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ABSTRACT  

 
Urban flooding is a global issue that affects millions of people every year. It is the 

most frequent natural hazard to affect large cities, and causes numerous damages 

to personal property, city infrastructure, and in some cases loss of life. In July of 

2021, western Germany was greatly impacted by urban flooding; from the 14 to 

15th of July, more than 180 lives were lost due to intense rainfall and flooding, with 

more than 40,000 people affected. In this work the flooding of 2021 was modeled 

within the Upper Rhine River basin using the LISFLOOD-OS hydrological model, 

to conduct a flood-risk analysis in one of the most impacted states during the 

flooding even, Rhineland Pfalz. Further, the calibrated model was run with higher 

levels of precipitation to determine possible risks associated with a future flooding 

event in the same region. To calculate flood-risk, flood depth-damage functions 

were implemented on simulation outputs to determine flood-risk. Reliability of the 

flood-risk analysis was done by comparing Copernicus monitored flood extent data 

from the flooding event against the flood-risk classification map. Results show that 

the flooding event of 2021 could be modeled with reasonable discharge levels 

compared to observations from the Mainz gauging station, producing a KGE score 

of 0.438; further, land use classes which received the highest damage values in both 

the simulated flooding event of 2021 and in the future flooding event scenario were 

agricultural and residential areas. High-risk areas from the flood simulation of 2021 

fell within Copernicus monitored flood extent areas, highlighting the potential of 

this methodology to be applied to future flood-risk management practices.   

 

Keywords: LISFLOOD, flooding, hydrological modeling, flood-risk, Germany 
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Chapter 1 

INTRODUCTION 

 

Urban flooding is a dangerous and costly natural hazard which occurs on a global 

scale, and causes numerous damages to personal property, city infrastructure, and 

in some cases loss of life (Bosseler et al., 2021; Surminski & Thieken, 2017). It is 

an issue that affects millions of people every year, and annually contributes to 40 

percent of the world’s total economic losses from natural hazards (Afsari et al., 

2022). Over the past few decades, the impacts of flooding have been increasing due 

to climate change and socioeconomic developments (Surminski &Thieken, 2017); 

as reported by the IPCC, the frequency and intensity of heavy precipitation events 

has increased in North America and Europe, which is linked to human impacts that 

has caused changes in weather and climate patterns (IPCC 2014). Furthermore, 

since surface temperature is projected to rise throughout the 21st century, it is 

extreme precipitation events will likely continue to increase in intensity and 

frequency in many regions, albeit not equally throughout the globe (IPCC 2014).  

In addition to climate change, socioeconomic developments, such as population 

increase, centralization, and industrialization and urban growth, have also 

contributed to the increase in extreme precipitation events (Surminski & Thieken, 

2017). Urban growth is particularly problematic with regard to flooding because it 

leads to an increase in impervious surfaces and a reduction of pervious surfaces. 

This in turn prevents groundwater recharge and disrupts evapotranspiration losses, 

subsequently causing an increase in surface runoff, which puts urban settlements at 

greater risk of major flooding events (Ajjur & Al-Ghamdi, 2022). Thus, climate 

change, along with changes humans have imposed on the environment, has caused 

extreme flooding events to occur more frequently on a global scale (Gai et al., 

2019). As more than two thirds of the world’s population is expected to reside in 

urban settings by the year 2050, this means that as time goes on a greater proportion 

of the world’s population will be at a higher-risk of living in a flood-prone area, 

and therefore vulnerable to the negative repercussions of flooding and major 

flooding events (Tom et al., 2022).  

Effective flood mitigation efforts are thus imperative for the future of urban 

settlements. Governments around the world are increasingly partaking in flood risk 

management (FRM) practices, which attempt to address flood risks in an 

anticipatory way, rather than after the disaster occurs (Surminski & Thieken, 2017). 

FRM practices usually include measures such as planned and controlled land-use 

within cities, soil conservation efforts, agroforestry practices, drainage 

maintenance, and sustainable practices for city planning and development (Tom et 

al., 2022). Flood insurance also has the potential to spur FRM efforts, such as 

encouraging flood proofing of buildings and properties, retrofitting houses, local 

https://www.zotero.org/google-docs/?xQwKmV
https://www.zotero.org/google-docs/?Wgj16M
https://www.zotero.org/google-docs/?K5Q6X1
https://www.zotero.org/google-docs/?K5Q6X1
https://www.zotero.org/google-docs/?lOZp1Z
https://www.zotero.org/google-docs/?spSrDV
https://www.zotero.org/google-docs/?spSrDV
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flood protection measurements, and the building of large-scale protection schemes 

(Surminski & Thieken, 2017).  

Specifically in Germany, the flood hazard zoning system (ZÜRS) was established 

in 2001 by the German Insurance Association (GDV) (Surminski & Thieken, 2017) 

in order to categorize areas with different flood probabilities (Seifert et al., 2013). 

The zoning system initially contained three flood probability zones, but after the 

Elbe and Danube River flooding in 2002, a fourth zone was added for areas with 

low flood probabilities (Surminski & Thieken, 2017). Most properties in Germany 

are in exposure zone 1, which is defined as a flood probability lower than 1/200 

years. Properties in zone 1 are considered insurable. Another 10 to 12 percent of 

properties in Germany are in exposure zone 2, with flood probabilities between 

1/50 and 1/200 years, and approximately 3 percent of properties are in exposure 

zones 3 and 4, with a flood probability of between 1/10 and 1/50 years, meaning 

that these zones have a high likelihood of being flooded (Seifert et al., 2013).  

ZÜRS was based on a coarse DEM and a rough hydraulic modeling approach, 

which was initially heavily criticized by water authorities in Germany. New maps 

were therefore implemented into the system, and since 2014 these more 

sophisticated maps were incorporated into ZÜRS (Seifert et al., 2013). However, 

even with these changes to the zoning system, it is still difficult for homeowners to 

obtain flood insurance (Surminski &Thieken, 2017). This could be due in part to 

the fact that state governments have authority over flood defense and administration 

(Seifert et al., 2013); while the federal government of Germany may set general 

standards, it is ultimately up to the federal states (Länder) to determine the 

framework legislation and implement actual management strategies within the state 

(Surminski &Thieken, 2017).  

Another reason it is difficult for homeowners to obtain flood insurance, even in 

zones that have already been affected by 10-year floods, is because insurers can 

suffer many losses during a single flood event (Seifert et al., 2013). Insurance 

companies in Germany are not required to share flood risk information with their 

customers, which means that many people may be unaware of the risks they face, 

and therefore do not buy flood insurance (Surminski & Thieken, 2017).  

Thus, while FRM practices are in progress in places like Germany, by means of 

insurance and other governmental initiatives, FRM practices worldwide are still not 

as advanced as they need to be to aid urban populations in times of major flooding 

events. In truth, most FRM measures often take years to implement, and are 

dependent on national or local governments to enact. As of 2017, globally only 12 

percent of funds for disaster management were invested in risk reduction measures, 

while 88 percent were used in response, either during or after the disaster event 

(Surminski & Thieken, 2017). As a result of this, one of the main mechanisms for 

flood prediction and response is through early warning systems.  

 

https://www.zotero.org/google-docs/?rU28HQ
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1.1 EFAS and the LISFLOOD Model  

Since major flooding events can occur quite rapidly, understanding the 

hydrological processes behind potential flooding events is important for 

management and mitigation efforts; this is done through early warning systems, 

which often-times take advantage of hydrological models, the focus of this work. 

As climate change is projected to increase risks for people, assets, economies, and 

ecosystems, including but not limited to risks from extreme precipitation (IPCC 

2014), having flood forecasting and early warning systems aids governments and 

institutions responsible for evacuating people, and can help to prevent damages to 

assets in a timely manner (Cantoni et al., 2022). In Europe, flood forecasting and 

early warning systems are managed at both national and regional levels, and are 

complemented at a European scale by the European Flood Awareness System 

(EFAS), which was implemented in 2005 (Cantoni et al., 2022).   

EFAS was developed by the European Commission to provide operational flood 

predictions in major European rivers as part of the Copernicus Emergency 

Management Services (Dottori et al., 2017). EFAS is responsible for flood warning 

(Dottori et al., 2017), with the aim of providing national hydrological services with 

continuous real-time river discharge forecasts across Europe at a lead-time of 3-10 

days (Feyen et al., 2007). The hydrological simulations within EFAS are performed 

based on the LISFLOOD-OS hydrological model (Dottori et al., 2017), the model 

which will be implemented in this work.  

