
DEPARTMENT OF
COMPUTER SCIENCE

JOÃO MIGUEL DIAS FERREIRA

BSc in Computer Science and Engineering

EXTRACTING ONTOLOGIES FROM NEURAL
NETWORKS

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2022

DEPARTMENT OF
COMPUTER SCIENCE

EXTRACTING ONTOLOGIES FROM NEURAL NETWORKS

JOÃO MIGUEL DIAS FERREIRA

BSc in Computer Science and Engineering

Adviser: João Alexandre Carvalho Pinheiro Leite
Associate Professor, NOVA University Lisbon

Co-adviser: Ricardo João Rodrigues Gonçalves
Assistant Professor, NOVA University Lisbon

Examination Committee

Chair: Nuno Manuel Robalo Correia
Full Professor, NOVA University Lisbon

Rapporteur: Vitor Manuel Beires Pinto Nogueira
Assistant Professor, Universidade de Évora

Member: João Alexandre Carvalho Pinheiro Leite
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE AND ENGINEERING

NOVA University Lisbon
September, 2022

Extracting Ontologies From Neural Networks

Copyright © João Miguel Dias Ferreira, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.4) [30].

https://github.com/joaomlourenco/novathesis

Acknowledgements

First, I would like to express my gratitude to my advisors Professor João Leite and Profes-

sor Ricardo Gonçalves, for their guidance and patience during all this work.

I would also like to thank my colleagues and friends that were always with me, espe-

cially my friend Manuel de Sousa Ribeiro, who always helped and encouraged me.

In addition, a special thank you to my family which have always believed in me and

supported me.

Finally, I would like to acknowledge the support provided by Calouste Gulbenkian

Foundation through its “New Talents in AI” program, and by FCT through project RIVER

(PTDC/CCI-COM/30952/2017) and strategic project NOVA LINCS (UIDB/04516/2020).

iii

Abstract

Artificial neural network-based methods have been growing in popularity, being success-

fully applied to perform a variety of tasks. As these systems begin to be deployed in

domains where it is desired that they have a certain degree of autonomy and respon-

sibility, the need to comprehend the reasoning behind their answers is becoming a re-

quirement. Though, neural networks are still regarded as black boxes, since their internal

representation do not provide any human-understandable explanation for their outputs.

A considerable amount of work has been done towards the development of methods to

increase the interpretability of neural networks. However, these methods often produce

interpretations are too complex and do not have any declarative meaning, leaving the

user with the burden of rationalizing them. Recent work has shown that it is possible

to establish mappings between a neural network’s internal representations and a set of

human-understandable concepts. In this dissertation we propose a method that leverage

these mappings to induce an ontology that describes a neural network’s classification

process, through logical relations between human-understandable concepts.

Keywords: Artificial Neural Networks, Ontologies, Rule Extraction, Inductive Logic

Programming

iv

Resumo

Métodos com base em redes neuronais artificiais têm ganho cada vez mais popularidade,

e têm sido aplicados na resolução das mais variadas tarefas. À medida que estes sistemas

são usados em domínios onde se pretende que tenham um determinado grau de auto-

nomia e responsabilidade, a necessidade de compreender o raciocínio que os conduz às

suas respostas torna-se indispensável. No entanto, as redes neuronais são vistas como

caixas negras, dado que as suas representações internas não constituem uma explicação

interpretável para os seus resultados. Tem sido realizada uma quantidade considerável

de investigação com o objetivo de desenvolver métodos que permitam o aumento da

interpretabilidade de redes neuronais. Todavia, estes métodos tendem a produzir inter-

pretações complexas e a que não possuem nenhum significado declarativo, deixando o

utilizador com a responsabilidade as racionalizar. Uma publicação recente mostrou que é

possível estabelecer mapeamentos entre as representações internas de uma rede neuronal

e conceitos interpretáveis. Nesta dissertação propomos um método que faz uso destes

mapeamentos para induzir uma ontologia que reflete o processo de classificação de uma

rede neuronal, através de conceitos compreensiveis relacionados logicamente.

Palavras-chave: Redes Neuronais Artificiais, Ontologias, Extração de Regras, Programa-

ção em Lógica Indutiva

v

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Statement and Main Contributions 3

1.3 Document Structure . 4

2 Background 5

2.1 Artificial Neural Networks . 5

2.2 Description Logics . 9

2.3 Inductive Logic Programming . 11

3 Related Work 13

3.1 Saliency and attribution methods . 14

3.2 Proxy-based methods . 14

3.2.1 Rule Extraction Methods . 15

3.2.2 Pedagogical Rule Extraction Methods 15

3.2.3 Decompositional Rule Extraction Methods 16

3.2.4 Eclectic Rule Extraction Methods 17

3.3 TCAV . 18

4 Ontology Extraction 19

4.1 Formalizing Neural Networks . 19

4.2 Concept Extraction . 21

4.3 Inducing the Ontology . 22

4.4 Method Overview . 25

5 Inducing Ontologies from Neural Networks 27

5.1 Dataset and Main Networks . 27

5.2 Experimental Setting . 30

5.3 Inducing a Main Network’s Ontology . 31

5.4 Levels of Abstraction . 32

vi

5.5 Insufficient Concepts . 34

5.6 Ontology Induction’s Cost . 35

5.7 Importance of Mappings . 36

6 Inducing Ontologies In a Real-World Scenario 40

6.1 Dataset . 40

6.2 Main Network . 42

6.3 Experimental Setting . 42

6.4 Inducing the Ontology . 43

7 Conclusion 45

7.1 Future Work . 47

Bibliography 48

vii

1

Introduction

In this chapter, we present the context of the problem we set to address and the
motivation as to why our proposition is relevant. We also present a brief description of
our main goal, as well as what we set to explore during the realization of this
dissertation.

1.1 Context and Motivation

In recent years, artificial neural networks have allowed for breakthroughs in performing

various challenging tasks, often being recognized for their achievements in image [48],

text [23] and speech [11] recognition. Neural network-based methods have matched

or surpassed other state-of-the-art approaches in real-time object detection [35], video

classification [19] and segmentation [8], translation [3], even outperforming humans in

facial recognition [54] and playing strategic games [43].

These results, along with the versatility of neural network-based methods lead to an

increase in their popularity and their applications in the most various domains, such as,

medical diagnosis [49] and drug design [36], self-driving vehicles [18], crime prevention

[29] and fraud detection [31]. When we consider the application of neural networks in

the aforementioned domains, the need for explanations for their results becomes evident.

If we take as an example a neural network model trained to predict whether a patient

suffers of some disease based on the patient symptoms and lab results, it does not seem

reasonable to blindly act on the result given by the model without any further justification

for the patient diagnostic.

Although a model is said to have a very high overall accuracy, the possibility of it

being wrong together with the lack of an understandable explanation for its outputs, can

lead users to lose trust in the model’s results. However, having the ability to understand

why a certain output was obtained allows users to trust and act upon that information,

even if they do not fully comprehend how the output was obtained [32]. Additionally,

having such justifications could help understand why a certain output is right or wrong.

1

CHAPTER 1. INTRODUCTION

However, neural networks are typically viewed as black boxes [12], i.e., they are con-

sidered opaque systems that for a given input produce an output, mostly disregarding

their internal representations. The opaqueness of these systems is mostly due to their sub-

symbolic nature. Their internal representations are generally based on high-dimensional

Euclidean spaces, i.e., real-valued tensors that do not allow for any direct human interpre-

tation. Additionally, neural network models have become increasingly larger and more

complex, with some architectures having billions of parameters spread across dozens of

layers performing non-linear transformations [5]. For these reasons, it is not plausible to

provide a meaningful and understandable justification for the outputs given by a neural

network based solely on its internal sub-symbolic representations.

If we imagine a neural network model trained to predict whether a patient suffers

of some disease, based on its symptoms and lab results, an explanation for the neural

network’s outputs constructed by providing a list of its internal sub-symbolic representa-

tions would have no use. Since these internal reprentations do not possess any obvious

declarative meaning, an explanation constructed directly upon them, would also not pos-

sess any obvious declarative meaning. In this case, we would like to be able to explain

the output of the neural network in a way that is human-understandable and that meets

the needs of different users, e.g., according to their level of expertise in the domain. For

example, a doctor might deem more reliable an explanation for why a patient has diabetes

if it is built upon concepts such as having an HbA1c level below 6,5% and having an IBM
over 30. Conversely, patients might develop greater trust in an explanation built upon

concepts such as having high blood sugar and being overweight, since they have a better

understanding of these concepts.

A recent proposal [46] takes a step in providing richer justifications for the outputs of

neural networks by exploring the idea of establishing mappings between the internal rep-

resentations of a neural network and the concepts defined in an ontology – a logic-based

theory that describes a domain through the definition of concepts and axioms that dictate

the relations between them. In [46] the proposed way for establishing these mappings

is through the use of what is called mapping networks. These mapping networks are small

neural networks, each built and trained to identify a single human-understandable con-

cept from the activations produced by the main network, i.e. the network whose outputs

are to be justified. When an input is fed to the main network, we can use the mapping

networks to observe which concepts were identified in the main network’s activations,

gaining additional knowledge about how the main network is processing its input. The

justifications are then obtained through logic-based reasoning methods over the selected

ontology, together with the observations from the mapping networks for a given input. A

justifications consist in a set of minimal axioms from the chosen ontology, that together

with the observations from the mapping networks, entail the output given by the main

network. Thus, the justifications are symbolic, human-understandable and allow us to

reason upon them. While the mapping networks provide a way for interpreting the

sub-symbolic internal representations of a neural network, the ontology provides the

2

1.2. PROBLEM STATEMENT AND MAIN CONTRIBUTIONS

language for conveying the justifications.

The fact that the method proposed in [46] is dependent on an existing ontology raises

two important questions. On one hand, since we must rely on an existing ontology there

is no guarantee that it exactly reflects the way the neural network classifies its inputs, and

so, the justifications produced are meant to be taken only as a plausible understandable

rationalization for why the neural network gives a certain output. On the other hand, it

is fair to assume that such ontology might not be always available. There are domains

where one might want to deploy a neural network and where the knowledge required for

designing an ontology is not available or have not yet been compiled into one.

1.2 Problem Statement and Main Contributions

Our main objective is to develop a method that increases the transparency of neural net-

works by providing meaningful, human-understandable explanations for their outputs.

To accomplish this, we intend to leverage the work in [46], namely the ability to get addi-

tional knowledge about how a neural network is processing its inputs. However, instead

of relying on an existing ontology for producing justifications, we intend to leverage

the knowledge obtained by using the mapping networks to generate an ontology. The

mapping networks provide knowledge on how a main network is processing its inputs,

through the identification of mapped concepts. So, when an input is fed to the main

network, we know not only the output given by the main network, but also which of

the mapped concepts were identified when classifying it. By feeding the main network

with a set of different inputs and gathering its output along with the knowledge about

which concepts were identified for each input, we should be able to induce a logic-based

theory – an ontology. This ontology describes the outputs of the neural network by logi-

cally relating the mapped concepts, such that it reflects the classification process of the

neural network. By relying on the mapping networks’ observations, which in turn are

grounded on the main network’s internal representations, the induced ontologies should

better reflect the classification process of the main network. Additionally, by selecting

appropriate meaningful concepts to be mapped, we are able to induce ontologies that

meet the user needs, in terms of the desired level of abstraction.

With this dissertation, we expect to make the following contributions:

1. Present a method that allows for the construction of ontologies that provide a

human-understandable description for a neural network’s classification process,

grounded on the neural network’s activations;

2. Provide a formalization of the proposed method;

3. Provide evidence that the ontologies constructed using the proposed method reflect

how a neural network classifies an example, by the means of human-understandable

concepts;

3

CHAPTER 1. INTRODUCTION

4. Explore an application of the proposed method using real-world data.

Parts of this dissertation appear in the publication [7]:

• João Ferreira and Manuel de Sousa Ribeiro and Ricardo Gonçalves and João Leite,

Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Pro-

ceedings of the 19th International Conference on Principles of Knowledge Repre-

sentation and Reasoning, 2022.

1.3 Document Structure

The remainder of this document is structured as follows:

• In Chapter 3 we introduce work related to ours, that propose different approches

for providing explanations for the outputs of neural networks;

• In Chapter 2 we introduce the necessary background;

• In Chapter 4 we present, discuss and formalize our proposed method;

• In Chapter 5 we explore the application of our method in a controlled setting. We

present and discuss the results obtain in experiments designed answers some ques-

tions related to the characteristics of our proposed method.

• In Chapter 6 we explore the application of our method in a setting close to a real-

world scenario and discuss the results obtained.

• In Chapter 7 we make our final conclusions and present some possible avenues for

future work.

4

2

Background

2.1 Artificial Neural Networks

Artificial neural networks, or neural networks for short, are sub-symbolic machine lean-

ing models that can be used to approximate some function f ∗. They are composed of

multiple interconnected layers, which are in turn composed of multiple units, that com-

pute a function in parallel. In Figure 2.1 we see a representation of a neural network

with 3 layers, each with a different number of units. The first layer is called the input

layer and the last is called the output layer, these layers are responsible for receiving the

neural networks inputs and producing its outputs, respectively. The remaining layers of

the network are called hidden layers. The units of a layer, usually called neurons, are

vaguely inspired in biological neuros, in the sense that both receive external signals as

inputs and output an activation that will serve as input to other neurons. In Figure 2.2

we see a representation of a neuron. The output or activation of the neuron is computed

I1

I2

I3

H1

H2

O3

Input Layer Hidden Layer Output Layer

Figure 2.1: Representation of a fully conected neural network with 3 layers.

5

CHAPTER 2. BACKGROUND

. . .

Inputs Weights Activation
Function Output

Figure 2.2: Representation of an artificial neuron. Its output is computed by applying
a activation function ψ to the sum of its inputs x1, ...,xi weighted by the corresponding
weights.

through the applications of a function ϕ, the activation function, to the weighted sum of

the neuron’s inputs.

The process of developing a neural network starts by designing the neural network

architecture, from the number of layers, the size of each layer, the type of units in each

layer, etc. These decisions are closely dependent on the data it will take as input and

the task the neural network will be performing and, usually, involve fine-tuning through

experimentation. After designing the neural network architecture, the network is trained

and evaluated.

There are several different neural network’s architectures, as well as different ap-

proaches for training them, where different approaches are more suited for certain tasks.

In this Chapter, we will be focusing on introducing feedforward neural networks, namely

deep fully connected networks, and convolutional networks, trained using a supervised

learning approach, i.e., using labeled data. The distinguished characteristic of feedfor-

ward neural networks is in the way information flows through its layers. In feedforward

networks, information flows always from one layer to the next. This means that the

output of a layers is never fed back into the model. In other terms, if we represent a feed-

forward neural network as a directed graph where the vertices are the network’s layers

and the edges between them are the flow of information, the graph would be acyclic. A

feedforward network defines a mapping y = f (x,Θ) where x is the input of the network, y

its output and Θ its parameters, such as the neurons weights. The network’s parameters

Θ are optimized during training so that it results in the best function approximation.

Deep fully connected neural networks are a type of feedforward neural network that

is characterized by the units of one layer being connected to every unit of the next layer.

