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� The wire-based directed energy
deposition process was monitored
using an in-situ acoustic sensor
installed near the electric arc.

� Onset of flaw formation, such as
porosity, variation in line width, and
spatter are not readily observable
from the raw acoustic sensor data.

� Wavelet integrated graph theory
approach is used to analyze the data
and extract a single feature, called the
Fiedler number.

� Using the Fiedler number to monitor
the process, previously undetected
flaws were captured with a false
alarm rate less than 2%.
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The goal of this work is to detect flaw formation in the wire-based directed energy deposition (W-DED)
process using in-situ sensor data. The W-DED studied in this work is analogous to metal inert gas electric
arc welding. The adoption of W-DED in industry is limited because the process is susceptible to stochastic
and environmental disturbances that cause instabilities in the electric arc, eventually leading to flaw for-
mation, such as porosity and suboptimal geometric integrity. Moreover, due to the large size of W-DED
parts, it is difficult to detect flaws post-process using non-destructive techniques, such as X-ray com-
puted tomography. Accordingly, the objective of this work is to detect flaw formation in W-DED parts
using data acquired from an acoustic (sound) sensor installed near the electric arc. To realize this objec-
tive, we develop and apply a novel wavelet integrated graph theory approach. The approach extracts a
single feature called graph Laplacian Fiedler number from the noise-contaminated acoustic sensor data,
which is subsequently tracked in a statistical control chart. Using this approach, the onset of various
types of flaws are detected with a false alarm rate less-than 2%. This work demonstrates the potential
of using advanced data analytics for in-situ monitoring of W-DED.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Objectives and Motivation: The need for inline, in-process
monitoring during wire-based directed energy deposition (W-DED)

The goal of this work is to detect flaw formation during the
wire-based directed energy deposition (W-DED) additive manufac-
turing process using data acquired from in-situ sensors. Realizing
this goal is the first step towards the implementation of closed-
loop process control in W-DED, thereby ensuring the functionality
and structural integrity of the manufactured parts.

Under the directed energy deposition (DED) family of additive
manufacturing processes, material is fed (sprayed or forced) into
the focal zone of a high energy source, where it is melted and fused
to a previously deposited layer [1]. The material can take the form
of powder (P-DED) or wire (W-DED). Likewise, the typical energy
sources to melt the material range from laser, electron beam, elec-
tric arc, and gas plasma [2]. The specific embodiment of W-DED
used in this work (Fig. 1), is the free-form analogue of conven-
tional, and well-known, metal inert/active gas (MIG/MAG) weld-
ing. The process is popularly known as wire arc additive
manufacturing (WAAM) – an acronym we use in this work to dis-
tinguish it from other forms of W-DED [3].

In WAAM an electric arc is maintained between the part and a
consumable wire of the material to be deposited. The energy from
the electric arc melts the wire feedstock, which is surrounded by a
shielding gas (e.g., argon or nitrogen). The shielding gas prevents
disruption of the arc, aids in the material transfer, and is also used
to protect the molten pool and its surroundings from oxidation.
The relative motion of the part and welding torch in three dimen-
sions produces a free-form geometry. Popular materials for the
process include non-ferrous metals, such as aluminum and tita-
nium, and ferrous alloys, such as mild steel and stainless steel (this
work) [4].

In comparison to powder-based DED (P-DED), WAAM has dis-
tinct cost and throughput advantages. For instance, the cost of mild
steel welding wire is less than $10/kg, compared to nearly $100/kg
of metal powder used in P-DED. Similarly, the volumetric deposi-
tion rate for WAAM is typically 15 times that of P-DED; the typical
volumetric deposition rate of WAAM is � 50 mm3�s�1 compared
to � 4 mm3�s�1 for P-DED [4–5]. Because of these advantages,
WAAM has emerged as the additive manufacturing process of
choice in low resource settings, and for the fabrication of large vol-
ume parts. For example, the WAAM process can be integrated with
one or more robots working together to produce parts, such as
wind turbines, excavators, and oil drilling equipment, within hours
as opposed to weeks it would require with P-DED [6]. The WAAM
process also finds unique application for rapid repair and refur-
bishment, and deposition of heterogeneous materials [7].

Currently, a major bottleneck in wider adoption of the WAAM
process is its tendency to create flaws, such as porosity and poor
Fig. 1. Schematic of the Wire Arc Additive Manufacturing (WAAM) process. A welding h
electric arc.
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geometric consistency (distortion) [8]. However, this impediment
is prevalent in all fusion-based processes, including P-DED [9].
There are mainly four reasons for flaw formation to occur in
WAAM, these are: (i) poor selection of processing parameters, (ii)
improper design (geometry) of the part; (iii) sub-standard materi-
als, and (iv) disruption of the arc due to machine faults and
stochastic disturbance from the environment, such as interference
from contaminants, noting that WAAM is typically used in low
resource environments.

To illustrate the foregoing challenges, shown in Fig. 2 is a
WAAM part (stainless steel 316L) produced in this work, with
accompanying X-ray computed tomography (XCT) slices of this
part. Fig. 2(a)-(c) are XCT slices of different layers of the part
depicting the presence of flaws. For example, porosity is a primary
flaw that is observed in Fig. 2(a). Likewise, in Fig. 2(b) a variation in
the width of a track is evident. The voids in Fig. 2(c) are correlated
to disruption of the arc due to presence of contaminants, as previ-
ously shown by Ramalho et al. [10].

Given the relatively large size and complex geometry of practi-
cal WAAM parts, post-process non-destructive testing (NDT) of
flaws with XCT is difficult, if not impossible. A typical 250 kV
XCT machine can only penetrate through 15 mm of stainless steel
material before the occurrence of measurement errors, such as
beam hardening [11]. This prevents a thorough non-destructive
evaluation of large WAAM components in practice. Hence, in-
process monitoring and detection of flaws in WAAM is an urgent
and critical requirement.

Considering the foregoing motivation, the objective of this work
is to detect flaw formation in WAAM using data acquired from an
in-situ acoustic sensor installed in close proximity to the electric
arc. To realize this objective, we developed a novel wavelet inte-
grated graph theory approach to filter, processes, and monitor
the process signatures. The approach has three steps discussed in
detail in Sec. 3, these are:

(1) Signal Filtering: The raw data acquired by the acoustic sen-
sors is filtered using wavelet analysis to remove background
process noise [12].