1.2 Motivation  

In the past decades, some of the costliest floods have occurred in central Europe 

(Shustikova et al., 2019). The flooding which occurred in western Germany and 

bordering countries during the summer  of 2021 was no exception; for Germany 

alone, this flooding event cost upwards of 40 billion euros in damages (Reuters, 

2022). The flooding began with rain in the early morning of the 14th of July with 

records from the Cologne-Stammheim DWD weather station at 04:00 UTC (Mohr 

et al., 2022). The rain then reached the Ahr catchment, and by 09:30 UTC the entire 

catchment was covered. Around noon the precipitation intensified, and the highest 

precipitation levels were recorded. Within 15 hours on the 14th of July, 2021, 150 

mm of precipitation fell. This equated to more than twice the usual monthly 

precipitation in just a few hours (Mohr et al., 2022), and was classified as a pluvial 

flood, a flood which occurs in cities and is caused by intense rainfall (Tom et al., 

2022).   

From the 14th to 15th of July, 2021, more than 180 lives were lost due to intense 

rainfall and flooding, with estimates of up to 40,000 people affected. The two 

Bundesländer (Federal States) which were impacted the most by this flooding event 

were North-Rhine Westphalia and Rhineland Pfalz (Fekete & Sandholz, 2021). For 

civilians and researchers alike, this turn of events came unexpectedly. Not only did 

the flooding cause extreme damage both socially and economically (Fekete & 

https://www.zotero.org/google-docs/?NWipWK
https://www.zotero.org/google-docs/?Zq6t56
https://www.zotero.org/google-docs/?Zq6t56
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Sandholz, 2021), but it also exposed major flaws in the flood management system 

in Germany (Bosseler et al., 2021).  

In the aftermath of the 2021 floods in Germany, Fekete and Sandholz (2021) 

conducted a survey on 2,264 participants, which included respondents from the 

local and Federal administration, crisis managers, flood experts, and civilians 

(Fekete & Sandholz, 2021). Their survey revealed that missing information was 

reported as a constraint in flood-management operations for 51 percent of 

respondents (Fekete & Sandholz, 2021). Although the European flood directive 

funded research for flood hazard and risk maps considering the flood events of 2002 

at the Elbe and Danube rivers, in the east and south of Germany respectively, this 

work was discontinued in 2012 due to conflicts between the 16 Bundesländer states 

(Fekete & Sandholz, 2021). Thus, in the current day-and-age, many German cities 

do not have high-resolution riverine, groundwater, and pluvial flood maps, making 

it difficult to identify vulnerable populations (Fekete & Sandholz, 2021). Although 

the European flood directive is responsible for addressing all different types of 

floods, such as riverine, pluvial, and storm surges, pluvial floods are largely 

neglected in Germany. Instead, the focus has been on riverine floods and storm 

surges that could affect the country on a national level, contributing to a lack of 

preparation for pluvial flooding events, such as the flooding which occurred in 2021 

(Surminski & Thieken, 2017).  

Thus, the motivation for the study area of this work is the Rhineland Pfalz region, 

which was greatly impacted by the flooding event of 2021. Additionally, a 

hydrological model was implemented in this work because hydrological models not 

only simulate processes which occur within a catchment, but also allow for 

geospatial analysis of where hydrological processes, such as water discharge, 

occur. This is an advantage over purely probabilistic approaches and was the 

motivation for using a hydrological model. Further, since climate change and 

urbanization have increased the occurrence and frequency of flooding events, this 

work is motivated to produce a future flooding event scenario within the study area, 

to exemplify one approach of a FRM practice that could aid governments and 

civilians in future flood mitigation efforts. 

1.3 Research Questions and Objectives 

The objective of this research is to use the LISFLOOD-OS hydrological model in 

the Upper-Rhine River Basin to simulate the flooding which occurred in July of 

2021, and conduct a flood-risk methodology. Further, this work will apply the risk 

analysis in a future flooding event scenario, in order to project future impacts. The 

main questions which will guide this research are:  

1) How closely can flooding levels from 2021 be modeled with the LISFLOOD 

model, and produce a future flooding scenario?  
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2) Which land use classes within the Rhineland Pfalz region received the highest 

damage values in the flooding event of 2021, according to the EU flood depth-

damage values? How do these values change in a future flooding scenario?  
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Chapter 2 

LITERATURE REVIEW 

 

 2.1 Hydrological Models and Approaches to Flood Modeling 

In the body of flood modeling literature, there are a wide range of hydrological 

models that are used for flood simulation. In general, hydrological models have 

vastly improved in the last few decades due to increased computational power and 

progress in data acquisition (Hdeib et al., 2021). Within hydrological models, there 

are a few different types: namely, conceptual, physically based, and event based. 

Conceptual models have parameters which are calibrated against observed 

discharge and are mostly used for flood forecasting (Peredo et al., 2022). Physically 

based models, such as LISFLOOD, can run without calibration; however, they 

require a large amount of field data and require high computational time (Peredo et 

al., 2022). Event based models have a fast computational time in comparison to 

continuous models, however they require a high amount of effort regarding 

estimating the catchment’s initial conditions (Peredo et al., 2022). Regardless of 

the modeling approach, however, all hydrological models aim to reproduce a 

catchment’s dynamics in response to a rainfall event (Peredo et al., 2022), which 

can then aid in planning efforts to minimize flood damages.  

Hdeib et al. (2021) produced a cost-performance analysis grid comparing different 

flood modeling approaches (Hdeib et al., 2021). They defined the relative ‘cost’ of 

a model based on the model type and model code (Hdeib et al., 2021). In terms of 

hydrological model type, this included seven evaluation criteria which included 

spatial scale, temporal scale, number of events (if event-based) or duration (if 

continuous), nature of the basic algorithm, spatial representation, computational 

time step, and flow processes represented (Hdeib et al., 2021). For model code cost, 

they defined the building of new code as more costly, because of the time and 

expertise employed; additionally, if new modeling software had to be purchased, 

this was considered more costly than open source (Hdeib et al., 2021). Results from 

the cost-performance grid showed that a coupling model done by Montanari et al. 

(2009) in Luxembourg on the Alzette River had the highest performance. The 

model with the lowest cost was conducted by Samela et al. (2018) in Romania on 

the Danube River and was an empirical and geomorphic model (Hdeib et al., 2021). 

Peredo et al. (2022) investigated the potential of the conceptual, hourly, semi-

distributed hydrological model, GRSD model, in the Mediterranean region in 

southwest France (Peredo et al., 2022). The authors of this study modified the 

model by explicitly accounting for rainfall intensity, to improve the simulation of 

extreme flood events in this region, which is particularly prone to flash floods 

(Peredo et al., 2022). The GRSD model runs at hourly time steps and propagates 

river flows downstream between lumped modeling units from sub-catchments to 

the main outlet (Peredo et al., 2022). The modified model structure was performed 
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over a 10-year period of hourly flow observations, along with 31 gauged sub-

catchment simulations for 4 flood events (Peredo et al., 2022). Through Kling 

Gupta Efficiency (KGE) criterion of model performance, it was found that the 

model adaptation did not deteriorate model simulations when compared to the 

original GRSD simulations (Peredo et al., 2022). Additionally, the adapted GRSD 

model performed better for the four flood events, meaning that for future flood 

events in this region, the modified GRSD model could better forecast possible 

damages and human losses (Peredo et al. 2022). The model modification also 

demonstrates the model’s versatility, in that the addition of accounting for rainfall 

could be calibrated successfully with accurate results (Peredo et al., 2022). 

Ruijsch et al. (2021) utilized the PCR-GLOBWB model to investigate systemic 

change in the Rhine-Meuse basin. The PCR-GLOBWB 2.0 model is a global 

hydrological model which consists of 5 modules: the meteorological forcing 

module, the land surface module, the groundwater module, and the surface water 

routing module (Ruijsch et al., 2021). These modules calculate within a daily time 

step the water storage in two soil layers and the underlying groundwater layer. They 

also calculate the exchange between these layers, snow storage, interception 

storage, and atmosphere (Ruijsch et al., 2021). The authors of this study calibrated 

the model using brute-force calibration, which means that all possible parameter 

combinations were run for each given step size during the period of 1901-2010 

(Ruijsch et al., 2021). Similar to other works (Cantoni et al., 2022; Gai et al., 2019; 

Hirpa et al., 2018; Peredo et al., 2022), the objective function which was used to 

find the best-fitting parameter values was KGE, which measures correlation, 

variability, and bias to determine the model’s overall skill (Ruijsch et al., 2021). To 

model systemic change, the authors of this study compared three different 

calibration scenarios, and found that systemic change did occur in the Rhine-Meuse 

basin, possibly due to climate change, land use change, and river structure (Ruijsch 

et al., 2021). 