This is the case of the neural network representation shown in Figure 2.1. A popular

choice for the activation function of the neurons in the hidden layers of a fully connected

6

2.1. ARTIFICIAL NEURAL NETWORKS

1 2 1

0 3 2

1 2 1

0 1 0 0 0

1 0 1 1 0

1 0 1 0 1

0 0 1 1 0

0 1 0 0 0

*
0 1 0

0 1 0

0 1 0

=

Input Kernel Feature
Map

Figure 2.3: Representation of the convolution operation performed in a convolutional
layer of a neural network. The output of the convolution is called the feature map, and is
computed by combining the input and kernel.

network is the RELU function. The RELU is a piecewise linear function that for negative

xi inputs is zero, and for positive inputs xi is equal to xi . With this, the RELU function

offers a nonlinear transformation, while still maintaining some characteristics of linear

functions that facilitate the optimization process.

Convolutional neural networks are a type of feedforward network that arouse to deal

with some shortfalls of deep fully connected networks, namely their struggle to deal with

large input data, such as images. A deep fully connected network taking as input an

image with a resolution of 250×250 with 3 color channels (RGB) requires each neuron of

the first fully connected layer to have 250× 250× 3 = 187500 parameters. By having sev-

eral of neurons in this layer, not just the computational cost of performing the operations

becomes impractical, but the neural network aslo quickly starts to suffer from overfitting

and the curse of dimensionality. Convolutional neural networks have convolutional lay-

ers that apply a convolution operation. In the context of neural networks, a convolution

is an operation between the input and the kernel that is done in one or more axis, and

that outputs what is sometimes referred to as the feature map. The input is usually a

multidimensional array of data, and the kernel is a multidimensional array of parameters

that are adjusted during training by the learning algorithm. In Figure 2.3 we can see a

representation of a convolution operation performed by a convolutional unit. By mak-

ing the kernel smaller that the input, convolutional networks have sparse connections

between units, since the kernel does not interact the entire input. Convolutional neural

networks also employ parameter sharing. Each member of the kernel is used at every

position of the input (with exception to the boundaries, depending on design decisions).

This means that rather than having to learn a separate set of parameters for each location

in the input, it is possible to learn only one. An important property of parameter sharing

in the case of convolutional layers is their equivariance to translation, which means that if

the input changes, the output changes in the same way. This allows convolutional layers

to detect input features independently of their position, e.g., in the context of images, if

a convolutional layer detects an object in an image and that object is moved, the object

representation will move by the same amount in the output. In convolutional neural

7

CHAPTER 2. BACKGROUND

networks it is also common to use pooling layers. In these layers, the units implement

a pooling function where each one summarizes a part of the input.A commonly used

pooling operation is one called max pooling, which takes a part of the input and outputs

the maximum of the features. Pooling layers improve the computational efficiency of

the neural network, since by outputting a summary of their input, the next layer in the

network will have a reduced input while maintaining the most relevant features. Another

advantage of using pooling layers is to help maintain the representations invariant to

small changes in the input.

When designing a neural network architecture, an important aspect to take into con-

sideration for the is the output layer. The type of the output layer, its number of units

and their activation functions is closely dependent on the task the neural network is to

perform. If a neural network is to be performing a regression task, i.e., we want the

network to output a continuous value, it is common for the activation function of the

neurons in the output layer to have a linear activation function. When the network is to

perform a classification task, i.e., an input belongs to some class, typically, the number of

neurons in the output layer is equal to the number of classes considered. In classification

tasks, the activation of the neurons in the output layer is, usually the sigmoid function

which outputs a value between [0,1] indicating the likelihood of an example belong to

the corresponding class. In multi-class classifications tasks, i.e., an input belongs to one

class among multiple classes, the size of the output layer is equal to the number of classes

considered. In this case, the softmax function, an extension of the sigmoid function for

multiple classes, is used as the activation function of the neurons.

In supervised learning, neural networks are trained through using a set of labeled

examples. These examples are fed to the network and when the output does not match

the corresponding label, the value of each weight in the neural network is changes to

reduce the error. This is done by an optimization algorithm that defines how the values of

the parameters of a neural network should be changed based on the difference between the

obtained output and the example label. This difference is calculated using a loss function.

The most used optimization algorithms are Stochastic Gradient Descent and its variants.

They work by iteratively updating the parameters of the network in the direction of the

gradient of the loss function, using a batch of randomly selected training examples. This

randomness helps avoid local minima and improves the chances of converging to better

solutions. In Stochastic Gradient Descent learning rate, i.e., how much to update the

network’s parameters in each iteration, is constant and must be defined when designing

the network. The learning rate has a major impact in the ability of the optimizer to find

good solutions, and it’s a difficult to task to determine a value only by trial and error.

Variants of Stochastic Gradient Descent can automatically adjust the learning parameter

during training to aid with convergence. A popular choice among those algorithms is

Adam [21]. After training, a neural network should be tested using a set of examples

different from the ones used in training, this way, we can get an unbiased estimation of

the performance of the neural network. If the neural network performs well in the set of

8

2.2. DESCRIPTION LOGICS

testing examples, it is said that the network was able to generalize.

In this section, we provided only a breif overview of neural network, focusing on some

different architectures and the trainning of the networks. For a more comprehensive

exploration of neural networks, we refer to [10].

2.2 Description Logics

Descriptions Logics are a family of knowledge representation languages, consisting of

decidable fragments of First Order Logic (FOL), which are equipped with a formal, logic-

based semantics. Description Logics can be used to represent the knowledge of a domain

through the definition of concepts about the domain, and then using them to describe the

proprieties of the objects and individuals in the domain. Besides providing the means

for describing the knowledge of a domain, these languages allow us to infer knowledge

about the domain, that is not explicitly contained in the knowledge base. The 3 main

ingredients for representing a domain’s knowledge using a Description Logics are: atomic
concepts, which denote a set of individuals in the domain of interest, that share some

characteristics; atomic roles, which denote binary relations between individuals of the

domain; and individuals, which are instances in the knowledge base, representing a single

object in the domain of interest. For representing the knowledge of a domain using a

Description Logics, the first step is to define the vocabulary, a set of atomic concepts and

a set of atomic roles. Atomic concepts and atomic roles correspond to unary and binary

predicates in FOL, respectively, while individuals in Description Logics correspond to

constants in FOL. The sets atomic concepts and atomic roles provide the necessary syntax

for representing the domain knowledge. Different Descriptions Logics provide different

constructors that can be used built complex concepts, and there is a trade of between the

expressiveness of the language and the complexity of reasoning upon such language [4].

In this dissertation, we will be focusing on the ALCQ description logic, which provides

the following constructors for building complex concepts:

9

CHAPTER 2. BACKGROUND

C,D −→ A | (atomic concept)

⊤ | (univeral concept)

⊥ | (bottom concept)

¬A | (atomic negation)

C ⊓D | (intersection)

C ⊔D | (union)

∀R.C | (value restriction)

∃R.C | (existential quantification)

⩾ nR.C | (qualified at-least restriction)

⩽ nR.C (qualified at-most restriction)

WhereC andD denote concept descriptions, A denotes an atomic concept, R denotes a

role, and n denotes an integer number. Using these constructors one can express complex

concepts through the relation of atomic concepts and roles. As an example, one could

describe individuals of the male gender that have a daughter using the complex concept:

Person⊓Male⊓∃parent.(Person⊓ Female).

Description Logics use a set-theoretic interpretation for concepts. An interpretation

I = (∆I , ·I), consists of a non-empty set ∆I called the interpretation domain, and an

interpretation function ·I) which maps each atomic concept to a subset of ∆I and each

atomic role to a subset of ∆I × ∆I . The interpretation function can be extended for

complex concepts according to the following definitions:

⊤I = ∆I

⊥I = ∅

¬AI = ∆I \AI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀R.C)I = { a ∈ ∆I | ∀b. (a,b) ∈ RI → b ∈ CI}

(∃R.C)I = { a ∈ ∆I | ∃b. (a,b) ∈ RI ∧ b ∈ CI}

(⩾ nR.C)I = { a ∈ ∆I | #{b ∈ ∆I | (a,b) ∈ RI ∧ b ∈ CI} ≥ n}

(⩽ nR.C)I = { a ∈ ∆I | #{b ∈ ∆I | (a,b) ∈ RI ∧ b ∈ CI} ≤ n}

Complex concepts can be used to describe other concepts in the knowledge base,

through what is called axioms. There two kinds of axioms, one expresses the equality

between concepts (or roles), and the other expresses inclusion between concepts (or roles).

10

2.3. INDUCTIVE LOGIC PROGRAMMING

Person ⊑Male
Person ⊑ Female
Father ≡Male⊓∃parent.(Person)

Mother ≡Male⊓∃parent.(Person)
GrandParent ≡ Person⊓∃parent.(Father⊔Mother)

Person(GEORGE)
Person(SUSAN)
Father(GEORGE)
parent(SUSAN, GEORGE)

Figure 2.4: Example of an ontology in Description Logics by the TBox (top) and the ABox
(bottom).

We say that two concepts are equivalent, C ≡ D, if CI = DI , and we say that two roles

are equivalent R ≡ S, if RI = SI , for all interpretations I. The same notion applies to the

axioms expressing inclusion, for two concepts C and D, C ⊑ D, if CI ⊆ DI , and for two

roles R and S, R ⊑ S, ifRI ⊆ SI , for all interpretations I. Description Logics use assertions

for expressing the relation between individuals and concepts (or roles). Considering a

and b as individuals, a concept assertion C(a) satisfies some interpretation I, I |= C(a) if

aI ∈ CI , and a role assertion R(a,b) satisfies some interpretation I, I |= R(a,b).

An ontology in Description Logics is tipically composed by a TBox and an ABox.

The Tbox defines the terminology of the domain through axioms that describe how the

concepts in the domain are related. The ABox consists in a set of assertions on the

individuals of the domain. In Figure 2.4 we see an ontology in discription logics, the

TBox is represented by the top-most axioms, and the ABox is represented at the bottom.

This was only a brief overview on Description Logics, for a more in dept analizes, we

refer to [51].

2.3 Inductive Logic Programming

Inductive Logic Programming (ILP) is a form of logic-based machine learning and has

the goal of inducing an hypothesis from examples and produce new knowledge from

experience [6]. ILP can be described as a supervised learning technique since it gener-

alizes from data examples and learns relational rules from data [15]. A common use of

ILP is to perform concept learning, i.e. inducing a concept definition from examples

which captures the semantics of the data. Usually, training examples are represented as

11

CHAPTER 2. BACKGROUND

logical atoms and are divided in a set of positive and a set of negative examples, P os and

Neg respectively. The background knowledge BK is represented as a logic program and

provides the semantic backbone for the ILP algorithm. The algorithm has the goal of

searching for a consistent hypothesis, H , such that:

• BK ∪H |= P os

• BK ∪H ̸|=Neg

For getting a better grasp of how an ILP system can be applied to formulate an hy-

pothesis, we can imagine a simplified example where we want to obtain a hypothesis that

accurately describes the concept of a Passenger Train, based on its characteristics such as

having a certain type of carriage. Consider that we have one positive example and one

negative, trains A and B, where train A is a Passenger Train and train B is not. We can

represent these examples using the logic atom passengerT rain(x) where passengerT rain

is the target concept and x is a train identifier. Applying this to trains A and B we can

write:

passengerT rain(A)

¬passengerT rain(B)

The background knowledge BK contains the knowledge about the trains which will be

used as the basis to induce the hypothesis H . In this example we have information about

the type of carriages each train has, and it can be represented as:

hasP assengerCar(A)

¬hasFreightWagon(A)

hasP assengerCar(B)

hasFreightWagon(B)

In this conditions, an example of an hypothesis induced by an ILP algorithm could be:

P assengerT rain ≡ ¬hasFreightWagon

In this instance, a Passenger Train is described as train that does not have a freight

wagon. In this example, we can see that all positives examples can be logically derived

from BK∪H and none of the negatives examples can be logically derived from BK∪H . It is

worth noticing that in this simplified example we have a very reduced number of training

examples and it could be the case that the hypothesis would not generalize outside our

training set. Accordingly, the examples in the training set must be enough to capture the

semantic of the concept we aim to describe, so that induced hypotheses can generalize to

new examples.

12

3

Related Work

In this chapter, we review some work that is related to our objective, point the main
diferences and explore how we can build uppon what has already been proposed.

The increase in popularity of neural network-based methods and their application in

domains where the need for explanations is essential, has led to a considerable amount of

work being done towards increasing the transparency of neural networks. Different ap-

proaches have been proposed for increasing the interpretability of neural networks, one

is through saliency and attribution methods where the explanation for a neural network’s

behavior is given in terms of the contribution of each input feature for a given prediction.

Another approach is through proxy-based methods that attempt to substitute the neural

network model with another model with a similar behavior and that is inherently inter-

pretable. In this chapter, we present work proposed for augmenting the interpretability

of neural networks, grouping them by their approach.

(a) Hare (b) Black widow

Figure 3.1: Examples of heatmap visualizations of attribuition maps generated using LPR,
for a neural network classifying an input as an hare (on the left) and as a black widow
(on the right). The images were obtained from [16].

13

CHAPTER 3. RELATED WORK

3.1 Saliency and attribution methods

Saliency and attribution methods for explaining the outputs of neural networks [27, 50,

55] work by determining the importance, or contribution, of each input feature of a

neural network. These methods attempt to explain why a neural network classified an

input, through highlighting the features of the input, according to their relevance, i.e.,

their influence in the classification obtained. The explanations provided by saliency

and attributions methods are called attribution maps, that for each feature of the input

indicate its importance. They are typically visualized as heat maps, showing the input

highlighted according to the attribution map, as showed in Figure 3.1.

Among the methods that follow this approach, we have back-propagation based meth-

ods [34], which compute an attribution map using a set of propagation rules to propagate

the output backwards in the neural network, to determine the relevance of each input

feature. Layer-wise Relevancy Propagation (LRP) [2] is an example of a back-propagation

based method, where a rule is attributed to each layer of a neural network, defining how

the to propagate the relevancy of its neurons to the neurons of the previous layer, based

on their contribution. LRP allows for the attribution of different rules to different layers

to better deal with their characteristics, e.g., their size and position in the neural network.

The LRP algorithm stops once the relevance is propagated all the way to the input, result-

ing in an attribution map, describing the contribution of each feature. In Figure 3.1 we

show a heat map visualization of attributions maps obtained using LRP.

Another approach for computing attribution maps is through perturbation-based

methods [17]. These methods determine the relevance of each input feature applying

a mask to the input and measuring the changes in the output of the network. When

dealing with images, a popular approach for masking the input is through Occlusion [56],

where the input is perturbated by sliding a grey square over the imaging. In this case, the

relevance of input features is typically measured according to increase in the error of the

neural network’s output, when those inputs feature is occluded.

Although salience and attribution methods contribute to augmenting the transparency

of neural networks, the explanations they produce do not possess any declarative mean-

ing. The heatmaps generated by these methods provide a visualization of the importance

of each feature of the input, but the burden of rationalizing why those inputs were impor-

tant to the network’s task is left to the user, and in most cases, this is not obvious.

3.2 Proxy-based methods

Proxy-based methods for increasing the transparency of neural networks attempt to re-

place the neural network with another model that is inherently interpretable, while show-

ing a similar behavior to the neural network.