(2) Signal Processing (Analysis): The filtered sensor data is ana-
lyzed using a computationally lightweight and tractable
spectral graph theory approach [13]. Using graph theory sig-
nal analysis, we extract just one feature (signature) called
the graph Laplacian Fiedler number (k2) to capture the pro-
cess dynamics.

(3) Signal Monitoring (Tracking): The Fiedler number (k2) process
signature is tracked in an exponentially weighted moving
average (EWMA) control chart. An out-of-control point on
the chart indicates an impending process flaw. This quality
control chart approach is one of the most intuitive and
practitioner-friendly means to monitor and track industrial
processes [14].
ead deposits material via the use of a consumable electrode being melted with an



Fig. 2. Example of the three major flaws observed in this work: (a) porosity, (b)
deviation in geometry of an individual tracks (line width variation), (c) voids due to
contamination from the surrounding environment.
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The presented approach thus avoids extracting numerous sta-
tistical features, and using these features in complex machine
learning algorithm for process monitoring. Thus, the approach is
amenable for deployment on the shop-floor for real-time monitor-
ing of WAAM. While the approach detects the onset of arc instabil-
ity, and as a consequence, captures when and where an incipient
flaw might occur, a limitation of the approach is that it cannot
identify the specific type of flaw formed.
1.2. Prior work and novelty

As explained before, the WAAM process has its genesis in fusion
welding processes which employ an electrical arc as the heat
source. Typically, these processes are monitored and controlled
by tracking the electrical current and voltage, wire feed rate, torch
travel velocity, and shielding gas flow rate [15]. However such
machine-level process monitoring cannot detect faults that occur
at the part-level, such as surface contamination, that can ulti-
mately result in flaw formation [3]. Hence, in-situ part-level mon-
itoring is critical for quality assurance in WAAM.

Considering the challenges that WAAM presents to non-
destructive testing, several part-level in-process sensor-based
monitoring methods have been studied by researchers [16]. A
key concern is to devise quantitative, easy-to-implement, and intu-
itive approaches to detect flaw formation from the large volume of
noise contaminated sensor data. Visual sensing, using a CMOS
camera, has been applied to determine bead geometry [17], arc
length [18], and to determine wire deflection during the deposition
process [19]. In a different context, physics-based process model-
ing has been used for quality assurance in WAAM. For example,
Suryakumar et al. [20] developed a weld bead model to accurately
predict the bead geometry in place of in-situ sensing.

Thermal monitoring has successfully been used to track the
temperature between successive depositions using a two-
wavelength pyrometer [21], and measure the thermal gradients
of parts using an infrared camera [22]. Recently, optical emission
spectroscopy (OES) monitoring has been applied to WAAM. For
example, Zhang et al. [23] used OES to detect porosity in WAAM
3

parts. Likewise, Hauser et al. [24] used OES to detect oxidation of
aluminum WAAM parts.

When applied to laser-based additive manufacturing processes,
acoustic monitoring has been demonstrated successfully for flaw
detection via the use of acoustic emissions (AE) sensors. These
AE sensors measure the acoustic waveforms inside a solid material,
as opposed to acoustic sensors which measure the acoustic signal
in air. Analysis of AE has been used for the detection of porosity
and micro-cracks in laser powder bed fusion (LPBF) [25]. Deep
learning algorithms have also been applied to AE data to character-
ize part quality in LPBF [26] and for identification of process insta-
bilities such as balling [27]. In the WAAM process, Zhu et al. [28]
used an AE sensor with electrical current data to identify a correla-
tion between the droplet transfer mode and power fluctuations.

An emerging method forWAAMmonitoring is through the eval-
uation of the acoustic signatures. Pringle et al. [29] proposed a
multi-sensor monitoring system that includes an acoustic sensor
and presented measurable changes in the acoustic signal resulting
from changes in the wire feed and torch speed parameters. While
several papers have been published regarding acoustic monitoring
in conventional welding processes, their application to WAAM is
relatively sparse.

In the context of acoustic sensing in WAAM, Polajnar et al. [30]
showed that the quality of the weld transfer mode and electric arc
have a direct effect on the acoustic signatures during GMAW. Hor-
vat et al. [31] identified the mechanisms that generate acoustic sig-
nature of the electric arc in GMAW and correlated these to the
electric current. Tang et al. [32] used acoustic monitoring to iden-
tify the arc length in GTAW. Acoustic monitoring has been used
successfully for detecting major flaws in single bead depositions
[33], and identifying the penetration depth of the meltpool [34].
Representative work towards flaw detection in the WAAM process
and their limitations are further summarized in Table 1. These
other flaw detection works for the WAAM process have not quan-
tified their false positive and false negative rates, and are simple
visual correlations for detecting a WAAM phenomenon (arc length,
wire deflection, etc.). These prior works, also do not correlate the
signal to flaw formation or part quality, and most are limited to
single layer parts only.

Recently, Ramalho et al. [10] showed that the effect of surface
contaminations in WAAM can be identified based on the acoustic
signatures produced, however no other flaw detection was investi-
gated. The acoustic monitoring method proposed in this paper
leverages a novel wavelet filtering approach integrated with spec-
tral graph theory to analyze the acoustic data emitted during
WAAM. Thus avoiding the use of numerous statistical features
and complex machine learning for flaw detection. Instead, the pro-
posed process monitoring approach is based on extracting one
statistic (Fiedler number) from the sensor data and tracking this
number in a simple and practically intuitive control chart. Conse-
quently, this approach can be applied to the shop floor with mini-
mal changes.

The rest of the paper is organized as follows, the experimental
methodology, including the experimental setup is described in
Sec. 2. The wavelet-based graph theory approach is described in
Sec. 3. The results from applying the approach to the WAAM pro-
cess is demonstrated in Sec. 4. Conclusions and avenues for future
work are summarized in Sec. 5.
2. Experimental methodology

2.1. Experimental setup

In this work, thin wall parts (AISI 316L stainless steel) were pro-
duced with a feedstock welding wire diameter 1 mm. The samples



Table 1
Prior work concerning sensor monitoring in Wire Arc Additive Manufacturing.

