be defined, meaning that each operation must be

executed by every replica in the system in the same order, and users see the same state of the system

regardless of which replica the request was made to.

Since the system evolves synchronously under this model, reasoning about the behaviour of the

system becomes simpler and more intuitive. However, developers must consider the scalability and

performance of their application, as this level of coordination limits the concurrency between opera-

tions, which affects the response time for the client [27].

Thus, this level of consistency is important for applications where the different replicas must

always achieve agreement and contain the latest version to work correctly.

Below we will explain three types of strong consistency and their guarantees, as well as the differ-

ences between them.

Linearizability

Linearizability is the strongest form of consistency that a distributed system can have and it provides

guarantees for single operations on single objects.

Under this model, all replicas execute operations in the same order, and this order must match the

real-time order in which they were issued, implying a behaviour equivalent to a non-replicated system.

Write operations should appear to be instantaneous, i.e., as soon as a write operation completes, all

subsequent operations should see a state in which the write operation was performed.

Linearizability can be implemented using state machine replication with Paxos. State machine

replication ensures that all correct replicas follow the same sequence of state transitions by performing

operations in the same order. Therefore, Paxos can be used to determine the order in which the state

machine must execute operations.

Serializability

Serializability considers groups of one or more operations over one or more objects (i.e., transactions)

and guarantees that the execution of a set of transactions over multiple objects is done in compliance

with a total order.

One of the differences of this model compared to linearizability is that the order is not constrained

with respect to real-time. That is, all replicas must execute operations in the same order, but this

order may be different from the order of operations with respect to a global wall clock.

Sequential Consistency

Sequential consistency, also known as timeline consistency, is very similar to linearizability. This

consistency model guarantees that operations appear to take place in a particular overall order. How-

ever, unlike linearizability, the order does not have to match the global real-time order in which the

operations were actually issued by the clients.

6



2.1. CONSISTENCY MODELS

Despite that, it is important to note that the order in which the operations are executed must be

consistent with the order in which the operations are executed in each process, i.e., if op1 is issued

before op2 in process A, op1 must be executed before op2 in all replicas.

The difference between this consistency model and serializability lies in the granularity: the

granularity of sequential consistency is a single operation, while that of serializability is a transaction.

So if a program satisfies serializability, it also satisfies sequential consistency. The opposite is not true.

2.1.2 Weak Consistency

Under this consistency model, the operations are executed only on a small set of replicas (eventually

one) and then the response are sent to the client. The operations are then propagated asynchronously

to the other replicas. The fact that the replication mechanism is asynchronous means that coordination

overhead is minimised, which in turn is key to a high-performance and scalable database design.

In contrast to strong consistency, weak consistency models allows the state of replicas to diverge,

meaning that the same read can return different values on different replicas.

The downside, however, is that it becomes more difficult to reason about the system due to the

complex interleavings of execution.

Causal Consistency

Causal consistency captures the potential causal relations between operations and guarantees that all

processes observe causally-related operations in an order that respects their causality relations, i.e.,

in an order that respects the happens-before relation.

The happens-before relation was defined by Leslie Lamport [16] as follows:

Definition 1. The relation “happened-before” on the set of events of a system is the smallest relation
satisfying the following three conditions:

(i) If a and b are events in the same process, and a comes before b, then a→ b.

(ii) If a is the sending of a message by one process and b is the receipt of the same message by another
process, then a→ b.

(iii) If a→ b and b→ c then a→ c.

Two distinct events a and b are said to be concurrent if a↛ b and b↛ a.

Concurrent operations are not ordered in causal consistency and can be replicated in any order

across replicas. Thus, with causal consistency, all processes execute causally-related operations in

the same order, but may disagree about the order of causally independent operations. Since this

consistency model allows operations to be executed in different orders, the final state of the replicas

can diverge after executing the same set of operations without violating any causal property.

7



CHAPTER 2. RELATED WORK

Causal+ Consistency

Causal+ consistency [18] is a consistency model that provides stronger guarantees than causal consis-

tency by combining causal consistency with convergent conflict handling, thus solving the aforemen-

tioned problem.

The causal property guarantees that causal dependencies between operations are preserved. On

the other hand, the convergent conflict handling component ensures that the state of replicas does

not diverge forever and that concurrent updates executed in different order in different replicas result

in the same state in all replicas. This can be implemented using a handler function, which must be

associative and commutative to achieve convergence.

Eventual Consistency

Eventual consistency is the weak consistency model that offers the fewest guarantees, promising only

that eventually, when there are no more writes, all replicas of the system will converge to the same

state. In the meantime, the system may be inconsistent.

Once this model does not coordinate operations, it is the one that provides better performance to

the systems. However, for many applications, eventual consistency is a model with guarantees that

are too weak.

2.1.3 Mixed Consistency

An invariant is a property that must always be maintained in the context of an application. A system

may have multiple invariants, and to ensure its correct behaviour, all invariants must be maintained

throughout the application’s lifetime.

For instance, in an application that manages a bank account, one possible invariant is that the

balance must not be negative [4, 12, 2]. Suppose the initial balance is 100=C and two withdrawals of

60=C are made simultaneously in different replicas.

In an application with a strong consistency model, the two operations would be ordered and one

would be executed before the other. After the execution of the first operation, the balance would

be 40=C and for this reason the second operation would be cancelled, since the balance would not

be sufficient for the second withdrawal. In this model, the invariant holds and the final state of the

system would be correct.

On the other hand, under weak consistency models (e.g., eventual consistency), the following

situation could be verified. Since the balance is initially 100=C and once 60 < 100, the two opera-

tions would be validated and executed locally in each replica. However, when the operations were

propagated, the invariant would be broken since the final balance would be -20=C.

As the example shows, the concurrent execution of some operations can affect the correctness of

the application when weak consistency models are used. However, the problem no longer exists with

strong consistency models. While weak consistency models provide high availability and performance,

the fact that they allow concurrency can lead to undesirable semantics. These anomalies do not occur

in stronger consistent systems, but sorting all operations incurs on a large overhead [5].

8



2.1. CONSISTENCY MODELS

Moreover, not all operations require strong consistency: only the operations that may violate the

invariants of the application need to be coordinated, while the remaining operations can be safely

executed without synchronization [17].

Mixed consistency, also called hybrid consistency, allows combining multiple levels of consistency

to ensure that the invariants defined by the applications are not violated.

Per-record Timeline Consistency

Per-record timeline consistency [7] is the consistency model of PNUTS and is a model that combines

strong consistency with weak consistency.

Under this model, all replicas of a given record apply all updates to that record in the same order.

On the other hand, updates can be performed on different records at the same time, and the order

in which each replica executes them is irrelevant. This means that strong consistency is guaranteed

for each record, while only weak consistency is guaranteed between records. For example, if a set

of operations (op1 and op2) are performed on record rec1 in replicas A and a set of operations (op3

and op4) are performed on rec2 in replica B, then in both replica A and B the operations for rec1 and

rec2 must be executed in the same order, that is, op2 cannot be executed before op1 and op4 cannot be

executed before op3. However, the order in which operations are executed on different records is not

subject to any restriction, so op3 could be executed before op1.

In this model, each record is assigned to a master replica to which all update operations for that

record are forwarded. For efficiency reasons, the master replica is the one that receives the majority

of write operations for a given record, and this replica may change depending on the workload. After

execution in the master replica, the operation is asynchronously propagated to the other replicas.

RedBlue Consistency

RedBlue Consistency [17] is a consistency model that aims to ensure low response times while main-

taining data consistent. To this end, it divides operations into two types: red and blue. Red operations

require coordination because they can break invariants and must be executed in the same order on

all replicas. Blue operations, on the other hand, are immediately executed locally and replicated

asynchronously, which means that the order of execution on replicas can be different.

RedBlue consistency besides to consider a partial order of operations (taking into account the

definition of each operation in red or blue), also considers a set of local causal serializations that

define site-specific total orders in which the operations are locally applied.

From the definition of each operation type, we can conclude that systems in which all operations

are marked as red provide serializability, while systems in which all operations are blue can be

considered as providing eventual consistency.

Although some operations are not commutative and therefore cannot be executed in different

order on replicas, it is sometimes possible to make changes so that the system state commute. For this

purpose, each operation is divided into two components: a generator and a shadow operation. The

generator operation has no side-effects, is executed only on the replica where the request was made,

and generates the shadow operation. The shadow operation, in its turn, should have the same effects

as the original operation and is executed on all replicas, including the one on which the generator

9



CHAPTER 2. RELATED WORK

operation was performed. It is the generator operation that decides which state transitions to execute,

while the shadow operations simply apply the transitions, regardless of the state.

With this approach, it is possible to define commutative shadow operations, even for original

operations that are not commutative. For example, an operation that increments the value of X by

20% is a non-commutative operation because the result varies depending on the value of X. However,

if the generator operation computes the value corresponding to 20% of X, and the shadow operation

adds only that value to X in each replica, the operation becomes commutative.

Nevertheless, there may be non-commutative shadow operations. Therefore, the operations are

classified as blue or red according to the following three criteria:

• For each pair of non-commutative shadow operations, the two operations are marked as red.

• Any shadow operation that might violate an invariant is marked as red.

• Any operations that are not marked as red are marked as blue.

Explicit Consistency

Explicit consistency [5] is a consistency model that strengthens eventual consistency by combining it

with guarantees that the properties defined by applications will be maintained.

This consistency model is defined in terms of application properties, which means that systems

are free to order the execution of operations on different replicas as long as the invariants hold.

The developers define application-specific correctness rules in the form of invariants over database

state. Systems based on the invariants identify unsafe operations, i.e., operations that can lead to

invariant violation under concurrent execution. More sophisticated implementations, instead of

coordinating all operations deemed critical, use approaches that allow systems to avoid coordinating

these operations.

2.2 Conflict Resolution Protocols

In weaker consistency models, where concurrent operations can be executed in a different order in

each replica, replicas can diverge eternally. For example, consider a replicated register that can be

modified by any of the replicas and whose initial state is 1. In replica A, an operation is performed

that increases the register value by 2 units. At the same time, in replica B, an operation is performed

that multiplies the register value by 5. When the operations are replicated to the other replicas, the

register value in replica A would be 15, while in replica B it would be 7, i.e. the state of the system

would not be consistent.

In consistency models that guarantee that the state of replicas converges to the same state when

writes cease, as is the case with eventual and causal+ consistency, this behaviour is unacceptable.

Therefore, systems that adopt these types of consistency must include mechanisms for merging con-

current updates that guarantee that all replicas converge to the same state after the same set of

operations is applied to each.

Depending on the specifics of the system, different merging strategies can be used. Three different

conflict resolution strategies are presented below: last-writer-wins, CRDTs, and Dynamo’s approach.

10



2.2. CONFLICT RESOLUTION PROTOCOLS

2.2.1 Last-Writer-Wins

Last-writer-wins is the most famous conflict resolution protocol, and as the name implies, when

concurrent writes are applied to a given data object, the last write prevails according to a specified

overall order, and all other concurrent writes are discarded. This behaviour can cause updates to be

lost, which should not happen in certain situations [2].

For example, if the application in question manages a bank account, the use of last-writer-wins is

inappropriate. If two withdrawals were made to the same bank account at the same time, only the

last one would prevail under this policy, meaning that only one of the values would be considered for

the final state of the database. Therefore, despite the fact that the value of two withdrawals left the

account, only one would be deducted from the balance.

An example of a system that uses the last-writer-wins merge policy is Cassandra [15].

2.2.2 CRDTs

To avoid anomalies caused by lost updates, many databases today use CRDTs that provide merge

functions to ensure that all updates are reflected in the final database state [2].

A Conflict-Free Replicated Data Type (CRDT) [25] is an abstract data type designed to be replicated

across multiple replicas and based on mathematical properties that guarantee state convergence

without synchronization across replicas. When using a CRDT, update operations can be applied

immediately in each replica without coordination, and replicas are guaranteed to reach equivalent

states when they have seen the same set of operations.

Designs of these data types include registers, sets, counters, maps, etc., and each type has concur-

rency semantics that define how the CRDT handles concurrent operations. Below are presented some

examples of CRDTs.

There are two different CRDTs that can be used to implement a register. The last-writer-wins

register CRDT uses the last-writer-wins policy. Thus, if the register is updated concurrently, only the

value of the last write (in a given total order) is retained. The multi-value register CRDT, on the other

hand, is designed to preserve all values from concurrent writes and for this reason, a read operation

returns a set containing all values written simultaneously.

Another type of CRDT is the counter CRDT. Counters are data types that can be modified by

increasing or decreasing them by one or more units. Since these operations commute with each other,

the natural concurrency semantics for the counter CRDT is to have a state that reflects all updates

made, i.e., the sum of all increments minus the sum of all decrements. The counter CRDT is a useful

data type for numeric data, but it cannot be used when that data is subject to constraints (e.g., x > 0),

as this could lead to invariant violations. To allow some degree of concurrency even for operations

that might violate numeric invariants, a CRDT called bounded counter CRDT is used.

The bounded counter CRDT defines a counter that never reaches negative values and encapsulates

an implementation of escrow techniques. This CRDT assigns a number of allowed decrements to

each replica, where the sum of all decrements must not exceed the value of the counter. As long as

the allocated decrements are not used up, the replicas can accept decrements without coordination.

When a decrement operation is performed and the replica has exhausted its allowed decrements, the

replica tries to get decrements from other replicas. If this is not possible the operation is aborted.

11



CHAPTER 2. RELATED WORK

According to the system synchronization model, there are two basic types of CRDTs: state-based

CRDTs and operation-based CRDTs.

State-based CRDTs. In state-based CRDTs, operations are executed locally and then the local state

of the replica is propagated (this state reflects the effects of the operations performed). When a

replica receives the state of another replica, it merges the received state with its own local state so

that the resulting state contains the updates of the two states. To achieve convergence in this case,

it is necessary that the operations change the state of the replicas by inflation (i.e., produce a state

equal to or greater than the previous state), that all possible states form a join-semi-lattice (i.e., that

the sequence of all possible states is partially ordered according to ≤), and that the defined merge

function produces the join (least upper bound) of the two states.

Operation-based CRDTs. In operation-based CRDTs, update operations are propagated to the other

replicas, which also execute them. Therefore, the same set of operations is performed in each replica

allowing the replicas reach the same state. Convergence is achieved only if the concurrent updates

are commutative. In an operation-based specification, the update operations are executed in two

phases: the prepare phase and the effect phase. The prepare phase is executed on the replica on

which the update was submitted and has no effects. The effects of the operation are encoded in the

effector function, which is created depending on the state of the original replica. Then, the operation

is replicated by broadcast the effector function to all replicas including itself. The effect phase applies

the incoming messages and updates the state, by executing the effector function.

2.2.3 Dynamo

Dynamo [11] is a highly available key-value storage system used by some of Amazon’s core services

to provide an “always-on” experience. To this end, Dynamo uses an eventual consistency model in

conjunction with a conflict resolution strategy.

In Dynamo, the conflict resolution task is delegated to the application rather than to the database:

the divergent state is exposed to the clients, which in turn merge these values and write the new value

back to the system. This approach is called application-dependent policy and allows the application

to choose the conflict resolution method that best fits the user’s intended experience.

Consider an application that manages a shopping cart in which a product A is added to the cart

and, at the same time, a product B is simultaneously placed in the cart in another replica. Dynamo’s

approach keeps the two products in the cart until the next read. On the next read, all values are

returned and the application merges the concurrent operations and sends the new state of the cart

(which would contain the two products) to the database.

2.3 Invariant Analysis Systems

Minimizing coordination among replicas is key to maximizing the scalability, availability, and perfor-

mance of database systems [2]. As explained above, and with this goal in mind, applications currently

12



2.3. INVARIANT ANALYSIS SYSTEMS

attempt to combine weak and strong consistency mechanisms, using the latter for operations that

could potentially compromise application invariants.

However, reason about the interleavings in the execution of concurrent operations and distinguish

which operations should be coordinated and which should not, can be a very complicated task for

programmers.

Therefore, several tools have been developed to analyse the specification of applications and

their invariants, and to identify which operations should be coordinated. The analysis tools help

programmers to exploit mixed consistency as much as possible [22] and sometimes suggest alternative

mechanisms for coordination.

To address the question of which operations must be coordinated, Bailis et al. formalized a suffi-

cient and necessary condition for invariant-preserving and coordination-free execution of an applica-

tion’s operations: invariant confluence, or I-confluence [2].

To define I-confluence, we must first define what an I-valid state and an I-T -reachable state are.

A state is said to be I-valid if the invariant in that state is true. As for an I-T -reachable state is a state

Si which, given an invariant I and a set of transactions T (with merge function ⊔), contains a (partially

ordered) sequence of transaction and merge function invocations that yields Si , and any intermediate

state generated by transaction execution or merge invocation is also I-valid. These previous states are

called ancestor states.

We can now introduce the definition for the I-confluence property:

Definition 2 (I-confluence). A set of transactions T is I-confluent with respect to invariant I if, for all
I-T -reachable states Di , Dj with a common ancestor state, Di ⊔Dj is I-valid.

Informally, an object is I-confluent with respect to an invariant if all replicas of the object are

guaranteed to preserve the invariant, even if the different replicas can be modified or merged simulta-

neously.

Using the definition of I-confluence, the following theorem was derived:

Theorem 1. A globally I-valid system can execute a set of transactions T with coordination-freedom,
transactional availability, convergence if and only if T is I-confluent with respect to I .

Theorem 1, states that if the operations in an application are I-confluent, the database can execute

the operations correctly without requiring coordination. Thus, I-confluence can be used to define

which operations need to be coordinated.

Next, we present some static analysis tools, some of which use the I-confluence definition to

derive conflicting operations.

2.3.1 Indigo

Indigo [5] is a middleware system designed to provide explicit consistency on a causally-consistent

geo-replicated data store. It proposes a three-step methodology for deriving a safe version for applica-

tions. In the first step, the static analysis tool is used to determine which operations can be performed

safely without coordination. The unsafe operations, i.e., the operations that can lead to invariant

violation if executed concurrently, are referred to as I-offender sets. Once the I-offender sets are

13



CHAPTER 2. RELATED WORK

identified, programmers must decide how to handle such operations, with two alternatives available

to them: violation avoidance and invariant repair. Finally, the application code is instrumented with

the appropriate middleware library calls.

For the analysis, programmers must provide the model of the effects of operations (postconditions)

in the form of annotations that indicate the changes that each operation makes to the state. This

information, in combination with the invariants, enables the derivation of the I-offender sets using a

static verification technique. The need for a static verification technique arises from the fact that it is

not possible to analise all reachable states and, for each state, all sets of possible operations.

To identify the I-offender sets, the algorithm statically determines the pair of conflicting opera-

tions, i.e., the operations that may violate the invariants if executed concurrently.

Definition 3 (Conflicting operations). Operations op1, op2, ..., opn conflict with respect to invariant I if,
assuming that I is initially true and the preconditions for op1 and op2 to produce side effects are initially
true, the result of substituting the postconditions of both operations into the invariant is not a valid formula.

Indigo uses Z3, a Satisfiability Modulo Theory (SMT) solver to check which operations are con-

flicting. First, it checks whether the operations lead to opposite postconditions, which would violate

the invariant since a predicate cannot have two different values at the same time. To this end, it

checks whether the operations are self-conflicting, i.e., operations that violate the invariant when

performed simultaneously with different arguments and then, for all pairs of distinct operations, it

checks whether they can lead to opposite effects. The remainder of the analysis tests the effects of

concurrent execution of pairs of operations on the invariant.

After computing the I-offender sets, the programmer must choose between invariant repair and

violation avoidance.

Invariant Repair

The invariant repair technique allows simultaneous execution of operations, even conflicting oper-

ations, and repairs the invariant when it is broken. To this end, conflict resolution protocols must

include mechanisms to repair invariants in the case of a violation. Indigo supports multiple CRDTs

to automate the process of invariant repair.

Violation Avoidance

Violation avoidance is a preventive technique and restricts concurrency to avoid invariant violations.

In many cases, it is not necessary to impose coordination on replicas to avoid invariant violation.

Indigo offers several reservation techniques for this purpose, which are presented below.

UID generator. The generation of unique identifiers can be easily solved without requiring coordi-

nation between replicas by statically partitioning the space of identifiers for each replica. The Indigo

approach is to append a replica-specific suffix to the locally generated identifier.

14



2.3. INVARIANT ANALYSIS SYSTEMS

Multi-level lock reservation. The multi-level lock restricts the execution of concurrent operations

that could break invariants. There are three types of multi-level locks, each of which provides the

following privileges:

• Shared forbid: assigns the right to forbid the execution of a particular operation.

• Shared allow: grants the right to allow the execution of a specific operation.

• Exclusive allow: grants the exclusive right to execute an operation, which means that no other

operation can be executed at the same time.

If a replica has a lock, no other replica can have a different lock type at the same time.

This type of reservation allows the invariants of each application to be strengthened. However, in

some cases it is possible to maintain invariants while having some concurrency degree.

Multi-level mask reservation. Multi-level masks are used for invariants that are the disjunction

of multiple predicates. For these invariants, it is sufficient that one of the predicates be true for the

invariant to be satisfied.

A multi-level mask reservation can be viewed as a vector of multi-level locks, where, for example,

for the invariant P1 ∨ P2 ∨ ...∨ Pn a multi-level mask with n entries would be created (the ith entry

would control the operations that can make Pi false). To execute an operation that makes Pi false, the

replica must get a shared allow right for the ith entry and a shared forbid right for an entry where the

predicate is true.

Escrow reservation. This technique can be used with numeric invariants. For example, considering

an invariant of the form x ≥ k, the escrow reservation technique allows some decrements to be

performed without coordination. Initially, there are x0−k rights to execute decrements, since x0 is the

initial value of x. These rights can be dynamically shared between replicas, and when a decrement

is executed, the operation consumes n rights. If the replica does not have n rights locally, then try to

obtain additional rights from the other replicas. If this is not possible, the operation is aborted. The

increment operation, in turn, creates rights for the system.

If the numeric invariant is expressed in the form of x ≤ k, the increment operation consumes rights,

while the decrement operation generates them.

Partition lock reservation. Allows replicas to obtain an exclusive lock on an interval of real values.

For example, in a system for booking medical appointments, two concurrent operations scheduling

an appointment break the invariant if the appointments overlap in time. However, the invariant is

not broken if the appointment times do not overlap. With partition lock reservation, this operation

would lock the appointment interval so that other appointments can be scheduled at the same time

for different hours.

2.3.2 IPA

IPA [4] is a static analysis tool that identifies conflicting operations and proposes changes to preserve

invariants without requiring coordination. Whenever possible, IPA attempts to augment operations

15



CHAPTER 2. RELATED WORK

with updates that preemptively guarantee the preservation of invariants in the presence of concur-

rency. However, the additional updates should have no visible effect when no conflicting operations

are performed concurrently, and should only be applied when it is necessary to correct an undesir-

able effect caused by concurrency. For cases where this condition cannot be not met, IPA supports

compensation mechanisms that are applied only when violations are detected.

IPA follows the notions of I-confluence and presents a methodology that can be divided into three

phases: specification, IPA analysis, and code modification.

IPA, just like Indigo, uses the information about operations and application invariants to perform

the analysis. Thus, the first step is to create the application specification, which defines the invariants

and the effects of each operation on the system state.

Using the specification and the conflict resolution strategies originally defined by the programmer,

the IPA analysis is performed.

The analysis step returns a new specification to the application that contains the selected changes,

i.e., both the appropriate conflict resolution rules for each object and the necessary changes to the

operations to avoid breaking the invariants. With this information, the programmer must apply the

selected options in the application code.

IPA Analysis

This phase is performed by the IPA analysis tool and consists of an iterative process that analyses

the specification and the conflict resolution strategies originally defined by the programmer. In each

iteration, the tool identifies the pairs of conflicting operations - conflict detection - and also proposes

modifications that ensure that the invariants are preserved under concurrent execution - conflict

repair. These changes comprise new versions of the operations and appropriate conflict resolution

mechanisms. Considering these suggestions, the programmer chooses which conflict resolution pro-

tocol he prefers, and a new iteration begins. Iterations continue until no more conflicts are detected.