One popular example of a proxy-based method is LIME [37], a model-agnostic method

for producing local explanations for the classification of an example. The idea behind

14

3.2. PROXY-BASED METHODS

LIME stems from the fact that linear models are easier to interpret than non-linear models,

and despite being less powerful, linear models may be used to approximate the behavior

of non-linear models, locally. To explain the classification of an example, LIME probes

the example’s neighborhood for gathering new examples, and then fit a linear model,

using the non-linear model’s classifications, for classifying these examples. LIME does

not provide a global explanation for the outputs of a model, instead it provides a local

explanation, in the neighborhood of an example. Moreover, the interpretation of the

linear models used for producing the explanations, is usually limited to the features of

the example, which may not have a declarative meaning, e.g., an image.

Another example of proxy-based approache are rule extraction methods, which at-

tempt do describe how a model classifies its inputs, through a set of logic-based rules.

Rule extraction methods are usually divided into three categories – Pedagogical, Decom-

positional and Eclectic – according to their interpretation of neural networks. Pedagogical

methods treat neural networks as black boxes and attempt to produce rules by focusing

on their input-output behavior. Decompositional work by examining the network at the

neuron level, taking into account their activation and weights, and the result obtained

from each neuron is then aggregated to represent the network as a whole [13]. Eclectic

methods, often call hybrid methods, combine the approaches of Pedagogical and Decom-

positional methods.

3.2.1 Rule Extraction Methods

Rule extraction methods are a popular type of proxy method that attempt to increase the

transparency of neural networks by constructing a set o logical rules that aim to replicate

the neural network’s behavior. The proposed methods for rule extraction are usually

divided into three categories – Pedagogical, Decompositional and Eclectic – according

to their interpretation of neural networks. Pedagogical methods treat neural networks

as black boxes and attempt to produce rules by focusing on their input-output behavior.

Decompositional work by examining the network at the neuron level, taking into account

its the activation and weights and the result obtained from each neuron is then aggregated

to represent the network as a whole [13]. Eclectic methods, often call hybrid methods,

combine the approaches of pedagogical and decompositional methods. In this section we

review some proposed rule extraction methods, gruping according to the category they

fall under.

3.2.2 Pedagogical Rule Extraction Methods

RxREN [1] (Rule extraction by Reverse Engineering the Neural networks) is a pedagogical

rule extraction method that works by first applying a pruning procedure that removes

the insignificant input neurons of a neural network based on the amount of misclassified

examples when a neuron is removed. This pruning procedure ends once the accuracy of

the neural networks decreases under a given threshold. The next phase of this method

15

CHAPTER 3. RELATED WORK

consists in finding the data range of each significant input neuron, for each output class.

This is done by analyzing the set of examples of each class misclassified when the input

neuron is absent. If there are no misclassified examples of a given class it is said that that

neuron is insignificant to that class and will not figure in the rule that describes it. Then,

for each class, a rule is constructed based on the data ranges of the significant neurons.

The rules are then pruned by removing conditions and updating data ranges such that it

does not affect the accuracy of rule.

The ANN-DT [42] (Artificial Neural-Network Decision Tree) algorithm, extracts bi-

nary decision trees from trained neural networks. In a first phase the algorithm uses

the neural network to generate outputs for samples interpolated from the training data

set, which are guaranteed to be representative of the training set by only allowing the

sampling to be done on the neighborhood of the examples in the training set by imposing

a limit on the distance (or other similarity metric) between the examples and the inter-

polated samples. A binary three is then constructed by recursively splitting the set of

samples into two until the standard deviation or the variance between two newly created

branches is zero, or when some stopping criterion is met. This prevents the creation of

sub-branches whose outcome would not be significantly different from one another.

The method proposed in [40], proposes the construction of a set of rules that aim to

describe how a neural network classifies its inputs, using an Inductive Logic Programing

approach. In this work, the first step for inducing the rules describing the network’s

classification process is to label a set of examples according to a set of concepts that will

be used to formulate the rules. Then, they use an induction framework for inducing

the rules, such that the classifications given by the set of rules is in accordance with the

classification given by the neural network. The main difference between this method and

the other pedagogical rule extraction methods presented, is that this method does not

construct rules based directly on the features of the neural network input, but instead,

attributes to this features a concept interpretation, through labelling.

Pedagogical rule extraction methods are not limited by the architecture of the neural

network. Since these methods treat neural networks as black boxes, they are agnostic

to the model’s architecture and its internal representations. However, this can also be

pointed as their main limitation. By focusing only on the input-output behavior of a neu-

ral network, the rules extracted may not provide a faithful rationalization of the network’s

classification process since two different networks with different internal representations

might exhibit the same input-output behavior.

3.2.3 Decompositional Rule Extraction Methods

CRED (a Continuous/discrete Rule Extractor via Decision tree induction) [41] is a decom-

positional rule extraction method that uses decision trees to describe a neural network

with a single hidden layer. The main difference between this method and the ANN-DT

algorithm discussed in Section 3.2.2 is that it also considers the activations and inputs

16

3.2. PROXY-BASED METHODS

of the hidden layer of the neural network for extracting the rules. CRED uses the C4.5

algorithm [33] to transform each output unit of a neural network into a decision tree [57].

The inner nodes of those trees are considered tests on the values of the hidden layer’s

neurons and the leaves represent the class that each example would belong to.

DeepRED (Deep neural network Rule Extraction via Decision tree induction) [57]

is an extension of the CRED method for neural networks with an arbitrary number of

inner layers, by deriving additional decision trees and intermediate rules for every addi-

tional hidden layer. DeepRED also uses the pruning procedure employed in the RxREN

algorithm.

Both these methods contribute to increasing the transparency of neural networks,

enabling the extraction of rules that take into account the network’s internal representa-

tions and provide a accurate description for the classification process of a neural network.

However, these methods often generate rules that despite interpretable are often too com-

plex to be human-understandable, since they rely on the ranges of values of the networks

internal representations. Furthemore, this methods are often closely dependent on the

networks architecture and can not be easily adapted to work with state of the art neural

network architectures such as convolutional networks.

3.2.4 Eclectic Rule Extraction Methods

The MofN method [52] extracts a set of rules that represent the neural network at the

neuron level. The rules explaining a single neuron are obtain by first clustering the

neuron inputs, based on their weights, using the join algorithm [14]. Then the weights

of all neurons in the same cluster is set to the average of their weights. After this step,

the algorithm attempts to identify and remove insignificant clusters based on the value

of the weights, clusters that cannot change whether the net input exceeds the bias of

the neuron are eliminated. Additionally, clusters whose absence has no impact on the

ability of the network to provide accurate outputs are removed, i.e. removing them does

not result in a qualitative change in the activation of the neuron receiving activations

from the cluster. After the iterative process of identifying and removing the unnecessary

clusters, the network is retrained and the rules are created by directly translating the

bias and weights of each neuron into a rule that is true if the sum of the weighted inputs

exceeds the bias. The final step of the algorithm attempts to simplify the rules whenever

it is possible.

Similarly to the discussed decompositional rule extraction methods, the rules extrated

by this method do not explicitly present a human-understandable explanation for what

leads a particular output to be produced from a given input. Since the rules obtained are

expressed using numerical values that by themselves have no real meaning, they leave

to the user the burden of understanding why the explanation, justifies the output of a

neural network.

17

CHAPTER 3. RELATED WORK

3.3 TCAV

Testing with Concept Activation Vectors (TCAV) [20] is a method that aims to increase

the transparency of neural networks, by providing an interpretability of their internal

states using human-understandable concepts and these concepts importance for the clas-

sification of an input. TCAV determines the importance of concepts by finding concept

activation vectors (CAVs). To find a concept activation vector the first step is to select a set

of input samples that represent the concept, then a linear classifier is trained to separate

the activations produced by the examples representing the concept and the activations

of other examples. The concept activation vector is then defined as the vector normal to

the hyperplane that separates the space of activations according to the concept, which is

defined by the trained linear classifier. The importance value of a concept for an output

of the neural network, i.e., the neural networks sensibility to a concept, can be obtained

through CAV’s directional derivates.

Although TCAV provides a concept based interpretation of a neural network by deter-

mining the importance of concepts for the output of the neural network, no account is

given on how these concepts relate to each other and output of the neural network.

18

4

Ontology Extraction

In this chapter we formalize and describe our proposed method for increasing the
explanaibility of trained neural networks through the construction of ontologies that
describe their classification process.

Our main objective is to develop a method that provides the ability to construct ontolo-

gies for describing the classification process of trained neural networks. These ontologies

should be constructed upon human-understandable and meaningful concepts and be

grounded on the internal representations of the neural network which classification pro-

cess it describes. We intend to take advantage of the mapping networks proposed in [46]

and their ability to extract human-understandable concepts from the activations of a

trained neural network, to obtained the knowledge necessary for inducing an ontology.

In the following sections, we formalize and describe our proposed method. We start

by providing a formalization of neural networks and a formalization of the concept ex-

traction technique proposed in [46], to introduce the necessary notions and notation for

formalizing our method. After this, we present a formalization of our proposed method,

detailing the reasoning behind the approaches taken. Finally, we provide a summary of

our proposal.

4.1 Formalizing Neural Networks

In this section, we formally introduce the necessary notions and notation on neural net-

works.

We start by defining the mathematical objects that neural networks manipulate, ten-
sors. Formally, a tensor space is a subset A of Rn1×···×ns , with s ≥ 1, and each T ∈ A is called

a tensor. Vectors and matrices are particular cases of tensors, namely elements of Rn and

Rn×m, respectively. We denote by size(A) = Πi∈{1,...,s}ni the size of A, that is, the number

of components of A. Given a tensor T ∈ A and an index j ∈ {1, . . . ,n1} × · · · × {1, . . . ,ns}, by

Tj we denote the j-component of T.

19

CHAPTER 4. ONTOLOGY EXTRACTION

A useful operation on tensors is the vectorization of a sequence of tensors, also known

as flattening, which corresponds to the representation of such sequence using a vector that

preserves the components of the tensors. We abstract the details of possible vectorizations,

and assume that for each sequence (A1, . . . ,Ak) of tensors spaces, there is a function vec :

A1× . . .×Ak→ Rn, with n =
∑
i∈{1,...,k} size(Ai), that gives the vectorization of each sequence

of tensors.

The basic elements of neural networks are called units or neurons, and are defined as

functions u : Iu ×Su → R, where Iu and Su are tensor spaces, representing the input and

the parameters space of u, respectively. Units that share input and parameters spaces

can be combined to form layers. Formally, a layer is a function L : IL ×SL→OL, where IL,

SL, and OL are tensor spaces, where OL is called the output tensor space. The units of a

given layer L, one for each component j of the output tensor space OL, are given by the

functions Li : IL × SL→ R, where Li(X;θ) = L(X;θ)i .

As an example, a fully connected sigmoid layer with two units can be defined as

L : Rk ×R2(k+1) → [0,1]2 such that L(x; (θ1,θ2)) = (φ(xw1 + b1),φ(xw2 + b2)), where φ is

the sigmoid activation function, k the size of the input x, θi = (wi ,bi), where wi and bi
are the weights and biases of the corresponding unit i. The output of each unit is the

projection of the output of the layer into the respective component, i.e., Li(x; (θ1,θ2)) =

L(x; (θ1,θ2))i = φ(xwi + bi).

A neural network N is a sequence (L1, . . . ,Ld) of layers such that the input of one layer

is the same as the output of the previous layer, that is, ILj = OLj−1 , for all j ∈ {2, . . .d}. The

outputs of all layers of N are also usually called the activations of N .

Given a neural network N = (L1, . . . ,Ld), its input space is equal to the input space of

the first layer, that is, IN = IL1 , its output space is equal to the output space of the last

layer, that is, ON = OLd , its parameter space is the product of the parameter spaces of

each layer, that is, SN = SL1 × · · · × SLd , and its size is the number of units it has, that is,

size(N) =
∑
i∈{1,...,d} size(OLi).

A neural network N is said to be for classification if there exists a set of concepts CN
and a function conceptN : ON × CN → {0,1}, such that conceptN (Y,C) = 1 indicates that

concept C can be identified in output Y.

As a simple example of a classification neural network, take N with a single output,

that is, ON = [0,1], and a single concept CN = {C}. Then, conceptN can be defined as

conceptN (y,C) = 1 iff y > 0.5, that is, concept C is only identified when the output value

is larger than 0.5.

A neural network model is pair M = (N,θ), where N is a neural network and θ is a

choice of parameters for each layer of N , that is, θ ∈ SN . Given a model M = (N,θ),

with N = (L1, . . . ,Ld) and θ = (θ1, . . . ,θd), the output of a layer j can be obtained using a

function FjM : IN →OLj defined as the composition of the layers up to layer j, that is,

F
j
M(X) = Lj(Lj−1(. . .L1(X;θ1) . . . ;θj−1);θj)

20

4.2. CONCEPT EXTRACTION

The function associated with the entire model FM : IN → ON is exactly the function

of the last layer, that is, FM = FdM.

A training set for a neural network N is a set of labeled examples, that is, a set of pairs

{(X1,Y1), . . . , (Xk ,Yk)}, with {X1, . . . ,Xk} ⊆ IN and {Y1, . . . ,Yk} ⊆ON .

Given a neural network model (N,θ), the training process consists in finding a new

model (N,θ′), by optimizing some objective function with respect to the parameters space

SN over a training set forN . The accuracy of a classification model M over a set of samples

X, denoted by accX(M), is the proportion of well-classified examples from the sample set.

We may omit X when it is implicit.

4.2 Concept Extraction

In this section we formalize the method proposed in [46] to extract human-understandable

concepts from the activation patterns of a trained neural network, usually called main

network.

We assume the main network model M = (N,θ) to be fixed, where N = (L1, . . . ,Ld)

is a classification network for a set CN of concepts. We also assume a vectorization vec :

OL1 × . . .×OLd → Rk , with k = size(N), that transforms the activations of N into a vector

form.

The fundamental elements of the method are the mapping networks, each being a

classification networkM that has as input the activations of the main network and is asso-

ciated with a single concept CM . Formally, a mapping network over M is a classification

network M, with IM = Rk , where k = size(N), OM = [0,1], and CM = {CM}.
To allow mapping networks to consider only a subset of the set of all units of the main

network N , we associate to each a sequence of selection tensors, selM = (S1, . . . ,Sd), one

for each layer of N , such that each Si has the same dimension as OLi but is restricted to

0′s and 1′s1. The positions of Si with a 1 correspond to the units of the main network

that are to be considered as input for the mapping network M. Given a possible output

of the main network, (O1, . . . ,Od) ∈OL1 × . . .×OLd , the corresponding input for a mapping

network M is vec(O1 ·S1, . . . ,Od ·Sd), where · is the point-wise multiplication of tensors.

As an example, let M = (N,θ) be a main network model where N has two layers, one

with 3×2 units and the other with 4 units. The vectorization transforms the output of the

two layers in a vector of size 10, the size of the input vector of every mapping network for

M. The selection sequence of each mapping network M is a pair selM = (S1,S2), where

S1 is a 3× 2 binary matrix and S2 is a size 4 binary vector.

A mapping network is trained to identify its associated concept CM , given the activa-

tions of the main network. Therefore, the training set of a mapping network is a set of

pairs, each composed by the activations of the main network together with a label that

1For the sake of presentation, we assumed that the size of the input vector of each mapping network is
equal to the number of units of N . In practice, the size of the input vector of each mapping network is the
size of the considered subset of units of N .