Sensors Used Ref. Outcome Limitations

Current & Voltage [35] Used machine learning to
predict when arc is
starting, stopping,
nominal, or changing
direction

No flaw detected.
Only for a
single layer

[36] Detected large line width
changes

No porosity
detection

Acoustic Sensor [37] Connects major line width
changes to a change in the
acoustic signal

No prediction,
only correlation to
single track
quality

[33] Uses the kurtosis of the
acoustic signal to detect
large flaws

Single track only

[38] Measured arc length in
GTA-WAAM

No error detection

Acoustic Emission [39] Used AE signals from the
substrate to detect quality
of metal transfer

Errors not
quantified

Laser & CCD
Camera

[40] Measured the surface
roughness

Single layer only

CCD Camera [19] Used camera to detect
deflection of electrode
wire

No error detection

[17] Used camera to measure
and control line width in-
situ

Single layer only

[18] Measured length of arc to
determine if it is strong or
weak

No error detection

Spectrometer,
Camera, and
Structural
Acoustic Sensor

[41] Detects different signal
frequency depending on
material deposition

No error detection

Laser-Optical-
Ultrasonic-Dual
(LOUD)

[42] Measure residual stress,
large flaws, and
composition

Post process,
offline-sensing
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are � 120 mm long and consist of 11 layers (�14.5 mm
height � 4 mm thick). The processing conditions are reported in
Table 2. The WAAM setup, shown in Fig. 3, consists of a metal inert
gas welding torch (MIG, Kempi Pro MIG 3200) using Argon gas,
with a control unit (Kempi Pro MIG 501) integrated into a
custom-built CNC unit.

A Shure SM57 dynamic cardioid microphone, with a frequency
response of 40 to 15000 Hz, is attached to the welding torch and
translates along with the torch. Hence the microphone is at a con-
stant distance of 200 mm from the arc at all times. The angle of the
microphone relative to the substrate is set at 20�, and a data collec-
tion rate of 25.6 kHz. Data collection rate of 25.6 kHz was chosen as
it was the maximum frequency allowed by the microphone. This
combination of distance, angle, and frequency mitigates signal loss
resulting from sensor polarity, positioning and the frequency
response rate (40 Hz – 15 kHz). Non-destructive part characteriza-
tion is performed using X-ray computed tomography (XCT) on all
samples using a Nikon XTH 255 ST system at a voxel resolution
of 17 lm. This was the highest resolution possible given the size
and density of the sample. The data collected from the XCT is
extracted using the native Volume Graphics software.
Table 2
Process parameters settings used in the experiments.

Sample Contamination
Type

Travel speed Voltage

1 Chalk 300 mm/min
Bi-directional

20 V
2 Oil
3 Sand

4

Three distinct thin walls are studied in this work. Each thin wall
is deposited with a specific type of contaminant to promote arc
instabilities. To explain further, practical WAAM operations are
typically conducted without an enclosure, unlike in P-DED or LPBF.
As a result, contaminants are liable to infiltrate into the material
and disrupt the electric arc, thus causing arc instability. Our previ-
ous work, detailed in [10], demonstrated the ability to suppress
background noise from the system, such as flow of process gasses,
motor, and machine elements through a rigorous cause-effect anal-
ysis. As a consequence of this previous work, critical welding pro-
cess phenomena can be isolated, and used to detect the onset of
flaws.

In this work, contaminants are added to cause arc instabilities
in a controlled manner at specific locations. We introduce the pres-
ence of three types of contaminants (chalk, oil, and sand) that are
common in a shop floor environment to simulate disruption of the
arc and create flaws in a controlled manner. A type of contaminant
is placed at 40 mm intervals on layers 7 and 11 of a thin wall part
as shown in Fig. 4. The contaminant used for Sample 1 is chalk;
Sample 2 used oil; and Sample 3 used sand. Contaminants are
introduced in their respective locations by drilling a flat-bottom
hole of /2.5 mm � 1 mm. There is a ± 3 mm location error along
the length in placement of the contaminant due to the manual nat-
ure of the operation.

During the manual process of placing these contaminants the
time between layers (TBL) was slightly increased. The nominal
TBL for all layers, on all samples, was 2 min to allow for ample time
to cool the part and reduce the amount of residual stresses in the
sample. However, on layer 7 and 11 when the contaminants are
placed, the manual operation of placing the contaminants
increased the TBL to approximately 4–5 min. The original 2 min
TBL is sufficient to cool the sample to a near steady-state temper-
ature well below the material recrystallization temperature, there-
fore, the additional 2–3 min added to the TBL for layer 7 and 11
would have a negligible effect on the microstructure. Moreover,
this work is focused on arc instability, and its consequent effect
on flaw formation, as opposed to thermal history. In our future
work, we will endeavor to answer the effect of thermal history
on flaw formation.

2.2. Representative acoustic sensor data

The nature of arc instability generated via chalk contamination
in Sample 1 is shown in Fig. 5(a1). Due to its relatively low packing
density (910–960 kg�m�3 [43]), it is hypothesized that the chalk
powder is forced out of the cavity by the argon shielding gas
(0.7 m3�hour-1). The chalk disturbs the shielding gas and destabi-
lizes the arc. Consequently, the arc is nearly extinguished causing
intermittent deposition, resulting in significant line width varia-
tions as observed in Fig. 5(a3). Due to the disruption of the argon
shielding gas, the chalk contaminations are distinctly discernable
in the raw signal (S) in Fig. 5(a2). Apart from the line width varia-
tions noted in the XCT slice of the layer shown in Fig. 5(a3), there is
a pore at the end of the layer that is not readily discerned in the
raw acoustic signal.

Sample 2, Fig. 5(b), which has oil contamination introduced,
shows the most severe porosity and spatter formations due to
Feed Rate Layer Height Standoff Wire Diameter

4 m/min 1.3 mm 8 mm 1 mm



Fig. 3. Picture and schematic of the experimental set-up. A Shure SM57 acoustic sensor is attached to the welding torch maintaining a constant distance to the electric arc.