Conflict Detection. The conflict detection algorithm identifies the pairs of operations that, if exe-

cuted simultaneously, could violate the invariants of the application. For this purpose, all pairs of

operations in the specification are considered.

The conflict detection begins by checking for each pair of operations whether they have opposite

effects. For each of the operations that have an opposite effect, the algorithm uses the rule established

by the initial conflict resolution protocol to change the predicate value in one of the operations. If no

rule exists for the predicate, the programmer is prompted for the rule it pretends to use (add-wins or

remove-wins).

Then the algorithm checks whether the simultaneous execution of two operations breaks the

invariant, and it consider their execution in all valid states. It is enough that the invariant does not

hold for one of the states for the operations to be considered as conflicting. To efficiently search for a

valid execution, IPA uses an SMT solver that employs various optimizations and heuristics to avoid

exhaustively testing all cases.

16



2.3. INVARIANT ANALYSIS SYSTEMS

Conflict Repair. The conflict repair algorithm tries to find modifications to the operations and to

the conflict resolution rules for the pairs of operations that break the invariants. The purpose of

these changes is to guarantee that the invariants are preserved when the operations are executed

concurrently.

Numeric Invariants

The numeric invariants are difficult to preserve by modifying operations and are therefore treated

with a compensation mechanism. The idea of the compensation mechanism is to check whether the

precondition of the operations is true when the operation is performed in the initial replica, and to

check whether the invariants are preserved when the operation is replicated. If the invariants do not

hold, a compensation is applied.

In a flight booking application where two customers buy the last available seat for a flight at the

same time, a possible compensation could be to refund the money to one of the customers.

The compensation mechanisms in IPA are implemented using a CRDT developed for this purpose.

If compensation is required, the analysis tool simply detects the violation of the invariant and does

not propose any change. The compensation mechanism is entirely up to the programmer.

2.3.3 CISE

CISE consists of a formal proof rule [12] and a static analysis tool that encodes the proof rule [22] and

whose goal is to help programmers explore consistency models. With this tool, application developers

can verify that their applications maintains invariants on a replicated database with a particular

replication protocol.

CISE assumes an asynchronous consistency model, where client operations are executed imme-

diately on the local replica (called the origin replica) and the response is returned to the client im-

mediately. After that, the replica sends to the other replicas a function that defines the operation

effector describing the updates to the database state. Upon receiving this message, the replicas apply

the effector to their local state. Another assumption of CISE is that the consistency model guarantees

causality, which means that the effectors of causally dependent operations must be executed in the

same order in all replicas.

The tool automates the proof rule using an SMT solver. When an obligation2 fails, a counterex-

ample is provided by the tool which allows the developer to understand the problem in order to fix

it.

The CISE analysis can be divided into three proof obligations: safety analysis, commutativity

analysis, and stability analysis. Safety analysis checks whether the effector of each operation preserves

the invariants when applied in any state where the preconditions are verified. In turn, commutativity

analysis checks whether all pairs of effectors of all operations commute with each other, i.e., whether

executing these effectors in any order leads to the same state, regardless of the initial state in which

the effector is applied. Finally, the stability analysis checks whether precondition of operation o is

stable under the execution of the effector of any operation o′ .

2A proof obligation is a theorem stating that a defined property must hold in order for a formal specification to be internally
consistent [26].

17



CHAPTER 2. RELATED WORK

2.3.4 Hamsaz

Hamsaz [14] is a tool that automates the static analysis process of sequential objects, instantiates pro-

tocols, and synthesizes replicated objects. The analysis process allows to determine in a static way the

conflicting and dependent operations, information with which it tries to avoid coordination between

replicas. To minimize coordination between replicas this tool uses an approach based on a condition

for the integrity and convergence of replicated objects called well-coordination. Well-coordination

is a condition that requires coordination between conflicting operations and causality between de-

pendent operations. A replicated execution is said to be well-coordinated if the permissibility of the

calls in the origin replica is verified (permissibility requires that the invariant holds before and after

the execution of the operation), if the conflicting calls are synchronized, and if the dependencies are

preserved.

The Hamsaz tool first determines, with a SMT solver, the pairs of conflicting operations and the

methods that have dependency relationships. The analysis returns graphs representing the conflict

and dependency relationships. The graphs are used to avoid coordination between replicas and to

instantiate the protocols that synthesize the replicated objects, which corresponds to the second phase

of Hamsaz’s approach.

Hamsaz presents two possible protocols for synthesizing the replicated objects. One of them is

non-blocking and based on Total Order Broadcast (TOB). The other one is blocking but allows the

execution of some conflicting methods without synchronization.

Non-blocking Protocol

With this protocol, the crash of one replica does not prevent the other replicas from progressing. The

idea behind the non-blocking protocol is to synchronize the conflicting calls in each set. As mentioned

earlier, graphs containing the conflict and dependency relationships are returned as the result of the

analysis. To minimize coordination between replicas, this protocol uses the graph representing the

conflict relations and finds the maximal cliques3 of this graph. The methods belonging to each of the

maximal cliques found must be synchronized with each other, while methods from different maximal

cliques can be executed simultaneously.

To deliver the method calls in the same order in all replicas, a variant of the total order broadcast

protocol is used. Since methods need only be ordered relative to the other methods in the clique, one

instance of TOB is used for each maximal clique. If a method belongs to more than one clique at a

time, a method call must be ordered for all cliques to which it belongs. Method calls are broadcast to

each of the TOB instances to which they belong, and are not executed until they have been sorted and

delivered by all replicas to ensure that all replicas perform operations in the same order. However, if

the TOB instances are not properly coordinated, deadlocks can occur. Thus, to prevent deadlocks, a

variant of TOB is used, the Multi-Total Order Broadcast Protocol (MTOB).

3A clique is a subset of vertices where each two distinct vertices are adjacent. In turn, a maximal clique is a clique that
cannot be extended by the inclusion of another adjacent vertex.

18



2.3. INVARIANT ANALYSIS SYSTEMS

Blocking Protocol

When a non-blocking algorithm is faced with a pair of conflicting methods, both methods must be

synchronized. The blocking protocol, in turn, avoids using synchronization and, in the same situation,

only synchronizes one of the methods. Suppose there are two conflicting methods m and m′ and it

is intended that calls to method m are executed without synchronization. When calls to method

m′ are executed, the other replicas block the execution of calls to m (in this way calls to m are not

accepted). However, some replicas may have already received calls from m that they have not yet

propagated. These operations must be propagated and executed, to guarantee that the same set of

calls of m has been executed on all replicas, and then m′ can be safely executed. Finally, the calls to

m are unblocked. To minimize the required synchronization, the protocol finds the minimum vertex

cover4 of the conflict graph and synchronizes only when methods in the cover are invoked.

To optimize the responsiveness of the system, methods can be assigned with weights that are

inversely proportional to how often they are invoked. This would mean that the methods that block

the system are called less often, improving system performance.

With this protocol, the replicas wait for each other, so that the crash of one replica can prevent the

progress of the other replicas.

Dependency Tracking Protocol

The above description of the protocols assumed that the operations are independent of each other,

and only described the behaviour when the operations conflict with one another. In this section, the

behaviour of the protocols is presented considering dependency relationships.

If a call does not require synchronism, it is simply transmitted and executed by the replicas

immediately upon arrival. However, if the method call has dependencies, these should be tracked in

the originating node and transmitted along with the call. The nodes should not execute the call until

the dependencies are applied.

On the other hand, if synchronization is required, it is used a protocol that is the inverse of

the classic atomic protocol. After the call is synchronized across all replicas, it may or may not be

permissible on different nodes. If the call is permissible on one of the nodes, that node propagates

the dependencies to the other nodes so that they all become permissible. This means that the call will

be aborted only if all replicas vote to abort.

2.3.5 Blazes

Blazes [1] is a cross-platform program analysis framework that identifies program locations that re-

quire coordination to ensure consistent execution, and automatically synthesizes application-specific

coordination code that can significantly improve system performance that would otherwise require

global coordination.

4A minimum vertex cover of a graph is a smallest subset of the vertices such that each edge has at least one endpoint in the
cover.

19



CHAPTER 2. RELATED WORK

Figure 2.1: Reduction rules for component paths.
Figure 2.2: Reconciliation rules.

Blazes can be automatically applied to existing platforms based on distributed stream or dataflow

processing. Moreover, Blazes takes advantage of declarative programming languages once program-

mers do not need to annotate these cases. However, when programs are developed using non-

declarative languages, programmers must annotate paths through components and input streams.

Blazes uses this information to derive labels for the output streams of each component. Blazes views a

stream as a collection of unbounded and unordered messages connecting components, which in turn

are logical computation and storage units that process input streams and generate output streams.

There are 4 annotations for components: CR, CW, ORgate, OWgate. CR indicates that a path through

a component is confluent and stateless. That is, it produces a deterministic output regardless of the

order of the inputs, and these inputs do not change the state of the components. CW indicates a path

that is confluent and stateful. The annotations ORgate and OWgate denote non-confluent paths that

are stateless and stateful, respectively. The gate is optional and consists of a set of attribute names

that specify the partitions of the input streams over which the non-confluent component operates.

The programmer may also specify stream annotations to describe the semantics of the streams.

However, these are not mandatory. The annotation Rep indicates that the stream is replicated and

Sealkey denotes that the stream is punctuated on the key subset of the stream attributes.

The other stream labels are derived by Blazes for the output streams from the component anno-

tations and the input stream labels. Taint and NDReadgate are internal labels used by the analysis

system. Taint indicates that the internal state of the component may be corrupted by unordered

inputs, and NDReadgate indicates that the output stream may temporarily have non-deterministic

content. The Async label corresponds to streams with deterministic content, where the order may be

different in different runs or in different stream instances. Streams marked as Run may have cross-run

non-determinism, where a component generates different output stream content in different runs over

the same inputs. Inst exhibits cross-instance non-determinism, that is, replicated instances of the

same components in the same run generate different output stream content over the same inputs.

Finally, the Diverge label may exhibit persistent divergence across replicas. Some services may toler-

ate temporary inconsistencies between streams, but permanent divergence between replicas is never

desirable.

Blazes uses component and stream annotations to determine whether a given data flow is guaran-

teed to produce deterministic results; if this guarantee cannot be made, the program is augmented

with coordination code. The analysis process can be divided into two steps: inference and reconcil-

iation. In both steps, the labels are derived according the rules. The inference rules are shown in

Figure 2.1 and the reconciliation rules in Figure 2.2.

20



2.3. INVARIANT ANALYSIS SYSTEMS

Inference. For each component whose input streams are labeled, Blazes first performs an infer-

ence step for each path through the component. Then, each of the component’s output interfaces is

associated with a set of inferred stream labels.

For non-confluent components with sealed input streams, the inference step should verify that

the component preserves the independence of the sealed partitions. If so, Blazes can guarantee a

deterministic result by delaying the processing of the partitions until their entire contents are known.

Reconciliation. The reconciliation step may add more labels, and finally the labels for each output

interface are merged into a single label. This output stream becomes an input stream for the next

component in the data flow, and so on until all output streams are labeled.

Based on the analysis results, Blazes automatically generates code that prevents consistency anoma-

lies with minimal coordination by restricting the way messages are delivered to specific components.

Whenever possible, Blazes tries to avoid global coordination by using a seal-based strategy. Otherwise,

it enforces the entire message delivery order for those components.

Sealing Strategies

If the programmer has provided a seal annotation Sealkey that is compatible with the non-confluent

component annotation, we can use a synchronization strategy that avoids global coordination. Once

a component never combines the inputs of different partitions, the order in which the component

learns about the partitions, their contents, and the corresponding seals has no effect on the output.

The protocol used to implement the sealing strategies must allow the consumer to determine when

the contents of the partition are complete. In this way, the consumer must (i) participate in a protocol

with each of the producers to ensure that the partition generated by that producer is complete, (ii) and

perform a vote to ensure that it has received the data from each of the producers.

Once the consumer has determined that the contents of the partition are complete and therefore

immutable, it can process the partition without coordination.

2.3.6 Repliss

Repliss [28] is a verification tool that uses a technique that augment an existing sequential program-

ming language with primitives for concurrent interaction with a highly available database, combining

axiomatic consistency models (used to formalize database semantics using event graphs) with opera-

tional semantics (used to formalize programming language semantics). This combination allows the

verification problem of a distributed and replicated program to be reduced to the verification problem

of a sequential program with non-deterministic steps that simulate the possible effects of concurrent

invocations.

The tool receives a program and a specification of functional properties as input. The functional

properties can use history invariants that describe causal relationships between different calls or the

effects of calls on the state of the database. In addition, the user must specify additional invariants to

guide the tool. The tool uses random tests to find counterexamples and symbolic execution to verify

that there are no errors.

21



CHAPTER 2. RELATED WORK

Repliss uses single-invocation semantics, allowing only steps in a single invocation. The effects of

different invocations are handled with non-deterministic steps in the rules for starting a procedure in-

vocation and starting a transaction. In these cases, the rules for the semantics of the single-invocation

assume an arbitrary state change, the preservation of the invariant, a new state well-formed, and

assume that the history of the new state is an extension of the previous history. When a single in-

vocation occurs, the effects of the other concurrent invocations need only be considered at certain

points, namely at the following steps: immediately after a procedure invocation, after the end of a

transaction, and after a procedure invocation returns to the client.

2.3.7 ECROs

ECROs [10] (Explicitly Consistent Replicated Objects) are Replicated Data Types (RDTs) derived from

sequential data types based on a specification that declares application semantics in terms of invari-

ants over replicated state. The goal of an RDT is to provide the same interface as the corresponding

sequential object with embedded mechanisms to reinforce the correctness of the application.

Unlike the other approaches where conflicting operations are coordinated due to potential con-

flicts, ECRO resolves the conflict by imposing an order between the operations, i.e., ECRO attempts

to resolve conflicts by reordering the operations rather than coordinating the operations. To identify

conflicts and understand their causes, ECROs perform a static analysis of the specification using

Ordana.

ECROs differ from the other approaches in that: (i) RDTs are correctly derived from sequential

data types and their associated specification, (ii) they avoid coordination between replicas by applying

full order in the execution of non-commutative operations, (iii) and they ignore causality between

unrelated commutative operations.

To find an appropriate approach for each conflict, ECRO divides the conflicts into four categories.

The first category includes the conflicts where the replicas execute non-commutative operations con-

currently. In this case, the replicas perform the operations in different order, resulting in different

states when the state is replicated to the replicas. In such cases, ECRO orders these operations deter-

ministically in all replicas, which guarantees convergence. The second category includes operations

that transition the system state to a state where the execution of a concurrent operation is no longer

possible. This type of conflict is resolved by placing the unavailable operations before the operation

that brings the transaction to the new state (in which it would be impossible to execute the other

operation). The third category, in turn, includes numeric invariants, and the approach consists in

coordinating the problematic operations. Finally, the fourth category find the conflicts caused by the

mutual exclusion of concurrent operations (i.e., by the generation of unique identifiers). In this case,

ECRO also opts for the coordination of operations.

Ordana is a tool that performs a static analysis of the distributed specifications over the sequential

object to detect the conflicting operations and find a solution for them. The information inferred by

Ordana is used during runtime to serialize the calls in an efficient way, i.e., with as little coordination

as possible. Ordana’s global analysis can be divided into three types: dependency analysis, which

reveals dependencies between sequential method calls; commutativity analysis, which detects com-

mutativity between concurrent calls; and safety analysis, which reveals conflicts and finds solutions

22



2.3. INVARIANT ANALYSIS SYSTEMS

by reordering calls locally. In addition to these three analyses, dependency analysis and commutativ-

ity analysis are combined to detect commutativity in sequential calls. In all three analyses, is used

an SMT solver that determines whether the operations are dependent, commutative, or safe for each

of the analyses.

Dependency Analysis. The dependency analysis traces potential dependencies between method

pairs and determines under what conditions these dependencies occur. The dependency analysis

returns the function dep :: C x C→ B, which returns true for two calls if the first call depends on

the second, and false otherwise.

Commutativity Analysis. To detect non-commutative method calls, Ordana analyses all method

pairs and checks if there are two concurrent method calls that are not commutative. Concurrent calls

are commutative if executing operations in different order on different replicas results in the same

state. As a result, the function commutative :: C x C→ B is returned, which returns true if two

calls are commutative and false otherwise.

Deriving Sequential Commutativity. Sometimes causal relations do not imply dependencies. For

example, if two sum operations on different objects are launched one after the other in a replica, there

is a causal relation, and yet they are independent because one does not affect the other.

ECRO allows sequential calls to be executed in a different order in different replicas as long as the

operations are commutative and independent, i.e., sequentially commutative. To derive sequential

commutativity, Ordana combines dependency analysis with commutativity analysis. Ordana provides

a function to check sequential commutativity: seqCommutative :: C x C → B. This function

receives two calls and returns true if the first call is sequentially commutative with the second call,

false otherwise.

Safety Analysis. Safety analysis detects pairs of operations that may violate invariants if executed

concurrently. To identify methods that are not safe, Ordana analyses the invariants on all the pairs

of methods and checks whether a serialization of concurrent calls could violate the invariants. Two

functions are returned from the safety analysis: restrictions :: C → R and resolution ::

C x C → {<,>,⊤,⊥}. The first function receives a call c and returns a set R of restrictions. The

restrictions are a set of methods that must be coordinated because they can break the invariant if

executed concurrently with c. The second function receives two concurrent calls and returns one

of four values: ⊤ if the calls are considered safe, < or > if the calls are not safe but there is a safe

serialization, and otherwise ⊥, which means the calls must be coordinated.

Replication Algorithm

An ECRO is represented as a tuple ⟨Σ,σ0,M,G,t,F⟩, where Σ is the set of possible states, σ0 is the

initial state, M is the set of methods, G is the execution graph of the object, t is the current topological

ordering of G, and F is the set of functions generated by Ordana. The graph is a labeled directed acyclic

graph where the vertices (C) correspond to method calls and the edges (E) express the relationships

between calls.

23



CHAPTER 2. RELATED WORK

Three types of edges can be considered in the graph, which guarantee that any topological ar-

rangement of the graph is a safe serialization that preserves dependencies and guarantees strong

convergence:

• Happened-before edges (hb-edges): Hb-edges represent the causal relations, and for this reason

an edge is added to the graph for each pair of causally related calls. Once the sequentially

commutative calls can be executed simultaneously, these calls are ignored.

• Conflict-order edges (co-edges): Co-edges guarantee the preservation of invariants in a dis-

tributed specification. For each pair of concurrent operations, the algorithm checks if there is a

safe serialization, and in the positive case, a co-edge is added between the calls.

• Arbitration order edges (ao-edges): Ao-edges are used for concurrent operations that do not

commute. These operations must be executed in the same order in all replicas to achieve con-

vergence. Therefore, replicas order the calls deterministically based on the unique identifiers of

the calls.

When a local call c is received, a function named execute_local is executed. The function first

checks if the call is safe, and if not, the call must be coordinated. To do this, the necessary locks

are acquired according to the result of the restrictions function. Then, the call c is added to the

graph and an hb-edge is added between c and all calls that have the happens-before relation but do

not sequentially commute with c. Next, the call c is added to the topological order, it is applied to the

current state σ , and the stable causal calls are committed (so that the graph does not grow infinitely).

Finally, the call is propagated and if locks have been acquired, they are released.

Upon receiving a remote call c, the replicas execute a function called execute_remote, which

begins by adding c to the vertices and the necessary edges between the vertices. For calls that have

a happen-before relationship, an hb-edge is added between c and all calls that do not sequentially

commute with c. Concurrent calls that are not safe but have safe serialization use the result of the

resolution function to determine the direction of the co-edge. For concurrent calls that are safe

but do not commute, the function uses the identifiers to determine the direction of the ao-edge to add

between them. In the end, a dynamic topological sorting of the graph is performed and the stable

causal relations are committed.

2.3.8 Lucy

Lucy [27] is a prototype that was developed with two main goals. The first goal was to develop a

system capable of checking confluence. To this end, two different approaches were developed: (i) an

interactive decision procedure that requires user interaction, (ii) and merge reducibility. The second

goal was to implement a mechanism that minimizes coordination overhead when operations conflict,

which in this case is called segmented invariant confluence.

Checking whether an object is invariant confluent is impossible because it would require analysing

a myriad of states. To circumvent this impossibility, some systems check whether the object is invariant

closed. An object is said to be invariant closed with respect to an invariant, I-closed for short, if the

invariant is satisfied after the states are merged. Whittaker et al. have defined that an object O = (S,⊔)

24



2.3. INVARIANT ANALYSIS SYSTEMS

(distributed object, consisting of a set S of states and a binary merge operator ⊔) is invariant closed

with respect to an invariant I , if invariant satisfying states are closed under merge. That is, for every

state s1, s2 ∈ S, if I(s1) and I(s2), then I(s1 ⊔ s2).

Theorem 2. Given an object O = (S,⊔), a start state s0 ∈ S, a set of transactions T , and an invariant I , if
I(s0) and if O is I-closed, then O is (s0,T , I)-confluent.

From the Theorem 2 it can be concluded that if an object is I-closed, it is also I-confluent. However,

if an object is not invariant closed, nothing can be inferred about I-confluence.

Interactive Decision Procedure

In the interactive decision procedure, the user must provide some input. Namely, the user interacts

with the algorithm to iteratively eliminate the unreachable states of the invariant. This allows that

after the elimination of all unreachable states, the problem is reduced to the invariant closure problem.

In each iteration, the algorithm either concludes that an object is I-confluent or not, or it provides

counterexamples to help the user eliminate the unreachable states.

A state is said to be reachable if there is an expression corresponding to a valid system execution

that causes the system to transition to that state. For an object to be confluent, it must satisfy the

invariant for all reachable states.

Theorem 3. Consider an object O = (S,⊔), a start state s0 ∈ S, a set of transactions T , and an invariant I .
If the invariant is a subset of the reachable states (i.e. I ⊆ {s ∈ S | reachable(s0,T ,I)(s)}), then

(I(s0) and O is I-closed) ⇐⇒ O is (s0,T , I)-confluent

This approach has its limitations, especially because it requires interaction with the user to identify

the unreachable states. For example, for large and complex transaction sets, or even if the merge

operator is complex, reasoning about unreachable states can become a difficult task.

Merge Reduction

Invariant closure is not necessary for invariant confluence because it does not contain a notion of

reachability. Merge reducibility, in turn, covers some cases that invariant closure does not.

As defined by Whittaker et al. an expression e = t1(t2(...(tn(s))...)) is merge-free if does not contain

any merges. An object O = (S,⊔) is merge-reducible with respect to a start state s0 ∈ S, a set of

transactions T , and an invariant I , abbreviated (s0,T , I)-merge reducible, if for every pair e1 and e2 of

merge-free (s0,T , I)-reachable expressions, there exist some merge-free (s0,T , I)-reachable expression

e3 that evaluates to the same state as e1 ⊔ e2. That is, if O is merge-reducible, we can replace e1 ⊔ e2

(which has one merge) with e3 (which has no merges) to obtain an equivalent expression with fewer

merges.

Theorem 4. Given an object O = (S,⊔), a start state s0 ∈ S, a set of transactions T , and an invariant I , if
I(s0) and if O is (s0,T , I)-merge reducible, the O is (s0,T , I)-confluent.

25



CHAPTER 2. RELATED WORK

Merge reducibility is a sufficient condition for invariant confluence, but as with invariant closure,

it is not straightforward to automatically determine whether an object is merge-reducible.

To circumvent this difficulty, Theorem 5 introduces a sufficient condition for merge-reducibility

that is easy to determine automatically. As invariant closure, the criteria presented in the theorem

are not necessary for invariant confluence, but can be used to prove that some objects which are

considered non-closed are invariant confluent.

Theorem 5. Given an object O = (S,⊔), a start state s0 ∈ S, a set of transactions T , and an invariant I , if
the following criteria are met, then O is (s0,T , I)-merge reducible (and therefore (s0,T , I)-confluent).