Ryan et al. (2022) used the TUFLOW 2-dimensional hydraulic model in three 

different use-cases, comparing flood flows with the varying effects of Manning’s n 

values, cell size, infiltration, and subsurface flows. Unlike Peredo et al. (2022) and 

Ruijsch et al. (2021), this study conducted a manual calibration of the model 

parameters to simulate flood flows. They found that sub-grid sampling (SGS), a 

technique which resamples the Digital Elevation Model (DEM) to ensure that low 

flows are represented in flow paths narrower than the grid cell, significantly 

improved flood simulations (Ryan et al., 2022).  

Similar to Shustikova et al. (2019), Quirogaa et al. (2016) demonstrated the effects 

of varying Manning’s n values using the HEC-RAS model in three separate 

catchments. They found that calibration through Manning’s n values could be 

achieved to produce normal values compared to observations, by including a 

subsurface flow mechanism. They also found that direct rainfall model simulations 

improved with Sub-Grid Sampling (SGS), a technique with resamples DEMs to a 

higher spatial resolution to ensure that low flows are represented for flowpaths 

narrower than the 2D cell size (Quirogaa et al., 2016).  
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2.2 The LISFLOOD Hydrological Model  

The model which will be implemented in this work to simulate the flooding event 

of 2021 and a future flooding scenario is the LISFLOOD-OS model. It should be 

noted that the term LISFLOOD will be used in this work referring to the 

LISFLOOD-OS model, with LISFLOOD-FP referring to its sister model. The 

LISFLOOD model is a 2-dimensional GIS-based hydrological rainfall-runoff 

model, capable of simulating hydrological processes that occur in a catchment (Van 

Der Knijff et al., 2010). The model is raster based, which means that simulated 

hydrological processes are applied to each cell within a 2D grid (Feyen et al., 2007; 

Ryan et al., 2022). The LISFLOOD model was developed specifically for 

hydrological processes which occur in large European river basins, and can be used 

in a variety of different use-cases, such as flood forecasting, assessment of the 

effects of river regulation measures, land-use changes, and climate change (Van 

Der Knijff et al., 2010). The LISFLOOD model is written in a combination of 

PCRaster Dynamic Modelling Language and Python scripting language, and is a 

widely used model within the body of hydrological modeling literature. For 

example, Cantoni et al. (2022) used the LISFLOOD model for flood modeling in 

Tunisia. They used the Distributed Evolutionary Algorithm for Python (DEAP) for 

model calibration, and found that simulations without model calibration were 

strongly biased. The conclusions of this work surmised that there is a need for the 

development of river discharge databases to help with flood warning systems, such 

as EFAS or the Global Flood Awareness System (GloFAS) (Cantoni et al., 2022).  

Hirpa et al. (2018) also used the LISFLOOD model in their analysis for the 

calibration of GloFAS, which utilizes the LISFLOOD model. In GloFAS, the 

model is run at a daily time step with a 0.1° resolution (Hirpa et al., 2018). Similar 

to Cantoni et al. (2022), the authors of this study also used the DEAP for model 

calibration, and found that the calibration of the model parameters improved the 

overall simulation of streamflow: however, also noted that these results could vary 

across regions (Hirpa et al., 2018).  

Feyen et al. (2007) implemented the LISFLOOD model on a daily time-step for the 

Meuse catchment. They used the Shuffled Complex Evolution Metropolis (SCEM-

UA) global optimization algorithm for the automatic calibration of daily discharge 

observations to simulate streamflow. The authors of this study found that the 

SCEM-UA algorithm was able to converge to target posterior parameter 

distributions in less than 2500 iterations. This exemplified the versatility of the 

model with the use of different calibration algorithms, and applicability of 

LISFLOOD to European catchments (Feyen et al., 2007).  

Knighton et al. (2020) used the LISFLOOD-FP model in their work on predicting 

flood insurance claims with machine learning. Using the physically-based 

LISFLOOD-FP model, they found that estimating flood hazard areas overlapped 

with 57 and 45 percent of historical insurance claims. They also found through a 

random forest classification that the flood generated claims were captured within 

the Hackensack and Moodna catchments, at 80.6 and 93.2 percent respectively. 
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This study demonstrated the ability of the LISFLOOD-FP model to be incorporated 

with socio-economic data in order to produce estimates of flood-risk (Knighton et 

al., 2020).  

Gai et al. (2019) used the LISFLOOD model to test flood management practices in 

the Wei River Basin, China. They analyzed flooding events and low flow 

characteristics with different human intervention scenarios, and found that the 

construction of reservoirs in the Wei River Basin may reduce the occurrence of 

floods; further, they found that water diversion plans have the possibility of 

increasing low flow while not increasing flood risk (Gai et al., 2019). Like Cantoni 

et al. (2022) and Hirpa et al. (2018), the authors of this study also used the DEAP 

for model calibration, along with KGE, Nash-Sutcliffe model Efficiency (NSE), 

and Percent Bias (PBIAS) as the objective functions. While this application of 

LISFLOOD was not in a European catchment, it demonstrates how the LISFLOOD 

model can be applied outside of Europe as well.  

Shustikova et al. (2019) compared the LISFLOOD-FP model with the HEC-RAS 

model to demonstrate each models’ ability to simulate inundation over complex 

topography over an initially dry floodplain. They used 2D formulations for both 

models in order to focus on floodplain wave dynamics present in each model. They 

used Manning’s roughness coefficients for model calibration and found that the 

overall performance of the LISFLOOD-FP in simulating inundation extent was 

slightly better than HEC-RAS. At 25m spatial resolution, the LISFLOOD-FP was 

able to capture 81 percent of flood extent within the study area, whereas the HEC-

RAS model at the same resolution captured 78 percent of the flood extent. The 

authors of this study concluded that overall, the LISFLOOD-FP model was able to 

capture flood extent and water depth at water marks (measured from the flood 

event) better than the HEC-RAS model, however that the HEC-RAS model was 

able to capture the spatial distribution (i.e., the inundation boundary) of the flood 

event better than the LISFLOOD-FP model. Thus, the authors conclude that model 

selection is dependent on the study aim (Shustikova et al., 2019).  

2.3 Risk Assessment and Approaches to Quantifying Flood Risk 

Within the body of literature which use hydrological models for the quantification 

of flood-risk, approaches and methodologies were found to be scarce or lacking. 

While early warning systems are used to predict flood magnitude, there is a gap 

with regard to their ability to translate flood forecasts into flood risk evaluations 

(Dottori et al., 2017). From all the literature that was analyzed in this work, only 

one was found to use the LISFLOOD model with a flood-risk analysis. Thus, in 

this section the methodologies for quantifying flood risk which were found within 

the literature review will be discussed, finally detailing the one which will be 

implemented in this work using the LISFLOOD model.  

Ajjur and Al-Ghamdi (2022) used the physically-based hydrological model 

WetSpass to investigate water balance components and quantify surface runoff in 

their case study area Doha, Qatar, between the years of 1984-2020. They used five 

https://www.zotero.org/google-docs/?kd3mzv
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monthly climatic parameters from six meteorological stations, the parameters being 

minimum air temperature, maximum air temperature, average air temperature, wind 

speed, and precipitation (Ajjur & Al-Ghamdi, 2022). They used air temperatures to 

compute potential evapotranspiration, land maps in the years of the study area, and 

then implemented the WetSpass model to calculate surface runoff at the country 

scale. The authors detailed that within the WetSpass model, precipitation 

measurements are separated by runoff, groundwater recharge, and actual 

evapotranspiration. The model also includes physical catchment properties, such as 

slope, soil type, and land use, along with groundwater properties such as 

groundwater level depth. In order to compute the nexus between urban growth, 

climate change, and flood risk, the authors of this study used a Pearson Correlation 

to verify the connection between these three variables, where urban growth was 

calculated as the percentage of urban growth which changed during the duration of 

the study, flood risk was represented by the simulated surface runoff by the 

WetSpass model, and climatic factors were calculated by using the hydrological 

model.  