Fig. 4. Schematic diagram of the four contamination zone locations used in this work. Contamination is introduced on layer 7 and layer 11 at two locations 40 mm apart.
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the low boiling point of oil (�300 �C) [44]. As illustrated in Fig. 5
(b1) the oil evaporates instantly due to the meltpool temperature
of AISI 316L stainless steel (>1450 �C) greatly exceeding the boiling
point of oil. Apart from disturbing the shielding gas, this instanta-
neous boiling of the oil generates large pores and spatter observed
on the side of Sample 2, Fig. 5(b3), but not in the other samples.
The raw acoustic signal (S) for layer 11 of Sample 2 is depicted in
Fig. 5(b2). Despite the large pores observed in Sample 2, the causal
arc instability is not readily discerned in the raw signal due to
background process noise. Hence, more evolved analysis of the
acoustic signal, including the pragmatic filtering of background
noise, is required to detect arc instability and flaw formation.

Sand contamination in Sample 3, Fig. 5(c), did not generate
readily observable arc instabilities in the acoustic signal Fig. 5
(c2). This is due to a higher packing density of sand in comparison
to chalk, in excess of 1,300 kg�m�3 [45]. Due to its higher packing
density, less amount of sand is blown away by the shielding gas
compared to chalk. Hence, unlike chalk and oil contaminations,
the shielding gas is not disturbed, and the arc is not destabilized.
Since the cavity where sand is introduced is only 1 mm in diame-
ter, the electric arc can transition (jump over) the cavity without
disrupting the deposition of material as depicted Fig. 5(c1). There-
fore, no pore is generated, however, sand is left inside the part.
Accordingly, the corresponding acoustic signal (S), in Fig. 5(c2), is
devoid of visually prominent disruptions, and the XCT slice
depicted in Fig. 5(c3) has minimal flaws in comparison to Samples
1 and 2.

A major insight from this work is that flaws generated by an arc
instability on a previous layer have the potential to propagate and
generate a flaw on the current layer. This feedback effect is visual-
5

ized in Fig. 6. This results in some arc instabilities occurring one
layer above a flaw created in a previous layer. For example, if a pre-
ceding layer has significant porosity, a gap (void) will be encoun-
tered by the electric arc when it is directly above the pore in the
previous layer. Consequently, the arc can potentially be disturbed
causing variation in line width or porosity. In other words, an arc
instability initiated in one layer can create flaws in multiple
ascending layers.

Apart from material contamination, such arc instabilities can be
generated due to inconsistent power supply, flaws in previously
deposited layers, disruption of the shielding gas, motion errors,
among others. The foregoing arc instability-flaw generation feed-
back effect results in multifarious flaws, such as porosity, irregular
deposition, and spatter that propagate across multiple layers.
3. Signal processing using wavelet analysis & graph theory

The signal analysis procedure used in this work consists of three
steps schematically detailed in Fig. 7. First, the acoustic signals are
filtered using wavelet analysis to remove extraneous background
noise and cyclical patterns from the machine. Second, the wavelet
filtered sensor data are analyzed using a spectral graph theory
approach to extract a single process signature (Laplacian Fiedler
number) symptomatic of arc instability. Third, the process signa-
ture (Fiedler number) from graph theory is tracked using an Expo-
nentially Weighted Moving Average (EWMA) control chart to
determine the occurrence of arc instabilities within a given depos-
ited layer. A limitation with this approach, common to all control
chart-based methods, is that it is focused on detecting arc instabil-



Fig. 5. Schematic representation of the effect of the three types of contaminations and the flaws that they generate. (a) details the effect of chalk contamination, (b) shows the
effect of the oil contamination, (c) highlights the effect of the sand contamination. Contamination zones are marked in green.
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ities (special causes) that are at the root cause for flaw formation,
as opposed to capturing specific types of flaws.
3.1. Step 1 – Wavelet filtering

A wavelet transform is used to remove the background noise
from the machine [12]. Unlike the Fourier transform where the sig-
nal is translated and analyzed in the frequency domain, the wave-
let transform allows the data to be analyzed in both the frequency
and time domains simultaneously, which enables the precise loca-
tion of a flaw to be detected in-situ.
6

Another difference between the Fourier and wavelet transforms
is the type of basis used to convolve the signal into the frequency
domain. In the Fourier transform, the data is convoluted with a
sinusoidal basis. In the wavelet transform a large variety of signal
basis can be chosen and new (custom) basis can be designed to fit
the application. These basis for transforming the signal are called
wavelets. There are two distinct advantages of the wavelet trans-
form over Fourier analysis that motivates their use in this work
[46]:

a. Wavelet transforms accommodate non-stationary data
where sudden changes can occur, such as arc instability.



Fig. 6. The feedback effect of flaw formation in WAAM. Flaws caused on a previous layer can potentially generate an arc instability in the next layer, causing further flaw
formation.

Fig. 7. Overview of the approach used for flaw detection. (1) The first step is filtering out the noise from the acoustic sensor data using wavelet analysis. (2) Next graph theory
analysis is used to extract process signatures (Fiedler number). (3) The Fiedler number is then tracked using an EWMA control chart.
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b. Ability to operate on signals with sharp discontinuities
(spikes), such as those characteristic of the WAAM process.

In this work, a discrete wavelet transform (DWT) is used to filter
the raw acoustic signal (S), which is derived from the continuous
wavelet transform (CWT) shown in Eqn.(1) [46]:

W a; bð Þ ¼ 1ffiffiffi
a

p
Z t¼1

t¼0

w
� t � b

a

� �
S tð Þdt ð1Þ

In Eqn.(1), a is the time dilation and b is the time translation of

the analyzing wavelet (w
�
). For the discrete acoustic signal used in

this work, the DWT is derived from the CWT as:

Wð2i;2inÞ, 1ffiffiffiffi
2i

p Xd¼N

d¼1

w
� d

2i
� n

� �
S dð Þ ð2Þ

Where d is the discrete data point and N is the total number of
data points in the signal (S). For the DWT, the time dilation and

translation are set at the discrete values of 2i where i is the octave
(or frequency level) being analyzed. For the purposes of this work,
n = 1is selected to make the change from each octave more consis-
tent and easier to interpret by keeping the time translation the
same as the time dilation. This set time dilation and translation
7

is standard for basic wavelet analysis [47]. The DWT is used to
deconstruct the signal into its base frequencies (octaves). The fre-
quencies contaminated with background noise are identified and
subsequently filtered from the signal.

Lastly the Discrete Inverse Wavelet Transform (DIWT) is used to
reconstruct the base frequencies into a single de-noised signal (Sd).
The DIWT takes each deconstructed signal and performs a convo-
lution to perform this reconstruction process. This allows for the
de-noised signal to be analyzed and subsequently perform flaw
detection.