21

CHAPTER 4. ONTOLOGY EXTRACTION

indicates whether CM was identified on the input to the main network that generated

such activations. To build such training sets, we first need to label samples of the main

network with the concepts associated with the mapping networks. Given a concept C

and a set of samples X ⊆ IN , a labeling function for C is of the form labelC : X → {0,1},
such that labelC(X) = 1 indicates whether concept C is present in a given sample X ∈ X. A

training set for a mapping network M can then be obtained by labeling the output of the

units of the main network model generated by an input sample X with the corresponding

label labelCM (X). Formally, given a set of samples X ⊆ IN , the training set forM generated

by X is the set of pairs (vec(F1
M(X) · S1, . . . ,FdM(X) · Sd), labelCM (X)), X ∈ X. The cost of

training a mapping network is labeling the samples, which usually needs domain expert

knowledge.

After training a mapping network M, the resulting model MM = (M,θM) can be used

to predict its associated concept CM from the activations of the main network. Therefore,

we can associate to each MM a labeling function labelMM
: IN → {0,1} where labelM(X) is

given by,

labelM(X) = conceptM(FMM
(vec(F1

M(X) ·S1, . . . ,FdM(X) ·Sd)))

for each X ∈ IN . Intuitively, this labeling function is the application of the function

associated with M to the activations of N generated by X. Then, conceptM indicates

whether the concept CM was identified in the activations of N . It is important to note

that, once a mapping network is trained, its labeling function has almost negligible cost

(one forward pass of both the main and the mapping network), specially when compared

with the cost of manually labeling data.

4.3 Inducing the Ontology

In this section we describe our method to induce human-understandable logic-based the-

ories that aim to represent the classification process of a neural network model, based on

the output of mapping networks, illustrated in Figure 4.1. We assume a fixed trained main

network model M = (N,θ). Since a neural network model M rely on sub-symbolic repre-

sentations for performing their task, to describe such task in human-understandable way,

we need a logical language L that is rich enough for representing the network model’s clas-

sification process and its domain of interest, i.e., the representation of concepts, relations

between them, and knowledge specific to the individuals of the domain of discourse. Our

method is general in the sense that it is parametric on the choice of a logical language (e.g.

Description Logics [51], Answer-Set Programming [28], etc.) and an induction framework

defined over that language. We just assume that L is defined over a given set of concepts

that includes the concepts in CN , which are the concepts associated with the outputs of

N , and a set of concepts of interest C, which are concepts relevant to the domain of the

main network N . The concepts C ∈ CN ∪ C, are the vocabulary of the ontology we aim

to construct, i.e., the set of atomic concepts that will serve as the building blocks of the

22

4.3. INDUCING THE ONTOLOGY

C1

...

... ...
......

... ...

......

main network N
L1 L2

L3 Ld-1
Ld

Input

selection tensorselection tensor

......

...

MC1 MCm

mapping networks CMmCM1

Cn

Induction System

Induced Theory
C1≡CM1

⊔(CM2
⊓¬CMm

)

Cn≡¬CM2
⊔CMm

...

...

Figure 4.1: Schematic representation of our proposed method for inducing ontologies
that describe the classification process of trained neural network.

23

CHAPTER 4. ONTOLOGY EXTRACTION

ontology. The concepts of interest C, would be normally obtained from experts in the

domain where the neural network operates, according to their knowledge and intuitions,

and what they believe could be enough for describing the task being performed by the

network. In addition to this, the concepts should meet the needs of the end-users. One

of the purposes for having the ability of explaining the outputs of a neural network is

to allow users to trust them, so it is important that the explanations are according to

their preferences or level of expertise. It is reasonable to assume that a health practitioner

would probably require an explanation given based on a set of concepts different from the

ones required by a patient. As an example, for a neural network trained on the CIFAR-10

dataset [22] we could use concepts such as ‘wheels’, ‘horns’, or ’water’, while for one

trained on the HAM10000 dataset [53], we could use concepts such as ‘asymmetric’, or

‘patchy’.

We also assume a fixed set of constants cN = {cX : X ∈ IN }, representing the individuals

of the domain of interest, corresponding to the possible input elements of the main

network, i.e., its input space.

The elements of L are called formulas, and should include as basic elements the

atoms of the form C(c), for C ∈ C∪CN and c ∈ cN . We assume given a consequence relation

|=⊆ 2L ×L over L. Then, an inductive framework over (L, |=) has three ingredients: the so

called background knowledge, denoted by BK , which is a subset of L and represents the

known knowledge; a set P os of atoms, usually called the positive examples; and a set Neg

of atoms, called the negative examples. The goal of the inductive framework is to induce

an hypothesis, which is a set of formulas that together with the background knowledge

entails all the positive examples and none of the negative examples. Formally, a setH ⊆ L
is called an inductive hypothesis if:

• BK ∪H |= C(c) for every C(c) ∈ P os;

• BK ∪H ̸|= C(c) for every C(c) ∈Neg.

In our method, the positive and negative examples will refer to the concepts in CN ,

while the background knowledge will contain knowledge about the concepts of interest

in C. This way, we can obtain a logical theory representing the classification process of

N by describing the concepts in CN in terms of those in C. To construct the sets BK , P os

and Neg, we fix a set of samples X ⊆ IN . For each sample X ∈ X, we check using the main

network model, if the concepts of CN are identified or not in X, adding this information

to the positive or negative examples, accordingly. Formally, for each C ∈ CN , we define:

• P osC = {C(cX) : X ∈ X and conceptN (FM(X),C) = 1};

• NegC = {C(cX) : X ∈ X and conceptN (FM(X),C) = 0}.

The sets of positive and negative examples are defined as P os = ∪C∈CN P os
C and Neg =

∪C∈CNNeg
C, respectively.

24

4.4. METHOD OVERVIEW

The distinctive characteristic of our method is the use of mapping networks to obtain

such background knowledge. The fact that mapping networks learn to classify using

the activations of the main network is fundamental to assure that this classification is

intrinsic to the main network. For each concept C ∈ C we train a mapping network MC

as described in Section 4.2, resulting in a mapping network model MC. Since some

of these mapping networks may not learn to correctly identify its associated concept,

we assume some threshold α for the accuracy of the mapping networks, below which

we do not use them to build the background knowledge. Then, only the concepts in

Cα = {C ∈ C : acc(MC) > α} will be used to build the background knowledge. Formally, we

have,

BK = {C(cX) : X ∈ X and C ∈ Cα and labelMC
(X) = 1} (4.1)

Note that the set BK could also include additional background knowledge over C, e.g.

provided by a domain expert, but we do not further explore that possibility in this disser-

tation.

Given the sets P os, Neg and BK defined above, the ontology O = H where H is the

hypothesis given by the induction framework, can be seen as a representation over L of

the classification process of the main network, describing in a human-understandable

logical language the characterization of the concepts of the main network in terms of the

concepts of interest.

In the work presented in this dissertation, we use an inductive framework based on

the ideas of Inductive Logic Programming (ILP) [6], which allows for learning a con-

cept description from examples. The main particularity of this inductive framework,

compared to a general framework described above, is that the descriptions for the main

network’s output concepts CN must be learned separately, i.e., for each concept C ∈ CN we

must instantiate and solve an ILP problem, where the P os and Neg sets are,

• P os = P osC,

• Neg =NegC,

and the BK set is defined the same as in 4.1. In this case, the resulting ontology O will be

the set containing all learnt concept descriptions HC, such that O = ∪C∈CNH
C.

4.4 Method Overview

In Figure 4.1 is a schematic representation of our method for constructing an ontology

that provides a human-understandable description for the classification process of a

trained neural network. Our method, using an ILP based framework for inducing the

ontology, can be summarized into the following steps:

1. Choose a language L for conveying the ontology, that offers the desired and neces-

sary level of expressiveness;

25

CHAPTER 4. ONTOLOGY EXTRACTION

2. Choose a set of concepts of interest C, that together with the concepts associated

with the main networks outputs CN , will be the vocabulary of the ontology. The con-

cepts of interest C must possess meaning in the domain where the neural network

operates, should meet the end user’s needs, and must be adequate to describe the

network’s classification process, according to a domain expert;

3. Build and train mapping networks to extract the concepts of interest C from the acti-

vations of the main network, as described in 4.2, such that whenever an input is fed

to the main network each mapping network can provide the knowledge regarding

the identification of their respective concept;

4. Induce a description for each concept in CN associated with the outputs of the main

network, by instantiating an ILP problem as follows:

a) Choose a set of learning examples, which represent samples from the input

space of the main network. In the context of the ILP problem, these examples

are represented using an identifying constant;

b) Construct the sets of positive and negative examples, P os andNeg, by dividing

the examples according to the classification of the main network;

c) Construct the background knowledge by instantiating concepts of interest C,

according to the mapping network’s observations for each example, e.g., if a

mapping network identified a concept C for an example x, we add C(x) to the

background knowledge;

d) Use an inductive framework to solve the ILP problem instantiated.

5. The ontology O describing the classification process of the main network is the set

containing the learnt concept descriptions HC, for each C ∈ CN .

26

5

Inducing Ontologies from Neural Networks

In this chapter, we explore the application of our method in a controlled setting, using
a synthetic dataset. We present and discuss the results obtained when applying our
method directly in this setting, as well as the results obtain in experiments that
highlight different aspects of our proposal.

Our method allows for the induction of ontologies that provide a human-understandable

description for the classification process of a trained neural network. In this chapter, we

explore its application in a controlled setting, using the XTRAINS dataset [45]. We will be

presenting and discussing the results of the application of our method to neural networks

trained to perform a classification task in the domain of this dataset.

In the following section, Section 5.1, we describe the XTRAINS dataset and the trained

neural networks – the main networks. In Section 5.2, we detail the experimental setting in

which we conducted our experiments. In Section 5.3 we examine the direct application of

our method for inducing ontologies for each of the main networks, and in the following

sections we explore experiments that highlight different aspects of our method: Section

5.4 discusses how the induced theories are affected when using concepts with different

levels of abstraction; Section 5.5 analyzes how our method behaves when provided with

insufficient concepts to induce an ontology for a neural network; Section 5.6 evaluates

the cost of applying our method, and how it performs with different amounts of available

data; and Section 5.7 examines the importance of using mapping networks when inducing

an ontology for describing the classification process of a neural network.

5.1 Dataset and Main Networks

The XTRAINS dataset is a synthetic dataset, containing images of representations of

trains, such as those in Figure 5.1. These images have a resolution of 152 × 152 pixels

with 3 color channels (RGB), and are highly diverse. The trains representations vary

in the number, size, and shape of their wagons and wheels, and in the quantity, size,

and relative position of the geometric shapes inside each wagon. They also vary in the

27

CHAPTER 5. INDUCING ONTOLOGIES FROM NEURAL NETWORKS

(a) TypeA train. (b) TypeB train. (c) TypeC train.

Figure 5.1: Sample images from the XTRAINS dataset.

∃has.(Wagon⊔ Locomotive) ≡ Train
WarTrain⊔ EmptyTrain ≡ TypeA

PassengerTrain⊔ LongFreightTrain ≡ TypeB
RuralTrain⊔MixedTrain ≡ TypeC
LongTrain⊓ FreightTrain ≡ LongFreightTrain

∀has.(EmptyWagon⊔ Locomotive)⊓∃has.EmptyWagon ≡ EmptyTrain
∃has.EmptyWagon⊓∃has.(PassengerCar⊔ FreightWagon)⊓¬∃has.LongWagon ⊑ RuralTrain

∃has.FreightWagon⊓∃has.PassengerCar⊓∃has.EmptyWagon ⊑MixedTrain
∃has.(PassengerCar⊓ LongWagon)⊔ (≥ 2 has.PassengerCar) ⊑ PassengerTrain

∃has.ReinforcedCar⊓∃has.PassengerCar ⊑WarTrain
(≥ 2 has.LongWagon)⊔ (≥ 3 has.Wagon) ⊑ LongTrain

(≥ 2 has.FreighWagon) ⊑ FreightTrain

Figure 5.2: Subset of the XTRAINS dataset’s ontology.

distance between each wagon, the thickness of their walls, the height of the couplers,

etc. Also, noise is present in the images in the form of missing pixels from the trains’

representations. Each image in the dataset is labeled according to their visual features,

which correspond to human-understandable concepts. The use of images is challenging

since human-understandable concepts cannot be directly extracted from pixel represen-

tations. The dataset is accompanied by an ontology represented in Description Logics.

In Figure 5.2, is a subset of this ontology, which agrees with the labeling of the images

in the XTRAINS dataset. The ontology describes the domain of the trains through con-

cepts whose meaning is related to the train’s visual features. For example, the concept

PassengerCar is represented by a wagon containing at least a circle inside its walls and the

concept FreightWagon is represented by a wagon containing geometric figures inside its

walls, which are not circles. The ontology represents how different concepts are related,

e.g., a train has a wagon and a locomotive and how trains are classified in this domain,

28

5.1. DATASET AND MAIN NETWORKS

e.g., a type A train is either a war train or an empty train. In the ontology we can also

identify at different levels of abstraction, where the concepts at a higher level of abstrac-

tion are described by logically relating the concepts at a lower level of abstraction. For

instance, we have concepts such as MixedTrain which is described as a train having an

empty wagon, a passenger car, and a freight wagon.

Due to being accompanied by a rich ontology and providing images labeled for a

large set of human-understandable concepts, the XTRAINS dataset provides a controlled

setting. Besides the direct application of our method, this controlled setting allows us to

conduct other experiments explore and highlight different aspects of our method, which

would be difficult to conduct in other circumstances, e.g., in the context of using real-

world data, we could be limited by the scarcity of data or labelling.

In our experiments, we consider three different main network models – referred to as

MA, MB, MC. Each of these models was trained to identify, respectively, trains with the

following descriptions, each illustrated in Figure 5.1, and described in the accompanying

ontology, cf. Figure 5.2:

• TypeA – trains having either, a wagon with at least a circle inside and a wagon with

two walls in each side, or no wagons with geometric figures inside them, cf. 5.1(a);

• TypeB – trains having a long wagon, or two wagons, with at least a circle inside, or

trains having at least two long wagons, or three wagons, with at least two of which

with a geometric figure inside that is not a circle, cf. 5.1(b);

• TypeC – trains having a wagon with no geometric figure inside and either, a wagon

with a circle inside and a wagon with a geometric figure inside that is not a circle,

or no long wagons and a wagon with a figure inside, cf. 5.1(c).

The three main networks possess are convolutional networks and they are composed

by an input layer for receiving images with a resolution of 152× 152 pixels and 3 color

channels, followed by the layers that make up the convolutional part of the networks, in

this order: two sets of convolutional and batch normalization layers; a max-pooling layer

and a dropout layer; two more sets of convolutional, batch normalization and max pooling

layers; a dropout layer; and a flatten layer. After these layers, follows the fully connected

part of the networks composed by interleaved fully connected and batch normalization

layers, which is different for each main network: MA has three sets of these layers, MB

has two, and MC has four. The output layer of the three main networks is composed of

a single neuron with the sigmoid activation function. The main networks were training

with a balanced set of 25000 images, using early stopping with a patience of 30, Adam [21]

with a learning rate of 0.001 as the optimizer, and the binary crossentropy loss function.

After training, the three networks achieved an accuracy of about 99% when tested on a

balanced set of 10000 images.