El-Saoud & Othman (2022) used the 2D hydraulic model HEC-RAS in 

combination with satellite data, a watershed modeling system (WMS), and the 

hydrological model HEC-1 to predict and simulate surface runoff in the Wadi 

Mehassar basin. The aim of the study was to produce spatially distributed 

information, such as water surface elevations, velocity, and depths, for flash-flood 

hazard assessment. The authors of this study first conducted a statistical analysis of 

the maximum and minimum daily rainfall values affecting the basin, to estimate the 

probability of the maximum rainfall intensities for a given period. They then 

delineated the boundaries of the drainage basins using the WMS program and the 

HEC-1 model to transform rainfall data into flow to estimate inflow volumes and 

peak discharge values. Next, the authors of this study used the HEC-RAS model to 

simulate drainage into the watershed area, which was dependent on the inflow rates 

produced by the HEC-1 model. Finally they used a geomatic remote sensing 

technique for data processing of the simulation output in order to delineate the flash 

flood zones and exposed areas (El-Saoud & Othman, 2022).  

Afsari et al. (2022) used the fuzzy analytic hierarchy process (FAHP) to determine 

weights and ordered weighted average (OWA), to create a vulnerability map for 

flooding in Tehran under different risk scenarios. They implemented this 

methodology by first identifying important criteria for determining vulnerability in 

urban areas with regards to floods; they did this through literature search, and then 

presenting a questionnaire on criteria weighting to experts. Next, this information 

was input into GIS maps, with the assigned weighted criteria. The authors then 

applied the weighting method, FAHP, followed by the application of minimum and 

maximum functions for dimensionless criterion mapping. The criteria map was 

then combined with the OWA model, which delineated areas which would be 

vulnerable to flooding and respective degrees of risk. Finally, the model results 

were evaluated using a sensitivity analysis (Afsari et al., 2022).  

https://www.zotero.org/google-docs/?0EUNyy
https://www.zotero.org/google-docs/?KivN7h
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Wang et al. (2019) used general circulation models (GCM) in combination with a 

hydrological model to assess the overland flood risk affected by climate change and 

hydraulic engineering in Baiyangdian Lake Area (BYD), located south of Beijing, 

China. They used five GCM models, HadGEM2-ES, GFDL-ESM2M, ISPLCM5A-

LR, MIROC-ESM-CHEM, and NorESM1-M, and one hydrological model, the 

variable infiltration capacity (VIC) model. They used the VIC model to simulate 

infiltration and excess runoff generation, and the hydrodynamic GCM models to 

implement three flooding scenarios; one scenario with a historic 50 year flood, a 

second with a historic 50 year flood along with a heightened dike of 2 m and 

reservoirs, and finally a future scenario with a heightened dike of 2 m and 

reservoirs. The results of this study found that flood risk was relatively high in the 

local district of the BYD under the future climate change scenario (Wang et al., 

2019).  

The flood risk methodology in this work was inspired by the methods implemented 

by Dottori et al. (2017), who used the LISFLOOD model to implement a rapid risk 

assessment procedure for Europe. They did this by first simulating streamflow and 

flood forecasting, secondly conducting event-based rapid flood hazard mapping, 

and finally producing an impact assessment. The authors of this study calibrated 

the LISFLOOD model at a European scale using streamflow data from several 

gauging stations, and interpolated meteorological data based on point 

measurements of precipitation and temperature. They ran the model on a 5km grid 

and used an initialization period of 1990-2013 for proceeding LISFLOOD runs. 

Then, using available flood forecast data which is provided by EFAS with a lead 

time of 10 days, river sections potentially affected by local flood magnitude were 

identified through the return period of peak discharge. Next, areas at risk of 

flooding were determined by use of a map catalog, with flood-prone areas 

delineated based on flood magnitude. These flood maps were then compared to 

local flood protection measures and merged into an event-based hazard map. The 

authors of this study then combined these event hazard maps with exposure and 

vulnerability information to assess affected population, infrastructure, urban areas, 

and economic damage, based on the normalized damage functions developed by 

Huizinga et al. (2007) (Dottori et al., 2017).  

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?BGkZ5w
https://www.zotero.org/google-docs/?BGkZ5w
https://www.zotero.org/google-docs/?B54x0d
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Chapter 3 

METHODOLOGY 

 

The following chapter describes the methodology carried out in this work. Figure 

1 shows the general outline of the steps taken to produce the results, with each 

subsection of this chapter detailing the specifics on the procedures which were 

implemented.  

3.1 Study Area 

The Rhine River is one of the largest rivers in Europe. It has origins in the Swiss 

Alps and flows through several countries, including Germany, Switzerland, and the 

Netherlands, eventually ending in the North Sea (Ruijsch et al., 2021). The Upper 

Rhine River Basin, the study area of this work, is a hydrological entity which spans 

across Germany, Luxembourg, Belgium, and Switzerland. It has an area of 

approximately 140,929km2, and includes the German State Rhineland Pfalz, which 

was flooded in July 2021. It should be noted that hydrological processes which are 

simulated within the LISFLOOD model must occur within a catchment. Thus, the 

Upper Rhine River Basin was chosen as the study area of this work because it 

included the Rhineland Pfalz region.  

Fig. 1 Methodology flow chart for the steps and processes carried out in this work.  

https://www.zotero.org/google-docs/?wX3fYh
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3.2 The LISFLOOD Model  

3.2.1 Simulated Hydrological Processes 

The LISFLOOD model is able to simulate a multitude of hydrological processes, 

including snow melt, infiltration, interception of rainfall, leaf drainage, evaporation 

and water uptake by vegetation, surface runoff, preferential flow, soil moisture 

distribution, drainage to the groundwater, sub-surface as well as groundwater flow, 

reservoirs and river channel routing (Gai et al., 2019).  

In this work, all hydrological processes related to surface-runoff were simulated 

within the model to produce flood discharge levels. These hydrological processes 

will be explained in the following section. Excluded hydrological processes which 

were not modeled include snowmelt and lakes, since there were no large lakes 

present in the study area and the study area was not affected by snowmelt. A 

conceptual model which documents an overview of hydrological processes 

simulated within the model can be found in Figure 3. Further documentation on 

snowmelt and lake processes which can be simulated within the LISFLOOD model 

can be found in Van Der Knijff et al. (2010).  

Fig 2. Study area, the Upper Rhine River Basin (author) 

https://www.zotero.org/google-docs/?6PlxAr
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Rainfall interception is modeled within the LISFLOOD-OS model using the 

approach of Aston (1979) and Merriam (1960) using two parameters. Where 

interception is estimated as:  

                                     (1)  

 

where Int (mm) is the interception per time step, Smax (mm) is the maximum 

interception, R is the rainfall intensity (mm day -1) and k accounts for vegetation 

density (Van Der Knijff et al., 2010). Smax  is calculated using the empirical equation 

(LISFLOOD Model Documentation, n.d.):  

 

(2) 

 

 

with LAI being the average Leaf Area Index (m2 m-2) in each grid cell, and LAI 

related to the constant k in the equation:  

Fig 3. Conceptual model of the LISFLOOD-OS hydrological rainfall-runoff model, including 

hydrological processes and model variables. P=precipitation; Int=interception; 

EWint=evaporation of intercepted water; Dint=leaf drainage; Dint=leaf drainage; ESa=evaporation  

from soil surface; Ta=transpiration (water uptake by plant roots); INFact=infiltration; Rs=surface 

runoff; D1,2=drainage from top-to subsoil; D2,gw=drainage from subsoil to upper groundwater 

zone; Dpref,gw=preferential flow to upper groundwater zone; Duz,lz=drainage from upper to lower 

groundwater zone; Quz=outflow from upper groundwater zone; Q1=outflow from lower 

groundwater zone; Dloss=loss from lower groundwater zone. Snowmelt is not included in this 

figure although it is able to be simulated within the LISFLOOD-OS model (LISFLOOD Model 

Documentation, n.d.; Van Der Knijff et al. 2010).  
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       (3)  

 

In terms of evaporation of intercepted water, EWint is the potential evaporation rate 

from an open water surface, EW0, which is defined as:  

 

       (4)  

  

where EWmax is the maximum evaporation per time step, proportional to the fraction 

of vegetated area in each pixel, and kgb is the constant for global solar radiation 

(Van Der Knijff et al., 2010). Further, evaporation from interception is defined as:  

       (5)  

 

with EWint being actual evaporation, which occurs from interception store per time 

step. The LISFLOOD model assumes that all water on average either evaporates or 

falls to the soil surface as leaf drainage within one day, in Intcum. leaf drainage is 

further defined in the equation:  

       (6)  

 

where Dint is the leaf drainage per time step in mm, and Tint is the time constant for 

interception store of one day (LISFLOOD Model Documentation, n.d.; Van Der 

Knijff et al., 2010).  