This wavelet filtering process is summarized in Fig. 8 through
Fig. 10. Referring to Fig. 8, the original signal (S) is first divided
between the first octaves (i = 1) detailed (D) and adjusted (A) com-
ponents of the signal. The detailed signal is representative of the
particular data in that octave, and the adjusted signal is the
remainder of the signal that did not fit the parameters of the wave-
let at that octave. Thus, the signal is decomposed, using a decon-
struction wavelet, in the first octave to obtain a detailed (D1) and
adjusted (A1) components of the signal. In this work, a biorthogo-
nal 3.3 wavelet is used to deconstruct and reconstruct the signal
based on extensive offline studies [48]. The biorthogonal 3.3 wave-
let was selected after extensive offline optimization not reported in
this work. This wavelet package was advantageous for suppressing
background noise without occluding relevant process signatures.



Fig. 8. Example of decomposing the raw signal (S) using the DWT (biorthogonal 3.3 wavelet). The detailed (D) and Adjusted (A) components over two octaves.
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Next, the adjusted signal of the first octave (A1) undergoes
another decomposition, into the detailed signal at the second
octave (D2) and the adjusted signal (A2) at the second octave. This
process can continue for several octaves. In this work 8 octaves are
used, due to the signal losing intensity after 8 octaves. For each
octave, the frequency regime of the detailed signal is essentially
double of the previous octave due to the time translation and dila-

tion of the deconstruction wavelet being a function of 2i. Hence,
the signal (S) is decomposed into i number of detailed (D) and
adjusted (A) components.

Referring to Fig. 9, once the signal is decomposed into i octaves
and the adjusted signal, each octave is subject to a hard threshold.
The hard threshold removes noise at each octave from the signal. In
this work, these limits are determined heuristically. The eleventh
layer of Sample 2 is chosen as the training layer due its visually dis-
tinctive changes between the signal, contamination, other flaws,
and noise. Once the threshold levels are set based on data from
layer 11, the thresholding limits are kept constant for all three
samples and are not changed [49].

It is important to note that the adjusted signal, A2, in the exam-
ple in Fig. 9, does not have any threshold or filtering. This is
because it does not represent any specific frequency and is the ‘re-
mainder’ of all the data not already deconstructed into a base
frequency.

Lastly, shown in Fig. 10, after the noise from each octave is
removed the signal (S) is reconstructed back using the discrete
inverse wavelet transform (DIWT), using a reconstruction wavelet

(w0
�
) at each octave [12]. The reconstruction process results in a de-

noised signal (Sd). The de-noised signal (Sd) manifests the process
dynamics in a distinctive manner. For example, in Fig. 10, the de-
noised signal has a decrease in amplitude corresponding to the
introduction of oil, which is not evident in the raw acoustic signal
(Fig. 5(b)).

This wavelet deconstruction and reconstruction approach is
applied to the acoustic signal for all three samples. The wavelet
8

type, number of octaves used, and the thresholding limits are sum-
marized in Table 3. The biorthogonal 3.3 wavelet has a deconstruc-
tion and reconstruction component, shown in Fig. 8 and Fig. 10
respectively.

3.2. Step 2 - signal analysis

3.2.1. Data extraction
After wavelet analysis, the de-noised acoustic signal (Sd) is ana-

lyzed in the graph domain, and a single number called the Fiedler
number (k2) is obtained. The Fiedler number is then used as the
monitoring statistic for detecting flaw formation. This approach
circumvents extraction of several statistical features from the sen-
sor data for process monitoring, and is therefore computationally
efficient.

First, the de-noised signal (Sd) is sampled into k number of win-
dows, each window having a length of N data points. For spatial
resolution and physical relevance, 10 windows per millimeter of
a deposited track are imposed. This results in 1200 windows per
layer with 512 data points per window, as detailed in Fig. 11.
The 512 data points (N) translates to 0.02 s of data collection (or
0.1 mm deposition). From each window the Fiedler number (k2)
is obtained and tracked using an exponentially weighted moving
average (EWMA) control chart. The process for obtaining the Fie-
dler number (k2) is described in the following steps, and the rele-
vance is discussed by Ref. [13].

3.2.2. Creation of network graph
A network graph is created from the 512 data points in each k

window. Given a 1-D signal (Sd512x1), the network graph contains
512 nodes. Each node i, is connected to node j, by an edge w(i,j)
whose weight is the Euclidean distance (L2 Norm) between the
two nodes detailed in Eqn.(3):

w i; jð Þ ¼ kSd ið Þ � Sd jð Þk2 ¼ Sd ið Þ � Sd jð Þj j ð3Þ



Fig. 9. Hard limit thresholding used to de-noise each detailed component. The orange dashed lines represent the location of thresholding used to remove extraneous noise.
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Where Sd(i) is the amplitude of the de-noised acoustic signal
(Sd) at node i. The Euclidean distances w(i,j) result in a weighted
adjacency matrix (Wk) for each window k. Next the weighted adja-
cency matrix is translated into a sparse adjacency matrix (Hk)
where all edge values of Wk are converted to 10s and 00s based
on a threshold (e) as detailed in Eqn.(4):

h i; jð Þ ¼ 1;wk i; jð Þ > e
0;wk i; jð Þ � e

�
ð4Þ

The threshold e is not fixed, but is estimated from the data, and
changes for each window. The threshold value (e) is the combined
average node weight of the current window and the previous 5
windows (b = 5). The Euclidean distance of the previous b = 5 win-
dows is chosen as it corresponds physically to 0.5 mm of the track
deposited. This allows for the system to be more flexible to global
fluctuations and reduce the number of false alarms. The distance of
0.5 mm was chosen as it is half the width of the � 1 mm diameter
holes in which the contaminants were placed. The visual represen-
tation of this process is shown in Fig. 11, and the threshold e is cal-
culated as:
9

e ¼
PK

K�b

P
Wk

N

� �

bþ 1
ð5Þ

From the sparse adjacency matrix (Hk), the Laplacian matrix
(Lk) is calculated for each window as follows [50]:

Lk ¼ Dk �Hk ð6Þ
Where the degree matrix (Dk) is the diagonal sum of the sparse

adjacency matrix:

Dkði; iÞ ¼
Xi

i¼1

Hkði; jÞ ð7Þ

Finally, the eigenspectra Laplacian matrix (Lk) for each window
k is obtained, where k are the eigenvalues and m are the eigenvec-
tors [50]:

Lkm ¼ km ð8Þ



Fig. 10. Reconstruction of the de-noised signal using the DIWT. The filtered detailed (D) and adjusted (A) signal are combined using a reconstruction (biorthogonal 3.3)
wavelet.