29

CHAPTER 5. INDUCING ONTOLOGIES FROM NEURAL NETWORKS

5.2 Experimental Setting

In the experiments explored in the following sections, we choose Description Logics as the

language for conveying the induced ontologies. Description Logics is a standard choice for

taxonomic classification and, choosing it as our language allows us to draw comparisons

between the induced ontologies and the ontology that accompanies the dataset.

The mapping networks developed for extracting the concepts chosen in each exper-

iment all have the same architecture. They are composed of an input layer receiving

the corresponding main network’s activations and an output layer composed of a single

neuron using the sigmoid activation function. For the input of the mapping networks,

we are only considering the activations of the neurons in the batch normalization layers,

of the fully connected part of the main networks. The mapping networks were trained

using the optimization algorithm Adam [21] with a learning rate of 0.001, the binary

crossentropy loss function, and early stopping with a patience of 20. Each mapping net-

work was trained using a balanced set of 800 samples and tested using a balanced set of

1000 samples, with the exception of those in Section 5.6, where we discuss the effects

of varying the amount of training samples. We use an accuracy threshold α of 90% to

select which mapping networks should be considered when building the background

knowledge.

For inducing the ontologies, we use DL-Learner framework [25], although other alter-

natives for leaning ontologies could be have been used, such as ILASP [24] or differential

logic machines [58]. DL-Learner is a very flexible and configurable system that extends

the ideas of ILP and can be applied to several ontology learning and engineering tasks.

In the following experiments we configure DL-Learner to use the CELOE algorithm pro-

posed in [26] which is biased to minimize the induced ontology. This algorithm uses a

refinement operator for searching in the space of expressions. The space of expressions

is generated using a top-down approach that starts with the most general expression,

⊤, which is then mapped to a set of more specific expressions by means of a downward

refinement operator. The refinement operator can be applied to the obtained expressions

again, spanning a search tree, where the search will be guided using a heuristic. We

configure DL-Learner to solve a positive-negative learning problem using closed world

reasoning with a maximum execution time of 60 seconds. In all the experiments below,

the ontologies are induced using a balanced set of 3000 examples and are tested using a

balanced set of 1000 examples.

The main metric to quantitatively evaluate the quality of our induced ontologies is

the fidelity measure (FMain), which computes how well a given theory imitates the classi-

fications of the main network it was induced from. This metric is computed as the ratio

of samples where the classifications of the main network coincide with those obtained

from the induced ontology together with the knowledge obtained from the outputs of

the mapping networks. Given the high accuracy of the three main networks being stud-

ied, we consider another fidelity metric (FXTRAINS), which measures the concordance

30

5.3. INDUCING A MAIN NETWORK’S ONTOLOGY

of the induced ontologies with respect to the XTRAINS dataset labeling. This metric is

computed as the ratio of samples where the classifications of the XTRAINS labels (for

the main network’s output concepts CN) coincide with those obtained from the induced

theory together with the knowledge obtained from the labels of the extracted concepts

(Cα). This metric allows us to compare whether the induced theories are better suited to

the classifications of our main and mapping networks, or to the labeling of the dataset.

Even when obtaining high FMain scores, it is relevant to also examine FXTRAINS , since

if it is significantly greater than FMain, it could mean that our method was overfitting

to the dataset labels. Additionally, we also inspect how the induced ontologies logically

compare with the ontology accompanying the XTRAINS dataset. However, although an

existing logical relation between both could serve as confirmation of the quality of the

induced theory, it is worth noting that the absence of such a relation should not be seen

as evidence of an induced theory with poor quality since the main networks may have

learned to perform the same classifications through a different internal process.

Each experiment in the following sections, was run 20 times, using different balanced

sets of samples for training and testing purposes. The induced ontologies that we present

and logically analyze are the mode of the 20 runs, while the discussed fidelity scores

correspond to the average of the fidelity scores obtained in the 20 runs.

5.3 Inducing a Main Network’s Ontology

In this section, we explore our main hypothesis, namely that it is possible induce a human-

understandable ontology that describes the classification process of a trained neural net-

work. Also, that we can induce such ontology by leveraging the classifications provided

by mapping networks trained to identify a set of concepts of interest from the activations

of said neural network. To that end we applied our proposed method for inducing ontolo-

gies for the main networks models presented in Section 5.1 - MA, MB, and MC. For each

main network, we trained mapping networks to extract the following 11 concepts 1 from

the ontology accompanying the XTRAINS dataset, cf. 5.2: EmptyTrain, FreightTrain, Long-
Train, MixedTrain, PassengerTrain, RuralTrain, WarTrain, ∃has.FreightWagon, ∃has.LongWagon,

∃has.OpenRoofCar, ∃has.ReinforcedCar. We point out that for the purposes of our method,

we treat the complex concepts, e.g., ∃has.ReinforcedCar, as atomic concepts. When present-

ing our results, we maintain the representation of these concepts as complex concepts, to

facilitate the comparison between the induced ontologies and the ontology accompanying

the dataset.

The ontologies that resulted from the application of our method to each main network

model, MA, MB, MC, can be seen bellow:

1We selected the same 11 concepts that were explored in [46].

31

CHAPTER 5. INDUCING ONTOLOGIES FROM NEURAL NETWORKS

TypeA ≡ EmptyTrain⊔WarTrain

TypeB ≡ (LongTrain⊓ FreightTrain)

⊔ (PassengerTrain⊓¬EmptyTrain)

TypeC ≡MixedTrain⊔RuralTrain

The ontology induced for MA states that a sample is classified as being a TypeA train

if and only if it is either a war train or an empty train. The ontology induced for MB states

that a sample is classified as being a TypeB train if and only if it is either a freight train

and a long train, or a passenger train and not an empty train. The ontology induced for

MC states that a sample is classified as being a TypeC train if and only if it is a mixed

train and a rural train.

It is worth noting that, despite the usage of 11 concepts for inducing each ontology, we

see that the ontology induced for MA only contains 2 of those concepts, the ontology in-

duced for MB contains only 4, and the ontology induced for MC contains only 2 concepts.

This is due to only considering the concepts that could be extracted using the mapping

networks, i.e., their testing accuracy was not under 90%, and the learning framework’s

ability to induce minimal ontologies. This suggests that the proposed method was able to

properly select the concepts better suited to describe each neural network’s classification

process.

A logical comparison of the induced ontologies with the ontology that accompanies

the XTRAINS dataset allows us to observe that both the definitions of concepts TypeA
and TypeC in the induced ontologies for MA and MC, respectively, are equivalent to the

respective definitions of TypeA and TypeC in the datasets’ ontology. The concept of TypeB
in the induced ontology for MB is a subclass of TypeB as defined in the XTRAINS ontology,

meaning that any individual of TypeB in the induced ontology is also considered to be of

TypeB according to the XTRAINS ontology.

Table 5.1 shows the fidelity scores of the induced theories. The resulting high FMain
scores provide evidence that the resulting ontologies are properly reflecting the main

network’s internal classification process, strongly supporting our main hypothesis. Fur-

thermore, one can observe that the induced ontologies are also faithful to the dataset’s

labels, achieving similar FXTRAINS and FMain scores. This is an interesting indication that

the main networks have learned to classify their samples in similar fashion to how they

are classified by the ontology accompanying the XTRAINS dataset.

5.4 Levels of Abstraction

It is often the case that different scenarios require different levels of abstraction and detail

to interpret a neural networks’ classification process. For example, a user may want to

understand how a neural network is classifying some type of train based on other known

32

5.4. LEVELS OF ABSTRACTION

FMain FXTRAINS
MA 99.72± 0.18% 99.92± 0.35%
MB 98.71± 0.31% 99.83± 0.76%
MC 99.33± 0.32% 99.52± 1.52%

Table 5.1: Fidelity scores for the ontologies induced for each main network.

types of trains, or otherwise wish to be more specific and understand how particular

kinds of wagons are influencing the output of the neural network. We hypothesize that

it is possible to induce different ontologies, at different levels of abstraction, which are

faithful to a neural network’s classification process. This should be possible through

the selection of different set of concepts of interest, at the desired level of abstraction,

for inducing each ontology. To investigate the ability to use our proposed method for

inducing ontologies at different levels of abstraction, we formulated two sets of concepts.

One, is a set of train-level concepts, i.e., concepts at a higher level of abstraction which

are related to different types of trains, and contains the concepts: EmptyTrain, LongFreight-
Train, MixedTrain, PassengerTrain, RuralTrain, WarTrain. The other, is a set of wagon-level

concepts, i.e., concepts at a lower-level of abstraction which are related to the types of

wagons a train can possess, and contains the concepts: ≥ 3 has.Wagon, ∃has.EmptyWagon,

∃has.FreightWagon, ∃has.LongWagon, ∃has.(LongWagon⊓PassengerCar), ∃has.ReinforcedCar,
≥ 2 has.FreightWagon, ≥ 2 has.LongWagon, ≥ 2 has.PassengerCar, ∃has.PassengerCar.

The application of our method to the three main networks - MA, MB, and MC - using

the train-level concepts, resulted in the ontologies:

TypeA ≡ EmptyTrain⊔WarTrain

TypeB ≡ LongFreightTrain⊔ PassengerTrain

TypeC ≡MixedTrain⊔RuralTrain

While with the wagon-level concepts we obtained the following ontologies:

TypeA ≡ (∃has.PassengerCar⊔¬∃has.FreightWagon)

⊓ (∃has.ReinforcedCar⊔¬∃has.PassengerCar)

TypeB ≡ ∃has.(LongWagon⊓ PassengerCar)

⊔ (≥ 3 has.Wagon ⊓ ≥ 2 has.FreightWagon)

TypeC ≡ ∃has.EmptyWagon⊓ (¬∃has.LongWagon

⊔ (≥ 3 has.Wagon⊓∃has.PassengerCar))

Comparing the induced ontologies with the dataset’s ontology, the induced definitions

for the train-level ontologies of TypeA, TypeB, and TypeC are all logically equivalent to

the ones in the dataset’s ontology. Turning to the wagon-level induced ontologies, we can

33

CHAPTER 5. INDUCING ONTOLOGIES FROM NEURAL NETWORKS

FMain FXTRAINS

Train-level
MA 99.76± 0.19% 100.00± 0.0%
MB 98.82± 0.39% 100.00± 0.0%
MC 99.46± 0.20% 100.00± 0.0%

Wagon-level
MA 94.55± 10.14% 94.44± 11.12%
MB 97.50± 0.52% 96.73± 1.18%
MC 98.16± 0.36% 99.02± 0.56%

Table 5.2: Fidelity scores for the ontologies induced using the train-level and wagon-level
concepts.

observe that the induced definition of TypeB is a subclass of the corresponding definition

in the dataset’s ontology, while neither the induced definitions of TypeA and TypeC are

subclasses or superclasses of their corresponding definitions in the dataset’s ontology.

However, when we turn to the fidelity scores for both groups of induced ontologies,

shown in Table 5.2, we can observe that the train-level ontologies achieve, on average,

a slightly higher value (99.35%) than the wagon-level ones (96.74%), but they are all

high, showing that our method is able to generate high-quality ontologies at different

level of abstraction. The slight difference in fidelity between the results achieved by

the train-level and wagon-level induced ontologies can be attributed to the difference in

accuracy of the mapping networks – 97.43% on average for the train-level concepts and

96.07% for the wagon-level ones. Since we rely on the mapping networks for identifying

these concepts, this difference in accuracy, albeit small, means more samples are wrongly

classified when using the wagon-level concepts that when using the train-level concepts.

This effect is amplified by the fact that the wagon-level ontologies use more concepts than

the train-level ontologies.

5.5 Insufficient Concepts

So far, we have seen that our method can be used to induce human-understandable ontolo-

gies for that represent the classification process of a neural network. Also, we have seen

that we can induce faithful ontologies at different levels of abstraction, by selecting con-

cepts of interest that capture the desired level of abstraction. In this section, we turn our

attention to the case where the concepts of interest selected for inducing the ontologies

are somehow insufficient or inappropriate for describing the neural network’s classifica-

tion process. The main reason for exploring this possibility is tied with the application of

our method in a real-world scenario, since it may occur that we are unable to determine a

set of concepts that is adequate, or sufficient, to describe a neural network’s classification

process. We expect the fidelity of the ontologies induced using our method to reflect the

adequacy of the chosen concepts of interest (C). So, if the chosen concepts are inadequate

to describe the classification process of a given neural network, the fidelity score - FMain
- of an ontology induced using those concepts should be diminished. If this were not to

34

5.6. ONTOLOGY INDUCTION’S COST

FMain FXTRAINS
MA 67.75± 5.01% 67.79± 4.87%
MB 74.90± 3.46% 73.56± 3.51%
MC 75.14± 3.14% 74.45± 3.40%

Table 5.3: Average fidelity scores of the ontologies induced using 20 sets of randomly
selected concepts.

happen, it would mean that our method could be picking up on spurious correlations

between the inadequate concepts, to describe the neural network’s classification process.

To test this, we randomly sampled 20 sets of 5 concepts among all the concepts defined

in the XTRAINS ontology, and for each set of concepts, we applied our method to induce

ontologies for the three main networks models - MA, MB, and MC. The average fidelity

scores of the induced ontologies are shown in Table 5.3. For the three main networks,

both fidelity scores, FMain and FXTRAINS , are considerably lower that the ones obtained in

Section 5.3 and Section 5.4. These results back our hypothesis that the inadequacy of the

selected concepts is reflected in the quality decrease oh the resulting ontologies. As an

example of this is the ontologies induced when using the set of concepts: LongFreightTrain,

∃has.LongWagon, ∃has.PassengerCar, ≥ 3 has.Wagon, ≥ 2 has.PassengerCar. For these set of

concepts, were induced the following ontologies:

TypeA ≡ ⊤

TypeB ≡≥ 3 has.Wagon⊔ LongFreightTrain

TypeC ≡ (≥ 3 has.Wagon⊓∃has.PassengerCar)

⊔ (¬(≥ 2 has.PassengerCar)⊓¬∃has.LongWagon)

A logical comparison of these theories with the dataset’s ontology shows that the defi-

nition of TypeA in the dataset’s ontology is a subclass of the induced definition of TypeA,

although this is hardly interesting since that would be the case for any concept. The defi-

nitions of TypeB and TypeC are not directly comparable with their respective definitions

in the dataset’s ontology, given that they are neither their subclasses nor superclasses.

The poor quality of these ontologies is reflected in their fidelity scores, shown in Table 5.4.

The high fidelity of the ontology obtained for MB can be explained by the presence of

concepts ≥ 3 has.Wagon and LongFreightTrain, which, based on the experiments of Sections

5.3 and 5.4, are adequate to describe the classification process of MB.

5.6 Ontology Induction’s Cost

The experiments presented so far provide evidence that our method is able to perform

properly in multiple scenarios, as long as the extracted concepts are sufficient to describe

35

CHAPTER 5. INDUCING ONTOLOGIES FROM NEURAL NETWORKS

FMain FXTRAINS
MA 50.16± 0.26% 50.00± 0.00%
MB 92.53± 2.75% 92.70± 1.43%
MC 76.78± 1.99% 76.99± 0.94%

Table 5.4: Fidelity scores of the ontologies induced using the set of concepts: LongFreight-
Train, ∃has.LongWagon, ∃has.PassengerCar, ≥ 3 has.Wagon, ≥ 2 has.PassengerCar

a neural network’s classification process. However, in order to verify the method’s feasi-

bility, its cost needs to be assessed.