In terms of impervious surfaces, the LISFLOOD model assumes that any water that 

reaches an impervious surface is added directly to the surface runoff, that there is 

no storage capacity, and that there is no groundwater storage. Direct runoff is 

therefore defined as (LISFLOOD Model Documentation, n.d.; Van Der Knijff et 

al., 2010):  

Rd  = fdr (R * Δt + M – IntercSealed) + WaterFraction * (R * Δt + M – 

EW0)                       

 

 

For pervious surfaces, the fraction of each cell that is pervious is defined by the 

equation:   

(7) 



Kraatz 16 

 

       (8)  

 

with R being rainfall intensity per time step and Int being rainfall interception (Van 

Der Knijff et al., 2010).  

For evapotranspiration, simulated processes are modeled after the widely-used 

FAO Penman-Monteith method, where vegetation transpiration and water uptake 

are modeled separately from direct evaporation from the soil surface. This enables 

historical data to be used as input into the LISFLOOD model (Van Der Knijff et 

al., 2010). Maximum transpiration per time step is defined as:  

        

       (9) 

 

with ET0 being the potential (reference) evapotranspiration rate per day, and kcrop 

being the crop coefficient. In case of water stress, the LISFLOOD model reduces 

the transpiration rate with a reduction factor, defined as:  

    (10)  

 

where w1 is the soil moisture in the upper layer, and wwp1 is the amount of soil 

moisture at wilting point. Further, wcrit1 is the water moisture below when plants 

start to close their stomata (Van Der Knijff et al., 2010). Critical soil moisture is 

then calculated as:  

     (11)  

  

with wfcl as the amount of soil moisture at field capacity, and p being the water 

depletion fraction in the soil. Actual transpiration is further calculated as:  

     (12)  

 

To compute the maximum amount of evaporation from the soil surface, the 

maximum evaporation from soil surfaces is computed in the equation:  

     (13)  
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With ES0 being the rate of potential evaporation rate from bare soil surfaces. 

Further, since actual evaporation from soil is dependent on the amount of soil 

moisture near the soil surface, i.e. since evaporation decreases as the topsoil dries, 

the LISFLOOD model simulates this process with a reduction factor in the 

equation:  

     (14) 

 

which is a function of the number of days since the last rain storm (Van Der Knijff 

et al., 2010). In this equation, the variable Dslr represents the number of days since 

the last rainfall. If the amount of water available for infiltration (Wav) is below a 

critical threshold, Dslr increases over time by the change in temperature per time 

step. If the critical amount of water is exceeded, the model sets Dslr to 1. Actual soil 

evaporation is calculated as a result of the previous equation, and is taken as the 

smallest value and the available moisture in the soil:  

     (15)  

 

with w1 being moisture in the upper soil layer, and wrl  being residual soil moisture 

(Van Der Knijff et al., 2010).  

Infiltration capacity of soil in the model is estimated using the Xinanjiang method. 

This method considers sub-pixel heterogeneity of infiltration capacity, which is 

especially important when modeling large-scale runoff. This method assumes that 

the fraction of a grid cell that contributes to surface runoff is related to the total 

amount of soil moisture, which is calculated through a non-linear distribution 

function:  

     (16)  

 

 

where As is the saturated fraction of a pixel, and ws1 and w1 are the maximum and 

actual amounts of moisture in the superficial (1a) and upper (1b) soil layers 

respectively, and b is a dimensionless empirical shape parameter, usually used as a 

calibration constant (LISFLOOD Model Documentation, n.d.; Van Der Knijff et al., 

2010).  As is also expressed as a fraction of the pervious fraction, and thus the 

infiltration capacity INFpot is a function of ws1 and As in the equation:  

     (17)  
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Failing to account for preferential flow may lead to unrealistic model behavior 

during extreme rainfall, and thus the following equation is used within the 

LISFLOOD model:  

     (18)  

 

 

with Dpref,gw being preferential flow per time step, and Wav being the amount of 

water available for infiltration. Cpref is another empirical shape parameter, which is 

used as a calibration constant. This equation then produces preferential flow that 

becomes important as water intake increases in the soil (Van Der Knijff et al., 

2010). Actual infiltration can then be calculated as:  

     (19)  

 

 which can then be used in the equation for surface runoff (see equation 7).  

Soil moisture flow is simulated within the model using Darcy’s law for one-

dimensional vertical flow. This is computed as:  

     (20)  

 

Where D is the moisture flux out of a soil layer, i.e. the upper and lower soil layers, 

K(θ) is the hydraulic conductivity, θ is the soil’s volumetric moisture content, and 

the remaining is the matric potential gradient. If matric potential gradient is 

assumed to be zero, then the flow in equation (20) is always in a downward 

direction, at a rate that is equal to the conductivity in the soil. Hydraulic 

conductivity and soil moisture status are further related in the Genuchten equation, 

which is written in terms of a water slice in the LISFLOOD model. It is used to 

calculate the fluxes from the upper to lower soil layers, and then from the lower 

soil layer to the groundwater:  

     (21)  

 

 

where Ks is the saturated conductivity, w, wr, and ws are the actual, residual, and 

maximum amounts of moisture in the soil respectively. m is a parameter which is 
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calculated from the pore size index, and is related to soil texture in the following 

equation:   

     (22)  

 

 

For subsurface flow the LISFLOOD model contains a quick-runoff component for 

the upper zone, which includes a fast groundwater and subsurface flow through 

maco-pores in the soil. The lower zone represents slow groundwater that generates 

base flow. Outflow from the upper zone is calculated as:  

     (23)  

 

With Quz being the outflow from the upper zone, Tuz being the reservoir constant in 

days, and UZ being the water amount that is stored in the upper zone (Van Der 

Knijff et al., 2010). Additionally, the outflow from the lower zone is calculated as:  

      

     (24)  

 

Where Quz is the outflow from the lower zone, Tlz is the reservoir constant, again in 

days, and LZ is the water stored in the lower zone(Van Der Knijff et al., 2010). A 

fixed amount of water also percolates from the upper zone to the lower zone, which 

is calculated as:  

     (25)  

 

where GWperc is a user-defined value that can be used as a calibration constant. The 

following equation was not simulated within the model because the lower 

groundwater zone was treated as a system with a completely closed boundary, 

however if the outflow from the lower zone is treated as a loss, it is calculated 

within the model using:  

                     Dloss = floss(Qls)   

 

In this equation, the loss term represents either water that is lost to deep 

groundwater systems that do not follow the catchment boundaries, or groundwater 

(26) 
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extraction wells. The amount of water in the upper and lower zones are therefore 

updated for the in and out-going fluxes in the equations:  

 

     (27)  

     (28)  

 

The slow response to the lower zone is prone to initialization problems, thus the 

model can be run to calculate the steady-state of water storage for proceeding model 

runs (see section 3.4.1).  

In terms of channel routing, there are two different components that the model 

considers. First, runoff from each pixel is routed to the nearest downstream channel. 

Then, the surface runoff is routed using a four-point implicit finite-difference 

solution of the kinematic wave equations from Chow et al. (1998). For sub-surface 

runoff, all water that flows out of the upper and lower groundwater zone is routed 

to the nearest downstream pixel within one time-step. Then, the water in each 

channel pixel is routed through the channel network, again using the four-point 

implicit finite-difference solution of the kinematic wave equations. The basic 

equations used are the continuity equation and the momentum equation. The 

continuity equation is:  

                ∂Qsr/∂x+∂Asr/∂t=qsr 

Where Qsr is the surface runoff, Asr is the cross-sectional area of the flow, 

and qsr is the amount of lateral inflow per unit flow length (LISFLOOD Model 

Documentation, n.d.). The momentum equation is:  

                  ρ⋅g⋅Asr⋅(S0−Sf)=0 

 

where ρ is the density of the flow, g is the gravity acceleration, S0 is the 

topographical gradient, and Sf is the friction gradient. For further documentation on 

the kinematic wave equations, see the LISLFOOD model documentation page 

(LISFLOOD Model Documentation, n.d.).  

3.3 Data  

As mentioned previously, the LISFLOOD-OS model is a GIS-based hydrological 

rainfall-runoff model, capable of simulating hydrological processes that occur in a 

catchment (Van Der Knijff et al., 2010). It is spatially distributed and based on 

raster files, which helps to simplify the large data requirements of the model 

(Cantoni et al., 2022). These data requirements include static maps and 

(29)  

(30)  

https://www.zotero.org/google-docs/?LNTq2b
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meteorological forcings. The static maps provide the model with information on 

the underlying morphological, physical, soil, and land-use properties for each pixel 

within the catchment (LISFLOOD User Guide, n.d.). The meteorological forcings, 

which include precipitation, average temperature, and potential evapotranspiration 

time-series (specifically reference values for evaporation from open water bodies, 

bare soil, and a reference value of evapotranspiration), provide time series of values 

for each pixel within the catchment (Cantoni et al., 2022; LISFLOOD User Guide, 

n.d.). Meteorological data are required for each time step within the computational 

domain, and in this work included approximately 11,000 maps for each 

meteorological forcing respectively (LISFLOOD User Guide, n.d.).  