Table 3
Thresholding parameters used in the Wavelet Filtering process.

Biorthogonal 3.3 Octaves Octave 1 Octave 2 Octave 3 Octave 4 Octave 5 Octave 6 Octave 7 Octave 8

Thresholding Limits ±2.002 ±4.081 ±4.670 ±3.159 ±3.582 ±2.812 ±3.150 ±3.448

Fig. 11. Visual representation of converting the de-noised signal Sd1 into the adjacency matrix and then the sparse adjacency matrix (Hk). The dashed red lines represent each
discrete window. There are 1200 windows per layer in the de-noised signal (Sd).
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The second eigenvalue (k2) and eigenvector (m2) are called the
Fiedler number (k2) and Fiedler vector (m2) respectively. The Fie-
dler number (k2) for each window is the monitoring statistic used
for the process. The analysis results in 1200 Fiedler numbers (k2)
per layer where there are 10 Fiedler numbers per 1 mm, 1 Fiedler
number for every window. The mathematical properties of the Fie-
dler number are described in depth in Ref. [13]. Thus, the process
dynamics contained in the acoustic data is encompassed in one
statistic, the Fiedler number (k2), in place of several statistical
features.
10
3.3. Step 3 - process monitoring (Tracking)

To determine when an arc instability occurs, the Fiedler num-
bers (k2) from the signal are tracked using an exponentially
weighted moving average (EWMA) statistical control chart [51].
This approach eschews the complex machine learning for flaw
monitoring, and is readily implemented in a practical environment.

In an EWMA control chart, the process is deemed to be out-of-
control when the signal crosses a control limit. In this work, an out-
of-control condition is indicative of an arc instability and impend-



B. Bevans, André Ramalho, Z. Smoqi et al. Materials & Design 225 (2023) 111480
ing flaws. The EWMA control chart plots the statistic Zk for a given
data point at instant k, Zk is calculated as:

Zk ¼ ak2;k þ 1� að ÞZk�1 ð9Þ
Where k2;k is the Fiedler number for the kth window and Eqn.(9)

is recursive with respect to Zk. Traditionally the weight ða) has a
value between 0.1 and 0.3, meaning that the new data point is
being weighted only 10–30 % of its actual value. The higher the
sampling rate the smaller a should be to account for stochastic
fluctuations and reduce noise, in this work, we set a = 0.1 [51].
The control limits are determined from nominal fault-free condi-
tions found on layers 8 and 9 of Sample 3 (the sample with the
least flaws observed). Thus, the control limits are estimated when
there are no special fluctuations in the process and no observable
flaws in the part. The upper control limit (UCL) and lower control
limit (LCL) are found using the following Eqn.(10) [14]:

UCL; LCL ¼ l0 � s 	 r0

ffiffiffiffiffiffiffiffiffiffiffiffi
a

2� a

r
ð10Þ

Values l0 and r0 are the mean and standard deviation of the
nominal flaw free signal. Finally, s is the number of standard devi-
ations expected in the signal before the system is considered out-
of-control. Traditionally for stationary systems this value is
approximatelys = 3 [52]. However, given that the current system
is non-stationary and nonlinear, the s value is increased signifi-
cantly in this work so that s = 10. With this information, the UCL
and LCL are determined to be 44 and 1.5, respectively. Using these
control limits for the EWMA control chart results in a control Aver-
age Run Length (ARL0) of 62 [53]. This is calculated from layers 8
and 9 from Sample 3, consisting of 2,200 samples, which are the
same flaw free layers used to calculate the control limits. With
the reported ARL0 of 62, the false alarm rate is approximately
1.6 % or 3 false alarms every 200 samples visualized in Fig. 12. This
false alarm rate is on par with those reported in the AM literature,
both in other DED based research [54] (less than 2.1 %), and in the
more thoroughly researched LPBF process [55,56] (between 0.6 %
and 9%).

4. Results

4.1. Flaw detection at the layer level

4.1.1. Detection of contamination
To demonstrate the detection of arc instabilities generated from

contamination regions layer 11 of Sample 1, which contained two
Fig. 12. Visualization of the false alarm rate (ARL0) in a fault-free layer (layer 8) in
Sample 3. The ARL0 is 62 or 1.6%, or 3 false alarms every 200 samples.
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chalk contamination zones (green), is shown in Fig. 13. The con-
tamination zones disrupted the arc significantly and is evident in
the de-noised signal (Sd), as depicted in Fig. 13(a). These contami-
nation zones resulted in two prominent line width variations
shown in Fig. 13(b), which was found in the post process character-
ization of the XCT analysis. This layer also contains a line width
variation at the start of the layer (purple) and a pore (red) approx-
imately 115 mm along the part that is not evident in the de-noised
acoustic signal. Detection of porosity and line width variation are
presented in Case 2 (Sec. 4.1.2), and Case 3 (Sec. 4.1.3), respectively.
However, all flaws are apparent in Fig. 13(c), when the control
statistic crosses the upper control limit.

Case 2 Detection of Porosity.
To demonstrate the ability to detect porosity, layer 1 of Sample

3 is shown in Fig. 14. The de-noised acoustic signature is shown in
Fig. 14(a). In the corresponding XCT slice shown in Fig. 14(b), two
pores located at � 5 & 110 mm along the length of the layer. The
two pores are clearly detected on the EWMA control chart in
Fig. 14(c). In this layer, significant line width variation is observed
along with intermittent spikes across the control limit in the corre-
sponding regions. Detection of line width variation will be further
detailed in Case 3 (Sec. 4.1.3).

Case 3 Detection of Line Width Variation and Spatter.
Shown in Fig. 15 is the signal analysis for layer 7 of Sample 1

where the two chalk contamination regions created significant line
width variations (purple-marked regions). As demarcated in the
Fig. 13. (a) De-noised signal of layer 11 Sample 1 containing chalk contamination.
(b) Line width variations are apparent in the XCT slice of this layer. (c) Line width
variation caused by Contamination (green) crosses the upper control limit in the
EWMA control chart.