The method requires the training of multiple mapping networks, and a set of samples

to induce the theory. The mapping networks’ development adds little computational

overhead, given their simple architectures, but requires data labeled with respect to the

concepts to be extracted (C). However, this data can be repurposed to induce the ontology,

by relabeling it according to the mapping networks’ classifications.

Hence, if the quality of our resulting ontologies would mostly depend on the accuracy

of the mapping networks, and assuming the availability of enough unlabeled data, then

the main cost of applying our method would be in labeleling the data required to train

the mapping networks. Consequently, since mapping networks are known to require few

labeled data to train, as shown in [46], the cost of our method would be relatively low,

depending mostly on the amount of concepts to be extracted (C).

To test whether the quality of the resulting ontologies mostly depends on the accuracy

of the mapping networks, for each of the three main networks models - MA, MB, and

MC- we induced ontologies using the 11 concepts selected in Section 5.3, while varying

the amount of data used for their training. The mapping networks were trained using

50, 100, 200, 400, 600, 800, and 1200 samples. The amount of data used to induce the

ontologies remained constant at 3000 samples. A Pearson’s correlation test on fidelity

FMain and the average accuracy of the mapping networks used to build the background

knowledge (BK) for induncing the ontologies, with α = 90%, shows a significant strong

correlation (r = 0.8161, p < 0.0001), thus indicating that when the mapping networks’

accuracy increases, the quality of the induced ontologies increases as well. Since mapping

networks are able to achieve high accuracies even with few training data, and that this

data is typically the limiting factor, the cost of our method can be considered to be quite

moderate. Even when considering only 50 samples to both train the mapping networks

and induce the ontologies, the resulting ontologies were typically quite accurate, with an

average fidelity FMain of about 96%.

5.7 Importance of Mappings

The goal of our proposed method is to develop a human-understandable ontology repre-

senting the classification process of a given neural network model. Our method proposes

that, for inducing the ontologies we should rely on the results of mapping networks for

36

5.7. IMPORTANCE OF MAPPINGS

(a) (b) (c)

Figure 5.3: Sample images from the XTRAINS dataset with a signal added in each corner
of the image. A signal is said to be on if it has a symbol inside, and off if it has a stripped
background or it has no symbol inside.

On ≡ TopLeftOn⊔TopRightOn
On ≡ BottomLeftOn⊔BottomRightOn

Figure 5.4: Ontology describing the labelling of images acording to the presence of signals
on.

constructing the background knowledge (BK) that will serve as the syntactic and seman-

tic back bone for constructing the ontologies. However, since the mapping networks are

trained based on labeled data, one might wonder why they should bother with using map-

ping networks, instead of using the labels needed to train the mapping networks to define

the background knowledge for inducing the ontologies. We hypothesize that ontologies

induced directly from using labeled data, even if faithful to the data classification, can

misrepresent the classification process of the neural network model they were built to

represent. Conversely, we hypothesize that the ontologies induced through our method,

being reliant on the internal representations of the model obtained through the mapping

networks, will result in ontologies that more faithfully represent its internal process. To

test our hypotheses, we designed a classification problem where four traffic signals are

added to each image of the XTRAINS dataset, as shown in Figure 5.3. A traffic signal is

said to be on if it contains any symbol inside it, e.g., a question mark, and off if it does

not contain any symbol inside, or if it only contains diagonal stripes inside. The images

were then labeled regarding 5 different concepts: TopLeftOn, TopRightOn, BottomLeftOn,

BottomRightOn, with obvious meaning, and On whenever some traffic signal is on. The

dataset was designed such that whenever one of the top traffic signals is on, at least one

of the bottom traffic signals is on as well, and vice versa. In Figure 5.4 is an ontology

37

CHAPTER 5. INDUCING ONTOLOGIES FROM NEURAL NETWORKS

that describes the labelling of the dataset, using the concepts defined above. Consider a

neural network tasked with identifying whether some traffic signal is on in a given image.

Due to the way the dataset was designed, it is enough to look at either the top, or bottom

signals to be able to identify if any traffic signal is on. Thus, one would expect that neural

networks trained to perform this task would sometimes learn to identify the top signals,

sometimes learn to identify the bottom ones, and sometimes learn to identify them all. In

this setting, we trained 50 different main networks, which achieved a test accuracy higher

than 90%. When inducing a theory for each of the developed main networks, using their

outputs and the dataset labels (instead of the mapping network outputs), we obtained

the same ontology for all 50 main networks:

On ≡ BottomLeftOn⊔BottomRightOn

The fact that this ontology is not the same as the ontology describing the labelling of

the dataset, c.f. 5.4 is due to DL-Learner inducing minimal ontologies. Moreover, despite

the existence of two minimal ontologies that describe the dataset’s labels,

On ≡ BottomLeftOn⊔BottomRightOn

and,

On ≡ TopLeftOn⊔TopRightOn

DL-Learner always presents the same one because it is not non-deterministic, in the sense

that, the resulting ontology depends on the order in which the concepts were defined

in the background knowledge. Having obtained the same ontology for the 50 main

networks considered, strongly supports our first hypothesis, suggesting that due to the

high accuracy of the main networks’ outputs, when using the dataset labels, the induced

theories are instead describing how the dataset was labeled. Hence, having no relation to

the main network’s classification process.

However, when we apply our proposed method to the same 50 main networks, which

considers the outputs of the mapping networks to construct the background knowledge

for inducing the ontologies, we observe diverse induced ontologies. Our results reveal that

22% of the main networks learned to classify their outputs just by considering whether

the two top signals were on, resulting in the induced ontology:

On ≡ TopLeftOn⊔TopRightOn

while 42% were just considering the two bottom signals, resulting in the induced ontol-

ogy:

On ≡ BottomLeftOn⊔BottomRightOn

38

5.7. IMPORTANCE OF MAPPINGS

This indicates that different main networks learned to classify their inputs differently,

and that this was captured by the ontologies induced by relying on the outputs of the

mapping networks, which was not the case when only the dataset labels were used. The

remaining main networks learned to classify their inputs based on some other combina-

tion of signals, e.g., by observing all signals. Interestingly, our results hint that some of

these networks did not seem to have learned the concepts that we considered, but instead

had learned to classify their inputs based on some other spurious correlations present in

the dataset.

39

6

Inducing Ontologies In a Real-World Scenario

In this chapter, we explore the application of our method in a real-world scenario,
using a dataset with fotographic images. We begin by presenting the dataset used in
our experiments and the neural network considered. Following this, we provide the
experimental setting in which we applied our method. Finally, we present and discuss
the results obtained in our experiments.

6.1 Dataset

Our experiments are conducted in the setting of the German Traffic Sign Recognition
Benchmark Dataset (GTSRB) [47]. This dataset is composed of photographic images, as the

ones in Figure 6.1. These images are of real-world traffic signals and are labeled according

to the category of each signal:

• Category A – Danger signals, c.f. Figure 6.1(a);

• Category B – Priority signals, c.f. Figure 6.1(b);

• Category C – Prohibitory signals, c.f. Figure 6.1(c);

• Category D – Mandatory signals, c.f. Figure 6.1(d).

(a) Category A (b) Category B (c) Category C (d) Category D

Figure 6.1: Sample images from the GTSRB dataset.

40

6.1. DATASET

• Bar, BlackBar, WhiteBar,

• Border, BlackBorder, RedBorder, WhiteBorder,

• RedGround, WhiteGround, YellowGround,

• EndProhibition, StartProhibition,

• CircularShape, DiamondShape, TriangularShape, OctagonalShape,

• Symbol, BlackSymbol, WhiteSymbol, SymbolNoEntryGoods, SymbolOvertaking,
SymbolOvertakingGoods, SymbolStop, SymbolSpeed,

• Blue, Post.

Figure 6.2: Concepts associated with the visual carachteristics of the signals in the GTSRB
dataset, grouped according to their meaning.

In addition to the labels regarding the category of each signal, the dataset was labels

according to a set of concepts as described in [44]. For the purposes of our experiments,

we will only be considering the labelling according to concepts that are associated to the

visual characteristics of the traffic signals which meaning can be easily inferred from their

designation. These concepts are related to the following characteristics:

• Bar – a signal may have a white bar, a black bar, or have no bar.

• Border – a signal may have a white boarder, a black boarder, red boarder, or have

no boarder.

• Background – a signal may have a white, yellow, or red ground;

• Prohibition indication – a signal might indicate the start or the end of a prohibition.

• Shape – a signal might have a triangular, circular, rectangular, or octagonal shape.

• Symbol – a signal might have a black symbol, a white symbol, a symbol indicating

no entry goods, a symbol indicating overtaking, a symbol indicating overtaking

goods, a STOP symbol, a symbol referring to a speed limit (numerical digits), or no

symbol.

Notice that, despite the concepts associated with the features described above being

related to the traffic signals, in the context of our method, the individuals they refer to

are the images in the dataset. For example, the concept CircularShape, in this context,

should be interpreted as an image containing a traffic signal with a circular shape. Since

each image contains only one signal, we can omit the full interpretation and assume that

these concepts are associated to the signal directly. In addition to these concepts that can

be directly associated with the traffic signals, we also consider two more concepts that

are associated to the image: the presence of the color blue and the presence of a pole.

Both these concepts should not be relevant to the task of a neural network classifying the

signals according to their category. Thus, if they appear in an induced ontology, we can

41

CHAPTER 6. INDUCING ONTOLOGIES IN A REAL-WORLD SCENARIO

investigate whether our method is not using the most appropriate concepts, or the neural

network has some biases in its classification process. The full list of concepts considered

can be seen in Figure 6.2.

6.2 Main Network

The main network used in the experiment of this chapter, which we denote by MGTSRB,

is the same used in [44] and was designed based on the popular MobileNetV2 architecture.

The main network is composed of an input layer receiving 128× 128 images with 3 color

channels (RGB). This layer is followed by a convolutional layer, 17 residual bottleneck

layers [39], an average pooling layer, and another convolutional layer. This network was

pretrained using the ImageNet dataset [38]. For adapting the network to the GTSRB

dataset, its output layer was replaced by a fully connected layer with 4 neurons, using

the softmax activation functions, and the network was retrained to classify the images of

the GTSRB dataset as belonging to one of the 4 category of signals. The retraining of the

network was done using early stopping with a patience of 30, the Adam [21] optimizer

with a learning rate of 0.0001, and using the categorical crossentropy loss function. The

resulting neural network is reached a testing accuracy of 99,9%.

6.3 Experimental Setting

In the experiments explored in this chapter, we choose Description Logics as the language

for conveying the induced ontologies, as we did in the experiments explored in Chapter

5. For all the concepts described in Section 6.1, we developed mapping networks with

2 different architectures. One of these is the same used in the experiments of Chapter

5, composed of an input layer receiving the main network’s activations and an output

layer composed of a single neuron using the sigmoid activation function. The other,

is composed of an input layer receiving the main network’s activations, followed by a

fully connected layer of 10 neurons, and another fully connected layer of 5 neurons. The

neurons in both fully connected layers are using the RELU activation function. The output

layer is composed of a single neuron using the sigmoid activation function. Both types of

mapping networks receive as input the main network’s activations from the neurons

of the 17 residual bottleneck layers. The mapping networks were trained using the

optimization algorithm Adam [21] with a learning rate of 0.001, the binary crossentropy

loss function, and early stopping with a patience of 20. Each mapping network was

trained using a balanced set of 350 samples and tested using a balanced set of 100 samples.

For each extracted concept, we consider the mapping network which achieved a higher

testing accuracy, between the two different architectures considered. Among these, we

use a testing accuracy threshold α of 90% to select which mapping networks should be

considered when building the background knowledge.

42

6.4. INDUCING THE ONTOLOGY

Since the main network considered in the experiments presented in the chapter,

MGTSRB, is trained to classify an image as showing a signal as being one of 4 categories,

the ontologies induced for describing the network’s classification process should contain

4 axioms. Each axiom is the description of the concept associated with a category of sig-

nals, using the concepts extracted by the mapping networks. Hence, we use DL-Learner

framework [25] for learning the description of each signal category. DL-Learner is con-

figured with the same configurations as described in Section 5.2, with the exception of

the maximum execution time – it is configured to solve a positive-negative learning prob-

lem using closed world reasoning with a maximum execution time of 120 seconds. Each

axiom of the ontology describing a category of signals is induced using a balanced set of

1000 examples and is tested using a balanced set of 500 examples. Considering that each

axiom of the ontology is induced separately, it is sensible to perform an axiom-by-axiom

analysis of the induced ontology, instead of just considering its overall quality. So, to

quantitatively evaluate the quality of our induced ontologies we use the fidelity measure

FMain, similar to the one used in the experiments explored in Chapter 5, on an axiom-by-

axiom basis. Thus, FMain computes the ratio of samples where the classifications of the

main network for a given signal category coincide with those obtained from the corre-

sponding axiom of the ontology, together with the knowledge obtained from the outputs

of the mapping networks.

Each experiment is run 20 times, using different balanced sets of samples for training

and testing purposes. The induced ontologies that we present are the mode of the 20

runs, while the discussed fidelity scores correspond to the average of the fidelity scores

obtained in the 20 runs.

6.4 Inducing the Ontology

In this section, we test if our method can be used in a setting as close as close as possible

to a real-world scenario, for inducing an ontology that describes a neural network’s clas-

sification process. For this, we apply our method to the main network MGTSRB, using the

concepts showed in Figure 6.2 as the concepts of interest. Using the mapping networks

for extracting these concepts, we construct the ontology by inducing a description for

each concept associated with the main network’s outputs: Danger, Priority, Prohibitory,

Mandatory. The resulting ontology can be seen below:

Danger ≡ Boarder⊓ Symbol⊓TriangularShape⊓¬StartProhibition

Priority ≡ SymbolStop⊔ ((WhiteBoarder⊔¬CircularShape)⊓ Symbol)

Prohibitory ≡ CircularShape⊓ (StartProhibition⊔¬WhiteSymbol)

Mandatory ≡ CircularShape⊓WhiteSymbol⊓¬SymboStop

43

CHAPTER 6. INDUCING ONTOLOGIES IN A REAL-WORLD SCENARIO

Table 6.1: Fidelity scores of the axioms contained in the ontology describing the classifi-
cation of traffic signals.

FMain
Danger 99.63± 0.42%
Priority 97.94± 0.64%

Prohibitory 99.27± 0.50%
Mandatory 98.38± 0.60%

The axiom describing danger signals states that a sample is classified as a danger

signal if the signal has a boarder, contain a symbol, has triangular shape, and is not

indicating the start of a prohibition. The axiom describing priority signals states that a

sample is classified as a priority signal if the signal has the symbol STOP, or, if it has

either a white boarder or does not have a circular shape and it contains some symbol. The

axiom describing prohibitory signals states that a sample is classified as a prohibitory

signal if the signal has a circular shape, or if it is either a signal indicating the start of

a prohibition or if it does not have a white symbol. The axiom describing mandatory

signals states that a sample is classified as a mandatory signal if the signal has a circular

shape, has a white symbol, and does not have the symbol STOP.