3.3.1 Static Maps 

Static maps were obtained at approximately 1 km spatial resolution. The static maps 

were developed using a variety of different data sources, however specifically from 

the sources and methodologies of CaMa-Flood, MERIT DEM, CORINE Land 

Cover 2018, Copernicus Global Land Cover Layers (CGLS), Global Lakes and 

Wetlands Database (GLWD), Spatial Production Allocation Model (SPAM), 

RiceAtlas, World Soil Information (ISRIC), Copernicus Global Land Service LAI 

Collection, SoilGrids250m (2017), FAO Irrigation and Drainage, and Open-

Channel Hydraulics (LISFLOOD Model Documentation, n.d.).  

The topography and channel geometry maps were prepared using data from CaMa-

Flood and MERIT DEM. CaMa-Flood (Catchment-based Macro-scale Floodplain) 

is a model which was designed to simulate the hydrodynamics in continental-scale 

rivers (CaMa-Flood, 2021). Water levels and flooded areas are determined by the 

water storage at each unit-catchment, using sub-grid topographic parameters of the 

river channel and floodplains (CaMa-Flood, 2021). The model is driven by runoff 

forcing from a land surface model. Map data and sample input data were provided 

by the model developers, specifically by way of  the global river map (river network 

map, river topography parameters, and high-resolution topography data, which 

were based on MERIT Hydro 1min resolution), preprocessed Eart2Observe (E2O) 

runoff products and runoff climatology data, and the river channel parameters 

(channel width and channel depth) (LISFLOOD Model Documentation, n.d.).  

Land-use maps were prepared using data from CGLS and CORINE Land Cover 

2018. The CGLS provides a Dynamic Land Cover map at 100m resolution which 

entails a primary land cover scheme, along with continuous field layers for basic 

land cover classes with proportional estimates for vegetation and ground cover 

(Earth Engine Data Catalog, n.d.). In terms of the LISFLOOD model, these maps 

provide the percentage of a grid-cell covered by a land-cover type (LISFLOOD 

Model Documentation, n.d.). The land-use maps were derived from the PROBA-V 

100m timeseries, a database which reaches an accuracy of 80% at Level1 over all 

years (LISFLOOD Model Documentation, n.d.).  

Land-use depending maps were prepared also using data from CGLS, the SPAM 

methodology., and SoilGrids250m. The SPAM methodology makes use of a cross-

https://www.zotero.org/google-docs/?fDWTrk
https://www.zotero.org/google-docs/?lkykvI
https://www.zotero.org/google-docs/?lkykvI
https://www.zotero.org/google-docs/?DGBmaB
https://www.zotero.org/google-docs/?iuRcjY
https://www.zotero.org/google-docs/?8EkstV
https://www.zotero.org/google-docs/?e3zAdX
https://www.zotero.org/google-docs/?FGiE7s
https://www.zotero.org/google-docs/?nOCbct
https://www.zotero.org/google-docs/?solBTo
https://www.zotero.org/google-docs/?solBTo
https://www.zotero.org/google-docs/?lvsPjn
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entropy approach to make plausible estimates of crop distribution within 

disaggregated units (Harvard Dataverse, n.d.). SPAM provides estimates of crop 

distribution for 42 crops, such as cassava, potatoes, and wheat, and two production 

systems (irrigated and rainfed), which were input into the model to provide a spatial 

reference of crop production in the study area (LISFLOOD Model Documentation, 

n.d.). Further, the SoilGrids250m (2017) is a global collection of soil property class 

maps, which were produced using machine learning and statistical measures 

(LISFLOOD Model Documentation, n.d.)  

Soil hydraulic property maps were prepared using data from ISRIC, which is an 

independent foundation that provides global soil information (About ISRIC, n.d.) . 

ISRIC data from 2020 were used in this work for a number of soil hydraulic 

property maps, such as clay, soil PH, and silt.  

Leaf area index (LAI) maps were prepared using data from CGLS LAI Collection, 

Version 2, at 1km resolution. The product is derived from SPOT/VEGETATION 

and PROBA-V data (LISFLOOD Model Documentation, n.d.). Further 

documentation on the methodology for the preparation of LAI maps can be found 

on the LISFLOOD model documentation page.  

Reservoirs and lakes maps were derived using data from the GLWD. These maps 

were produced in partnership with the World Wide Fund for Nature (WWF, 2004), 

the Center for Environmental Systems Research, and the University of Kassel, 

Germany, and provide data and information on lakes and wetlands on a global scale 

at 1:1 to 1:3 million resolution (WWF, 2004).  

The rice calendar maps were produced using data from RiceAtlas, which is a spatial 

database for rice planting and harvesting dates by growing season, and estimates 

on monthly production for all rice-planting countries (Harvard Dataverse, n.d.). In 

cases where peak harvesting dates were not available, dates were estimated for the 

midpoint between start and end dates (LISFLOOD Model Documentation, n.d.).  

3.3.2 Meteorological Forcings 

As mentioned previously, the meteorological forcing data which is used in the 

model includes precipitation, P (mm day -1), average temperature, Tavg (º C), and 

evapotranspiration levels, including potential (reference) evapotranspiration rate of 

a closed canopy, ET0 (mm day -1), potential  (reference) evaporation rate from a 

bare soil surface, ES0 (mm day -1), and potential (reference) evaporation rate from 

an open water surface, EW0 (mm day -1) (Van Der Knijff et al., 2010). All 

meteorological data were obtained from the EMO-1 (European Meteorological 

Observations) dataset, which is a high-resolution, daily, multi-variable gridded 

meteorological dataset based on historical and real-time observations (JRC Data 

Catalog, n.d.). The EMO dataset is a Copernicus Emergency management service 

product, which provides daily data for total precipitation, minimum and maximum 

temperature, wind speed, solar radiation, and water vapor pressure. These data were 

put through a set of quality controls, and then underwent the SPHEREMAP and 

https://www.zotero.org/google-docs/?WZeoA6
https://www.zotero.org/google-docs/?mjZ4UK
https://www.zotero.org/google-docs/?mjZ4UK
https://www.zotero.org/google-docs/?jI32QF
https://www.zotero.org/google-docs/?6oh1zn
https://www.zotero.org/google-docs/?bekgIO
https://www.zotero.org/google-docs/?vQNpJ6
https://www.zotero.org/google-docs/?uRCOAz
https://www.zotero.org/google-docs/?Ggj2Mr
https://www.zotero.org/google-docs/?Mlobn7
https://www.zotero.org/google-docs/?ozvn8a
https://www.zotero.org/google-docs/?ozvn8a
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Yamamoto interpolation methods in order to estimate variable value and 

uncertainty for each grid cell (JRC Data Catalog, n.d.).  

Most meteorological datasets do not provide estimates of potential evaporation and 

evapotranspiration rates (Van Der Knijff et al., 2010), which was also found to be 

the case in this work. Thus, to obtain these values, the LISVAP model, a separate 

pre-processing application which was developed in conjunction with the 

LISFLOOD model, was used with meteorological data obtained from the EMO-1 

dataset (Van Der Knijff et al., 2010). The LISVAP model uses the Penman-

Monteith equation to calculate reference potential evaporation and 

evapotranspiration (Gai et al., 2019).  

Meteorological data from 1990-2021 were prepared and run within the study area 

for the LISVAP model to obtain evapotranspiration and evaporation reference 

levels. Further, for the initialization period, meteorological data from 1990-2021 

were also applied to the study area and prepared in map stacks to produce 

reasonable estimates of average discharge, as well as inflow into the lower 

groundwater zone (see further details in section 3.4.1). All meteorological data for 

the flooding event of 2021 and the future flooding scenario were prepared in map 

stacks for the years 2020-2021.   

3.4 Model Set-up and Implementation 

In terms of model set-up, Docker was used to connect local data files within the 

LISFLOOD-OS shell to run the necessary scripts for initialization, calibration, and 

the final model runs. Model code was extracted from Github via the LISFLOOD-

OS Github page, with the settings files manipulated according to the Upper Rhine 

catchment requirements. The model was implemented to run a simulation 

according to discharge at the Mainz gauging station for comparison against 

observed data. All simulations were run at a daily time-step at 1 arcmin, or 

approximately 1 km spatial resolution, from January 1, 2020, through December 

31, 2021. The time period chosen to run the model was done in order to provide a 

sufficient warm-up period to simulate the flooding event of 2021.  