1. O is a join-semilattice.

2. For every t ∈ T , there exists some st ∈ S such that for all s ∈ S, t(s) = s⊔ st . That is, every transaction
t is of the form t(s) = s⊔ st for some constant st .

3. For every pair of transactions t1, t2 ∈ T and for all states s ∈ S, if I(s), I(t1(s)), and I(t2(s)), then
I(t1(s)⊔ t2(s)).

4. I(s0).

Segmented Invariant Confluence

As mentioned earlier, the system tries to minimize coordination by using a property called segmented

invariant confluence. The idea of this approach is to divide the set of states satisfying the invariant

into segments, with a restricted set of transactions in each segment, making each segment I-confluent

(even if it is not globally confluent). In this way, servers can execute uncoordinated code within each

segment and only need to coordinate when transitioning from one segment to another.

While I-confluence characterizes objects that can be replicated without any kind of coordination,

segmented invariant confluence allows replication of non-I-confluent objects with only occasional

coordination.

26



3

Background

3.1 Antidote SQL

Antidote SQL [20, 19] is a NoSQL database system that provides a SQL-like interface to applications

and combines both strong and weak consistency to enforce database invariants in the presence of

concurrent updates.

It requires programmers to specify (i) the data items that can be modified concurrently; (ii) the

concurrency semantics (i.e., the outcome of concurrent updates to the data items); (iii) the integrity

constraints (i.e., the database constraints that should be maintained); (iv) and the degree of concur-

rency that is allowed while enforcing these constraints. With this information, the database system is

responsible for efficiently enforcing the defined data model and minimizing coordination overhead.

3.1.1 System Model

Antidote SQL is designed to operate in geo-replicated environments such as cloud infrastructures.

The data stored in the database is replicated in multiple data centres, and in each data centre this

data is sharded. Each shard is in turn replicated on a small number of nodes.

Applications interact with the database via transactions, where each transaction is a sequence of

SQL statements (e.g., insert, update, delete, and select).

Transactions are executed under parallel snapshot isolation (PSI) semantics. PSI extends snapshot

isolation (SI) for geo-replicated environments, and as such does not allow conflicts between concurrent

writes unless the writes are to data types that have a merge mechanism. Under this isolation level,

transactions can be executed in different orders across replicas as long as the causal order between

transactions is respected, unlike SI, which requires a total order of transactions.

In addition, Antidote SQL extends PSI to enforce integrity, which means that the defined integrity

constraints are maintained in all snapshots.

3.1.2 Concurrency Semantics

As mentioned above, in Antidote SQL programmers must define the behaviour of the database in case

of possible conflicts due to concurrency, i.e. they must specify the semantics of concurrency. This

information must be specified when the tables are created.

27



CHAPTER 3. BACKGROUND

1 CREATE UPDATE-WINS TABLE Artists (
2 Name VARCHAR PRIMARY KEY,
3 Country LWW VARCHAR
4 )

Listing 3.1: Table definition in Antidote SQL.

In this section we explain how to define tables in AQL5, using the example of a system for man-

aging albums and their artists, and we describe all the semantics supported by Antidote SQL. First,

we present the semantics for controlling concurrency associated with each table. Then we present the

semantics for controlling concurrent accesses that can lead to constraint violations.

Database Model

In Antidote SQL, for each table created, the programmer must specify the concurrency semantics of

the table, i.e., how conflicts between concurrent updates and deletions should be resolved, and how

concurrent updates in each of the table columns should be handled. Listing 3.1 shows how to define

a table in Antidote SQL.

Semantics for update-delete. The semantics for update-delete allows to resolve possible conflicts

between insertions, updates and deletions of objects with the same primary key. In the example,

the table was defined with the update-wins policy. However, programmers can choose between three

different semantics:

• Update-wins: ignores the effects of concurrent delete operations.

• Delete-wins: the delete takes precedence over concurrent updates and the row is deleted.

• No concurrency: concurrency between update and delete operations for the same data item

is not allowed. This is the default update-delete semantics of Antidote SQL. Thus, if the

programmer does not specify a conflict resolution policy for the table (with the UPDATE-WINS

or DELETE-WINS token), concurrent inserts and deletes are not allowed.

To implement the update-wins and delete-wins semantics, a hidden column (visibility column) is

used in each row to indicate whether the row has been deleted or not. Since it may be necessary to

resolve conflicts, Antidote SQL does not support permanent deletion of records from the database.

Instead, it uses the visibility column to determine the visibility of the record to the end user. The

visibility column is implemented using a multi-value register CRDT that stores visibility tokens. The

visibility tokens are assigned according to the operation performed: a delete operation stores a D in

the register, while an insert/update operation assigns a I to the register.

Depending on the semantics used, the visibility column is used to determine whether the row

has been deleted or not. In update-wins semantics, a row is considered deleted if there is no I in the

visibility column. For delete-wins semantics, a row is considered deleted if one of the values in the

visibility column is D.

5AQL is the SQL-like interface provided by Antidote SQL.

28



3.1. ANTIDOTE SQL

The no concurrency semantics is implemented using multi-level locks (MLLs) [13]: insert/update

operations need a shared lock on the row’s primary key to be executed; on the other hand, delete

operations must acquire an exclusive lock on the primary keys of the rows to be deleted.

Semantics for update-update. The update-update semantics allow to specify which attributes of

an object can be updated simultaneously. These semantics are defined for each of the table columns,

and there are four possible semantics:

• Last-writer-wins: the value of the last update is kept according to a global order.

• Multi-value: the database stores all values from the concurrent updates.

• Additive: the values from all updates are combined into one numeric value.

• No concurrency: concurrent updates in the same columns of the same object are not allowed.

Therefore, the transaction must acquire an exclusive lock before being executed. An exclusive

lock blocks all other update operations for the same column of the object. After the transaction

completes, the lock is released and the blocked operations are executed. Note that simultaneous

operations on the same column of different objects do not need to be coordinated.

Table 3.1 summarizes for each of the update-update semantics the modifier used in the table

definition and the CRDT used to implement the corresponding concurrency semantics.

Table 3.1: CRDTs supporting the different update-update semantics.

AQL Modifier Implementation

Last-writer-wins LWW LWW Register CRDT

Multi-value MULTI-VALUE Multi-value Register CRDT

Additive ADDITIVE PN-Counter CRDT/Bounded Counter CRDT

In the example of Listing 3.1, the Name column has no conflict resolution policy associated with it,

so the no concurrency semantics is applied. For the Country column, it was chosen the last-writer-wins

policy.

When defining columns, the programmer also have to specify the data type of the column. An-

tidote SQL supports four data types: VARCHAR for general text/string columns; INTEGER/INT for

integer columns; BOOLEAN to assign boolean values to columns; and COUNTER_INT for integer coun-

ters.

Integrity Constraints

The main concern of Antidote SQL is to enforce database invariants during concurrent database up-

dates. In this section we explain how the programmer can define invariants and integrity constraints

for a table. The mechanisms used by Antidote SQL to preserve invariants and handle these constraints

are explained in detail in Chapter 4.

29



CHAPTER 3. BACKGROUND

1 CREATE UPDATE-WINS TABLE Albums (
2 Title VARCHAR PRIMARY KEY,
3 Year LWW VARCHAR,
4 Likes COUNTER_INT CHECK (Likes ≥ 0),
5 Artist VARCHAR FOREIGN KEY UPDATE-WINS REFERENCES Artists(Name) ON DELETE CASCADE
6 )

Listing 3.2: Definition of Integrity Constraints in Antidote SQL.

Listing 3.2 shows the definition of the Albums table, where all types of constraints supported

by Antidote SQL have been expressed: primary key constraints, check constraints, and foreign key

constraints.

The primary key constraint expressed in the Title column, is used to guarantee the uniqueness of

the primary key, i.e. to ensure that there is no more than one row with the same primary key in the

table.

Check constraints allows to set conditions that the values in the columns must satisfy. In the

example, it was defined a check constraints on the Likes column, specifying that an album must not

have a negative number of likes.

Finally, a foreign key constraint was defined in the Artist column. These constraints are used to

prevent the relationship between the tables from being destroyed during concurrent operations. To

define a foreign key, the programmer must specify the name of the referenced column and table (AQL

supports references only to primary keys) and the conflict resolution policy to resolve any referential

integrity issues. Antidote SQL supports three concurrency semantics for foreign key constraints:

update-wins, delete-wins, and no concurrency.

In the example, the Artist column references the Name column of the Artists table (which was

presented in Listing 3.2) and the foreign key policy chosen was the update-wins policy.

When defining a foreign key constraint, the programmer can specify the behaviour of the record

when its parent records are deleted by using the notation ON DELETE CASCADE. This notation states

that a record must be deleted if its parent record is also deleted. If the ON DELETE CASCADE notation

is omitted, a parent record cannot be deleted if one or more records exist that reference it.

3.2 VeriFx

VeriFx [9] is a high-level programming language that allows to define system’s safety properties and

automatically verify them using an SMT solver. VeriFx allows programmers to develop replicated

data types (RDTs) that once verified can be translated into languages such as Scala and JavaScript.

VeriFx is a Scala-like programming language that combines both object-oriented and functional

paradigms and has built-in collections for tuples, sets, maps, vectors, and lists. These collections are

immutable, which means that they return an updated copy of the object when changes are made.

Developers can create their own RDTs by composing collections and/or other RDTs. To validate

their implementation, they must express the correctness properties they wish to validate in the form

of proof constructs that are automatically checked. For each proof, VeriFx derives proof obligations

30



3.2. VERIFX

Figure 3.1: Workflow for developing RDTs (taken from [9]).

and discharges them using the Z3 [8] SMT solver. This solver try to determine (automatically) whether

a given formula is satisfiable or not.

The development of RDTs in VeriFx is an iterative process represented in Figure 3.1. The program-

mer begins by implementing the RDT in VeriFx, which automatically checks it without requiring a

separate formalization. If the implementation is not correct, VeriFx returns a counterexample. Then

the programmer must analyse and interpret the counterexample to understand the error in its im-

plementation, in order to correct it. After correcting the RDT, the implementation is checked again

and the process repeats until the implementation is validated. Once correct, VeriFx transpile the RDT

implementation into a language such as Scala or JavaScript and the RDT can be integrated into the

system.

In order to simplify the development of distributed systems that use replicated data, VeriFx pro-

vides a library for automatic implementation and verification of CRDTs. This library facilitates the

development of CRDTs and provides the necessary proofs to prove the correctness of a CRDT. How-

ever, it is always possible for developers to define their own proofs, for example, to verify invariants.

This library supports several families of CRDTs, including state-based and operation-based.

State-based CRDTs

To implement a CvRDT, the programmer can use the trait that is depicted on Listing 3.3. The program-

mer must extend the trait, specifying the type of CRDT he is implementing. He must also provide an

implementation for the merge and compare methods. For the merge method, the programmer must

specify how to join two states (the state of the local replica with the incoming state) by computing the

least upper bound (LUB) between them. For the compare method, it must be defined how the state

this is less than or equal to the state that.

All other methods of the trait have a default implementation, but may be overridden by the

concrete CRDT. The reachable method allows to define the reachable states, i.e. the states that can

be reached through an initial state by applying only the operations supported by the CRDT and it

must return true if the state is reachable, and false otherwise. For instance, for a counter whose initial

state is 0 and which supports only increment operations, all states in which the counter has a value

greater than or equal to 0 are reachable states. In contrast, states in which the counter has a negative

value are unreachable. The compatible method, in turn, defines whether two states are compatible,

31



CHAPTER 3. BACKGROUND

1 trait CvRDT[T <: CvRDT[T]] {
2 def merge(that: T): T
3 def compare(that: T): Boolean
4 def reachable(): Boolean = true
5 def compatible(that: T): Boolean = true
6 def equals(that: T): Boolean = {
7 this.asInstanceOf[T].compare(that) && that.compare(this.asInstanceOf[T])
8 }
9 }

Listing 3.3: Trait for the implementation of CvRDTs in VeriFx (taken from [9]).

1 trait CvRDTProof[T <: CvRDT[T]] {
2 proof mergeIdempotent {
3 forall (x: T) { x.reachable() =>: x.merge(x).equals(x) } }
4 proof mergeCommutative {
5 forall (x: T, y: T) {
6 (x.reachable() && y.reachable() && x.compatible(y)) =>:
7 (x.merge(y).equals(y.merge(x)) && x.merge(y).reachable()) } }
8 proof mergeAssociative {
9 forall (x: T, y: T, z: T) {
10 (x.reachable() && y.reachable() z.reachable() &&
11 x.compatible(y) && x.compatible(z) && y.compatible(z)) =>:
12 (x.merge(y).merge(z).equals(x.merge(y.merge(z)))
13 && x.merge(y).merge(z).reachable()) } }
14 proof equalityCheck {
15 forall (x: T, y: T) {
16 (x.reachable() && y.reachable() && x.compatible(y)) =>:
17 (x.equals(y) == (x == y)) } }
18 }

Listing 3.4: Trait for the verification of CvRDTs in VeriFx (adapted from [9]).

that is, whether the two states represent different replicas of the same CRDT object. Consider a system

in which there are replicas of different counters, each of which has a unique identifier. In this case,

two states are compatible only if they both represent the same counter, simply put, if the counter

identifier is the same in both states. Finally, the equals method defines the equivalence of states. By

default, equivalence is derived using the compare function.

For verification of CvRDTs implementations the CvRDTProof trait shown in Listing 3.4 can be

used. This trait is defined for a parameter of type T which must be a CvRDT (the CvRDT defined by

the programmer) and defines tests to verify that the merge function is idempotent, commutative, and

associative, i.e., the properties required to guarantee that a CvRDT converges.

In addition to the presented traits, the CRDT library also provides traits with the correctness

proofs for polymorphic CvRDTs expecting 1, 2 or 3 type arguments.

Operation-based CRDTs

Listing 3.5 shows the trait that must be extended by programmers to implement CmRDTs. When

extending this trait, the programmer must specify the concrete type of the supported operations, the

exchanged messages, and the CRDT type itself. The implementation of the prepare and effect

methods is also required.

32



3.2. VERIFX

1 trait CmRDT[Op, Msg, T <: CmRDT[Op, Msg, T]] {
2 def reachable(): Boolean = true
3 def compatible(x: Msg, y: Msg): Boolean = true
4 def compatibleS(that: T): Boolean = true
5 def enabledSrc(op: Op): Boolean = true
6 def prepare(op: Op): Msg
7 def enabledDown(msg: Msg): Boolean = true
8 def effect(msg: Msg): T
9 def tryEffect(msg: Msg): T = {
10 if (this.enabledDown(msg))
11 this.effect(msg)
12 else
13 this.asInstanceOf[T] // operation executes only if its downstream precondition is true
14 }
15 def equals(that: T): Boolean = this == that
16 }

Listing 3.5: Trait for the implementation of CmRDTs in VeriFx (taken from [9]).

The prepare method prepares a message to be sent to all replicas with the effector function. The

effect method in turn applies an incoming message (downstream) and returns the updated state.

The trait also provides the tryEffect method, whose implementation applies operations only if the

downstream precondition is met.

The remaining operations of the trait allow the encoding of some assumptions required to check

some CRDTs, and although they have a default implementation, they can be overridden. The reach-

able method allows the definition of reachable states, as in state-based CRDTs. The method compat-

ible checks whether two operations can be invoked concurrently. In the compatibleS method, the

programmer can define whether two states are compatible. For example, if several replicas generate

unique identifiers by adding the replica prefix to a sequential identifier, two states are compatible

if the identifiers of the replicas are different. The enableSrc method checks whether the specified

operation can be generated in this state. For example, in an application that manages a bank account

whose balance is less than the amount the operation is trying to move, it does not make sense to

generate the effector function and send it to all replicas. The enabledDown method in turn checks

whether the specified operation can be applied (downstream) to the state. Finally, the equals method

checks whether two states are equivalent.

Similar to state-based CRDTs, the VeriFx CRDTs library also provides traits for the verification of

operation-based CRDTs. These traits define a general correctness proof that verifies that all operations

are commutative.

33



4

Invariants Mapping

This chapter presents a study of the different types of application invariants in the Antidote SQL

database system. For each type of invariant, we present a brief description, a real-world example, and

the mechanisms available to ensure that the invariant is maintained. We also present, to some of these

classes, extensions to the existing mechanisms that allow to explore a higher concurrency degree.

This chapter first introduces the types of invariants supported by Antidote SQL (i.e., uniqueness,

referential integrity, and numeric invariants). For the invariants that are not supported by Antidote

SQL, we have proposed mechanisms that can be implemented in this database system in order to

facilitate a possible extension of the system.

This study shows that is very important to obtain a concrete mapping between the types of invari-

ants and the mechanisms to handle each type. This mapping is important to better understand which

mechanisms can be used in the different cases. Additionally, since we have analysed invariants that

are not supported by Antidote SQL, this mapping facilitates a possible integration of new invariants

into Antidote SQL.

4.1 Uniqueness

Uniqueness is a class of invariants that includes all the constraints regarding the uniqueness of a

given attribute and is often used to denote primary keys or identifiers.

Antidote SQL supports two different approaches to deal with primary key constraints. The former

consists in disallowing concurrent insertions, which can be achieved by selecting the no concurrency
semantics in one of the columns in the table (other than the column representing the primary key).

The second approach, can be applied when all columns, except the column representing the primary

key, have a conflict resolution policy. In this case Antidote SQL allows multiple concurrent insertions

and the final value of each column is determined according to the defined concurrency semantics.

Figure 4.1 shows this situation. In this example each column has a conflict resolution policy: Country
follows the last-writer-wins policy while Age follows the first-writer-wins policy. As the Name column

is the table primary key, it does not require a conflict resolution policy. Consider that two artists with

the same primary key are inserted simultaneously. Then, after replicas synchronize, the final state of

the database is defined by the resolution policies of each column, so the Country column gets the last

34



4.2. REFERENTIAL INTEGRITY

Figure 4.1: Concurrent inserts on Antidote SQL.

inserted value according to a global order, while the Age column gets the first value according to the

same global order.

Depending on the application, unique identifiers may be defined by users or by the database itself.

The identifiers generated by the database can be distinguished in two subclasses: sequential identifiers

and unique identifiers. The difference between these two types is that the former must guarantee that

identifiers are sequential (i.e. if the identifier of the last element inserted is 100, the element inserted

immediately after must have the identifier 101, and so on), whereas the latter only has to guarantee

uniqueness. Thus, when using sequential identifiers, a strong consistency mechanism must be used

to guarantee that identifiers are sequential, i.e. any insertion must be coordinated. However, most

applications that require a unique identifier do not need it to be sequential. As unique identifiers do

not need to maintain an order, they can be generated without coordination by attaching to a sequential

identifier a prefix associated with the replica that generated it, or by splitting the identifier domain

space per replica in some other way.

Antidote SQL only supports uniqueness for primary keys. However, it is common in many systems

to have secondary keys, also known as alternate keys. These attributes are unique in the database and

identify the object unequivocally and can be used, such as primary keys, to locate specific data. For

example, in a table with information about students in a college, where the primary key is the student

number there are several secondary keys such as email, citizen card number, or NIF. In this example

all the secondary keys are already unique for each person. For this reason, the use of locks would not

have much impact on the performance of the system, as it is unlikely that two different rows with the

same NIF would be inserted, unless by mistake.

4.2 Referential Integrity

Referential integrity is used to establish dependency relationships between objects, and it is imperative

that these relationships are not destroyed during the execution of the applications. In Antidote SQL,

these relationships are expressed in terms of foreign keys, and the constraints imposed by these

relationships are not I-confluent [2].

To illustrate this type of invariant and its violation, consider the example in Figure 4.2. In this

example, the database contains two tables, Artists and Albums, where Albums has a foreign key in the

Artist column that points to the Artists table. Initially, the database has one artist and two concurrent

transactions are executed, one of which deletes the artist and the other adds an album to that artist.

35



CHAPTER 4. INVARIANTS MAPPING

Figure 4.2: Example of foreign key constraint violation.

However, after merging the two new states, the foreign key constraint is violated because the database

contains an album for an artist that no longer exists in the database.

Antidote SQL supports three concurrency semantics to deal with foreign key constraints:

• Update-wins: if one operation deletes row r and another operation inserts/updates a row that

references row r, the deletion has no effect on the state of the database.

• Delete-wins: if one operation deletes row r and another operation inserts/updates a row that

references row r, the insert/update operation is not reflected in the final state of the database.

• No concurrency: concurrent operations that violate the referential constraint are not allowed.

The system uses MLLs to control concurrent accesses. To delete a row in the parent table,

it is necessary to acquire an exclusive lock, while to insert/update a row in the child table,

it is necessary to acquire a shared lock. This allows insert/update operations can proceed

concurrently, which is expected to allow a high degree of concurrency in most applications,

where deletes are expected to be rare.

Similar to the update-delete semantics (see Chapter 3), the foreign key constraints implements

the update-wins and the delete-wins conflict resolution policies using a visibility column.

Update-wins semantics. To implement the update-wins semantics, in addition to the D and I flags,

there is also the T flag. This flag indicates that a new object referencing the row has been added.

Under this semantics, the T and I flags are considered stronger than D and therefore the element

is considered deleted only if the only value in the visibility column is D. Figure 4.3 illustrates the

behaviour of this semantics. Initially, the database is composed by one artist (Sam) and one album

(A0), and two concurrent operations are issued: one inserts a new album of the existing artist, the

other deletes the artist. After merging the two states, Sam remains in the database since at the time of

the insertion of the new album this record is marked as touched.

When the programmer defines the foreign key policy to update-wins, the T flag takes precedence

over all other flags. That is, if a parent table is set to delete-wins and the foreign key policy to update-
wins, and the visibility column contains a D and a T, the record exists in the database. Otherwise there

would be a foreign key violation.

36



4.2. REFERENTIAL INTEGRITY

Figure 4.3: Update-wins semantics. (taken from [20]).

Delete-wins semantics. In delete-wins semantics, an element that has the D flag in its visibility

column must be deleted from the database, as well as all elements that reference it (otherwise there

would be a referential integrity violation). However, the inserted child record may not be known at

the time of deletion. As can be seen in Figure 4.4, album A1, after replicas synchronise, only has the

I flag in its visibility column.

To solve this problem, the read operation has been extended to check whether the parent row has

been deleted or not. However, this verification cannot be limited to checking the visibility column of

the parent record. Otherwise, we have no guarantee that a deleted child element is visible because

an element in the parent table was re-inserted. In this way, in addition to the visibility flags, the

delete-wins semantics also needs to maintain the version of the objects. The version is an integer

associated with each record that is incremented when it is inserted an object that already belonged

to the database. Each child maintains the version of its parent. For instance, consider a register with

primary key x and version 1 (version 1 means that the object was inserted for the first time) and

another register in the child table that refers to version 1 of the object with primary key x. If an

operation that deletes the element with primary key x from the database is executed (the operation

deletes all its children) and sequentially a new operation inserts a new object with primary key x, this

object is stored in the database with version 2. In this way, the child element that would be considered

visible if versions were not used is not visible because the version stored by the child record does not

match the version in the parent record.

Thus, in this semantics, determining the visibility of a record involves three steps: (i) checking

the record’s visibility column (the record must not have a D in this column to exist); (ii) checking the

version of the parent record (the record exists only if the two versions are the same); (iii) checking the

status of the parent record (whether it is visible or not).

The example only cover a scenario where the concurrent operations involve different objects.

However, if in addition to the two operations a third operation that updated the Sam record was

executed, the visibility column would contain a D and an I. In this case, the conflict is resolved by

the table’s conflict resolution policy, so if the policy was update-wins the object would be kept in the

database, while if the policy was delete-wins the opposite would occur and the object would be deleted

from the database.

37



CHAPTER 4. INVARIANTS MAPPING

Figure 4.4: Delete-wins semantics. (taken from [20]).

4.3 Numeric Invariants

Numeric invariants are usually associated with attributes that are manipulated by increment or decre-

ment operations, and where there must be some control over the values of the column/attribute, since

there is a lower or upper bound. For instance, restricting the maximum number of movie tickets sold

given the maximum allowed capacity, or guaranteeing that the stock of a product does not go bellow

zero, are two real-world examples of numeric invariants.