When observing the induced ontology, we see that it only contains 8 concepts from

the 26 considered for inducing the ontology. Among the concepts that are not contained

in the induced ontology, we point out concepts such as DiamondShape and SymbolSpeed,

that following our intuition, should be relevant for describing priority and prohibitory

signals, respectively. However, we can still draw similarities between the description of

the different categories of signals and our intuition on how they should be described, e.g.,

danger signals must have a triangular shape, having a STOP symbol is a defining charac-

teristic of some priority signals, prohibitory signals have a circular shape, and mandatory

signals have a circular shape and a white symbol. Moreover, we should keep in mind

that our goal is not for the ontology to agree with our intuitions, but instead, it should

be a faithful description of the main network’s classification process. The ontologies

induced showed an overall fidelity FMain of around 98.8%. In Table 6.1, we show the

axiom-by-axiom fidelities obtained by the induced ontologies. The slight difference in the

fidelity scores obtained for the axioms describing each category of signals, could be due

to the difference in the number of signals that are exceptions to the general description

of a category of signals, e.g., most danger signals could be unequivocally described as

having a triangular shape and a symbol inside. Nevertheless, this difference is small and

all the induced axioms show very high fidelity scores. This provides strong evidence that,

although the ontology does not describes the signals exactly according to our intuitions, it

is a faithful and understandable description of the main network’s classification process.

44

7

Conclusion

In this chapter, we present the main conclusions reached in this dissertations, followed
by the presentation of possible avenues for future work.

In recent years, neural networks have grown in popularity, mostly due to their per-

formance and versatility for performing a large variety of tasks. This has led neural

network-based methods to become an almost ubiquitous solution in many domains, and

among them, domains where they are required to have a certain degree of autonomy and

responsibility. The application of neural networks in these critical domains has made

evident the need for explanations for the results provided by these systems, whether for

increasing trust and allow users to act upon these results, or to help understand when

and why these results are wrong. The problem of obtaining explanations for the results

of a neural network is tied with the sub-symbolic nature of their internal representations.

Neural networks are typically considered black boxes, since the size and sub-symbolic

nature of their internal representations makes the process of trying to reason upon these

representations almost impossible. Hence, it is not viable to directly use the internal rep-

resentations of a neural network for explaining its outputs. A recent work [46], proposes

obtaining justifications for the outputs of a neural network, grounded in the network’s

internal representations, by leveraging an ontology as the background knowledge for

producing the justifications. This is accomplished by using small neural networks, called

mapping networks, to establish mappings between the activations of the network which

outputs are to be explained – the main network – and a set of concepts from the ontol-

ogy. When an input is fed to the main network, the observations made by the mapping

networks regarding the concepts that were identified for that input are used together

with the ontology for computing the justifications. Although promising, this work raises

a question regarding the unavailability of an ontology to be used as the background

for computing the justifications. Moreover, even if an ontology is available there is no

guarantee that it properly reflects the internal processes of the neural network.

In this dissertation, we address this issue by developing a method that leverages the

knowledge obtained using the mapping networks, for inducing ontologies from neural

45

CHAPTER 7. CONCLUSION

networks. Hence, we expect that the induced ontologies are grounded in the neural net-

works’ internal representations, and that they provide a faithful human-understandable

description of the networks’ internal classification process. We divide our method in 3

main steps:

1. Choosing a language for representing the ontology and the set of concepts of interest

that will serve as the building blocks of the ontology. The language should be

expressive enough for defining the concepts and relations necessary for describing

the classification process of the neural network. The concepts of interest should

possess meaning in the domain where the neural network operates and be enough

to capture the task being performed by the network;

2. Developing and training mapping networks for extracting the concepts of interest

from the main network’s activations, so that, when an input is fed to the main

network we know both its classification and which concepts were identified when

classifying the input, according to the mapping network’s observations;

3. Using an Inductive Logic Programming framework for inducing a description for

each output class of the main network, based on a set of examples. These examples

refer to samples being fed to the main network and are divided into a set of positive

and and a set of negative examples according to main network’s classification. The

background knowledge for inducing the description is given by the observations

made by the mapping networks, regarding the identification of concepts of interest

when the main network was classifying each sample.

In this dissertation, we started by exploring the application of the proposed method

in a controlled setting, using a dataset of synthetic images with an accompanying ontol-

ogy describing how the dataset was labeled. From the experiments conducted in this

setting, we conclude that it is possible to use our method for inducing ontologies that are

understandable and faithful to a neural network’s classifications. Also, we showed that

it is possible to induce faithful ontologies at different levels of abstraction, by selecting

the appropriate concepts of interest to induce the ontology. Additionally, we explored

the case where the chosen concepts of interest are not adequate or enough for capturing

a neural network’s classification process, and we conclude that the inadequacy of the

chosen concepts is reflected in the fidelity of the induced ontologies. Furthermore, we

investigated the feasibility of our method and conclude that in this setting, the main cost

is bound with the development of the mapping networks, and since they do not require

much data to develop, the cost of our method should be relatively low. In addition to this,

we investigated the importance of using the mapping networks and their observations

for the inducing the ontologies. We induced ontologies using both the observations of

the mapping networks and dataset labels, and we conclude that when using the dataset

46

7.1. FUTURE WORK

labels the induced ontologies are independent of the main network’s classification pro-

cess. Conversely, we conclude that the ontologies induced using the mapping network’s

observations reflect the internal mechanisms of the neural networks.

We further tested our proposed method by applying it in a setting as close as possible

to a real-world application, using a dataset of photographic images and a neural network

based on a popular architecture. We conducted experiments in this setting and conclude

that are reasonable, understandable, and faithful to the neural network’s classification

process.

7.1 Future Work

A possible avenue for future work concerns the main limitation of the method we propose,

the definition of a set of concepts of interest for inducing the ontologies. As of now, we

assume these concepts to be given by domain experts, and despite this being feasible in

some domains, in others it can be a complicated task. A possibility to address this is to

determin a set of relevant concepts for a neural network’s classification task, by looking

at its activations and using unsupervised learning methods to find patterns that could

be correlated with concepts present in its inputs. An example of a method which takes

a similar approach for identifying relavant concepts from neural networks performing

image classification is ACE [9].

Another aspect that is worth exploring is related with the choice of which mapping

networks to consider when inducing an ontology, i.e., how should one determine if a map-

ping network is indeed identifying the correct concept. In the experiments we present,

we addressed this by establishing a threshold on the testing accuracy of the mapping

networks (90%). However, this might not always be feasible. Since the accuracy of the

mapping networks could be influenced by other variables, e.g., the number of available

training examples, there might be domains where establishing a threshold could lead to

the omission of mapping networks, and in turn concepts of interest, that could be useful

for inducing the ontology. A possible approach to deal with this, could be to consider the

testing accuracy of the mapping networks as a degree of belief and attempt to induce fuzzy

ontologies with their observations.

In this dissertation, we apply our method to neural networks with testing accuracies

close to 99%. For future work it would be interesting to explore the application of our

method to a neural network with greater uncertainty, as it could expose the deficiencies

in its classification process. Also, it would be interesting to apply our method to a neural

network tasked to output a probability distribution of an example belonging to a set of

classes and explore if it is possible to induce a probabilistic ontology that is faithful to

the neural network’s outputs.

47

Bibliography

[1] M. G. Augasta and T. Kathirvalavakumar. “Reverse Engineering the Neural Net-

works for Rule Extraction in Classification Problems”. In: Neural Process. Lett. 35.2

(2012), pp. 131–150. doi: 10.1007/s11063-011-9207-8. url: https://doi.org/10

.1007/s11063-011-9207-8 (cit. on p. 15).

[2] S. Bach et al. “On pixel-wise explanations for non-linear classifier decisions by

layer-wise relevance propagation”. In: PloS one 10.7 (2015), e0130140 (cit. on

p. 14).

[3] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly Learn-

ing to Align and Translate”. In: 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Y. Bengio and Y. LeCun. 2015. url: http://arxiv.org/abs/1409.0473

(cit. on p. 1).

[4] R. J. Brachman and H. J. Levesque. “The Tractability of Subsumption in Frame-

Based Description Languages”. In: Proceedings of the National Conference on Artifi-
cial Intelligence. Austin, TX, USA, August 6-10, 1984. Ed. by R. J. Brachman. AAAI

Press, 1984, pp. 34–37. url: http://www.aaai.org/Library/AAAI/1984/aaai84-0

36.php (cit. on p. 9).

[5] T. B. Brown et al. “Language Models are Few-Shot Learners”. In: CoRR abs/2005.14165

(2020). arXiv: 2005.14165. url: https://arxiv.org/abs/2005.14165 (cit. on p. 2).

[6] A. Cropper et al. “Inductive logic programming at 30”. In: Mach. Learn. 111.1

(2022), pp. 147–172. doi: 10.1007/s10994-021-06089-1. url: https://doi.org/1

0.1007/s10994-021-06089-1 (cit. on pp. 11, 25).

[7] J. Ferreira et al. “Looking Inside the Black-Box: Logic-based Explanations for

Neural Networks”. In: Proceedings of the 19th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel. July 31 - August
5, 2022. Ed. by G. Kern-Isberner, G. Lakemeyer, and T. Meyer. 2022. url: https:

//proceedings.kr.org/2022/45/ (cit. on p. 4).

48

https://doi.org/10.1007/s11063-011-9207-8
https://doi.org/10.1007/s11063-011-9207-8
https://doi.org/10.1007/s11063-011-9207-8
http://arxiv.org/abs/1409.0473
http://www.aaai.org/Library/AAAI/1984/aaai84-036.php
http://www.aaai.org/Library/AAAI/1984/aaai84-036.php
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://proceedings.kr.org/2022/45/
https://proceedings.kr.org/2022/45/

BIBLIOGRAPHY

[8] Y. Fu et al. “CompFeat: Comprehensive Feature Aggregation for Video Instance

Segmentation”. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 1361–1369.

url: https://ojs.aaai.org/index.php/AAAI/article/view/16225 (cit. on p. 1).

[9] A. Ghorbani et al. “Towards Automatic Concept-based Explanations”. In: Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada. Ed. by H. M. Wallach et al. 2019, pp. 9273–9282. url: https:

//proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9

a-Abstract.html (cit. on p. 47).

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.

org. MIT Press, 2016 (cit. on p. 9).

[11] A. Graves, A. Mohamed, and G. E. Hinton. “Speech Recognition with Deep Recur-

rent Neural Networks”. In: CoRR abs/1303.5778 (2013). arXiv: 1303.5778 (cit. on

p. 1).

[12] R. Guidotti et al. “A Survey of Methods for Explaining Black Box Models”. In:

ACM Comput. Surv. 51.5 (2019), 93:1–93:42. doi: 10.1145/3236009. url: https:

//doi.org/10.1145/3236009 (cit. on p. 2).

[13] T. Hailesilassie. “Rule Extraction Algorithm for Deep Neural Networks: A Review”.

In: CoRR abs/1610.05267 (2016). arXiv: 1610.05267. url: http://arxiv.org/abs/

1610.05267 (cit. on p. 15).

[14] J. Hartigan. Clustering Algorithms. Out-of-print Books on demand. Wiley, 1975.

isbn: 9780471356455. url: https://books.google.pt/books?id=cDnvAAAAMAAJ

(cit. on p. 17).

[15] Y. Hua and B. Hein. “Concept Learning in AutomationML with Formal Semantics

and Inductive Logic Programming”. In: 14th IEEE International Conference on
Automation Science and Engineering, CASE 2018, Munich, Germany, August 20-24,
2018. IEEE, 2018, pp. 1542–1547. doi: 10 . 1109 / COASE . 2018 . 8560541. url:

https://doi.org/10.1109/COASE.2018.8560541 (cit. on p. 11).

[16] H. H. Institute. Explaining Artificial Intelligence. url: https://lrpserver.hhi.

fraunhofer.de/image-classification (cit. on p. 13).

[17] M. Ivanovs, R. Kadikis, and K. Ozols. “Perturbation-based methods for explaining

deep neural networks: A survey”. In: Pattern Recognit. Lett. 150 (2021), pp. 228–

234. doi: 10.1016/j.patrec.2021.06.030. url: https://doi.org/10.1016

/j.patrec.2021.06.030 (cit. on p. 14).

49

https://ojs.aaai.org/index.php/AAAI/article/view/16225
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1303.5778
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://arxiv.org/abs/1610.05267
http://arxiv.org/abs/1610.05267
http://arxiv.org/abs/1610.05267
https://books.google.pt/books?id=cDnvAAAAMAAJ
https://doi.org/10.1109/COASE.2018.8560541
https://doi.org/10.1109/COASE.2018.8560541
https://lrpserver.hhi.fraunhofer.de/image-classification
https://lrpserver.hhi.fraunhofer.de/image-classification
https://doi.org/10.1016/j.patrec.2021.06.030
https://doi.org/10.1016/j.patrec.2021.06.030
https://doi.org/10.1016/j.patrec.2021.06.030

BIBLIOGRAPHY

[18] N. Kanagaraj et al. “Deep learning using computer vision in self driving cars for

lane and traffic sign detection”. In: Int. J. Syst. Assur. Eng. Manag. 12.6 (2021),

pp. 1011–1025. doi: 10.1007/s13198-021-01127-6. url: https://doi.org/10.10

07/s13198-021-01127-6 (cit. on p. 1).

[19] A. Karpathy et al. “Large-Scale Video Classification with Convolutional Neural

Networks”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 2014,

pp. 1725–1732. doi: 10.1109/CVPR.2014.223. url: https://doi.org/10.1109

/CVPR.2014.223 (cit. on p. 1).

[20] B. Kim et al. “Interpretability Beyond Feature Attribution: Quantitative Testing

with Concept Activation Vectors (TCAV)”. In: Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Ed. by J. G. Dy and A. Krause. Vol. 80. Proceedings of Machine

Learning Research. PMLR, 2018, pp. 2673–2682. url: http://proceedings.mlr.

press/v80/kim18d.html (cit. on p. 18).

[21] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.

2015. url: http://arxiv.org/abs/1412.6980 (cit. on pp. 8, 29, 30, 42).

[22] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny

images”. In: (2009) (cit. on p. 24).

[23] S. Lai et al. “Recurrent Convolutional Neural Networks for Text Classification”. In:

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. Ed. by B. Bonet and S. Koenig. AAAI Press, 2015,

pp. 2267–2273 (cit. on p. 1).

[24] M. Law, A. Russo, and K. Broda. “Inductive Learning of Answer Set Programs”.

In: Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal,
Madeira, Portugal, September 24-26, 2014. Proceedings. Ed. by E. Fermé and J. Leite.

Vol. 8761. Lecture Notes in Computer Science. Springer, 2014, pp. 311–325. doi:

10.1007/978-3-319-11558-0_22. url: https://doi.org/10.1007/978-3-319-11

558-0_22 (cit. on p. 30).

[25] J. Lehmann. “DL-Learner: Learning Concepts in Description Logics”. In: J. Mach.
Learn. Res. 10 (2009), pp. 2639–2642. url: https://dl.acm.org/citation.cfm?

id=1755874 (cit. on pp. 30, 43).

[26] J. Lehmann et al. “Class expression learning for ontology engineering”. In: J.
Web Semant. 9.1 (2011), pp. 71–81. doi: 10.1016/j.websem.2011.01.001. url:

https://doi.org/10.1016/j.websem.2011.01.001 (cit. on p. 30).