3.4.1 Initialization Run 

An initial run, or initialization, is done to get the initial state of water stored in the 

catchment, so that proceeding model runs can produce reasonable water discharge 

(LISFLOOD User Guide, n.d.). Although a long warm-up period usually produces 

a reasonable initialization, the storage component in the model is dependent on the 

average residence time of water in it; essentially, while moisture content from the 

upper soil zone interacts with the meteorological forcing data almost immediately, 

the lower groundwater zone is very slow to respond to meteorological data; thus 

the average recharge (or steady-state storage) must be calculated, a value which is 

only known at the end of the simulation. This initialization run then produces an 

average discharge map, as well as lower zone average inflow, which provide these 

values on which the proceeding model runs can be based off of (LISFLOOD User 

https://www.zotero.org/google-docs/?QlvzJy
https://www.zotero.org/google-docs/?2YcIPK
https://www.zotero.org/google-docs/?HTcOYb
https://www.zotero.org/google-docs/?0O428T
https://www.zotero.org/google-docs/?YTvnf1
https://www.zotero.org/google-docs/?JQIM6V
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Guide, n.d.). In this work, the initialization was run for the years 1990-2021 within 

the study area to get a reasonable value for the steady-state storage of water in the 

Upper Rhine catchment.  

3.4.2 Model Calibration 

Uncertainties are possible unknowns regarding forcings in the model processes. 

These uncertainties could be caused by input data, or even the theory and 

methodology behind the model itself. To address these uncertainties, model 

calibration is therefore an important step to ensure that the model is implemented 

according to the catchment’s specifications (Tom et al., 2022). More specifically, 

model calibration helps to find the most optimal parameter values, that is values 

which produce the best fit between the model simulation and historic observations 

of the catchment, measured in outputs such as water discharge (Ruijsch et al., 

2021). The LISFLOOD model contains numerous parameters which can be 

calibrated, however most can be left to the model defaults made from prior 

estimates (Van Der Knijff et al., 2010). Thus, in this work a total of five parameters 

were calibrated, based on the calibration done by Feyen et al. (2007) for the Dutch-

Belgian-French Meuse catchment. The parameters calibrated in this work include:  

 

1. Upper zone time constant (Tuz) 

2. Infiltration constant (b) 

3. Preferential flow constant (Cpref) 

4. Maximum rate of percolation from upper to lower zone (GWperc) 

5. Lower zone time constant (Tlz) 

 

The Upper and Lower zone time constants represent the residence time of water in 

the upper and lower groundwater zones, respectively. These parameters affect the 

timing of outflow from groundwater reservoirs. The Groundwater Percolation 

parameter affects water flow from the upper to the lower groundwater zone. As 

referenced in equation 16, the Xinanjiang parameter, or infiltration constant, 

controls the infiltration capacity of the soil. This parameter controls the fraction of 

saturated area within a grid cell that contributes to runoff. Lastly, the Power 

Preferential Flow parameter relates water flow with the relative saturation of the 

soil (Feyen et al., 2007).  

Feyen et al. (2007) chose these parameters to calibrate because they lack a physical 

basis that cannot be directly obtained by field data; due to the LISFLOOD model’s 

lumped representation of some processes, these five parameters in particular need 

to be estimated against stream flow records (Feyen et al., 2007). Thus, for the 

purposes of this work these parameters were also calibrated.  

The calibration approach used in this work was a manual calibration strategy, where 

the parameters implemented by Feyen et al. (2007) were iterated over model runs 

https://www.zotero.org/google-docs/?JQIM6V
https://www.zotero.org/google-docs/?Y1tM6z
https://www.zotero.org/google-docs/?Y1tM6z
https://www.zotero.org/google-docs/?IT6Bpd
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with different values until the most optimal parameter combination set was 

obtained.  

To quantify how well model simulations compared to observations, the Kling-

Gupta efficiency (KGE) objective function was used. The KGE objective function 

is a robust approach within the literature of hydrological modeling (Cantoni et al., 

2022; Gai et al., 2019; Hirpa et al., 2018; Knighton et al., 2020; Peredo et al., 2022; 

Ruijsch et al., 2021), and was therefore used in this work for the evaluation of 

modeled results. KGE can further be defined as:  

     (30) 

 

 

with KGE being a linear combination of three components of modeling error, 

specifically the Pearson correlation coefficient, the bias ratio, and variability ratio 

between observed and simulated runoff (Cantoni et al., 2022). KGE is a 

diagnostically interesting decomposition of the Nash-Sutcliffe efficiency (NSE), 

however due to the potential limitations of the NSE metric, KGE was used (Cantoni 

et al., 2022; Agrimetsoft, 2019). For a full description of the different components 

of the KGE metric, see Gupta et al. (2009).  

3.5 Flood-Risk Analysis 

3.5.1 EU Flood Depth-Damage Functions 

The flood depth-damage functions for EU member states are risk functions based 

on economic measures, which assess damage for a given land-type based on water 

depth. The depth-damage functions were implemented in this work based on the 

water-depth output maps from the LISFLOOD simulations to quantify flood-risk 

in both the flooding of 2021 and a future flooding scenario. The EU flood depth-

damage functions range from 0 to 1, with 0 being no damage incurred and a 1 being 

maximum damage. Further, these damage functions are separated by land use type, 

which was applied in this work regarding land-use types in Germany. The damage 

classification schemas produced by Huizing et al. (2007) can be seen in Tables 1, 

2, 3 and 4.  

As mentioned before, Dottori et al. (2017) implemented this risk methodology in 

their work to assess a rapid risk assessment procedure for Europe. Like Dottori et 

al. (2017), the outputs from LISFLOOD model simulations were used to compute 

the flood-risk assessment; specifically, separate flood depth-damage functions 

depending on land use type were applied to water depth output maps from 

LISFLOOD simulations. For land use classification, the land use types from the 

CORINE Land-Cover schema for Germany, 2018, were reclassified according to 

the land-use types for the EU depth damage functions: these land use classes were 

residential, industry, infrastructure, and agricultural areas. Since the output maps of 
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LISFLOOD simulations are in raster format, these outputs were vectorized. After 

water-depth maps were vectorized, the classification could be performed within a 

Python framework in a GIS to produce the final flood-risk maps. It must be noted 

that since the spatial resolution of the LISFLOOD simulations was approximately 

1km, the vectorized water-depth data was taken as the nearest land-use class.  

It must also be noted that although the LISFLOOD model can produce water-depth 

within a given grid-cell, the flood inundation extent of a flooding event is not 

simulated within the model. Thus, for the purposes of this work, flood-risk maps 

follow a more similar approach to Afsari et al. (2022), where final flood-risk maps 

containing a range of high and low risk values were produced according to the EU 

flood depth-damage functions produced by Huizinga et al. (2007).  

Dottori et al. (2017) further compared their impact assessment maps against 

Copernicus Emergency Management Services (EMS) footprints to validate 

simulated flood extent, which was also done in this work regarding areas which 

were flooded. Areas which were classified within the flood depth-damage 

framework were compared against Copernicus EMS footprints to evaluate if flood- 

risk classified areas fell within areas which were flooded in 2021 within the study 

area.  

 

 

Residential buildings 

Water depth (m) Damage factor 

0 0 

0.5 0.25 

1 0.4 

2 0.5 

3 0.6 

4 0.75 

5 0.85 

6 0.95 

 

 

 

 

 

 

Table 1. EU depth-damage function values for the residential land use class 
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Industry 

Water depth (m)  Damage factor 

0 0 

0.5 0.15 

1 0.27 

1.5 0.4 

2 0.2 

3 0.7 

4 0.85 

5 1 

6 1 

 

 
Infrastructure 

Water depth (m)  Damage factor 

0 0 

0.5 0.25 

1 0.42 

1.5 0.55 

2 0.65 

3 0.8 

4 0.9 

5 1 

6 1 

 

Agriculture 

Water depth (m)  Damage factor 

0 0 

0.5 0.3 

1 0.55 

1.5 0.65 

2 0.75 

3 0.85 

4 0.95 

5 1 

6 1 

Table 2. EU depth-damage function values for the industry land use class 

Table 3. EU depth-damage function values for the infrastructure land use class 

Table 4. EU depth-damage function values for the agriculture land use class 
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3.5.2 Future Flooding Event Scenario  

In their 6th assessment report on water cycle changes, the IPCC projected an 

increase in the magnitude of extreme precipitation to be approximately 7 percent 

for each 1°C of global warming. This is because air near Earth’s surface can carry 

approximately 7% more water in its gas (vapor) for each 1°C warming; thus, a 

warmer climate increases the amount and intensity of rainfall during wet events, 

and this is expected to amplify the severity of flooding (IPCC, 2022). While the 

IPCC notes that this will also differ regionally, for the purposes of this work the 

precipitation values for the future flooding scenario were increased by 7 percent to 

simulate a higher-risk scenario of flooding. This higher-risk scenario was then 

compared against flood depth-damage classifications from 2021 to evaluate the 

changes in damage which would occur in this higher-precipitation flooding event.  
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Chapter 4 

RESULTS 

 

4.1 Model Calibration Results 

From the manual calibration of the five parameters implemented by Feyen et al. 