Consider an example in which a lower bound (i.e., x ≥ k) is defined. While increments can be

executed immediately without synchronization, since these operations pose no risk to the preservation

of the invariant, the same does not apply when the operations are decrements. Consider that the value

of x is equal to 1 at a given time of the program execution and that two operations decrement the

value of x in one unit simultaneously. After these operations are propagated, the value of x would be

negative, resulting in a violation of the invariant. The same situation can occur with upper bounds,

but in this case, it is the increment operations that may cause a violation. For this reason, numeric

invariants are not I-confluent [2].

To allow a higher degree of concurrency, a special type of CRDT can be used: the bounded
counter [3]. The bounded counter is a CRDT based on the escrow technique [24] that manages infor-

mation to guarantee the preservation of numeric invariants without requiring coordination between

operations in most cases.

The key idea is to assign a certain number of rights to each replica (the total number of rights in the

system must be equal to the difference between the value of the counter and its limit). For example,

for a counter x whose limit is x ≥ k and which is initially x0, the system generates x0 − k rights that

are distributed among the replicas. The execution of decrements consumes rights (a decrement of

n units consumes n rights), and these operations can be executed locally immediately if the replica

has enough rights. If the replica’s number of rights is insufficient, there are two possible approaches.

The former consists of having the replica trying to contact other replicas to obtain enough rights to

execute the operation. However, this process can be slow and there is no guarantee that the total

number of rights in the system will be sufficient to execute the operation. The second approach is to

abort the operation if the replica does not have enough rights locally. For simplicity, Antidote SQL

takes this approach. The increment operation, in turn, creates new rights for the system. Thus, if x is

incremented by n units, n new rights are generated.

If the bounded counter is defined with an upper bound (x ≤ k), it is the increment operations that

consume rights, while the decrement operations are responsible for generating new rights. Table 4.1

38



4.4. ATTRIBUTE EQUALITY/INEQUALITY

Table 4.1: Management of rights depending on limit type and operation performed.

Increment(n) Decrement(n)

Column ≤ X Generates n rights Consumes n rights

Column ≥ X Consumes n rights Generates n rights

summarises the way in which rights are generated depending on the operation performed and the

type of limit defined.

So far in Antidote SQL it is only possible to define a limit per column. However, a possible solution

to support simultaneously a lower and an upper bound for the same column (k0 ≤ x ≤ k1) is to use

two bounded counters: one to manage the lower bound and another to manage the upper bound.

4.4 Attribute Equality/Inequality

Attribute equality/inequality is a type of invariant used when an attribute must take only a value from

a set of possible values (i.e., equality) or must take a value that does not belong to a set of impossible

values (i.e. inequality). For instance, in a system that manages the transactions of a bank account, the

value of each transaction must be different from 0 (transactionValue , 0). The transaction value can be

negative if it is a debit, or positive if it is a credit, but it can never be 0.

This type of invariant is only used with attributes that can be manipulated exclusively by assign-

ment operations. Therefore, as Bailis et al. have shown [2], these invariants are I-confluent, meaning

that there is no risk of breaking the invariant in concurrent transactions.

Although Antidote SQL does not support these types of invariants, they could be easily integrated,

since they only require that the condition defined for the column be checked before executing opera-

tions that manipulate that column.

4.5 Aggregation Constraints

Aggregation constraints allow to set limits on the size of collections. For example, to define a max-

imum number of students enrolled in a class (e.g. nrEnrolled(c) ≤ 30), an invariant of this type is

defined. In this example, a limit is defined on the size of a collection of students.

At first glance, aggregation constraints are similar to the numeric invariants introduced in Sec-

tion 4.3, and just like them, these invariants are not I-confluent. Consider there are 29 students

enrolled in a class. If two different students enroll in this class at the same time, and each operation

is performed in a different replica, the invariant would be broken after synchronization, since the

number of students would be 31.

To take advantage of concurrency while ensuring the correctness of these invariants, we propose

that Antidote SQL take an approach similar to that used for numeric invariants. The idea is to keep

an additional column (e.g., in a metadata table) to represent and control the limit of the size of the

collection. This column would be implemented with a bounded counter so that some operations can

be executed without coordination as long as there are enough rights to do so.

39



CHAPTER 4. INVARIANTS MAPPING

However, this approach can lead to problems in specific situations. If two teachers remove the

same student at the same time, two new rights would be generated, even though only one student

was removed. This would allow the invariant to be violated, because there would be more rights than

vacancies in the class.

To work around this problem, the rights cannot be created immediately, but this task must be dele-

gated to a master replica. So if a student is removed from the class, no right is generated. Periodically,

the master replica recalculates the rights, generates the missing rights and distributes them among

the replicas.

A similar problem occurs when the same student is enrolled in the class twice, as more rights are

consumed than vacancies occupied. Apart from the fact that this situation does not pose a risk to the

invariant, the rights are eventually replenished by the master replica.

For invariants that set a lower bound on the size of the collection, the same approach is used with

the necessary adjustments.

4.6 Aggregation Inclusion

Aggregation inclusion is a type of invariant that is used when there is a column that represents the

size of a collection and the programmer wants to guarantee that the operations that add and remove

elements from the collection are correctly reflected in the value of that column. This type of invariant

can be expressed as x = collection.size().

Despite the similarities of this type of invariant with aggregation constraints, the column that

keeps the size of the collection cannot be implemented with a counter, since using this data type make

the invariant non-I-confluent.

With this approach, the counter would be incremented whenever an element is added to the col-

lection and decremented whenever an element is removed from the collection. However, concurrent

transactions can lead to a violation of the invariant. Consider the example in Figure 4.5(a). In this

example, two concurrent transactions add album A2 to Sam. After combining the effects of the two

transactions, the database would reach a state where the counter value does not match the actual

number of Sam’s albums, resulting in a violation of the invariant. This problem can also occur for two

concurrent removals.

Besides this problem, there is also another issue that is presented in Figure 4.5(b), and that only

occurs when there are dependency relationships between database objects (that is, when referential

integrity must be maintained) and the defined semantics is the update-wins. In this scenario, two

concurrent transactions are executed, one that inserts a new album for Sam and another that deletes

Sam from the database. After synchronization, nrAlbums would remain 2 even though there is only 1

album in the database.

When the defined semantics for the foreign key constraint is the delete-wins, this issue does not

occur since the artist would be deleted.

Both problems can be solved if the column nrAlbums is implemented with a set with the same

conflict resolution policy of the one used to resolve referential integrity. Figure 4.6 presents an

example with this solution. A “normal” set is sufficient to solve the first problem and can be used

40



4.7. DISJUNCTIONS

(a) Result of insertions of the same object concurrently.

(b) Result of concurrent insert of child record and delete of parent record.

Figure 4.5: Problems of using a counter with aggregation inclusion invariants.

for invariants when objects do not have referential integrity relations. However, when referential

integrity comes into play, a set CRDT is needed to resolve any conflicts that may arise.

Figure 4.6: Example of a solution using a set CRDT to maintains the “number” of albums.

4.7 Disjunctions

Disjunctions are a type of invariant used to specify that at least one of several conditions must be

met. This class of invariants can be divided into three subtypes: disjunction, exclusive disjunction

and implication.

In both disjunctions and exclusive disjunctions at least one of the predicates must be true, and their

difference is on the number of predicates that can be true. Whereas in disjunction several predicates

41



CHAPTER 4. INVARIANTS MAPPING

can be true, in exclusive disjunction only one of them can take this value.

For example, a student having to be enrolled in at least one course is considered a disjunction,

because the student can be simultaneously enrolled in several courses. In its turn a student having to

be enrolled in one of the existing theoretical classes of each course is an exclusive disjunction because

the student can only be enrolled in one of them.

To ensure that a disjunction is not violated we only have to ensure that at least one of the predicates

remains true (the student maintains at least a course registration). Therefore we propose the use of a

bounded counter to control how many predicates hold true. Considering that n predicates are true,

n − 1 rights can be generated, allowing n − 1 predicates to become false. Operations that change a

predicate from true to false would have to consume rights, while operations that change the value of

a predicate from false to true would generate a new right. This approach in addition to allowing some

degree of concurrency, ensures that the invariant is not violated, since one of the predicates would

never be able to transit from true to false due to lack of rights. For the reason explained in Section 4.5,

also in this situation the rights cannot be generated immediately, and a master replica is needed for

that task (if rights were generated immediately two concurrent operations with the same effect could

generate more rights than should).

Since in an exclusive disjunction one and only one predicate can be true at a time, it is required

the use of exclusive locks to maintain these invariants.

Implications can be considered disjunctions since the rules of logic allow us to turn an implication

into a disjunction ((A⇒ B)⇔ (¬A ∨ B)). However, while in a disjunction the two predicates cannot

be simultaneously false, in an implication A cannot be true while B is false. Examples of this type

of invariant are, for instance, guarantee that when a tournament is active it has a minimum number

of participants, or in an auction system guarantee that when an auction is closed the value of the

winning bid corresponds to the value of the maximum bid for that auction.

After an analysis of the possible solutions for an implication invariant, it was concluded that the

most advantageous would be the use of locks. Thus, changing the value of one predicate would

be done with an exclusive lock while changing that of the other would be done with a shared lock.

To maximise concurrency in the system, Antidote SQL could apply a mechanism to check which

operations are executed most often, so that the most frequent operation would be the one to use the

shared locks.

When the implication involves a numeric invariant or an aggregation constraint in the right side

of the implication, it is defined a boundary that only needs to be verified when the left side predicate

is true. This can be exemplified in the tournament example, where the number of players enrolled in

a tournament must be greater than 1 if the tournament is active. However if the tournament is not

active the number of players enrolled could be less than this value.

One possible approach that can be implemented in Antidote SQL to optimize systems under

this circumstances, is to use a bounded counter when limits have to be imposed. While the left side

predicate is false, a normal counter can be used, since there is no limit. At the moment of the execution

of the operation that makes the predicate true (which would have to be synchronised by obtaining a

lock) the counter would be converted into a bounded counter.

42



4.8. LINEAR RESOURCES

4.8 Linear Resources

Linear resources is a type of invariant used on objects/resources that can be partitioned, and its goal

is to ensure that there is no overlap. For instance, ensuring that two users do not reserve a room for

overlapping times, is an example of this type of invariant.

In this scenario, two operations reserving a room can break the invariant. However, using an

exclusive lock in these cases is too restrictive, since reserving rooms for intervals that do not overlap

would not violate this type of invariants.

Partition lock reservation [5] is a mechanism that allows replicas to acquire exclusive locks on

intervals of values. Therefore, multiple replicas can acquire locks as long as they do not reserve locks

on intersecting ranges. Whereas exclusive locks require all reserving operations to be coordinated,

with this mechanism the reservation operation acquires a lock on a specific time interval, and other

reserving operations can be performed concurrently as long as they are for not overlapping intervals,

minimizing the coordination overhead.

4.9 Materialized Views

A materialized view is a precomputed data set that contains the results of a query and is stored on

disk to improve database performance when the query is executed. Whenever data is modified, all

materialized views must be modified according to the new data so that the state of the view matches

the state of the database. Therefore, invariants can be specified to indicate that the materialized

views reflect the primary data. Bailis et al. have shown that updates to materialized views are I-

confluent [2].

Currently, Antidote SQL does not provide support for materialized views, so this type of invariant

was not analysed.

4.10 Summary

In this chapter we have presented a study of different types of invariants and made a mapping between

classes of invariants and the mechanisms that can be used to enforce them. We explain for each

invariant supported by Antidote SQL the mechanisms that the system uses to enforce them. For the

invariant classes that are not supported by Antidote SQL, we propose mechanisms to guarantee that

the invariants are maintained.

To conclude this chapter, we provide an overview of the invariants mapping in Table 4.2.

43



CHAPTER 4. INVARIANTS MAPPING

Table 4.2: Overview of the invariants mapping.

Mechanism Antidote SQL

Uniqueness
Sequential Identifier Exclusive locks E

Unique Identifier Locally generated sequential identifier +
replica prefix

E

Referential Integrity Update-wins, delete-wins, no concurrency E

Numeric Invariants Bounded counter E

Attribute Equality/Inequality - -

Aggregation Constraints Bounded counter with master replica A

Aggregation Inclusion Set CRDT with the same conflict resolu-
tion policy as the object table

N

Disjunctions

Disjunction Bounded counter with master replica N

Exclusive Disjunction Exclusive locks N

Implication Exclusive locks + shared locks N

Linear Resources Partition lock reservation A

Materialized Views — —

E Mechanism already implemented in Antidote SQL. A Mechanism proposed in the literature to

deal with this type of invariants (type not supported by Antidote SQL). N Mechanism we propose
for dealing with the invariant type (type not supported by Antidote SQL).

44



5

Implementation

This chapter focuses on the implementation aspects of some mechanisms of Antidote SQL in VeriFx

and is divided into two main sections. In Section 5.1 we discuss some CRDTs used to ensure state

convergence: Last-Writer-Wins Register (Section 5.1.1), First-Writer-Wins (Section 5.1.2), Multi-Value

Register (Section 5.1.3), Enable-Wins Flag (Section 5.1.4), Positive-Negative Counter (Section 5.1.5),

and an implementation of the update-wins and delete-wins tables (Section 5.1.6). On the other hand,

Section 5.2 presents the Antidote SQL mechanisms that enable invariants strengthening, namely the

bounded counter (Section 5.2.1), the referential integrity preservation mechanism (Section 5.2.2),

and the exclusive and shared locks mechanism (Section 5.2.3). Finally, in Section 5.3 we present

an example in which we have tested the impact of the choice of conflict resolution policies on the

preservation of defined invariants.

Except for the implementation of the two examples with locks, where the operation-based repli-

cation model was used, all implementations correspond to state-based CRDTs. We chose this type

because several CRDTs used by Antidote SQL were already implemented with this synchronization

model in VeriFx, which made our work easier. For this reason, all these classes extend the CvRDT

trait that is provided by VeriFx’s CRDT library for building state-based CRDTs (see Chapter 3).

Due to space limitations, sometimes only parts of the implementations are presented and not all

methods are shown. However, the omitted methods are methods that are not very relevant for the

reader’s understanding of the implemented object.

5.1 Data Convergence Mechanisms

Antidote SQL is a highly available geo-replicated database system that provides stronger semantics

than eventual consistency. To ensure that the system eventually converges, i.e., that all replicas

are in the same state after performing the same set of operations (possibly in completely different

order), Antidote SQL resorts to CRDTs. These data types encapsulate the replication logic and

provide concurrency semantics that can be customised to meet the needs of developers, guaranteeing

convergence under asynchronous replication models.

45



CHAPTER 5. IMPLEMENTATION

5.1.1 Last-Writer-Wins Register

The last-writer-wins register (LWW register for short) is a CRDT that, as its name implies, applies

the last-writer-wins policy. Thus, if the register is updated concurrently, only the value of the last

write is retained according to a global order. This CRDT supports only two operations: assign, a

write operation that allows to change the value stored in the register and value, a read operation that

returns the value of the register. Specification 5.1 shows the design of a state-based LWW register.

Specification 5.1 State-based Last-Writer-Wins Register (taken from [23]).

1: payload X x, timestamp t ▷ X: some type
2: initial ⊥, 0
3: update assign (X w)
4: x, t := w,now() ▷ Timestamp, consistent with causality
5: query value () : X w
6: let w = x
7: compare (R, R′) : boolean b
8: let b = (R.t ≤ R′ .t)
9: merge (R, R′) : payload R′′

10: if R.t ≤ R′ .t then
11: R′′ .x, R′′ .t = R′ .x, R′ .t
12: else
13: R′′ .x, R′′ .t = R.x, R.t

To determine which assignments should be discarded, this CRDT associates a timestamp to each

assign operation. The timestamps must be unique, fully ordered and consistent with causal order, i.e.

if one event occurs causally before a second event, the timestamp of the second event must be greater

than that of the first.

In Listing 5.1 is presented the implementation of the LWW Register CRDT in VeriFx, which is the

direct translation of the specification. Note that the implementation was made for a generic value

V and this value can be replaced by any data type. In this implementation, Lamport clocks [16]

were used. Although Lamport clocks only define a partial order between events, they can be used to

“artificially” build a total order.

1 class LWWRegister[V](value: V, stamp: LamportClock) extends CvRDT[LWWRegister[V]] {

2 def value() = this.value

3

4 def assign(x: V, timestamp: LamportClock) = new LWWRegister(x, timestamp)

5

6 def compare(that: LWWRegister[V]) = this.stamp.smallerOrEqual(that.stamp)

7

8 def merge(that: LWWRegister[V]) = {

9 if (this.stamp.smallerOrEqual(that.stamp))

10 that

11 else

12 this

13 }

14 }

Listing 5.1: Last-Writer-Wins Register implementation in VeriFx (taken from [9]).

46



5.1. DATA CONVERGENCE MECHANISMS

Unlike in the specification, where the assign function calculates the timestamp using a now()
function, in the implementation the value of the timestamp is received as an argument. In this way,

we consider that the system generates the timestamp before calling the assign function, and we can

assume that the timestamp has the properties mentioned above.

The LamportClock object consists of two integers, one of which is the identifier of the replica

and the other is a counter that is incremented each time the replica performs a write operation on

the object to which the timestamp is associated. When comparing two Lamport clocks c1 and c2, c1 is

considered smaller than c2 if the value of the counter of c1 is smaller than the value of the counter of

c2. If the counters are equal, the tiebreaker is done by the identifier of the replica, so the counter is

considered smaller if the replica has a lower identifier.

We have subjected the implementation to all the proofs provided by the CRDTs library for state-

based CRDTs, and we have verified that the implementation is commutative, associative, and idempo-

tent, i.e. that the LWW register guarantees convergence, regardless of the type of element it contains.

However, the proof of equivalence of states was rejected. The returned counterexample consisted of

two states with exactly the same timestamp but with two different values (s1.stamp == s2.stamp

&& s1.value != s2.value). After re-analysing the implementation and the specification, we

realised that this case could not be verified because the same timestamp can never be assigned to two

different write operations due to the timestamp properties. So we corrected our implementation by

redefining the method compatible so that two states with the same timestamp and different values

are not considered compatible states:

override def compatible(that: LWWRegister[V]) =

(this.stamp == that.stamp) =>: (this.value == that.value)

The implementation was checked again and with this change all the proofs were accepted.

5.1.2 First-Writer-Wins Register

The difference between the Last-Writer-Wins and the First-Writer-Wins registers lies in the way the

operation that prevails in the register is selected. In this case, the first operation is selected according

to a global order and all others are discarded. So the only difference between the implementations of

these two registers is the merge function, which is exactly the opposite of that of the LWW register.

This CRDT is not one of the CRDTs supported by Antidote SQL. However, it was developed to

perform some validation tests of the conflict resolution policies presented later in Section 5.3.

1 def merge(that: FWWRegister[V]) = {

2 if (this.stamp.greaterOrEqual(that.stamp))

3 that

4 else

5 this

6 }

Listing 5.2: merge method for FWW Register.

47



CHAPTER 5. IMPLEMENTATION

5.1.3 Multi-Value Register

The multi-value register CRDT (MV register) is a CRDT designed to preserve all values from concur-

rent writes. For this reason, a read operation returns a set containing all concurrently written values.

Specification 5.2 shows the design of a state-based multi-value register.

Specification 5.2 State-based Multi-Value Register (taken from [23]).

1: payload set S ▷ set of (x,V ) pairs; x ∈ X; V its version vector
2: initial {(⊥, [0, ...,0])}
3: query incVV () : integer[n] V ′

4: let g = myID()
5: let V = {V |∃x : (x,V ) ∈ S}
6: let V ′ = [maxV ∈V(V [j])]j,g
7: let V ′[g] = maxV ∈V(V [g]) + 1
8: update assign (set R) ▷ set of elements of type X
9: let V = incV V ()

10: S := R× {V }
11: query value () : set S ′

12: let S ′ = S
13: compare (A, B) : boolean b
14: let b = (∀(x,V ) ∈ A, (x′ ,V ′) ∈ B : V ≤ V ′)
15: merge (A,B) : payload C
16: let A′ = {(x,V ) ∈ A|∀(y,W ) ∈ B : V ∥W ∨V ≥W }
17: let B′ = {(y,W ) ∈ B|∀(x,V ) ∈ A : W ∥ V ∨W ≥ V }
18: let C = A′ ∪B′

In the MV register, it is necessary to capture the notion of concurrency between writes, so Lamport

clocks cannot be used (they only allow the definition of a partial order between writes). In this

way, version vectors are used. A version vector is a vector of integers, where each entry in that

vector represents a replica. When a replica performs a write operation, it updates the version vector

by incrementing the corresponding entry. Version vectors are therefore very complex objects, as

comparing and synchronising two version vectors requires multiple cycles to compare all entries of

each version vector. This places a considerable time constraint on objects that use them and often

leads to proofs of more complex objects being aborted by the SMT solver.

This situation occurred in the proof of the MV register, where it was only possible to prove com-

mutativity and idempotence of the merge function. On the other hand, the associativity proof was

always aborted due to the high complexity of the operations that had to be performed to prove this

property.

To get around this problem, the implementation of MV Register replaced the vector clock by a

time abstraction, i.e., it uses a generic time with established properties. When programmer creates

an object of this type, they must specify not only the type of data to be stored in the register, but also

what type of time to use (e.g. a version vector) and the function that compares times (called before

function).

Listing 5.3 shows the function that encodes the properties of the before function. The first

property (line 2) states that for any time t1 and t2, if t1 is before t2, t2 cannot be before t1; the

48



5.1. DATA CONVERGENCE MECHANISMS

1 private def beforeAssumptions() = {
2 forall (t1: Time, t2: Time) {
3 this.before(t1, t2) =>: !this.before(t2, t1)
4 } &&
5 forall (t1: Time) {
6 !this.before(t1, t1)
7 } &&
8 forall (t1: Time, t2: Time, t3: Time) {
9 (this.before(t1, t2) && this.before(t2, t3)) =>: this.before(t1, t3)
10 }
11 }

Listing 5.3: Time assumptions (taken from [9]).

second property (line 5) says that a time t1 is not before itself; and the last one (line 8) encodes the

transitivity property, i.e. if t1 is before t2 and t2 is before t3, then necessarily t1 is before t3.

When using abstractions, it is important to ensure that the properties defined are properties

that are verified in the concrete data types that define the abstraction. Otherwise, the verifica-

tion of the objects may not be correct. For example, if a condition has been added to the previ-

ous function that causes the function to always return false (an example would be forall(t1:

Time){this.before(t1, t1)}), any proof that calls this function in the left-hand side of the

implication would return an accept (if the left-hand side of an implication is false, any value assigned

to the right-hand side will cause the global expression to be true).

In addition to this problem, it is important to emphasise that objects that use abstractions with

defined properties are proved according to those properties. Therefore, the programmer can only as-

sume that a multi-value register converges with implementations of time that respect all the properties

specified in the beforeAssumptions function. Thus, if the programmer uses an implementation

of time that does not satisfy all properties, there is no guarantee that such an object will actually

converge and be a CRDT.

To verify whether the three properties hold in version vectors, we used the version vector imple-

mentation provided by the VeriFx CRDT library.

Listing 5.4 presents the implementation of the multi-value register. The reachable function

calls the beforeAssumptions function shown above to encode the assumptions that must be true

for the logical clocks used. The second condition of this method (lines 14-16) encodes the fact that

all values in a register must be either concurrently written values or equally clocked (since multiple

values can be written at the same time).

Since an abstraction is used to define the time, the SMT solver cannot infer equality from the

compare function. Therefore, it was necessary to override the equals method.

5.1.4 Enable-Wins Flag

A flag is a data structure that contains a boolean value and supports two types of operations: enable,

which sets a flag value to true, and disable, which sets a flag value to false.

The enable-wins flag CRDT is a flag that resolves possible conflicts between enable and disable

operations by leaving the flag in the enabled state. This means that a flag that is enabled and disabled

concurrently is considered enabled after synchronisation of the states.