Fig. 14. (a) De-noised signal of layer 1 Sample 3 containing no contamination. (b)
Two pores on the edge (red) are apparent in the XCT slice of this layer. (c) Porosity
causes the signal to cross the upper control limit in the EWMA control chart (red).

Fig. 15. (a) De-noised signal of layer 7 Sample 1 containing chalk contamination.
(b) Line width variation and spatter satellites (purple) are apparent in the XCT slice
of this layer. (c) These variations are detected when the signal crosses the upper
control limit in the control chart.
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de-noised acoustic signal of Fig. 15(a), the two contamination
regions at the 40 and 80 mm points forces a slight decay in the
acoustic signal. These contamination zones did not create any
porosity, however the entirety of layer 7 is afflicted with line width
variations along with satellites due to spatter, as evidenced in the
XCT slice of Fig. 15(b). The result of arc instabilities is not evident
in the de-noised acoustic signal, Fig. 15(a), but can be observed in
the EWMA control chart in Fig. 15(c). The start of layer 7 also had
two small spikes above the EWMA control limit that were not cor-
related to a specific defect in the part and are counted as false
alarms. These are labeled as uncorrelated detections and are dis-
cussed in greater detail in Sec. 4.2.

Case 4 Detection of Multiple Flaws in a Layer.
To demonstrate the detection of all the previously discussed

flaws (porosity, line width variation, spatter), Fig. 16(a) shows
the raw signal for layer 11 of Sample 2. Layer 11 has two contam-
ination zones that led to large pores at 40 and 80 mm, along with a
third pore at the end of the layer observed in Fig. 16(b). Also evi-
dent in the XCT slice are large line width variations at the start
of the layer, and narrowing of the width between the two contam-
ination regions, and immediately after the second contamination
zone. For a comparison, Fig. 16(c) shows the EWMA control chart
tracking the Fiedler number (k2). The two large pores resulting
from the oil contamination and are clearly detected by large spikes
past the control limit in the control chart at 40 and 80 mm.

Three line width variations are also evident in the layer demar-
cated in Fig. 16(b). The first line width change is at the beginning of
the layer. Then, the next line width variation is after the first pore
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(created due to contamination) when the arc is stabilizing, and the
final variation is a ‘pinch point’ immediately after pore located at
80 mm. The pore located near 110 mm is clearly detected by
another large spike in the control chart.

4.2. Layer-by-Layer detection

To observe and detect arc instability on a layer-by-layer basis,
the total number of out-of-control points are counted per layer
of the EWMA control chart. The number of out-of-control points
are subsequently correlated to the number of flaws observed in
that layer from XCT. The application of this analysis is shown in
Fig. 17.

In Sample 1, corresponding to Fig. 17(a), the majority of out-of-
control points (arc instability) occur between layer 7 and layer 11
which contained the contamination zones (green). In these layers,
severe porosity (red) and line width variation flaws (purple) are
found from the XCT analysis. Layer 2 contains a large number of
out-of-control detection and are correlated to the two pores cre-
ated in the previous layer. These pores caused an arc instability
on the following layer 2. Sample 1 depicts a total over 1,000 out-
of-control detections and corresponding flaws. In comparison,
Sample 3, detailed in Fig. 17(c), contained only 343 out-of-
control and had very few generated flaws.

For Sample 2, it is observed that the majority of out-of-control
points occurred on the second half of the build, as depicted in
Fig. 17(b). When correlated to the physical part (Sample 2), the



Fig. 16. (a) De-noised signal of layer 11 Sample 2 containing oil contamination. (b)
Two voids caused by contamination (green), line width variation (purple), and
porosity (red) are apparent in the XCT slice of this layer. (c) All of these flaws are
accurately detected in the control chart.
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majority of the visual spatter begins to accumulate on layer 7. This
is also where significant line width variations are observed in the
part. Additionally, the majority of pores in Sample 2 are contained
to layer 7 and layer 11 where oil contamination is introduced. The
total number of arc instabilities observed in Sample 2 is 1,991,
which is significantly more than the 343 detections found in Sam-
ple 3.

Fig. 17(c) shows the comparison of the number of out-of-
control points detected and generated flaws for Sample 3. Minimal
number of faults are detected at layer 7 or 11 where sand contam-
ination is introduced compared to chalk (Sample 1) and oil (Sample
2). Layer 1 of Sample 3 depicts line width variation and porosity,
and has the second highest level of arc instability detections.
Another high number of out-of-control points are observed in layer
10 which contains 2 small pores. In total, Sample 3 has minimal
flaws generated in comparison to Sample 1 and 2 and has signifi-
cantly fewer out-of-control detections. Additionally, the number
of arc instability detections could also provide an indication of
overall quality of the part. For example, on finding the number of
arc instability detections to be above a certain threshold, an oper-
ator can stop the process.

In all three samples there are out-of-control detections that did
not directly correlate to flaw formation and are indicated with the
label of ‘uncorrelated detection’ in Fig. 17. All layers had some level
of line width variations and potentially related to these uncorre-
lated detections. These uncorrelated detections are encompassed
in the false positive rate of 1.6 % as discussed in Sec. 3.3. A limita-
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tion of this work is that it is focused on detecting arc instability and
not specific types of flaws resulting from arc instability (Fig. 6). We
reiterate that using the method proposed in this work, it is to
determine the occurrence of an incipient flaw and its location as
a result of an arc instability, however, the approach cannot stratify
and distinguish between the different types of flaws.

5. Conclusions and future work

In this work we developed and applied an approach for flaw
monitoring during the wire arc additive manufacturing (WAAM)
process using data acquired from an in-situ acoustic sensor. The
approach integrates wavelet-based signal filtering with a novel
spectral graph signal analysis technique to monitor process faults,
such as arc instabilities. This is a valuable contribution, because,
thus far process monitoring in WAAM has been largely restricted
to tracking process-level variables, such as voltage and current.
Instead, the approach presented in this work is focused on detect-
ing causal part-level phenomena, such as arc instabilities that are
symptomatic of incipient flaw formation.