50

https://doi.org/10.1007/s13198-021-01127-6
https://doi.org/10.1007/s13198-021-01127-6
https://doi.org/10.1007/s13198-021-01127-6
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/978-3-319-11558-0_22
https://dl.acm.org/citation.cfm?id=1755874
https://dl.acm.org/citation.cfm?id=1755874
https://doi.org/10.1016/j.websem.2011.01.001
https://doi.org/10.1016/j.websem.2011.01.001

BIBLIOGRAPHY

[27] X. Li et al. “An Experimental Study of Quantitative Evaluations on Saliency Meth-

ods”. In: KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, Singapore, August 14-18, 2021. Ed. by F. Zhu, B. C. Ooi,

and C. Miao. ACM, 2021, pp. 3200–3208. doi: 10.1145/3447548.3467148. url:

https://doi.org/10.1145/3447548.3467148 (cit. on p. 14).

[28] V. Lifschitz. “What Is Answer Set Programming?” In: Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008. Ed. by D. Fox and C. P. Gomes. AAAI Press, 2008, pp. 1594–1597.

url: http://www.aaai.org/Library/AAAI/2008/aaai08-270.php (cit. on p. 22).

[29] Y. Lin, T. Chen, and L. Yu. “Using Machine Learning to Assist Crime Prevention”.

In: 6th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2017,
Hamamatsu, Japan, July 9-13, 2017. IEEE Computer Society, 2017, pp. 1029–1030.

doi: 10.1109/IIAI-AAI.2017.46. url: https://doi.org/10.1109/IIAI-AAI.2017

.46 (cit. on p. 1).

[30] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/master/

template.pdf (cit. on p. ii).

[31] A. Mehbodniya et al. “Financial Fraud Detection in Healthcare Using Machine

Learning and Deep Learning Techniques”. In: Secur. Commun. Networks 2021

(2021), 9293877:1–9293877:8. doi: 10.1155/2021/9293877. url: https://doi.

org/10.1155/2021/9293877 (cit. on p. 1).

[32] W. Pieters. “Explanation and trust: what to tell the user in security and AI?.” In:

Ethics and Information Technology 13.1 (2011), pp. 53–64. issn: 1572-8439. doi:

10.1007/s10676-010-9253-3. url: https://doi.org/10.1007/s10676-010-9253-3

(cit. on p. 1).

[33] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. isbn:

1-55860-238-0 (cit. on p. 17).

[34] S. Rebuffi et al. “There and Back Again: Revisiting Backpropagation Saliency Meth-

ods”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation /

IEEE, 2020, pp. 8836–8845. doi: 10.1109/CVPR42600.2020.00886. url: https:

//openaccess.thecvf.com/content_CVPR_2020/html/Rebuffi_There_and\

_Back_Again_Revisiting_Backpropagation_Saliency_Methods_CVPR_2020

_paper.html (cit. on p. 14).

[35] S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks”. In: IEEE Trans. Pattern Anal. Mach. Intell. 39.6 (2017),

pp. 1137–1149. doi: 10.1109/TPAMI.2016.2577031. url: https://doi.org/10.11

09/TPAMI.2016.2577031 (cit. on p. 1).

51

https://doi.org/10.1145/3447548.3467148
https://doi.org/10.1145/3447548.3467148
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
https://doi.org/10.1109/IIAI-AAI.2017.46
https://doi.org/10.1109/IIAI-AAI.2017.46
https://doi.org/10.1109/IIAI-AAI.2017.46
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1155/2021/9293877
https://doi.org/10.1155/2021/9293877
https://doi.org/10.1155/2021/9293877
https://doi.org/10.1007/s10676-010-9253-3
https://doi.org/10.1007/s10676-010-9253-3
https://doi.org/10.1109/CVPR42600.2020.00886
https://openaccess.thecvf.com/content_CVPR_2020/html/Rebuffi_There_and_Back_Again_Revisiting_Backpropagation_Saliency_Methods_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rebuffi_There_and_Back_Again_Revisiting_Backpropagation_Saliency_Methods_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rebuffi_There_and_Back_Again_Revisiting_Backpropagation_Saliency_Methods_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rebuffi_There_and_Back_Again_Revisiting_Backpropagation_Saliency_Methods_CVPR_2020_paper.html
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031

BIBLIOGRAPHY

[36] M. A. Rezaei et al. “Deep Learning in Drug Design: Protein-Ligand Binding Affinity

Prediction”. In: IEEE ACM Trans. Comput. Biol. Bioinform. 19.1 (2022), pp. 407–

417. doi: 10.1109/TCBB.2020.3046945. url: https://doi.org/10.1109/TCBB.202

0.3046945 (cit. on p. 1).

[37] M. T. Ribeiro, S. Singh, and C. Guestrin. “"Why Should I Trust You?": Explaining

the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016. Ed. by B. Krishnapuram et al. ACM, 2016, pp. 1135–1144.

doi: 10.1145/2939672.2939778. url: https://doi.org/10.1145/2939672.2939778

(cit. on p. 14).

[38] O. Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:

International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi:

10.1007/s11263-015-0816-y (cit. on p. 42).

[39] M. Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In:

2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Com-

puter Society, 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474. url: http:

//openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2

_Inverted_Residuals_CVPR_2018_paper.html (cit. on p. 42).

[40] M. K. Sarker et al. “Explaining Trained Neural Networks with Semantic Web

Technologies: First Steps”. In: Proceedings of the Twelfth International Workshop
on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18,
2017. Ed. by T. R. Besold, A. S. d’Avila Garcez, and I. Noble. Vol. 2003. CEUR

Workshop Proceedings. CEUR-WS.org, 2017. url: http://ceur-ws.org/Vol-2003

/NeSy17_paper4.pdf (cit. on p. 16).

[41] M. Sato and H. Tsukimoto. “Rule extraction from neural networks via decision

tree induction”. In: IJCNN’01. International Joint Conference on Neural Networks.
Proceedings (Cat. No.01CH37222). Vol. 3. 2001, 1870–1875 vol.3. doi: 10.1109

/IJCNN.2001.938448 (cit. on p. 16).

[42] G. P. J. Schmitz, C. Aldrich, and F. S. Gouws. “ANN-DT: an algorithm for extraction

of decision trees from artificial neural networks”. In: IEEE Trans. Neural Networks
10.6 (1999), pp. 1392–1401. doi: 10.1109/72.809084. url: https://doi.org/10

.1109/72.809084 (cit. on p. 16).

[43] D. Silver et al. “Mastering the game of Go without human knowledge”. In: Nat.
550.7676 (2017), pp. 354–359. doi: 10.1038/nature24270. url: https://doi.org/

10.1038/nature24270 (cit. on p. 1).

[44] M. de Sousa Ribeiro. “Neural and Symbolic AI - mind the gap! Aligning Artificial

Neural Networks and Ontologies”. In: (2021). url: http://hdl.handle.net/1036

2/113651 (cit. on pp. 41, 42).

52

https://doi.org/10.1109/TCBB.2020.3046945
https://doi.org/10.1109/TCBB.2020.3046945
https://doi.org/10.1109/TCBB.2020.3046945
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2018.00474
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://ceur-ws.org/Vol-2003/NeSy17_paper4.pdf
http://ceur-ws.org/Vol-2003/NeSy17_paper4.pdf
https://doi.org/10.1109/IJCNN.2001.938448
https://doi.org/10.1109/IJCNN.2001.938448
https://doi.org/10.1109/72.809084
https://doi.org/10.1109/72.809084
https://doi.org/10.1109/72.809084
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://hdl.handle.net/10362/113651
http://hdl.handle.net/10362/113651

BIBLIOGRAPHY

[45] M. de Sousa Ribeiro, L. Krippahl, and J. Leite. “Explainable Abstract Trains Dataset”.

In: CoRR abs/2012.12115 (2020). arXiv: 2012.12115. url: https://arxiv.org/

abs/2012.12115 (cit. on p. 27).

[46] M. de Sousa Ribeiro and J. Leite. “Aligning Artificial Neural Networks and Ontolo-

gies towards Explainable AI”. In: Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021,

pp. 4932–4940. url: https://ojs.aaai.org/index.php/AAAI/article/view/1662

6 (cit. on pp. 2, 3, 19, 21, 31, 36, 45).

[47] J. Stallkamp et al. “Man vs. computer: Benchmarking machine learning algorithms

for traffic sign recognition”. In: Neural Networks 0 (2012), pp. –. issn: 0893-6080.

doi: 10.1016/j.neunet.2012.02.016. url: http://www.sciencedirect.com/

science/article/pii/S0893608012000457 (cit. on p. 40).

[48] F. Sultana, A. Sufian, and P. Dutta. “Advancements in Image Classification using

Convolutional Neural Network”. In: CoRR abs/1905.03288 (2019). arXiv: 1905.03

288 (cit. on p. 1).

[49] W. Sun, B. Zheng, and W. Qian. “Computer aided lung cancer diagnosis with deep

learning algorithms”. In: Medical Imaging 2016: Computer-Aided Diagnosis, San
Diego, California, United States, 27 February - 3 March 2016. Ed. by G. D. Tourassi

and S. G. A. III. Vol. 9785. SPIE Proceedings. SPIE, 2016, 97850Z. doi: 10.1117/1

2.2216307. url: https://doi.org/10.1117/12.2216307 (cit. on p. 1).

[50] M. Sundararajan, A. Taly, and Q. Yan. “Axiomatic Attribution for Deep Networks”.

In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017. Ed. by D. Precup and Y. W. Teh. Vol. 70.

Proceedings of Machine Learning Research. PMLR, 2017, pp. 3319–3328. url:

http://proceedings.mlr.press/v70/sundararajan17a.html (cit. on p. 14).

[51] The Description Logic Handbook: Theory, Implementation and Applications. 2nd ed.

Cambridge University Press, 2007. doi: 10.1017/CBO9780511711787 (cit. on pp. 11,

22).

[52] G. G. Towell and J. W. Shavlik. “Extracting Refined Rules from Knowledge-Based

Neural Networks”. In: Mach. Learn. 13 (1993), pp. 71–101. doi: 10.1007/BF00993

103. url: https://doi.org/10.1007/BF00993103 (cit. on p. 17).

[53] P. Tschandl. The HAM10000 dataset, a large collection of multi-source dermatoscopic
images of common pigmented skin lesions. Version V3. 2018. doi: 10.7910/DVN/DBW8

6T. url: https://doi.org/10.7910/DVN/DBW86T (cit. on p. 24).

[54] M. Wang and W. Deng. “Deep face recognition: A survey”. In: Neurocomputing
429 (2021), pp. 215–244. doi: 10.1016/j.neucom.2020.10.081. url: https:

//doi.org/10.1016/j.neucom.2020.10.081 (cit. on p. 1).

53

https://arxiv.org/abs/2012.12115
https://arxiv.org/abs/2012.12115
https://arxiv.org/abs/2012.12115
https://ojs.aaai.org/index.php/AAAI/article/view/16626
https://ojs.aaai.org/index.php/AAAI/article/view/16626
https://doi.org/10.1016/j.neunet.2012.02.016
http://www.sciencedirect.com/science/article/pii/S0893608012000457
http://www.sciencedirect.com/science/article/pii/S0893608012000457
https://arxiv.org/abs/1905.03288
https://arxiv.org/abs/1905.03288
https://doi.org/10.1117/12.2216307
https://doi.org/10.1117/12.2216307
https://doi.org/10.1117/12.2216307
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1007/BF00993103
https://doi.org/10.1007/BF00993103
https://doi.org/10.1007/BF00993103
https://doi.org/10.7910/DVN/DBW86T
https://doi.org/10.7910/DVN/DBW86T
https://doi.org/10.7910/DVN/DBW86T
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1016/j.neucom.2020.10.081

BIBLIOGRAPHY

[55] Z. Wang et al. “Interpreting Interpretations: Organizing Attribution Methods by

Criteria”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020. Computer

Vision Foundation / IEEE, 2020, pp. 48–55. doi: 10.1109/CVPRW50498.2020.0

0013. url: https://openaccess.thecvf.com/content_CVPRW_2020/html/w1

/Wang_Interpreting_Interpretations_Organizing_Attribution_Methods\

_by_Criteria_CVPRW_2020_paper.html (cit. on p. 14).

[56] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Net-

works”. In: Computer Vision - ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I. Ed. by D. J. Fleet et al.

Vol. 8689. Lecture Notes in Computer Science. Springer, 2014, pp. 818–833. doi:

10.1007/978-3-319-10590-1_53. url: https://doi.org/10.1007/978-3-319-10

590-1_53 (cit. on p. 14).

[57] J. R. Zilke, E. L. Mencía, and F. Janssen. “DeepRED - Rule Extraction from Deep

Neural Networks”. In: Discovery Science - 19th International Conference, DS 2016,
Bari, Italy, October 19-21, 2016, Proceedings. Ed. by T. Calders, M. Ceci, and D.

Malerba. Vol. 9956. Lecture Notes in Computer Science. 2016, pp. 457–473. doi:

10.1007/978-3-319-46307-0_29. url: https://doi.org/10.1007/978-3-319-46

307-0_29 (cit. on p. 17).

[58] M. Zimmer et al. “Differentiable Logic Machines”. In: CoRR abs/2102.11529

(2021). arXiv: 2102.11529. url: https://arxiv.org/abs/2102.11529 (cit. on

p. 30).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.4) [novathesis-manual].

54

https://doi.org/10.1109/CVPRW50498.2020.00013
https://doi.org/10.1109/CVPRW50498.2020.00013
https://openaccess.thecvf.com/content_CVPRW_2020/html/w1/Wang_Interpreting_Interpretations_Organizing_Attribution_Methods_by_Criteria_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w1/Wang_Interpreting_Interpretations_Organizing_Attribution_Methods_by_Criteria_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w1/Wang_Interpreting_Interpretations_Organizing_Attribution_Methods_by_Criteria_CVPRW_2020_paper.html
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29
https://arxiv.org/abs/2102.11529
https://arxiv.org/abs/2102.11529
https://github.com/joaomlourenco/novathesis

Jo
ão

Fe
rr

ei
ra

EX
TR

A
C

TI
N

G
O

N
TO

LO
G

IE
S

FR
O

M
N

EU
RA

L
N

ET
W

O
RK

S
20

22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents

	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Statement and Main Contributions
	1.3 Document Structure

	2 Background
	2.1 Artificial Neural Networks
	2.2 Description Logics
	2.3 Inductive Logic Programming

	3 Related Work
	3.1 Saliency and attribution methods
	3.2 Proxy-based methods
	3.2.1 Rule Extraction Methods
	3.2.2 Pedagogical Rule Extraction Methods
	3.2.3 Decompositional Rule Extraction Methods
	3.2.4 Eclectic Rule Extraction Methods

	3.3 TCAV

	4 Ontology Extraction
	4.1 Formalizing Neural Networks
	4.2 Concept Extraction
	4.3 Inducing the Ontology
	4.4 Method Overview

	5 Inducing Ontologies from Neural Networks
	5.1 Dataset and Main Networks
	5.2 Experimental Setting
	5.3 Inducing a Main Network's Ontology
	5.4 Levels of Abstraction
	5.5 Insufficient Concepts
	5.6 Ontology Induction's Cost
	5.7 Importance of Mappings

	6 Inducing Ontologies In a Real-World Scenario
	6.1 Dataset
	6.2 Main Network
	6.3 Experimental Setting
	6.4 Inducing the Ontology

	7 Conclusion
	7.1 Future Work

	Bibliography
	Back Matter
	Back Cover
	Spine