49



CHAPTER 5. IMPLEMENTATION

1 class MVRegister[V, Time](before: (Time, Time) => Boolean,
2 values: Set[Tuple[V, Time]] = new Set[Tuple[V, Time]]())
3 extends CvRDT[MVRegister[V, Time]] {
4

5 private def concurrent(t1: Time, t2: Time) =
6 !this.before(t1, t2) && !this.before(t2, t1) && t1 != t2
7

8 private def beforeOrEqual(t1: Time, t2: Time) = this.before(t1, t2) || t1 == t2
9

10 private def afterOrEqual(t1: Time, t2: Time) = this.before(t2, t1) || t1 == t2
11

12 override def reachable() = {
13 this.beforeAssumptions() &&
14 this.values.forall((t1: Tuple[V, Time]) => {
15 this.values.forall((t2: Tuple[V, Time]) => {
16 t1.snd == t2.snd || this.concurrent(t1.snd, t2.snd)
17 })
18 })
19 }
20

21 override def compatible(that: MVRegister[V, Time]): Boolean =
22 this.before == that.before // replicas must have the same notion of time
23

24 def assign(v: V, timestamp: Time) = {
25 val newValue = new Set[Tuple[V, Time]]().add(new Tuple(v, timestamp))
26 new MVRegister(this.before, newValue)
27 }
28

29 def assignMany(vs: Set[V], timestamp: Time) = {
30 val stampedValues = vs.map((v: V) => new Tuple(v, timestamp))
31 new MVRegister(this.before, stampedValues)
32 }
33

34 private def keepLatest(that: MVRegister[V, Time]) = {
35 this.values.filter((x: Tuple[V, Time]) => {
36 val v = x.snd
37 that.values.forall((y: Tuple[V, Time]) => {
38 val w = y.snd
39 this.concurrent(v, w) || this.afterOrEqual(v, w)
40 })
41 })
42 }
43

44 def merge(that: MVRegister[V, Time]) = {
45 val myLatestValues = this.keepLatest(that)
46 val hisLatestValues = that.keepLatest(this)
47 val mergedValues = myLatestValues.union(hisLatestValues)
48 new MVRegister(this.before, mergedValues)
49 }
50

51 def compare(that: MVRegister[V, Time]) = {
52 this.values.forall((x: Tuple[V, Time]) => {
53 that.values.forall((y: Tuple[V, Time]) => {
54 this.beforeOrEqual(x.snd, y.snd)
55 })
56 })
57 }
58

59 override def equals(that: MVRegister[V, Time]): Boolean = this == that
60 }

Listing 5.4: Multi-Value Register implementation in VeriFx (taken from [9]).

50



5.1. DATA CONVERGENCE MECHANISMS

In a first phase, we tried to implement this CRDT using the merge function presented in List-

ing 5.5. However, after submitting the implementation to the convergence proofs, we found that the

merge function was not associative and the implementation was therefore wrong.

The merge function is quite trivial: if one of the times associated with one of the flags is higher

than the other, the state with the higher time state is maintained, since it represents an inflation of the

other state (lines 5-8); if the times are concurrent, they are synchronised using a function provided

by the programmer, whose properties are encoded in the function syncTimeAssumptions, and the

flag value is considered enabled if one of the flags is in that state, or disabled if both flags are in that

state (line 11).

1 class EWFlag[Time](enabled: Boolean, time: Time, before: (Time, Time) => Boolean,

2 syncTime: (Time, Time) => Time) extends CvRDT[EWFlag[Time]] {

3 // This method is incorrect

4 def merge(that: EWFlag[Time]) = {

5 if(this.afterOrEqual(this.time, that.time)) // this.time >= that.time

6 this

7 else if(this.afterOrEqual(that.time, this.time)) // that.time >= this.time

8 that

9 else // this.time and that.time are concurrent

10 new EWFlag(this.enabled || that.enabled, this.syncTime(this.time, that.time),

11 this.before, this.syncTime)

12 }

13

14 private def syncTimeAssumptions() = {

15 forall(t1: Time, t2: Time) { // syncCommutative

16 this.syncTime(t1, t2) == this.syncTime(t2, t1)

17 } &&

18 forall(t1: Time) { //syncIdempotent

19 this.syncTime(t1, t1) == t1

20 } &&

21 forall(t1: Time, t2: Time, t3: Time) { //syncAssociative

22 this.syncTime(this.syncTime(t1, t2), t3) == this.syncTime(t1, this.syncTime(t2, t3))

23 } &&

24 forall(t1: Time, t2: Time) {

25 (this.before(t1, t2)) =>: (this.syncTime(t1, t2) == t2)

26 } &&

27 forall(t1: Time, t2: Time, t3: Time) {

28 (this.before(t1, t3) && this.before(t2, t3)) =>:

29 (this.beforeOrEqual(this.syncTime(t1, t2), t3))

30 } &&

31 forall(t1: Time, t2: Time, t3: Time) {

32 (this.concurrent(t1, t2) && this.concurrent(t1, t3) && this.before(t3, t2)) =>:

33 (this.before(t3, this.syncTime(t1, t2)))

34 } &&

35 forall(t1: Time, t2: Time, t3: Time) {

36 (this.concurrent(t1, t2) && this.concurrent(t1, t3) && this.concurrent(t2, t3)) =>:

37 (!this.before(this.syncTime(t1, t2), t3))

38 } } }

Listing 5.5: merge method of the first implementation of the EW Flag CRDT.

51



CHAPTER 5. IMPLEMENTATION

Figure 5.1: Counterexample returned by the associativity proof.

Originally, the function syncTimeAssumptions had only the first three properties (commutativ-

ity, idempotency and associativity), but with the counterexamples obtained it was easy to understand

that the function should be more restrictive and that it would be necessary to define more precisely

how time synchronisation would work. All conditions expressed in the function were derived from

the counterexamples received and checked against the implementation of version vectors to ensure

that incorrect properties were not inadvertently added.

With all these constraints imposed on the syncTime function, the counterexample of Figure 5.1

was returned. Since the object implementation resorts to a generic time, the counterexample also

returns generic times. However, to make it easier for the reader to understand, we have adapted it to

present a concrete example with version vectors.

The example shows three states, where state x is concurrent with state z and is an inflation of

state y. The states y and z are concurrent. In the example, the arrows represent the propagation

of the state, and the circle they point to represents the state after the local state has merged with

the incoming state. In this example, we want to prove that the merge function is associative, so we

test whether the final result of merges in different orders is the same. So in the top row we execute

x.merge(y).merge(z) and in the middle row we execute y.merge(z).merge(x).

The execution of x.merge(y), is equal to x, because x has a later time than y. This value is

then merged with z and since the two states are concurrent and the value of both is false, the flag is

disabled.

Merging y and z, on the other hand, results in a state where the flag is enabled because the two

states are concurrent and the flag is set to true in one of the them. The new state is concurrent with x,

so the merging of the two states leads to a state in which the flag is enabled.

From the analysis of this counterexample, we can conclude that although the merge function

appears to be correct, it is not associative because the order in which the merges are performed affects

the final state of the flag, so this implementation is not a CRDT.

Finally, the EW flag was implemented using a multi-value register (Listing 5.6). In our implemen-

tation, the flag is basically a multi-value register that stores boolean values. The flag is considered

enabled if the register contains a true value. Since the multi-value register stores all values corre-

sponding to concurrent writes, only one true value is needed to assume that an enable operation has

occurred. Note that almost all functions implemented in this class simply call the corresponding

method of the MV register.

52



5.1. DATA CONVERGENCE MECHANISMS

1 class EWFlag[Time](flags: MVRegister[Boolean, Time]) extends CvRDT[EWFlag[Time]] {
2 def enable(t: Time) = new EWFlag(this.flags.assign(true, t))
3

4 def disable(t: Time) = new EWFlag(this.flags.assign(false, t))
5

6 def isEnabled(): Boolean = this.flags.contains(true)
7

8 override def reachable() = this.flags.reachable()
9

10 override def compatible(that: EWFlag[Time]) = this.flags.compatible(that.flags)
11

12 def merge(that: EWFlag[Time]) = new EWFlag(this.flags.merge(that.flags))
13

14 def compare(that: EWFlag[Time]) = this.flags.compare(that.flags)
15

16 override def equals(that: EWFlag[Time]) = this == that
17 }

Listing 5.6: Enable-Wins Flag implementation in VeriFx.

Although we have not implemented the disable-wins flag because it is not one of the CRDTs

supported by Antidote SQL, it could easily be implemented using the approach used for the EW flag.

The difference between the two CRDTs would be the function isEnabled(), which would return

false if the multi-value register contains a false.

5.1.5 Positive-Negative Counter

A counter is an integer that supports three types of operations: increment and decrement, which are

update operations, and value, a query operation that returns the number of increments minus the

number of decrements.

The specification of a state-based counter CRDT is not entirely straightforward. If we only consider

that the counter supports increment operations, we are dealing with a grow-only counter [23]. The

payload of this CRDT is a vector of integers, where each entry of the vector corresponds to a replica

that can only be incremented by it. The counter value corresponds to the sum of all entries in the

vector, and the merge function calculates the maximum of each entry. The specification of this CRDT

can be found in [23].

This approach cannot be used for counters that support both increments and decrements, as the

decrements would be lost in the merge. Therefore, to support both types of operations, the positive-

negative counter was proposed. The PN-Counter, whose design is presented above in Specification 5.3,

combines two vectors of integers: P to register the increments and N to register the decrements. The

value of the counter is equal to the sum of all entries of the vector P minus the sum of all entries of

the vector N .

The implementation of the PN-Counter in VeriFx can be found in Listing 5.7. In the implemen-

tation, instead of integers vectors, grow-only counters were used to represent the increment and

decrement vectors. Also, the increment and decrement operations take the value to be increment-

ed/decremented as an argument, so it is possible to update the counter value by more than one unit

at a time.

53



CHAPTER 5. IMPLEMENTATION

Specification 5.3 State-based PN-Counter (taken from [23]).

1: payload integer[n] P , integer[n] N ▷ One entry per replica
2: initial [0,0,...,0], [0,0,...,0]
3: update increment ()
4: let g = myID() ▷ g: source replica
5: P [g] := P [g] + 1
6: update decrement ()
7: let g = myID()
8: N [g] := N [g] + 1
9: query value () : integer v

10: let v =
∑

i P [i]−
∑

iN [i]
11: compare (X, Y) : boolean b
12: let b = (∀i ∈ [0,n− 1] : X.P [i] ≤ Y .P [i]

∧
∀i ∈ [0,n− 1] : X.N [i] ≤ Y .N [i]

13: merge (X,Y ) : payload Z
14: let ∀i ∈ [0,n− 1] : Z.P [i] = max(X.P [i],Y .P [i]
15: let ∀i ∈ [0,n− 1] : Z.N [i] = max(X.N [i],Y .N [i]

1 class PNCounter(p: GCounter, n: GCounter) extends CvRDT[PNCounter] {
2 def value() = this.p.value() - this.n.value()
3

4 def increment(replica: Int, value: Int) =
5 new PNCounter(this.p.increment(replica, value), this.n)
6

7 def decrement(replica: Int, value: Int) =
8 new PNCounter(this.p, this.n.increment(replica, value))
9

10 def merge(that: PNCounter) = new PNCounter(this.p.merge(that.p), this.n.merge(that.n))
11

12 def compare(that: PNCounter) = this.p.compare(that.p) && this.n.compare(that.n)
13 }

Listing 5.7: PN-Counter implementation in VeriFx (taken from [9]).

5.1.6 Table

Tables are the database objects that store all the data in the database. Tables consist of several rows,

each row representing a single record. Each row has several columns that represent a field of a record.

For example, if we look at a table of artists, each row represents an artist and each column represents

information about that artist, such as their name or country.

Considering that tables are a central element of Antidote SQL, we have implemented a data type in

VeriFx that represents a table. In this implementation, we also use another data type that represents

a row of a table. Therefore, this section is divided into two parts: a first part that deals with the

implementation of a data type that represents table elements and a second part that focuses on the

implementation of the table data type.

Table Element

The need to implement a data type to represent the table elements arose from the fact that Antidote

SQL uses a visibility column to implement table conflict resolution policies and foreign key policies.

54



5.1. DATA CONVERGENCE MECHANISMS

1 //0: I flag (insert), 1: T flag (touch), 2: D flag (delete)
2 class TableElem[V, Time](value: V, flags: MVRegister[Int, Time], mergeValues: (V, V) => V)
3 extends CvRDT[TableElem[V, Time]] {
4

5 def touchFlag(t: Time) =
6 new TableElem(this.value, this.flags.assign(1, t), this.mergeValues)
7

8 def deleteFlag(t: Time) =
9 new TableElem(this.value, this.flags.assign(2, t), this.mergeValues)
10

11 def isVisible(tablePolicy: Boolean): Boolean = {
12 if(this.flags.contains(1)) //T
13 true
14 else {
15 if(tablePolicy) //tablePolicy == update-wins
16 this.flags.contains(0)
17 else //tablePolicy == delete-wins
18 !this.flags.contains(2)
19 }
20 }
21

22 override def reachable(): Boolean =
23 this.mergeValuesAssumptions() && this.flags.reachable()
24

25 override def compatible(that: TableElem[V, Time]): Boolean =
26 this.mergeValues == that.mergeValues && this.flags.compatible(that.flags)
27

28 def merge(that: TableElem[V, Time]): TableElem[V, Time] =
29 new TableElem(this.mergeValues(this.value, that.value), this.flags.merge(that.flags),
30 this.mergeValues)
31 }

Listing 5.8: Implementation in VeriFx of the Table Element data type.

The implementation presented in Listing 5.8 only considered the requirements of the update-wins
foreign key policy. To support the delete-wins foreign key policy, it would be necessary to extend this

class to maintain versions (see Section 5.2.2). Therefore, the table implementation presented here

does not allow the implementation of systems that define foreign keys with the delete-wins policy.

This data type consists of three arguments: value represents the value stored in the table row,

represented by a generic type V for extensibility reasons; flags a multi-value register representing

the visibility column; and mergeValues, a merge function abstraction that must be specified by the

programmer when creating objects of this type (in VeriFx, this function only needs to be specified

if the programmer wants to perform proofs for time-specific implementations). This abstraction is

necessary to merge the values of two different rows because the value is generic.

To prove that the TableElem object converges, it was necessary to define the properties of the

mergeValues function. Since this is a state-based replication model, these properties are the com-

mutativity, idempotency and associativity of the function, which are defined in the mergeValuesAs-

sumptions function, depicted on Listing 5.9.

Strictly speaking, the visibility column (flags) should contain strings instead of integer values.

However, strings are “heavier” objects than integers and SMT solvers may be unable to complete a

proof if the proof object are strings. In our implementation, we therefore assign an integer to each

flag: I, the flag indicating that the element has been added/updated is represented by 0; T, the flag

55



CHAPTER 5. IMPLEMENTATION

1 private def mergeValuesAssumptions() = {
2 forall(v1: V, v2: V) { // commutativity
3 this.mergeValues(v1, v2) == this.mergeValues(v2, v1)
4 } &&
5 forall(v1: V) { // idempotency
6 this.mergeValues(v1, v1) == v1
7 } &&
8 forall(v1: V, v2: V, v3: V) { // associativity
9 this.mergeValues(this.mergeValues(v1, v2), v3) ==
10 this.mergeValues(v1, this.mergeValues(v2, v3))
11 }
12 }

Listing 5.9: mergeValues assumptions.

indicating that an element referencing the object has been added/updated is represented by 1; and D,

the flag indicating that an element has been deleted is represented by 2.

Methods touchFlag and deleteFlag are used to change the value of the flag when an element

referencing it has been added or when the object is removed.

Remember that in Antidote SQL table elements are not actually removed from the database. What

indicates whether the element exists in the database is the status of the visibility column. The isVis-

ible method is the method used to check whether an element is present in the database or not. This

method receives as an argument a boolean value that represents the conflict resolution policy of the

table. If the value is true, the update-wins policy is taken into account and if the value is false, the

delete-wins policy is considered. The first condition of the isVisible method (line 12) only affects

tables that have been defined as the parent table of another table (since the T flag is only used in these

situations) and checks whether the visibility column contains the T flag. In this case, it is assumed

that the element is present in the table, as otherwise a foreign key constraint would be violated. Oth-

erwise, the decision whether the element exists in the table depends on the conflict resolution policy

defined for the table: if the policy is update-wins, then the element exists in the table if the multi-value

register contains the I flag; otherwise, the element exists in the table if the multi-value register does

not contain the D flag.

The compatible function defines that two states are compatible if they have the same merge

function for the objects and if the multi-value register of one state is compatible with that of the other

state. The merge function uses the mergeValues function defined by the programmer to merge the

two values and merges the flags with the merge function of the multi-value register itself.

Table

Like the data type that represents each row of the table, the Table class was implemented as a

polymorphic CvRDT to be extensible and allow developers to use this CRDT when implementing

their own systems with VeriFx with any data type. This CRDT can be thought of as a map in terms of

data structures, with the key corresponding to the primary key of the objects stored in the table and

the value corresponding to an object of type TableElem. Although it was possible to use an array to

implement this CRDT, the map was chosen for efficiency in accessing the objects stored in the table.

The implementation of the class Table can be found in Listing 5.10. This class has four arguments:

56



5.1. DATA CONVERGENCE MECHANISMS

1 class Table[V, Time](mergeValues: (V, V) => V, before: (Time, Time) => Boolean,
2 tablePolicy: Boolean, elements: Map[String, TableElem[V, Time]])
3 extends CvRDT[Table[V, Time]] {
4

5 def add(id: String, v: V, t: Time) = {
6 if(this.isVisible(id)) //there is already an object with the primary key id
7 this
8 else {
9 val flags = new MVRegister[Int, Time](this.before).assign(0, t) //I -> 0
10 val elem = new TableElem(v, flags, this.mergeValues)
11 new Table(this.mergeValues, this.before, this.tablePolicy, this.elements.add(id, elem))
12 }
13 }
14

15 def update(id: String, v: V, t: Time) = {
16 if(this.isVisible(id)) { //update only works if the object exists in the table
17 val flags = new MVRegister[Int, Time](this.before).assign(0, t) //I -> 0
18 val elem = new TableElem(v, flags, this.mergeValues)
19 new Table(this.mergeValues, this.before, this.tablePolicy, this.elements.add(id, elem))
20 } else
21 this
22 }
23

24 def remove(id: String, t: Time) = {
25 if(this.isVisible(id)) {
26 val elem = this.elements.get(id).deleteFlag(t)
27 new Table(this.mergeValues, this.before, this.tablePolicy, this.elements.add(id, elem))
28 } else
29 this
30 }
31

32 def touch(id: String, t: Time) = {
33 val elem = this.elements.get(id).touchFlag(t)
34 new Table(this.mergeValues, this.before, this.tablePolicy, this.elements.add(id, elem))
35 }
36

37 def isVisible(id: String): Boolean =
38 this.elements.contains(id) && this.get(id).isVisible(this.tablePolicy)
39

40 override def compatible(that: Table[V, Time]): Boolean = {
41 this.before == that.before && this.mergeValues == that.mergeValues &&
42 this.tablePolicy == that.tablePolicy && this.elements.zip(that.elements).values().forall(
43 (t: Tuple[TableElem[V, Time], TableElem[V, Time]]) => t.fst.compatible(t.snd))
44 }
45

46 def merge(that: Table[V, Time]): Table[V, Time] = {
47 val mergedSet = this.elements.combine(that.elements,
48 (e1: TableElem[V, Time], e2: TableElem[V, Time]) => e1.merge(e2))
49 new Table(this.mergeValues, this.before, this.tablePolicy, mergedSet)
50 }
51 }

Listing 5.10: Implementation in VeriFx of the Table data type.

57



CHAPTER 5. IMPLEMENTATION

1 forall(table: Table[V, Time], id1: String, v2: V,
2 t2: Time, t3: Time) {
3

4 val before = table.before
5

6 ( table.reachable() && table.isVisible(id1) &&
7 table.tablePolicy == true &&
8 !before(t2, t3) && !before(t3, t2) && t2 != t3 ) =>: {
9

10 val tableUpd = table.update(id1, v2, t2)
11 val tableRem = table.remove(id1, t3)
12

13 tableUpd.isVisible(id1) &&
14 !tableRem.isVisible(id1) &&
15 tableUpd.merge(tableRem).isVisible(id1)
16 } }

Listing 5.11: Proof of the correct functioning of
concurrent updates and removals in an update-wins
table.

Figure 5.2: Test scenario.

the first two correspond to the merge function and the before function. These functions are not used

directly by the Table object, but are needed to create the TableElem and the MVRegister objects,

as can be seen in lines 9 and 10. The mergeValues function is used in the TableElem class to merge

the values stored in the table row (line 30 of Listing 5.8), and the before function is needed to merge

the multi-value registers representing the visibility column (see Listing 5.4). The tablePolicy

argument is a boolean value that allows the programmer to specify the conflict resolution policy of

the table, i.e. whether it is update-wins or delete-wins. The last argument corresponds to the map in

which the table data is stored.

Although Antidote SQL still supports the no concurrency semantics, implemented with locks, this

semantics has not been implemented in VeriFx. Its implementation could make it possible to check

whether locks allow referential integrity to be maintained.

The Table class supports four write operations: one that adds elements to the table, one that

updates items already in the table, one that allows items to be removed from the table, and one that

marks an item as touched when another element is added that references it and the conflict resolution

strategy is update-wins.

The compatible method restricts the compatible states to states where the before and mergeVal-

ues functions are the same, where the table policy is the same, and where all table elements in both

tables are compatible.

The merge method calculates a new map with all entries of the two maps. For the entries that are

in both maps, it is necessary to merge these elements because the objects may have been updated in

only one of the replicas.

In order to check whether the Table object works correctly, several tests were used, which were

carried out for the two possible configurations (update-wins and delete-wins). These tests checked sev-

eral execution scenarios, namely concurrent insertion of elements, sequential additions and deletions,

and concurrent additions and deletions, so that we could verify that the implementations behaved as

specified. Listing 5.11 and Figure 5.2 contain a proof and an illustration of the scenario verified in

the proof.

In this scenario, a table with the update-wins policy is considered in which there is one element

58



5.2. INVARIANT MAINTENANCE MECHANISMS

whose primary key is id1. Two operations are concurrently executed. The former updates the object

with id1 and the second deletes the object with id1 from the database. The proof checks whether the

object exists in the table in the state in which the element was updated and whether the object no

longer belongs to the table in the state in which it was deleted. Finally, it checks whether merging

these two states results in a state in which the instance is visible in the table. As expected, the proof

was accepted.

In addition to the various tests where correct scenarios were defined and the proofs were accepted,

incorrect scenarios were also tested and rejected by the SMT solver.

5.2 Invariant Maintenance Mechanisms

Antidote SQL is a database system that allows programmers to specify which database constraints

should be maintained. Depending on the constraints established and the level of concurrency defined

for these constraints, the database system uses some mechanisms to enforce the defined data model

efficiently, i.e., to keep the concurrency used as low as possible.

In Chapter 4 we presented the mechanisms that Antidote SQL uses to handle the supported

invariant types. In this section, we show the implementation of some of these mechanisms in VeriFx

and the results of their verification.

5.2.1 Bounded Counter

The behaviour of a bounded counter is very similar to that of a PN-Counter described in Section 5.1.5.

However, unlike the PN-Counter, the bounded counter allows limits to be defined for the counter.

For example, if a programmer defines a column with a limit greater than or equal to 0, Antidote SQL

implements that column with a bounded counter that does not allow the counter to decrement below

zero.

The specification of the bounded counter, capable of holding invariants of type greater than or
equal to K, is in Specification 5.4.

In addition to the increment and decrement operations, the bounded counter supports another

write operation: the transfer operation. This operation is used to transfer rights from one replica to

another.

To support the information about these three write operations, the payload of the bounded counter

consists of a matrix R in which the entry R[i][j] contains the number of rights transferred from replica

i to replica j and the entry R[i][i] indicates the number of rights that the replica retains locally, as

well as a vector U containing the number of rights consumed by each replica. An integer (min)

corresponding to the limit set by the programmer is also required.