Moreover, the sensor used in this work is an acoustic (sound)
sensor which is relatively inexpensive compared to infrared ther-
mal cameras and pyrometers used in the current literature. Lastly,
the graph theory signal analysis involved extraction of only one
signature (feature) from the acoustic signature called the graph
Laplacian Fiedler number (k2). This Fiedler number is subsequently
tracked in a readily interpretable statistical control chart. The
approach has two key advantages: (i) it eschews extensive signal
processing and black-box machine learning, and instead relies on
a simple and intuitive univariate control chart to detect flaw for-
mation, (ii) A single monitoring statistic, i.e., k2, is extracted and
used for flaw monitoring in place of an array of statistical features.
Consequently, the approach is both practitioner-friendly and com-
putationally tractable. Specific conclusions from the work are as
follows:

(1) We deposited three WAAM parts (stainless steel 316L). Each
of these parts had arc instabilities induced by introducing
three types of contaminants at specific layers. The three
types of contamination were chalk, oil, and sand, which
resulted in arc instabilities of varying intensities. These arc
instabilities in turn resulted in flaws such as porosity, varia-
tion in the line width, and spatter which were identified
from post-process XCT of the parts.

(2) During the deposition process, acoustic signals were
acquired by a Shure SM57 microphone installed in close
proximity to the welding torch. The microphone translates
with the nozzle, hence its position with respect to the arc
is constant. Data is acquired continuously at a sampling rate
of 25.6 kHz continuously during the process.

(3) A three-step approach is developed to process the acoustic
signal and consequently pinpoint the location on the layer
at which a flaw is likely to occur. The first step is to filter
the extraneous noise in the acoustic sensor data using a
wavelet decomposition approach. The second step focuses
on extracting relevant features from the filtered data that
are sensitive to flaw formation. In this work, we used a graph
theory-based approach to analyze the data and conse-
quently extract a single feature – the second graph Laplacian
eigenvalue called the Fiedler number (k2). In the third step,
the Fiedler number is tracked in a readily implemented con-
trol chart called the exponentially weighted moving average
(EWMA) control chart. The control limits of the chart were
tuned such that the false alarm rate (type 1 error) was 1.6 %.



Fig. 17. Comparison between all three samples and the number of arc instability detections in each layer. (c) Sample 3 had both the fewest number of arc detections and the
fewest flaws. In comparison to (a) Sample 1 and (b) Sample 2 which had over 1,000 detections and significant number of flaws.
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(4) The approach accurately detects the formation of various
types of flaws, such as line width variation, voids created
due to contamination, porosity, and spatter formation on
the part.

In our future work we will endeavor to further improve upon
the practical scalability of the approach by integrating multiple
sensors for process monitoring, such as thermal and laser point
cloud scanning. With the assistance of the other sensors installed
in the machine, the goal is to not only detect the onset of flaw for-
mation, but also, to identify the specific type of flaw formed as a
result of arc instability, and subsequently correct the flaw through
feedback control. An initial feedback control algorithm can be
developed with the approach described in this manuscript, by sim-
ply counting the number of arc instabilities per layer. If number of
arc instabilities detected in a layer were to exceed a certain thresh-
old, then the layer is removed via CNC milling and then re-
deposited. Furthermore, our forthcoming work, will elucidate the
effect of thermal history of the part on flaw formation, as opposed
to only arc instability. This approach will also be validated with
large-scale WAAM parts, then generalized to work with materials
other than stainless steel 316L, and other WAAM machines.
Data availability

Data will be made available on request.
14
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

Andrè Ramalho acknowledges Fundação para a Ciência e a Tecnolo-
gia (FCT-MCTES) for funding the Ph.D. Grant UI/BD/151018/2021.
André Ramalho, Telmo G. Santos and J.P. Oliveira acknowledge
Fundação para a Ciência e a Tecnologia (FCT-MCTES) for its finan-
cial support via the project UID/00667/2020 (UNIDEMI). J. P. Oli-
veira acknowledges funding by national funds from FCT -
Fundação para a Ciência e a Tecnologia, I.P., in the scope of the
projectsLA/P/0037/2020,UIDP/50025/2020andUIDB/50025/2020o
f the Associate Laboratory Institute of Nanostructures, Nanomod-
elling and Nanofabrication – i3N. This activity has received funding
from the European Institute of Innovation and Technology (EIT) –
Project Smart WAAM: Microstructural Engineering and Integrated
Non-Destructive Testing. This body of the European Union receives
support from the European Union’s Horizon 2020 research and
innovation program.

Prahalada Rao acknowledges funding from the Department of
Energy (DOE), Office of Science, under Grant number DE-
SC0021136, and the National Science Foundation (NSF) [Grant
numbers CMMI-1719388, CMMI-1920245, CMMI-1739696,



Fig. 18. Polarity pattern for the Shure SM57 acoustic microphone.

B. Bevans, André Ramalho, Z. Smoqi et al. Materials & Design 225 (2023) 111480
CMMI-1752069, PFI-TT 2044710, ECCS 2020246] for funding his
research program. This work espousing the concept of online pro-
cess monitoring in WAAM was funded through the foregoing DOE
Grant (Program Officer: Timothy Fitzsimmons), which partially
supported the doctoral graduate work of Mr. Benjamin Bevans at
University of Nebraska-Lincoln Benjamin, Aniruddha, and Ziyad
Smoqi were further supported by the NSF grants CMMI 1752069
(CAREER) and ECCS 2020246. Detecting flaw formation in metal
AM using in-situ sensing and graph theory-based algorithms was
a major component of CMMI 1752069 (program office: Kevin
Chou). Developing machine learning alogirthms for advanced man-
ufacturing applications was the goal of ECCS 2020246 (Program
officer: Donald Wunsch). The XCT work was performed at the
Nebraska Nanoscale Facility: National Nanotechnology Coordi-
nated Infrastructure under award no. ECCS: 2025298, and with
support from the Nebraska Research Initiative through the
Nebraska Center for Materials and Nanoscience and the Nanoengi-
neering Research Core Facility at the University of Nebraska-
Lincoln. The acquisition of the XCT scanner at University of
Nebraska was funded through CMMI 1920245 (Program officer:
Wendy Crone).
Appendix

Shure SM57 Acoustic Microphone polarity patterns are shown
below Fig. 18.
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