Since Antidote SQL does not support the process of transferring rights between replicas, our

implementation in VeriFx (Listing 5.12) is much simpler than the specification shown above.

Since we do not support the transfer of rights, we do not need to implement the bounded counter

with a matrix, as two integer vectors are sufficient. In this case, we use two grow-only counters,

one containing the rights held by each replica and the other the rights consumed by each replica.

These two structures could be replaced by an object of type PN-Counter. In our implementation, the

59



CHAPTER 5. IMPLEMENTATION

Specification 5.4 State-based Bounded Counter for invariant greater or equal to K (taken from [3]).

1: payload integer[n][n] R, integer[n] U , integer min
2: initial [[0,0,...,0], ..., [0,0,...,0]], [0,0,...,0], K
3: query value () : integer v
4: v = min +

∑
i∈IdsR[i][i]−

∑
i∈IdsU [i]

5: query localRights () : integer v
6: id = repId() ▷ Id of the local replica
7: v = R[id][id] +

∑
i,idR[i][id]−

∑
i,idR[id][i]−U [id]

8: update increment (integer n)
9: id = repId()

10: R[id][id] = R[id][id] +n

11: update decrement (integer n)
12: pre-condition localRights() ≥ n
13: id = repId()
14: U [id] = U [id] +n

15: update transfer (integer n, replicaId to): boolean b
16: pre-condition b = (localRights() ≥ n)
17: from = repId()
18: R[from][to] := R[from][to] +n

19: merge (S)
20: R[i][j] = max(R[i][j],S.R[i][j]),∀i, j ∈ Ids
21: U [i] = max(U [i],S.U [i]),∀iIds

bounded counter has two other attributes, one of which is the defined limit and the other is the initial

value of the counter. In the specification of the bounded counter, the initial value of the counter was

equivalent to the limit. However, we considered that separating the two concepts would make the

implementation more comprehensive.

In the reachable function we have encoded some properties of the reachable states that are

necessary to prove this kind of object. The first condition (line 34) states that the initial value of the

counter must be greater than or equal to the limit, otherwise the invariant would be broken when the

object is created. Lines 38 and 39 expresses the condition that the number of rights consumed by each

replica must have a value between zero and the number of rights maintained by the replica. Line 40,

on the other hand, encodes that the sum of the rights present in the system must be greater than or

equal to the number of rights originally created (remember that this value increases when new rights

are created). Due to the great complexity that these conditions brought to the proofs, it was necessary

to limit the number of replicas in the system. So we specified that the maximum number of replicas

in the system was five replicas. Finally, we had to specify that the two vectors with integers have the

same dimension, since there is one entry for each replica in each vector (lines 35-37).

Note that when the PN-Counter was implemented, the reachable function was not defined and

therefore it was not specified that the size of the two vectors must be the same. Although the reachable

states were not restricted to these states, since the object was proved for an even more general case,

one can conclude that the object would also be proved correctly for more restrictive states.

To prove that the implementation of the bounded counter does not violate numeric invariants, i.e.

that it does not allow the counter value to become smaller than the defined lower bound, the proof

60



5.2. INVARIANT MAINTENANCE MECHANISMS

1 class BCounterGeq(rightsHold: GCounter, rightsConsumed: GCounter, bound: Int,
2 initialValue: Int = 0) extends CvRDT[BCounterGeq] {
3

4 def value() =
5 this.bound + this.rightsHold.value() - this.rightsConsumed.value()
6

7 def localRights(replica: Int) =
8 this.rightsHold.valueOfEntry(replica) - this.rightsConsumed.valueOfEntry(replica)
9

10 def increment(replica: Int, n: Int) =
11 new BCounterGeq(this.rightsHold.increment(replica, n), this.rightsConsumed, this.bound,
12 this.initialValue)
13

14 def decrement(replica: Int, n: Int) = {
15 if(this.localRights(replica) >= n)
16 new BCounterGeq(this.rightsHold, this.rightsConsumed.increment(replica, n), this.bound,
17 this.initialValue)
18 else
19 this
20 }
21

22 def invariant(): Boolean = this.value() >= this.bound
23

24 def merge(that: BCounterGeq): BCounterGeq = {
25 val rightsHoldMerged = this.rightsHold.merge(that.rightsHold)
26 val rightsConsumedMerged = this.rightsConsumed.merge(that.rightsConsumed)
27 new BCounterGeq(rightsHoldMerged, rightsConsumedMerged, this.bound, this.initialValue)
28 }
29

30 override def reachable() = {
31 val rHoldEntries = this.rightsHold.entries
32 val rConsumedEntries = this.rightsConsumed.entries
33

34 this.initialValue >= this.bound &&
35 this.rightsHold.wellFormed() && this.rightsConsumed.wellFormed() &&
36 this.rightsHold.networkSize() == this.rightsConsumed.networkSize() &&
37 this.rightsHold.networkSize() <= 5 &&
38 rHoldEntries.positions.keys().forall((idx: Int) => rConsumedEntries.get(idx) >= 0 &&
39 rConsumedEntries.get(idx) <= rHoldEntries.get(idx)) &&
40 this.rightsHold.value() >= this.initialValue - this.bound
41 }
42

43 override def compatible(that: BCounterGeq) =
44 this.rightsHold.networkSize() == that.rightsHold.networkSize() &&
45 this.bound == that.bound && this.initialValue == that.initialValue
46 }

Listing 5.12: Implementation in VeriFx of the bounded counter CRDT for invariants of the type greater
or equal to K.

61



CHAPTER 5. IMPLEMENTATION

presented in Listing 5.13 was written and tested. This proof verifies that the merge function does

not violate the invariant. In addition to this proof, several other proofs were written to verify that

the operations behave as expected (the proofs check the counter status after executing increment and

decrement operations).

1 proof BCounterGeq_merge_holds_invariant {

2 forall (s1: BCounterGeq, s2: BCounterGeq) {

3 (s1.invariant() && s2.invariant() && s1.reachable() && s2.reachable() &&

4 s1.compatible(s2)) =>: s1.merge(s2).invariant()

5 }

6 }

Listing 5.13: Proof to verify that the bounded counter maintain the invariant.

Since the programmer can set lower bounds in Antidote SQL, we have also implemented a version

of the bounded counter for upper bounds. This version is very similar to the one shown in this section

and can be seen in the Appendix A.

5.2.2 Referential Integrity

The verification of the referential integrity mechanism had to be done using concrete examples. Imple-

menting the mechanism using a generic example, where the parent table and child table could be of

any data type, required the use of table merge abstractions. However, the merge function abstraction

only encodes the properties required to prove that the system converges. By using these abstractions

to merge the tables, relevant information required to prove that referential integrity is not violated

is lost. That is, after two tables have been merged using an abstract merge function, it is impossible

for the SMT solver to determine whether the element is still in the table or not, because the merge

function says nothing about it.

In this way we implemented a concrete example to verify this mechanism. Consider again the man-

agement albums system. This system consists of two tables: an Artists table, which stores information

about the artists registered in the system, and an Albums table, which keeps information related to

the albums. The Albums table has a foreign key that refers to the primary key of the Artists table.

Therefore, one of the invariants of the system is to ensure that referential integrity is not violated, i.e.

that for each album in the system there is also the artist to whom the album belongs.

In order to verify this system in VeriFx, i.e. to check whether the invariant has been maintained and

whether the system converges with the defined conflict resolution strategies, we implemented a class

that represents the entire system. The implementation of this class can be seen in Listing 5.14 and

Listing 5.15. The system consists of two tables, albums and artists, and two functions, mergeAl-

bums and mergeArtists. These two functions correspond to the functions for merging the Albums
table and the Artists table respectively.

In the system implementation presented here, we only consider the update-wins foreign key policy.

We have also implemented a version in which the delete-wins policy was used. However, since this

policy needs to control object versions, they became more complex and the SMT solver aborted several

tests. Since we could not verify that the implementation of the mechanism was correct, we do not

show its implementation.

62



5.2. INVARIANT MAINTENANCE MECHANISMS

1 class AlbumsSystem[Time](albums: Table[Album, Time], artists: Table[Artist, Time],
2 mergeAlbums: (Table[Album, Time], Table[Album, Time]) => Table[Album, Time],
3 mergeArtists: (Table[Artist, Time], Table[Artist, Time]) => Table[Artist, Time])
4 extends CvRDT[AlbumsSystem[Time]] {
5

6 def insertAlbum(a: Album, t: Time) = {
7 if(this.containsArtist(a.artist) && !this.containsAlbum(a.title)) {
8 new AlbumsSystem(this.mergeAlbums, this.mergeArtists, this.albums.add(a.title, a, t),
9 this.artists.touch(a.artist, t))
10 } else
11 this
12 }
13

14 def updateAlbumYear(title: String, newYear: Int, t: Time, stamp: LamportClock) = {
15 val album = this.getAlbum(title).value
16 val newAlbum = album.updateYear(newYear, stamp)
17 new AlbumsSystem(this.mergeAlbums, this.mergeArtists,
18 this.albums.update(title, newAlbum, t), this.artists.touch(album.artist, t))
19 }
20

21 def deleteAlbum(title: String, t: Time) =
22 new AlbumsSystem(this.mergeAlbums, this.mergeArtists, this.albums.remove(title, t),
23 this.artists)
24

25 def insertArtist(a: Artist, t: Time) =
26 new AlbumsSystem(this.mergeAlbums, this.mergeArtists, this.albums,
27 this.artists.add(a.name, a, t))
28

29 def updateArtistCountry(name: String, newCountry: String, t: Time, stamp: LamportClock)= {
30 val artist = this.getArtist(name).value
31 val newArtist = artist.updateCountry(newCountry, stamp)
32 new AlbumsSystem(this.mergeAlbums, this.mergeArtists, this.albums,
33 this.artists.update(name, newArtist, t))
34 }
35

36 def deleteArtist(name: String, t: Time, delCascade: Boolean) = {
37 if(delCascade) {
38 val albumsElems = this.albums.elements.mapValues((elem: TableElem[Album, Time]) =>
39 (this.deleteChildren(name, elem, t)))
40 val newAlbumsTable = new Table(this.albums.mergeValues, this.albums.before,
41 this.albums.tablePolicy, albumsElems)
42 new AlbumsSystem(this.mergeAlbums, this.mergeArtists, newAlbumsTable,
43 this.artists.remove(name, t))
44 } else
45 this
46 }
47

48 private def deleteChildren(name: String, elem: TableElem[Album, Time], t: Time) = {
49 if(elem.value.artist == name)
50 elem.deleteFlag(t)
51 else
52 elem
53 }
54

55 def containsArtist(name: String) = this.artists.isVisible(name)
56

57 def containsAlbum(title: String) = this.albums.isVisible(title)

Listing 5.14: Implementation in VeriFx of the album management system (part 1).

63



CHAPTER 5. IMPLEMENTATION

1 override def compatible(that: AlbumsSystem[Time]): Boolean =
2 this.mergeAlbums == that.mergeAlbums && this.mergeArtists == that.mergeArtists
3

4 override def reachable(): Boolean =
5 this.mergeAlbumsAssumptions() && this.mergeArtistsAssumptions()
6

7 def merge(that: AlbumsSystem[Time]) = {
8 new AlbumsSystem(this.mergeAlbums, this.mergeArtists,
9 this.mergeAlbums(this.albums, that.albums),
10 this.mergeArtists(this.artists, that.artists))
11 }
12

13 def reachableConcreteMerges(): Boolean =
14 this.artists.reachable() && this.albums.reachable()
15

16 def mergeWithConcreteMerges(that: AlbumsSystem[Time]) = {
17 new AlbumsSystem(this.mergeAlbums, this.mergeArtists, this.albums.merge(that.albums),
18 this.artists.merge(that.artists))
19 }

Listing 5.15: Implementation in VeriFx of the album management system (part 2).

In the implementation of this system, since the tables have a relationship among themselves, it

was necessary to define some operations taking this relationship into account. The insertAlbum

method, for example, only inserts the album if the system contains the artist to whom the album

belongs and if the album does not exist in the database. In case of insertion, the artist to whom the

album belongs is marked as touched. Although the add method of the Table class only produces

effects on the table if the element to be added does not already exist in the table, in this case we check

first if the album exists to avoid marking an artist as touched if the album hasn’t been added. The

method updateAlbum updates the album and marks its parent record as touched. It is the fact that

the parent record is marked as touched that makes it possible to resolve conflicts that may lead to the

referential integrity invariant being broken. The deleteAlbum method simply removes the album

from the database (by setting the D flag in the visibility column).

The methods insertArtist and updateArtistCountry in turn insert/update the element

(note that the element is only inserted if there is no element with the same primary key in the table,

and that the update operation only takes effect if the element exists in the table). The deleteArtist

method is more complex due to the definition of a foreign key and behaves differently depending

on whether or not the ON DELETE CASCADE setting is enabled. If disabled, elements can only be

deleted from the parent table if they do not have an element in the child table that references them.

However, this behaviour would add an extra overhead to the method, which is why we decided not

to allow elements to be deleted from the parent table in this configuration. If, on the other hand, the

setting is enabled, the method will not only delete its own record, but also all records that refer to it.

In this case, all albums of an artist are deleted when the artist is deleted.

The containsArtist method checks whether the artist is visible in the database, i.e. whether

there is a record with this primary key in the artists table and if so, whether the visibility column of

the record indicates that the row is visible. Since this implementation takes into account the update-
wins foreign key policy, the method containsAlbum checks the same conditions. If the foreign key

policy were delete-wins, the method would look similar to the one stated on Listing 5.16. In addition

64



5.2. INVARIANT MAINTENANCE MECHANISMS

1 def containsAlbum(title: String) = {
2 if(this.albums.isVisible(title)) {
3 val album = this.getAlbum(title)
4 if(this.containsArtist(album.value.artist)) {
5 album.fkVersion == this.getArtist(album.value.artist).version
6 } else
7 false
8 } else
9 false
10 }

Listing 5.16: Adaptation of the containsAlbum function for the delete-wins foreign key policy.

to checking whether the record is visible, it would have to check whether the parent record exists and

whether the version stored in the album and the version of the parent record match. Only if all these

conditions are met can the album (i.e. the child record) be considered visible under the delete-wins
foreign key policy.

In Listing 5.15 we present the methods that define the properties of compatible states, reachable

states, and the merge function. In this example, we define two compatible states as two states in

which the mergeAlbums and mergeArtists functions are the same.

For both the definition of the reachable states and the merge function, it was necessary to define

two methods. The reachable method encodes the reachable states as the states in which the merge

function abstractions for the albums table and the artists table have the properties necessary to

guarantee that a state-based CRDT converges: commutativity, associativity and idempotency. These

abstractions are necessary to reduce the complexity of the convergence proofs, because without them

these proofs would be aborted, so we cannot determine the system convergence and the system

implementation correctness. The merge method is used in convergence proofs to join states. For the

reasons mentioned, this method uses abstractions to merge each of the tables. The convergence of the

system, as with the other data types presented here, was checked using the proofs provided by the

VeriFx CRDTs library.

To prove referential integrity, one must prove that some particular records remain in the database.

However, when using abstractions such as the mergeValues function and the mergeArtists func-

tion, information about what remains in the table is lost, so it was impossible to prove referential

integrity using this approach. Therefore, we defined two methods that can be used to prove referential

integrity. The method reachableConcreteMerges encodes reachable states as those in which each

of the tables is in a reachable state. The mergeWithConcreteMerges function uses the merge func-

tions of the Table object itself. In addition to these methods, we encoded the property we wanted to

check (referential integrity) in the refIntegrityInvariant function shown in Listing 5.17.

The refIntegrityInvariant function checks whether, for all visible elements in the Albums
table (child table), the artist to which each album refers exists in the Artists table (parent table).

The proof defined to verify this property is also in the listing above and checks whether referential

integrity is preserved after merging two states that are compatible and reachable and for which the

invariant holds. Unfortunately, due to the high complexity of the objects representing tables and

the operations performed in the proof, the SMT solver cannot prove or reject and return an abort.

Since the definition of abstractions is not a solution to prove referential integrity, we had to resort to

65



CHAPTER 5. IMPLEMENTATION

1 def refIntegrityInvariant() =
2 this.albums.elements.forall((title: String, album: TableElem[Album, Time]) =>
3 album.isVisible(true) =>: this.containsArtist(album.value.artist))
4

5 proof genericReferentialIntegrity {
6 forall(s1: AlbumsSystem[VersionVector], s2: AlbumsSystem[VersionVector]) {
7 ( s1.reachableConcreteMerges() && s2.reachableConcreteMerges() && s1.compatible(s2) &&
8 s1.refIntegrityInvariant() && s2.refIntegrityInvariant() ) =>: {
9 s1.mergeWithConcreteMerges(s2).refIntegrityInvariant()
10 }
11 }
12 }

Listing 5.17: Generic proof to verify the preservation of referential integrity.

defining more specific and simpler proofs that define concrete situations.

In Listing 5.18 we present one of these proofs, which corresponds to the scenario shown in Fig-

ure 5.3. This proof defines a scenario where the two tables have been specified with the update-wins
conflict resolution policy and the foreign key policy is also the update-wins policy. An important detail

in this proof is that it specifies the type of time used (in this case an implementation of the version

vectors) as opposed to what happens in the convergence proofs where generic time is used. In a first

phase we tried to prove referential integrity for a generic time, but the proofs were aborted. When

we tried to specify a type of time the proofs started to be accepted. Through these tests we were able

to conclude that the best approach depends on the specific use case being verified. Another detail of

this proof is the need to specify that the system starts with the tables empty. Without this condition,

the proof is also aborted. So, to simplify the proof, we only prove cases where the system starts in an

empty state and define small examples from there. Since the presence of other elements in the table

does not affect referential integrity and would not lead to a different result, we can generalise from

an example where we consider the system to be empty that the same thing happens when the system

contains multiple elements.

The proof starts with the insertion of an artist into the system, which leads to the state s, and then

an album is inserted into the system (s1). In this state, two operations are concurrently executed:

one that deletes the artist (s2) and another that inserts a new album for that artist (s3). Finally, state

s23 represents the state after merging state s2 and state s3. The test checks for each state whether it

contains specific objects. For the final state, it checks whether it contains the artist, the second album,

if it does not contain the first inserted album, and whether the values stored in the table in this state

match those added in the previous states.

To check whether the table resolution policies and foreign key policies actually work correctly, we

tested different combinations of policies for the tables. Our original goal was to also test with different

foreign key policies, but this was not possible because our implementation only takes into account

the update-wins foreign key policy (we tried to extend the Table and TableElem classes to support

the delete-wins foreign key strategy, but the proofs were aborted). In this way, we tested all possible

combinations of resolution policies for the albums and artists tables with several different tests: one

that verified a simple example of referential integrity, another that tested the ON DELETE CASCADE

setting (example in Listing 5.18), and tests that mixed update operations with insert and remove

66



5.2. INVARIANT MAINTENANCE MECHANISMS

1 forall(system: AlbumsSystem[VersionVector], t1: VersionVector, t2: VersionVector,
2 t3: VersionVector, t4: VersionVector, c1: LamportClock, c2: LamportClock,
3 c3: LamportClock, artistName: String, country: String, title1: String,
4 year1: Int, title2: String, year2: Int) {
5

6 val artist = new Artist(artistName, new LWWRegister(country, c1))
7 val album1 = new Album(title1, artistName, new LWWRegister(year1, c2))
8 val album2 = new Album(title2, artistName, new LWWRegister(year2, c3))
9

10 (system.reachableConcreteMerges() && system.isEmpty() &&
11 // specification of before function to be used
12 system.albums.before == ((x: VersionVector, y: VersionVector) => x.before(y)) &&
13 system.artists.before == ((x: VersionVector, y: VersionVector) => x.before(y)) &&
14 t1.before(t2) && t2.before(t3) && t2.before(t4) && t3.concurrent(t4) &&
15 album1.reachable() && album2.reachable() && title1 != title2 &&
16 system.albums.tablePolicy == true && system.artists.tablePolicy == false ) =>: {
17

18 val s = system.insertArtist(artist, t1)
19 val s1 = s.insertAlbum(album1, t2)
20 val s2 = s1.deleteArtist(artistName, t3, true)
21 val s3 = s1.insertAlbum(album2, t4)
22 val s23 = s2.mergeWithConcreteMerges(s3)
23

24 s.containsArtist(artistName) && !s.containsAlbum(title1) && !s.containsAlbum(title2) &&
25 s1.containsArtist(artistName) && s1.containsAlbum(title1) &&
26 !s2.containsArtist(artistName) && !s2.containsAlbum(title1) &&
27 s3.containsArtist(artistName) && s3.containsAlbum(title1) && s3.containsAlbum(title2) &&
28 s23.containsArtist(artistName) && !s23.containsAlbum(title1) &&
29 s23.containsAlbum(title2) && s23.getAlbum(title2).value == album2 &&
30 s23.getAlbum(title1).value == album1 && s23.getArtist(artistName).value == artist
31 }
32 }

Listing 5.18: Proof with a specific scenario to prove referential integrity with the ON DELETE
CASCADE setting enabled.

Figure 5.3: Representation of the scenario checked in the Listing 5.18.

operations to create conflicts both in the preservation of the invariant and in the tables themselves.

5.2.3 Locks

Locks are a fundamental mechanism of Antidote SQL, as they allow exclusive access to shared re-

sources. Thus, they can be used to ensure that there are no conflicts between operations (e.g. if a

conflict resolution policy is not chosen for a table, locks are used to ensure that an insert/update is

not performed at the same time as a delete) or even to ensure that invariants are not violated (e.g. in

67



CHAPTER 5. IMPLEMENTATION

the no concurrency semantics for foreign key constraints, locks are used to ensure that the relationship

between two tables is not destroyed).

In addition to their current use in Antidote SQL, through the analysis of invariants (summarised

in Chapter 4), we were able to determine that locks are essential for maintaining several other types

of invariants that may be included in Antidote SQL in the future.

Antidote SQL supports two types of locks: exclusive locks and shared locks. In this section, we

present the VeriFx implementation of two small examples that use locks, one with shared locks and

another with exclusive locks. With these examples we show that locks are able to hold invariants and

can be used for this purpose.

Exclusive Locks

Exclusive locks can only be held by one transaction at a time and give the transaction the exclusive

right to execute. Therefore, if a transaction holds a lock (regardless of whether it is an exclusive or

shared lock) and another transaction needs to acquire an exclusive lock, the second transaction must

wait until the first transaction has executed and released the lock. Only when all locks have been

released can the exclusive lock be acquired by another transaction.

As mentioned in Chapter 4, Antidote SQL uses this type of lock, for example, when it needs to

create sequential identifiers for objects stored in the database. In this case, an insert operation must

acquire a lock, and any insert operation that tries to execute at the same time will be blocked until it

gets the lock.

To check if it is possible to maintain invariants with exclusive locks, we have implemented a small

example in VeriFx that can be seen in Listing 5.19. The example consists of an object that stores two

integers, v1 and v2. The only operation supported by the object is the addTransaction operation,

which changes the value of v1 and v2 according to the value passed as an argument in the function.

In this example, we want to maintain an invariant: the value of v1 must always be equal to the value

of v2.

Our implementation of a state-based exclusive lock is based on the specification of distributed

locks presented in [21]. For ease of reading, we created a class to represent the exclusive lock in a

state-based synchronisation model. The lock can be viewed as an integer containing the identifier

of the replica that holds it and a timestamp. This timestamp is needed when states with different

locks are merged. Since the SMT solver explores the entire result space, states with different locks are

generated. For this reason, the merge function needs to know which lock is the most recent to know

which object was last changed.

The reachable function encodes reachable states as those where v1 equals v2. Since the only

operation supported by the object always assigns the same value to v1 and v2, this property is true.

In the compatible function, we have coded two conditions. The former states that two locks that

have the same timestamp must also have the same owner (line 17). The second condition is necessary

to prove convergence (line 18). Without it, a counterexample would be returned where two states

x and y with the same lock have different values for v1 and v2. That is, in state x, v1 and v2 were

equal to 1 and in state y, v1 and v2 were equal to 2. These two states are incompatible because we

are considering a model where the exclusive lock is released after the operation is performed. Even if

68



5.2. INVARIANT MAINTENANCE MECHANISMS

1 class ExcLock(owner: Int, stamp: LamportClock) {}
2

3 class TxWithLockSB(v1: Int, v2: Int, lock: ExcLock) extends CvRDT[TxWithLockSB] {
4

5 def addTransaction(value: Int, replicaId: Int, stamp: LamportClock) = {
6 if(replicaId == this.lock.owner)
7 new TxWithLockSB(value, value, this.lock)
8 else
9 this
10 }
11

12 def invariant(): Boolean = this.v1 == this.v2
13

14 override def reachable(): Boolean = this.v1 == this.v2
15

16 override def compatible(that: TxWithLockSB): Boolean =
17 (this.lock.stamp == that.lock.stamp) =>: (this.lock.owner == that.lock.owner) &&
18 (this.lock == that.lock) =>: (this.v1 == that.v1 && this.v2 == that.v2)
19

20 def merge(that: TxWithLockSB): TxWithLockSB = {
21 if (this.lock.stamp.greaterOrEqual(that.lock.stamp))
22 this
23 else
24 that
25 }
26

27 def compare(that: TxWithLockSB): Boolean = this.lock.stamp.smallerOrEqual(that.lock.stamp)
28 }

Listing 5.19: Example with exclusive locks in VeriFx.

transactions were considered, two different states with the same timestamp could never be verified

because the state would only be propagated at the end of the transaction.

To prove that the defined invariant was maintained by the object, we defined the proof presented

in Listing 5.20. This proof is simple and only verifies that for two compatible states in which the

invariant is verified, joining the two states creates a new state in which the invariant is also preserved.

In this proof, the reachable function has not been invoked, because the reachable states in the

example are exactly the same as those that satisfy the invariant, so implicitly the states that satisfy the

invariant are the same as those that are reachable.

1 proof Tx_holds_invariant {

2 forall (s1: TxWithLockSB, s2: TxWithLockSB) {

3 (s1.invariant() && s2.invariant() && s1.compatible(s2)) =>: s1.merge(s2).invariant()

4 }

5 }

Listing 5.20: Proof to verify the preservation of the invariant using exclusive locks.

This example has also been implemented for an operation-based replication model. You can see

this implementation in Appendix B.

Shared Locks

Shared locks are a less restrictive type of lock than exclusive locks. A transaction that acquires this

type of lock has the right to execute transactions, but other transactions with this type of lock can

69



CHAPTER 5. IMPLEMENTATION

Figure 5.4: Execution scenario without using locks.

be executed at the same time. For example, if you use shared locks in Antidote SQL to implement

update-delete semantics, insert/update operations must acquire a shared lock. Unlike exclusive

locks, where only one transaction can be executed at a time, shared locks allow multiple objects to be

inserted/updated into the table simultaneously.

Consider the following example: an application that registers the number of subscriptions for a

team while the subscriptions are open. The system supports three operations: an operation that allows

users to subscribe to the team, an operation that allows users to unsubscribe, and finally an operation

that closes the subscriptions. This operation can only be performed if the number of subscribers

is greater than 2. From the moment the registrations are closed, users can neither subscribe nor

unsubscribe to the team. In this way, the following invariant can be defined as (!this.isOpen) ⇒
(this.counter.ctr ≥ 2).

If no mechanism is used, the scenario of Figure 5.4 may occur.

Listing 5.21 shows the example implemented with shared locks. This example was implemented

for an operation-based model. The invariant defined for the system is an implication, so as said

in Chapter 4, operations that make the left predicate true must use an exclusive lock (in this case

operation closeSubscription), and operations that can break the invariant but affect the right side

need a shared lock to be executed (unsubscribe operation ). The subscribe operation also needs

a lock, otherwise the counterexample depicted in Figure 5.5 is returned. This counterexample shows

a situation where the invariant is maintained but the state does not converge when the operations in

state s3 are performed in a different order. Hence the need to use locks in the subscribe operation.

Figure 5.5: Counterexample returned if the subscribe method did not use locks.

To prove that the object converges, we used the proof provided by the VeriFx CRDT library. In

Listing 5.22 we present the proof that verifies if the invariant is preserved. The proof verifies that the

invariant is preserved for any three reachable states, compatible with each other, and in which the

invariant is preserved regardless of the operation performed and the order in which it is performed.

This proof also verifies that the state converges after the execution of the same set of operations.

70



5.2. INVARIANT MAINTENANCE MECHANISMS

1 object Op {
2 enum Ops {
3 CloseSubscriptions(replicaId: Int) |
4 Subscribe(replicaId: Int) |
5 Unsubscribe(replicaId: Int)
6 }
7 }
8

9 class SharedLockExample(counter: Counter, isOpen: Boolean,
10 posLocks: Set[Int] = new Set[Int](), negLocks: Set[Int] = new Set[Int]())
11 extends CmRDT[Ops, Ops, SharedLockExample] {
12

13 def closeSubscriptions(replicaId: Int) = {
14 if(this.negLocks.contains(replicaId) && this.counter.ctr >= 2)
15 new SharedLockExample(this.counter, false, this.posLocks, this.negLocks)
16 else
17 this
18 }
19

20 def subscribe(replicaId: Int) = {
21 if(this.posLocks.contains(replicaId) && this.isOpen)
22 new SharedLockExample(this.counter.increment(), this.isOpen, this.posLocks,
23 this.negLocks)
24 else
25 this
26 }
27

28 def unsubscribe(replicaId: Int) = {
29 if(this.posLocks.contains(replicaId) && this.isOpen)
30 new SharedLockExample(this.counter.decrement(), this.isOpen, this.posLocks,
31 this.negLocks)
32 else
33 this
34 }
35

36 override def reachable() =
37 !(this.negLocks.nonEmpty() && this.posLocks.nonEmpty())
38

39 def invariant(): Boolean =
40 (!this.isOpen) =>: (this.counter.ctr >= 2)
41

42 def prepare(op: Ops) = op // prepare phase does not add extra information
43

44 def effect(op: Ops) = op match {
45 case CloseSubscriptions(replicaId) => this.closeSubscriptions(replicaId)
46 case Subscribe(replicaId) => this.subscribe(replicaId)
47 case Unsubscribe(replicaId) => this.unsubscribe(replicaId)
48 }
49 }

Listing 5.21: Example with shared locks in VeriFx.

71



CHAPTER 5. IMPLEMENTATION

1 proof SharedLockExample_holds_invariant {

2 forall(s1: SharedLockExample, s2: SharedLockExample, s3: SharedLockExample,

3 x: Ops, y: Ops) {

4 val msg1 = s1.prepare(x)

5 val msg2 = s2.prepare(y)

6

7 ( s1.compatible(msg1, msg2) && s1.compatibleS(s2) && s1.compatibleS(s3) &&

8 s1.invariant() && s2.invariant() && s3.invariant() &&

9 s1.reachable() && s2.reachable() && s3.reachable() ) =>: {

10

11 s3.tryEffect(msg1).tryEffect(msg2) == s3.tryEffect(msg2).tryEffect(msg1) &&

12 s3.tryEffect(msg1).invariant() && s3.tryEffect(msg2).invariant() &&

13 s3.tryEffect(msg1).tryEffect(msg2).invariant()

14 }

15 }

16 }

Listing 5.22: Invariant checking proof for the example with shared locks.

5.3 Verification of Conflict Resolution Policies

In order to verify that VeriFx is indeed able to detect situations where the choice of conflict resolution

strategies causes the violation of the invariant, we defined a system where the choice of conflict

resolution strategies determines whether the invariant is violated or not.

The implementation of the example can be found in Listing 5.23. The system contains two inte-

gers, v1 and v2, implemented with register CRDTs for convergence reasons. One of the attributes,

in this case v1, was defined with the last-writer-wins policy, and is therefore implemented with a

LWWRegister. The other attribute (v2) has been implemented with a FWWRegister and therefore

the first-writer-wins policy is applied. The system allows the execution of an update operation that

changes the value stored in each of the registers to the value passed as the argument of the operation.

In addition, an invariant has been defined for the system: the value stored in v1 must always be equal

to v2.

The implementation of the system was verified using the Transaction_holds_invariant

proof. As expected, the proof was rejected and we got back the counterexample shown in Figure 5.6.

Figure 5.6: Counterexample returned by VeriFx for the Transaction_holds_invariant proof.

The problem with this system was the definition of the conflict resolution strategies, since with

simultaneous updates each of the registers would retain a different value. To solve this problem, it

72



5.4. SUMMARY

1 class ValuesEqualityExample(v1: LWWRegister[Int], v2: FWWRegister[Int])
2 extends CvRDT[ValuesEqualityExample] {
3

4 def changeValue(value: Int, timestamp: LamportClock) =
5 new ValuesEqualityExample(this.v1.assign(value, timestamp),
6 this.v2.assign(value, timestamp))
7

8 def merge(that: ValuesEqualityExample) =
9 new ValuesEqualityExample(
10 this.v1.merge(that.v1),
11 this.v2.merge(that.v2))
12

13 def compare(that: ValuesEqualityExample) = {
14 this.v1.compare(that.v1) && this.v2.compare(that.v2)
15 }
16

17 override def reachable() = {
18 this.v1.stamp == this.v2.stamp
19 }
20

21 def invariant(): Boolean = {
22 this.v1.getValue() == this.v2.getValue()
23 }
24 }
25

26 object ValuesEqualityExampleProofs {
27 proof ValuesEqualityExample_holds_invariant {
28 forall (s1: ValuesEqualityExample, s2: ValuesEqualityExample) {
29 (s1.invariant() && s2.invariant() && s1.reachable() && s2.reachable()) =>:
30 s1.merge(s2).invariant()
31 }
32 }
33 }

Listing 5.23: Definition of a system for testing the effects of conflict resolution strategies on specific
invariants.

would be sufficient to use the same conflict resolution strategy for both registers, i.e. either two LWW

registers or two FWW registers.

This simple example illustrates the impact the choice of conflict resolution policies can have on

the application correctness.

5.4 Summary

In this chapter, we have presented several implementations of the CRDTs used by Antidote SQL

in VeriFx, as well as some mechanisms used by this database system to enforce invariants. For all

implementations presented here, we have performed VeriFx proofs to verify that objects of these types

converge.

For the mechanisms that enforce invariants, we also encoded the correctness properties we wanted

to verify in proofs (e.g., in the case of the bounded counter, verifying that the implementation does

not allow the bounds defined for the counter to be exceeded) and verified that the properties are

preserved.

In this chapter, we also presented an example that shows the impact that the choice of conflict

73



CHAPTER 5. IMPLEMENTATION

resolution strategies can have on the preservation of invariants. This example shows us the importance

of using an analysis tool to validate programmer specifications in Antidote SQL.

74



6

Methodology

In the previous chapter, we presented the implementation and some details of the verification of

all CRDTs used by Antidote SQL, as well as mechanisms for strengthening invariants. Although all

mechanisms have been proven correct for the properties we wanted to verify, there are issues that only

arise in specific situations and scenarios. Moreover, the correctness of a single RDT does not imply the

correctness of a composition of RDTs. So if programmers want to conclude that their specifications

are correct, they have to verify the system as a whole.

To help programmers verify applications, in Section 6.1 we present a methodology for implement-

ing and verifying systems in VeriFx. In Section 6.2 we apply the methodology to a concrete case:

the system for managing albums and artists. Finally, in Section 6.3 we present the limitations of the

presented approach and make some suggestions for improvements.

6.1 Methodology for Implementation and Verification of Applications

By implementing the album management system example, it was possible to derive a methodology

for application verification. Although this methodology focuses on applications that use Antidote

SQL, it could also be adapted for the verification of other applications.

Below is a list of the different steps that the developer needs to follow when implementing and

verifying their applications and systems:

1. Define the system tables in Antidote SQL by specifying which concurrency semantics are al-

lowed for each table and column, and by identifying the system invariants.

2. For each table, implement the data type that the table should store. This implementation must

be done according to the specification of the tables themselves. This data type represents the

table rows without the visibility column. Therefore, for each of the columns defined in the

specification, there must be an attribute in the class that corresponds to it. The data type of each

attribute (in VeriFx) must also be derived from the data type and data policy defined for the

column in Antidote SQL. For example, a column whose concurrency semantics is no concurrency
and whose data type is VARCHAR must be implemented with the String data type in VeriFx.

In contrast, a column defined with the same data type but with last-writer-wins semantics is

implemented in VeriFx as an object of type LWWRegister[String].

75



CHAPTER 6. METHODOLOGY

3. For each of these data types, check whether they converge, i.e. whether the merge function

is commutative, associative and idempotent. This verification can be done using the proofs

provided by the VeriFx CRDTs library and is necessary to ensure that the abstractions and as-

sumptions defined by the TableElem class are correct. As explained in the previous chapter,

the TableElem class and the Table class were implemented in a generic way to allow program-

mers to implement their own systems by composing objects of type Table. In addition to the

implementation, it has been proved that objects of type Table[V, Time] converge, provided

that the merge function of the values of type V guarantees commutativity, associativity and idem-

potence. In this way, having proved that the developed data types converge, the programmer

can assume that objects of type Table containing these values also converge.

4. Implement the class system. This class must contain as many objects of type Table as the tables

defined by the programmer. Each table must be of a type defined by the programmer in step 2.

In addition, the programmer must specify the conflict resolution policy for each table, which

must conform to the one defined in the specification. The programmer must also specify a table

merge function abstraction for each of the defined tables. These abstractions are necessary to

reduce the complexity of the properties that the SMT solver must prove, and they must express

that the merge function guarantees the properties necessary for the convergence of each table.

In defining the abstractions and assumptions, we can take into account that after the previous

step we have concluded that these properties are true for each of the merge functions of the

defined tables.

5. Verify that the system class converges by using the tests provided by VeriFx for this purpose. If

the tests are aborted due to the complexity of the class (e.g. because the class contains many

tables), the programmer should try to fragment this class into simpler logical parts. These parts

must be tested one by one. After checking convergence, they must be gradually grouped into

other classes, using abstractions to reduce the complexity of the properties to be proved. For

example, consider a system with four tables (a, b, c, and d), one of which (say b) contains a

foreign key of another table (a). Imagine also that the verification of the convergence properties

of the implementation of the system class with these four tables is always aborted by the SMT

solver. To prove the convergence properties, we suggest that the programmer implements two

additional classes: one class in which the convergence of the two associated tables (a and b) is

proved, called AB, and another class, called CD, in which the convergence of the remaining two

tables is proved. After proving that the objects of these classes converge, the programmer can

implement a new version of the system class, but instead of four tables and four abstractions

to merge the tables, it would now have two objects, one of type AB and one of type CD, and

two abstractions, one of which is the merge function for each of the objects. Figure 6.1 shows a

diagram illustrating this situation. On the left side, the system class is formed by the four tables

and four abstractions of the merge function. The right-hand side shows the approach that the

programmer should take to try to simplify the objects and prove the convergence of the system.

Note that a system with four tables could converge without requiring code fragmentation, and

that this is just an illustrative example.

76



6.1. METHODOLOGY FOR IMPLEMENTATION AND VERIFICATION OF APPLICATIONS

Figure 6.1: Fragmentation of the system class to simplify the complexity of the system and check if it
converges.

6. Check that the invariants defined for the system are maintained. The invariants must be defined

and proved in the class that makes the most sense. For example, referential integrity must be

proved in the class that joins the two tables that maintain the integrity relationship, and a nu-

meric invariant defined for a column must be proved in the class in which the column is defined.

It is the responsibility of the programmer to define the properties to be proved in the correct

classes and to write the necessary proofs to verify that the properties are proved. Listing 6.1

shows a model proof that can be used to prove invariants. Assuming that the property to be

proved is encoded in the invariant function, the proof tests whether, for any two compat-

ible reachable states in which the invariant is preserved, the invariant is preserved after the

merge. Sometimes this model cannot be used. For example, to prove the referential integrity

mechanism, it was necessary to define proofs that define concrete examples.

1 proof invariantHolds {

2 forall(s1: V, s2: V) {

3 (s1.reachable() && s2.reachable() && s1.compatible(s2) &&

4 s1.invariant() && s2.invariant()) =>: {

5

6 s1.merge(s2).invariant()

7 }

8 }

9 }

Listing 6.1: Model proof to verify the preservation of invariants in CvRDTs.

Referential Integrity. Unlike CRDTs used by Antidote SQL, or table objects where developers can

create objects of these types and use them to implement their applications, this is not possible with

referential integrity mechanisms. This impossibility is due to the fact that the generic implementation

of the mechanism requires the use of abstractions that abstract fundamental details for proving

invariant maintenance (with the abstractions it is no longer possible to check whether an element

exists in the database or not).

77



CHAPTER 6. METHODOLOGY

1 class RefIntegrity[P, C, Time](pTable: Table[P, Time], cTable: Table[C, Time],
2 mergePTable: (Table[P, Time], Table[P, Time]) => Table[P, Time],
3 mergeCTable: (Table[C, Time], Table[C, Time]) => Table[C, Time])
4 extends CvRDT[RefIntegrity[P, C, Time]] {
5

6 def insertChild(c: C, t: Time) = {
7 if(this.containsParent(c.fk) && !this.containsChild(c.pk)) {
8 new RefIntegrity(this.mergePTable, this.mergeCTable, this.pTable.touch(c.fk, t),
9 this.cTable.add(c.pk, c, t))
10 } else
11 this
12 }
13

14 def updateChild(newChild: C, t: Time, stamp: LamportClock) =
15 new RefIntegrity(this.mergePTable, this.mergeCTable, this.pTable.touch(newChild.fk, t),
16 this.cTable.update(newChild.pk, newChild, t))
17

18 def deleteChild(cPk: String, t: Time) =
19 new RefIntegrity(this.mergePTable, this.mergeCTable, this.pTable,
20 this.cTable.remove(cPk, t))
21

22 def insertParent(p: P, t: Time) =
23 new RefIntegrity(this.mergePTable, this.mergeCTable, this.pTable.add(p.pk, p, t),
24 this.cTable)
25

26 def updateParent(newParent: P, t: Time, stamp: LamportClock) =
27 new RefIntegrity(this.mergePTable, this.mergeCTable,
28 this.pTable.update(newParent.pk, newParent, t), this.cTable)
29

30 def deleteParent(pPk: String, t: Time, delCascade: Boolean) = {
31 if(delCascade) {
32 val childrenElems = this.cTable.elements.mapValues((elem: TableElem[C, Time]) =>
33 (this.deleteChildren(pPk, elem, t)))
34 val newCTable = new Table(this.cTable.mergeValues, this.cTable.before,
35 this.cTable.tablePolicy, childrenElems)
36 new RefIntegrity(this.mergePTable, this.mergeCTable, this.pTable.remove(pPk, t),
37 newCTable)
38 } else
39 this
40 }
41

42 private def deleteChildren(name: String, elem: TableElem[Album, Time], t: Time) = {
43 if(elem.value.fk == name)
44 elem.deleteFlag(t)
45 else
46 elem
47 }
48

49 def containsParent(pPk: String) = this.pTable.isVisible(pPk)
50

51 def containsChild(cPk: String) = this.cTable.isVisible(cPk)
52 }

Listing 6.2: Generic model for the implementation of referential integrity relations.

Nevertheless, the implementation of referential integrity relationships is always done in the same

way, changing only the type of tables used. In this way, and with the aim of facilitating the imple-

mentation of systems that use referential integrity, we present in Listing 6.2 the code in VeriFx for a

referential integrity relationship between two tables. This code works only for the update-wins foreign

key policy.

78



6.2. APPLYING THE METHODOLOGY TO A CONCRETE SYSTEM

In the listing, P represents the type of data stored in the parent table and C represents the type of

data stored in the child table.

6.2 Applying the Methodology to a Concrete System

In this section, we use a concrete application to demonstrate how the programmer can use the method-

ology defined in the previous section to implement and verify applications that use Antidote SQL. To

do this, we again use the example of the albums and artists management system.

The first step is to define the system and its tables in Antidote SQL. Although the definition of

these tables has already been presented in Chapter 3, for the sake of readability we present again in

Listing 6.3 the definition of the tables in Antidote SQL (the definition of the Albums table is simpler

than the one in Chapter 3).

1 CREATE UPDATE-WINS TABLE artists (

2 name VARCHAR PRIMARY KEY,

3 country LWW VARCHAR

4 )

5

6 CREATE UPDATE-WINS TABLE albums (

7 title VARCHAR PRIMARY KEY,

8 year LWW INT,

9 artist VARCHAR FOREIGN KEY UPDATE-WINS REFERENCES Artists(name) ON DELETE CASCADE

10 )

Listing 6.3: Definition of the albums system tables in Antidote SQL.

Once the programmer has defined all the tables in Antidote SQL, the classes representing the

objects stored in each table must be implemented in VeriFx (i.e. the rows of each table except the visi-

bility column). Their implementation must be done according to the definition of the corresponding

table.

Both the Artist class, which represents the values stored in each row of the artists table, and

the Album class, which represents the values stored in each row of the albums table, have been

implemented by establishing a direct association between the data types and policies defined by the

programmer and the data types available in VeriFx.

Artist. The artists table was defined to have two columns. Therefore, the VeriFx implementation of

the class has two attributes, one for each of the columns. The name column, defined as a VARCHAR

in the specification, is defined as a String in the implementation. The country column, in turn, has

been implemented with a LWWRegister containing strings. The choice of a LWW register is due

to the fact that the column has been defined with the last-writer-wins resolution policy to handle

possible conflicts. The fact that the register contains objects of type String is due to the fact that

the data type defined for the country column is of type VARCHAR. The Artist class is very simple,

and can be found in Listing 6.4. The updateCountry method allows the value associated with the

country attribute to be updated. The remaining methods are the methods required to define an object

as a CvRDT. The merge method calls the merge method of LWWRegister to merge the two records,

with the name column retaining the value that this state had. This does not pose any convergence

79



CHAPTER 6. METHODOLOGY

1 class Artist(name: String, country: LWWRegister[String]) extends CvRDT[Artist] {
2

3 def updateCountry(newCountry: String, stampCountry: LamportClock) =
4 new Artist(this.name, this.country.assign(newCountry, stampCountry))
5

6 def merge(that: Artist) =
7 new Artist(this.name, this.country.merge(that.country))
8

9 def compare(that: Artist) =
10 this.country.compare(that.country)
11

12 override def compatible(that: Artist) =
13 this.name == that.name && this.country.compatible(that.country)
14 }

Listing 6.4: Definition of the Artist data type in Antidote SQL.

problems because it is defined in the method compatible that two states are only compatible if the

value associated with the attribute name is the same in both states. This property is true because it

only makes sense to merge two objects of type Artist if they represent the same object, i.e. if they

both have the same primary key (in this case the primary key is the name column).

After defining the implementation of the Artist class, we checked whether this type of object

converges, and the SMT solver returned an accept. Since we have guarantees that the Artist object

converges, i.e. that the merge function is commutative, associative and idempotent, we can conclude

that objects of type TableElem[Artist, Time] and Table[Artist, Time] also converge.

Album. Listing 6.5 shows the implementation of the class Album in VeriFx. This class consists of

three attributes, each of which corresponds to one of the three columns defined for the albums table.

The attributes title and artist are of type String for the reasons explained above. The column year
has been implemented with a LWWRegister[Int]. In this case, the register stores integers, as the

column year is defined as INT. As with the Artist class, only one update operation was defined in

this class and the methods used to define a CvRDT

1 class Album(title: String, artist: String, year: LWWRegister[Int]) extends CvRDT[Album] {

2

3 def updateYear(newYear: Int, stampYear: LamportClock) =

4 new Album(this.title, this.artist, this.year.assign(newYear, stampYear))

5

6 def merge(that: Album) =

7 new Album(this.title, this.artist, this.year.merge(that.year))

8

9 def compare(that: Album) =

10 this.year.compare(that.year)

11

12 override def compatible(that: Album) =

13 this.title == that.title &&

14 this.artist == that.artist && this.year.compatible(that.year)

15 }

Listing 6.5: Definition of the Album data type in Antidote SQL.

80



6.3. APPROACH LIMITATIONS

The objects of this type were considered CRDTs by the proofs, i.e. it was verified that the objects

converge. With this information, it was possible to conclude that objects of the type TableElem[Album,

Time] and Table[Album, Time] also converge.

The next step would be to implement the class system and check whether the objects of this class

converge. The implementation of this system has already been shown and explained in Section 5.2.2

(we used this system to prove the referential integrity mechanism). Having verified that the objects

of the class system converge and that the abstractions and assumptions for the implemented objects

hold, we can state with certainty that the albums and artists management system converges.

In Section 5.2.2 we also showed how to verify the referential integrity mechanism, which is an

example of verifying an invariant.

Note that in the class definition of AlbumsSystem (Section 5.2.2) we did not define the conflict

resolution policy for each table (as stated in the methodology). The reason for this was that we wanted

to test different combinations of conflict resolution policies. Therefore, in each of the proofs we

defined which policy to use in each of the tables. However, if you want to prove that the specifications

defined by the programmer for the system are correct, you can define the conflict resolution policy

for each of the tables in the system class definition.

6.3 Approach Limitations

The approach proposed in Section 6.1 has several limitations, many of which are due to the use of the

SMT solver to analyse the implemented data types.

One of the major limitations of VeriFx is its limited power in verifying complex objects or in

verifying proofs that must execute multiple cycles. Throughout this dissertation, we had to deal

with this problem several times, and the strategy we used to mitigate this problem was to define

abstractions. However, as already discussed, defining abstractions is not only a difficult task, but can

also lead to the introduction of errors. Furthermore, the use of abstractions is not always feasible (e.g.

abstractions cannot be used to prove the mechanics of referential integrity), and there may be cases

where the definition of abstractions does not reduce the complexity of the object to a level that the

SMT solver can prove (by returning either an accept or a reject).

Another problem associated with the use of an SMT solver is the butterfly effect. Sometimes simply

changing a variable name will cause the SMT solver to abort a proof (if previously accepted/rejected)

or accept/reject (if the proof was previously aborted). Another situation that occurred when imple-

menting and checking objects in VeriFx was that accepted proofs were aborted after adding methods

to the class that were not used by the proof in question.

Despite the great help that the counterexamples offered us, because in many cases they helped us

to identify errors in the implementations, they also represent a limitation. The fact that the returned

counterexamples are presented in the language of the solver (in this case Z3) makes their analysis

difficult and time-consuming. Furthermore, programmers who have no prior knowledge of Z3 may

not understand the counterexample at all, so this feature can be a barrier to using this approach for

application verification.

Another limitation is the fact that the methodology requires the developer to implement their

systems in VeriFx, as this process is time-consuming. A solution to this problem would be to automate

81



CHAPTER 6. METHODOLOGY

Figure 6.2: Workflow of the proposed analysis tool.

the verification process, i.e. develop an analysis tool that sits on top of VeriFx. In Figure 6.2 you can

see a diagram showing the flow of the verification process with the analysis tool.

The developer would start by providing the specification of the tables in Antidote SQL. This spec-

ification would already contain information about concurrency mechanisms and conflict resolution

strategies, as well as the definition of invariants. This information would be the input to the analysis

tool, which would start translating the Antidote SQL table specification into VeriFx code. This code

would then be analysed by the VeriFx SMT solver, which would return one of three output options:

abort to indicate that the SMT solver was unable to validate/reject the proof; accept to indicate that

the specification is correct; and reject to indicate that the specification does not meet the system

requirements. In the case of rejection, a counterexample is returned to the programmer illustrating a

situation where the property being proved is not verified. Ideally, and contrary to what is currently

happening, this counterexample should be presented in high-level notation. The methodology was

not automated in this work due to time constraints.

6.4 Summary

In this chapter, we presented a methodology for implementing and verifying applications that use

Antidote SQL. To illustrate how application implementation and verification should be conducted,

we applied the methodology to a concrete example.

Finally, we concluded the chapter with a critical analysis of the limitations of our proposed ap-

proach. For some of the limitations, we have presented alternatives that allow overcoming some

shortcomings.

82



7

Conclusion

Antidote SQL is a geo-replicated database system that allows programmers to specify in their data

model the allowable concurrency levels, invariants, and conflict resolution strategies that will resolve

potential conflicts that may arise from concurrency. However, specifying applications in Antidote SQL

is not an easy task, as it is not always evident which conflict resolution strategy is most appropriate for

a given situation, or whether the strategy chosen by the programmer can somehow break the defined

invariants.

The work developed in this dissertation aimed to fill some of these gaps and can be divided into

two main phases.

In the first phase, we conducted a theoretical study of the different types of invariants, not all of

which are supported by Antidote SQL. The main goal of this study was to obtain a mapping between

the types of invariants and the mechanisms best suited to handle each invariant. For the invariant

classes supported by Antidote SQL, we presented the mechanisms used by this database system to

handle these classes. For the types of invariants not supported by Antidote SQL, we presented several

suggestions for mechanisms that could be used to enforce the invariants. One of our concerns in this

study has always been to propose mechanisms that attempt to combine the maintenance of invariants

with some degree of concurrency.

In the second phase of the dissertation, the main goal was to verify that the mechanisms used

by Antidote SQL actually work correctly and provide the promised guarantees. To this end, we

implemented and verified all CRDTs supported by Antidote SQL and several mechanisms used by

Antidote SQL in VeriFx. The implementation of all CRDTs later enabled us to implement a more

complex system, namely the album management system. By defining this system, it was possible to

understand some patterns that led us to develop a methodology for verifying applications that use

Antidote SQL in VeriFx.

Future Work. Although we have verified several mechanisms used by Antidote SQL to deal with

possible invariant breaks and divergence problems, some problems only manifest themselves in

particular scenarios, so verifying the systems defined by programmers is important. For this reason,

we have implemented in VeriFx several CRDTs used by Antidote SQL (some of them have already been

provided in [9]), as well as several mechanisms to guarantee invariants. This allows programmers to

implement their most complex systems in VeriFx and define their properties. However, implementing

83



CHAPTER 7. CONCLUSION

systems in VeriFx is time-consuming, especially for programmers who are not familiar with the

language. Therefore, it would be important to automate the verification process of applications that

use Antidote SQL. This would save developers a lot of time when implementing code in VeriFx

and would encourage the use of Antidote SQL by allowing developers to validate its specifications.

However, to enable a wider range of verified applications and permissible semantics, the missing

mechanisms, such as the delete-wins foreign key policy, would need to be implemented in VeriFx.

In addition to automating the verification process, it would be interesting if the analysis tool

would not only provide counterexamples defining scenarios where properties are not verified, but

also suggest the best conflict resolution strategies for each case. In the example from Section 5.3,

where the problem was that the conflict resolution policies were not compatible to maintain the

invariant, it would be very interesting if the analysis tool suggested the two possible options to solve

the problem, i.e. if it suggested that either the last-writer-wins policy or the first-writer-wins policy

should be used for the two integers.

Another very interesting feature for programmers would be to add a mechanism to the analysis tool

that suggests less restrictive conflict resolution strategies. Imagine, for example, that a programmer

has accidentally defined a table with the semantics no concurrency. It would be interesting if the tool

could test not only the programmer’s choices but also other concurrency semantics that suggest better

alternatives than the ones chosen.

As for Antidote SQL, the system could be extended in the future to support other types of invari-

ants.

84



Bibliography

[1] P. Alvaro et al. “Blazes: Coordination Analysis and Placement for Distributed Programs”. In:

ACM Trans. Database Syst. 42.4 (Oct. 2017). issn: 0362-5915. doi: 10.1145/3110214. url:

https://doi.org/10.1145/3110214 (cit. on p. 19).

[2] P. Bailis et al. “Coordination Avoidance in Database Systems”. In: Proc. VLDB Endow. 8.3

(Nov. 2014), pp. 185–196. issn: 2150-8097. doi: 10.14778/2735508.2735509. url:

https://doi.org/10.14778/2735508.2735509 (cit. on pp. 8, 11–13, 35, 38, 39, 43).

[3] V. Balegas et al. “Extending Eventually Consistent Cloud Databases for Enforcing Numeric

Invariants”. In: Proceedings of the 2015 IEEE 34th Symposium on Reliable Distributed Systems
(SRDS). SRDS ’15. USA: IEEE Computer Society, 2015, pp. 31–36. isbn: 9781467393027. doi:

10.1109/SRDS.2015.32. url: https://doi.org/10.1109/SRDS.2015.32 (cit. on

pp. 38, 60).

[4] V. Balegas et al. “IPA: Invariant-Preserving Applications for Weakly Consistent Replicated

Databases”. In: Proc. VLDB Endow. 12.4 (Dec. 2018), pp. 404–418. issn: 2150-8097. doi:

10.14778/3297753.3297760. url: https://doi.org/10.14778/3297753.3297760

(cit. on pp. 1, 2, 8, 15).

[5] V. Balegas et al. “Putting Consistency Back into Eventual Consistency”. In: Proceedings of the
Tenth European Conference on Computer Systems. EuroSys ’15. Bordeaux, France: Association

for Computing Machinery, 2015. isbn: 9781450332385. doi: 10.1145/2741948.2741972.

url: https://doi.org/10.1145/2741948.2741972 (cit. on pp. 1, 8, 10, 13, 43).

[6] E. Brewer. “CAP twelve years later: How the “rules” have changed”. In: Computer 45.2 (2012),

pp. 23–29. doi: 10.1109/MC.2012.37 (cit. on p. 5).

[7] B. F. Cooper et al. “PNUTS: Yahoo!’s Hosted Data Serving Platform”. In: Proc. VLDB Endow.
1.2 (Aug. 2008), pp. 1277–1288. issn: 2150-8097. doi: 10.14778/1454159.1454167. url:

https://doi.org/10.14778/1454159.1454167 (cit. on pp. 1, 9).

[8] L. De Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. TACAS’08/ETAPS’08. Budapest, Hungary: Springer-Verlag, 2008, pp. 337–

340. isbn: 3540787992 (cit. on p. 31).

85

https://doi.org/10.1145/3110214
https://doi.org/10.1145/3110214
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.14778/1454159.1454167


BIBLIOGRAPHY

[9] K. De Porre, C. Ferreira, and E. G. Boix. “VeriFx: Correct Replicated Data Types for the Masses”.

In: arXiv preprint arXiv:2207.02502 (2022) (cit. on pp. 3, 30–33, 46, 49, 50, 54, 83).

[10] K. De Porre et al. “ECROs: Building Global Scale Systems from Sequential Code”. In: Proc. ACM
Program. Lang. 5.OOPSLA (Oct. 2021). doi: 10.1145/3485484. url: https://doi.org/1

0.1145/3485484 (cit. on pp. 2, 22).

[11] G. DeCandia et al. “Dynamo: Amazon’s Highly Available Key-Value Store”. In: Proceedings of
Twenty-First ACM SIGOPS Symposium on Operating Systems Principles. SOSP ’07. Stevenson,

Washington, USA: Association for Computing Machinery, 2007, pp. 205–220. isbn: 978159593-

5915. doi: 10.1145/1294261.1294281. url: https://doi.org/10.1145/1294261.1

294281 (cit. on p. 12).

[12] A. Gotsman et al. “’Cause I’m Strong Enough: Reasoning about Consistency Choices in Dis-

tributed Systems”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’16. St. Petersburg, FL, USA: Association for Com-

puting Machinery, 2016, pp. 371–384. isbn: 9781450335492. doi: 10.1145/2837614.2837

625. url: https://doi.org/10.1145/2837614.2837625 (cit. on pp. 8, 17).

[13] J. N. Gray, R. A. Lorie, and G. R. Putzolu. “Granularity of Locks in a Shared Data Base”.

In: Proceedings of the 1st International Conference on Very Large Data Bases. VLDB ’75. Fram-

ingham, Massachusetts: Association for Computing Machinery, 1975, pp. 428–451. isbn:

9781450339209. doi: 10.1145/1282480.1282513. url: https://doi.org/10.11

45/1282480.1282513 (cit. on p. 29).

[14] F. Houshmand and M. Lesani. “Hamsaz: Replication Coordination Analysis and Synthesis”.

In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/3290387. url: https:

//doi.org/10.1145/3290387 (cit. on pp. 1, 18).

[15] A. Lakshman and P. Malik. “Cassandra: A Decentralized Structured Storage System”. In:

SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010), pp. 35–40. issn: 0163-5980. doi: 10.1145/17739

12.1773922. url: https://doi.org/10.1145/1773912.1773922 (cit. on p. 11).

[16] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In: Commun.
ACM 21.7 (July 1978), pp. 558–565. issn: 0001-0782. doi: 10.1145/359545.359563. url:

https://doi.org/10.1145/359545.359563 (cit. on pp. 7, 46).

[17] C. Li et al. “Making Geo-Replicated Systems Fast as Possible, Consistent When Necessary”.

In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation.

OSDI’12. Hollywood, CA, USA: USENIX Association, 2012, pp. 265–278. isbn: 978193197196-

6 (cit. on pp. 1, 2, 9).

[18] W. Lloyd et al. “Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage

with COPS”. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
SOSP ’11. Cascais, Portugal: Association for Computing Machinery, 2011, pp. 401–416. isbn:

9781450309776. doi: 10.1145/2043556.2043593. url: https://doi.org/10.1145

/2043556.2043593 (cit. on p. 8).

[19] P. Lopes. “Antidote SQL: SQL for Weakly Consistent Databases”. In: 2018 (cit. on pp. 2, 27).

86

https://doi.org/10.1145/3485484
https://doi.org/10.1145/3485484
https://doi.org/10.1145/3485484
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/1282480.1282513
https://doi.org/10.1145/1282480.1282513
https://doi.org/10.1145/1282480.1282513
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593


BIBLIOGRAPHY

[20] P. Lopes et al. “Antidote SQL: Relaxed When Possible, Strict When Necessary”. In: ArXiv
abs/1902.03576 (2019) (cit. on pp. 1, 2, 27, 37, 38).

[21] S. S. Nair, G. Petri, and M. Shapiro. “Proving the Safety of Highly-Available Distributed Ob-

jects”. In: Programming Languages and Systems: 29th European Symposium on Programming,
ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings. Dublin, Ireland: Springer-Verlag,

2020, pp. 544–571. isbn: 978-3-030-44913-1. doi: 10.1007/978-3-030-44914-8_20.

url: https://doi.org/10.1007/978-3-030-44914-8_20 (cit. on p. 68).

[22] M. Najafzadeh et al. “The CISE Tool: Proving Weakly-Consistent Applications Correct”. In:

Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for Distributed Data.

PaPoC ’16. London, United Kingdom: Association for Computing Machinery, 2016. isbn:

9781450342964. doi: 10.1145/2911151.2911160. url: https://doi.org/10.1145

/2911151.2911160 (cit. on pp. 1, 2, 13, 17).

[23] D. Navalho, S. Duarte, and N. Preguiça. “A Study of CRDTs That Do Computations”. In: Pro-
ceedings of the First Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC

’15. Bordeaux, France: Association for Computing Machinery, 2015. isbn: 9781450335379.

doi: 10.1145/2745947.2745948. url: https://doi.org/10.1145/2745947.27459

48 (cit. on pp. 2, 46, 48, 53, 54).

[24] P. E. O’Neil. “The Escrow Transactional Method”. In: ACM Trans. Database Syst. 11.4 (Dec.

1986), pp. 405–430. issn: 0362-5915. doi: 10.1145/7239.7265. url: https://doi.

org/10.1145/7239.7265 (cit. on p. 38).

[25] N. M. Preguiça. “Conflict-free Replicated Data Types: An Overview”. In: CoRR abs/1806.10254

(2018). arXiv: 1806.10254. url: http://arxiv.org/abs/1806.10254 (cit. on pp. 2,

11).

[26] A. Ribeiro and P. G. Larsen. “Proof Obligation Generation and Discharging for Recursive

Definitions in VDM”. In: Proceedings of the 12th International Conference on Formal Engineering
Methods and Software Engineering. ICFEM’10. Shanghai, China: Springer-Verlag, 2010, pp. 40–

55. isbn: 3642169007 (cit. on p. 17).

[27] M. Whittaker and J. M. Hellerstein. “Interactive Checks for Coordination Avoidance”. In: Proc.
VLDB Endow. 12.1 (Sept. 2018), pp. 14–27. issn: 2150-8097. doi: 10.14778/3275536.327

5538. url: https://doi.org/10.14778/3275536.3275538 (cit. on pp. 6, 24).

[28] P. Zeller, A. Bieniusa, and A. Poetzsch-Heffter. “Combining State- and Event-Based Semantics

to Verify Highly Available Programs”. In: Formal Aspects of Component Software: 16th Inter-
national Conference, FACS 2019, Amsterdam, The Netherlands, October 23–25, 2019, Proceedings.
Amsterdam, The Netherlands: Springer-Verlag, 2019, pp. 213–232. isbn: 978-3-030-40913-5.

doi: 10.1007/978-3-030-40914-2_11. url: https://doi.org/10.1007/978-3-03

0-40914-2_11 (cit. on pp. 1, 21).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 87).

87

https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2745947.2745948
https://doi.org/10.1145/2745947.2745948
https://doi.org/10.1145/2745947.2745948
https://doi.org/10.1145/7239.7265
https://doi.org/10.1145/7239.7265
https://doi.org/10.1145/7239.7265
https://arxiv.org/abs/1806.10254
http://arxiv.org/abs/1806.10254
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.1007/978-3-030-40914-2_11
https://doi.org/10.1007/978-3-030-40914-2_11
https://doi.org/10.1007/978-3-030-40914-2_11
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf


A

Bounded Counter for Upper Bounds

The bounded counter for invariants of type less than or equal to K is very similar to the bounded

counter that defines lower bounds. In Listing A.1 we present the implementation of methods that

differ from the bounded counter for lower bounds.

In this counter, it is the increment operations that consume rights and the decrement operations

that generate new rights. Therefore, the increment and decrement functions have been adapted to

this behaviour.

The counter value is also calculated differently. The number of rights generated by the system

must be subtracted from the bound value and the number of consumed rights must be added to it.

For example, consider a bounded counter whose upper limit is 5, the initial value is 1, the number

of rights generated by the system is 4 and the number of rights consumed by the system is 1 (an

increment operation has already been performed). The counter value is 2 (5− 4 + 1), and this value

makes sense since the initial value has been incremented by one unit. When a decrement operation is

performed, the counter value becomes 1 (5− 5 + 1).

1 class BCounterLeq(rightsHold: GCounter, rightsConsumed: GCounter, bound: Int,

2 initialValue: Int = 0) extends CvRDT[BCounterLeq] {

3

4 def value() = this.bound - this.rightsHold.value() + this.rightsConsumed.value()

5

6 def increment(replica: Int, n: Int) = {

7 if(this.localRights(replica) >= n)

8 new BCounterLeq(this.rightsHold, this.rightsConsumed.increment(replica, n), this.bound,

9 this.initialValue)

10 else

11 new BCounterLeq(this.rightsHold, this.rightsConsumed, this.bound, this.initialValue)

12 }

13

14 def decrement(replica: Int, n: Int) =

15 new BCounterLeq(this.rightsHold.increment(replica, n), this.rightsConsumed, this.bound,

16 this.initialValue)

17

18 def invariant(): Boolean = this.value() <= this.bound

Listing A.1: Implementation in VeriFx of the bounded counter CRDT for invariants of the type less or
equal to K.

88



B

Operation-based Exclusive Locks

The implementation of an example with exclusive locks in an operation-based replication model, is

presented in Listing B.1. In this implementation, the same example as for the state-based replication

model was used. In this model, the lock can only be represented by an integer.

Two operations are considered compatible if the identifiers of the replicas that have the lock are

different. Otherwise, the value assigned in each operation must be the same in both operations (as the

two operations must be the same).

1 class TxWithLockOpBased(v1: Int, v2: Int, exLock: Int)

2 extends CmRDT[TxOp, TxOp, TxWithLockOpBased] {

3

4 def addTransaction(value: Int, replicaId: Int) = {

5 if(replicaId == this.exLock)

6 new TxWithLockOpBased(value, value, this.exLock)

7 else

8 this

9 }

10

11 def invariant(): Boolean = this.v1 == this.v2

12

13 def prepare(op: TxOp) = op // prepare phase does not add extra information

14

15 def effect(op: TxOp) = op match

16 case AddTx(value, replicaId) => this.addTransaction(value, replicaId)

17

18 override def compatible(x: TxOp, y: TxOp) = x match {

19 case AddTx(v1, id1) =>

20 y match{

21 case AddTx(v2, id2) => ((id1 == id2) =>: (v1 == v2))

22 }

23 }

24 }

Listing B.1: Example with exclusive locks in VeriFx (operation-based replication model).

The proof that is performed to check whether the invariant has been maintained is also listed below

(Listing B.2). The proof checks whether the execution of operations in different sequences converges,

89



APPENDIX B. OPERATION-BASED EXCLUSIVE LOCKS

1 proof Tx_holds_invariant {
2 forall(s1: TxWithLockOpBased, s2: TxWithLockOpBased, s3: TxWithLockOpBased, x: TxOp,
3 y: TxOp) {
4

5 val msg1 = s1.prepare(x)
6 val msg2 = s2.prepare(y)
7

8 (s1.compatible(msg1, msg2) && s1.compatibleS(s2) && s1.compatibleS(s3) &&
9 s1.invariant() && s2.invariant() && s3.invariant()) =>: {
10

11 s3.tryEffect(msg1).tryEffect(msg2) == s3.tryEffect(msg2).tryEffect(msg1) &&
12 s3.tryEffect(msg1).invariant() && s3.tryEffect(msg2).invariant() &&
13 s3.tryEffect(msg1).tryEffect(msg2).invariant()
14 } }
15 }

Listing B.2: Proof to verify the preservation of the invariant using exclusive locks (operation-based
replication model).

i.e. it checks whether the operations are commutative, and it checks whether the intermediate state

and the final state hold the invariant.

90




	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Proposed Solution
	1.4 Contributions
	1.5 Document Structure

	2 Related Work
	2.1 Consistency Models
	2.1.1 Strong Consistency
	2.1.2 Weak Consistency
	2.1.3 Mixed Consistency

	2.2 Conflict Resolution Protocols
	2.2.1 Last-Writer-Wins
	2.2.2 CRDTs
	2.2.3 Dynamo

	2.3 Invariant Analysis Systems
	2.3.1 Indigo
	2.3.2 IPA
	2.3.3 CISE
	2.3.4 Hamsaz
	2.3.5 Blazes
	2.3.6 Repliss
	2.3.7 ECROs
	2.3.8 Lucy


	3 Background
	3.1 Antidote SQL
	3.1.1 System Model
	3.1.2 Concurrency Semantics

	3.2 VeriFx

	4 Invariants Mapping
	4.1 Uniqueness
	4.2 Referential Integrity
	4.3 Numeric Invariants
	4.4 Attribute Equality/Inequality
	4.5 Aggregation Constraints
	4.6 Aggregation Inclusion
	4.7 Disjunctions
	4.8 Linear Resources
	4.9 Materialized Views
	4.10 Summary

	5 Implementation
	5.1 Data Convergence Mechanisms
	5.1.1 Last-Writer-Wins Register
	5.1.2 First-Writer-Wins Register
	5.1.3 Multi-Value Register
	5.1.4 Enable-Wins Flag
	5.1.5 Positive-Negative Counter
	5.1.6 Table

	5.2 Invariant Maintenance Mechanisms
	5.2.1 Bounded Counter
	5.2.2 Referential Integrity
	5.2.3 Locks

	5.3 Verification of Conflict Resolution Policies
	5.4 Summary

	6 Methodology
	6.1 Methodology for Implementation and Verification of Applications
	6.2 Applying the Methodology to a Concrete System
	6.3 Approach Limitations
	6.4 Summary

	7 Conclusion
	Bibliography
	A Bounded Counter for Upper Bounds
	B Operation-based Exclusive Locks
	Back Matter
	Back Cover