(2007), the most optimal parameter values achieved can be seen in Table 5. The 

manual calibration was iterated over multiple simulations changing parameter 

values at increasing and decreasing values, to produce the final parameter values 

which were used to simulate the flooding event of 2021, as well as the future 

flooding scenario. The best KGE value which was achieved in the manual 

calibration was 0.438, which was a vast improvement over using the default 

parameter values, at a KGE of -4.343. Manual calibration discharge time series with 

their respective KGE values can be seen in the hydrograph in Figure 4. For 

simplification purposes not all model runs were included in Figure 4, however it 

gives an overview of the different KGE values which were obtained. All calibration 

simulations were run over the time of January 1, 2020-December 31, 2021.  

  
Parameter Minimum  Maximum Default Optimal 

 Upper Zone Time Constant 0.01 40 10 35 

 Lower Zone Time Constant 40 10000 100 10000 

 Groundwater Percolation 0.01 2 0.5 2 

 Xinanjiang 0.01 5 0.5 0.5 

 Power Preferential Flow 0.5 8 4 4 

KGE       -4.343 0.438 

Table 5. The parameters which were focused on for the manual calibration in this work, with 

the minimum, maximum, and default values as outlined in the LISFLOOD model 

documentation page (LISFLOOD Model Documentation, n.d.). The parameter values which 

achieved a KGE score of 0.438 were found with a manual calibration strategy.  
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4.2 Flooding of 2021 Simulation Result 

After the initialization run and model calibration, the simulation for the flooding 

event of 2021 was completed using calibrated parameter values to produce 

reasonable water discharge values. At its peak during the flooding event, simulated 

discharge was equal to 970.038mm on July 15, 2021. Observed water discharge 

recorded at the Mainz gauging station during July 15, 2021, was 1280mm. 

Simulated values were thus relatively lower than observations, and produced a 

KGE score of 0.438. The hydrograph in Figure 5 shows the observed discharge 

values compared against the modeled result for the flooding event of 2021. From 

this hydrograph, the water discharge peaks follow a similar curve compared to 

observed discharge, showing that the parameter values were reasonable for the 

Upper Rhine catchment. 
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Fig. 4 Manual calibration runs with respective KGE values, shown against observed water discharge values from the Mainz 

gauging station. The best KGE score which was obtained during model calibration was 0.438.  
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4.3 Flooding of 2021 Flood Risk Analysis 

 

In terms of the flood risk which incurred in the flooding event of 2021, as mentioned 

previously the EU flood depth-damage functions were applied according to each 

land use type in the classification to produce the final classification maps for the 

flooding event, seen in Figures 6 and 7.  

Within the Moselle River area, the land use type which received the highest damage 

values were agricultural areas, with values ranging from 0.3-0.65. The next land 

use class which received the highest amount of damage were residential areas, 

receiving values ranging from 0.25-0.6. Industrial areas received relatively low 

damage, ranging from 0-0.27, and infrastructural areas received no damage. It can 

be seen in Figure 6 that the LISFLOOD model simulation was able to capture 

flooded areas which were recorded by Copernicus, namely agricultural and 

residential areas by the river.  

For Bad Neuenahr-Ahrweiler, the land use class which received the most damage 

according to the flood-risk classification was also agricultural areas, receiving 

0

2000

4000

6000

8000

10000

12000

14000

D
is

ch
ar

ge
 m

3
/s

Flooding 2021 Discharge Time Series Observed SimulatedKGE = 0.438

Fig. 5 Water discharge time series for the flooding event of 2021, with modeled simulations compared to observations from the 

Mainz gauging station.  
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damage values ranging from 0.3-0.75. The land use class which received the second 

most damage was residential areas, receiving damage values ranging from 0.4-0.6. 

Industrial areas did not receive any damage according to the flood-risk 

classification, and infrastructure received some damage, ranging from 0-0.65; 

although it can be seen that these areas are outside the Copernicus monitored flood 

areas. As mentioned previously, since LISFLOOD simulations were done with 

approximately 1 km spatial resolution, vectorized water-depth data was taken as 

the nearest land-use class; thus, some areas outside the river area were classified as 

having water depth. Nevertheless, areas near the river did receive some of the 

highest damage values which can be seen in Figure 7.  

For further visualization of the flood-risk classification, Figures 8 and 9, show high 

and low risk areas for all land use types according to their respective damage levels. 

For Bad Neuenahr-Ahrweiler (Fig. 9), areas near Copernicus monitored flood areas 

for the flooding event were classified as moderately-high to high risk; albeit, some 

areas outside of the flooding area were classified as high-risk as well, which will 

be discussed in the limitations (see section 5.1.2). For the Moselle River area (Fig. 

8), a similar pattern can be seen as areas near the river were classified as 

moderately-high to high risk.  
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Fig. 7 Flood risk analysis for the flooding event of 2021 in Bad Neuenahr-Ahrweiler 

Fig 6. Flood risk analysis for the flooding event of 2021 in the Moselle River area. 
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Fig. 8 Combined flood risk classification of all land use classes in their respective damage schemas for the Moselle 

River area, in the flooding event of 2021.  

 

Fig. 9 Combined flood risk classification of all land use classes in their respective damage schemas for Bad Neuenahr-

Ahrweiler, in the flooding event of 2021.  
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4.4 Future Flooding Event Scenario Result 

In a future flooding scenario, with a 7 percent increase in precipitation, the Moselle 

River area would receive 2670.85mm of precipitation for the same timestep as the 

flooding event of 2021. This equates to 372.59mm more water discharge compared 

to the flood simulation on July 15, 2021. The hydrograph in Figure 10 shows the 

simulated water discharge levels for this future flooding scenario compared to 

simulated discharge levels from 2021. The calibrated parameter values were kept 

constant for the future flooding scenario.  
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Fig. 10 Future flooding scenario water discharge time series, implemented by increasing precipitation by 7 percent.  
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4.5 Future Flooding Event Flood Risk Analysis 

 

In terms of risk that would incur in this future flooding scenario, within the Moselle 

River area (Fig. 11), areas classified as agricultural and residential would 

experience the most damage, with values ranging from 0.3-0.65 and 0.25-0.75 

respectively. While agricultural areas received the same amount of risk in the future 

flooding scenario, residential areas received a higher amount of risk, increasing 

from 0.6 to 0.75. Industrial areas also received the same amount of damage, ranging 

from 0-0.27, and infrastructure again received no damage.  

Similar to the Moselle River area, areas classified as agricultural and residential 

within Bad Neuenahr-Ahrweiler (Fig. 12) also would receive the highest levels of 

damage, ranging from 0.3-0.75 and 0.4-0.75 respectively. Industrial areas would 

receive damage ranging from 0-0.4, and infrastructural areas ranging from 0.42-

0.65. Thus, agricultural areas in a future flooding scenario received the same 

amount of damage as the flooding event of 2021, while residential, industrial, and 

the lower-bound of damage for infrastructural areas, all increased in damage values.  

High and low risk classifications for all areas with their respective damage value 

schemas were visualized in Figures 13 and 14; in terms of future FRM practices 

that should be implemented to prepare for another pluvial flooding event, these 

areas could be focused on to reduce future flood impacts.  
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Fig. 11 Flood risk analysis for a future flooding scenario in the Moselle River area. 

Fig. 12 Flood risk analysis for a future flooding scenario in Bad Neuenahr-Ahrweiler.  
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Fig. 13 Combined flood risk classification of all land use classes in their respective damage schemas for the 

Moselle River area, in a future flooding scenario.  

 

 

Fig. 14 Combined flood risk classification of all land use classes in their respective damage schemas for Bad 

Neuenahr-Ahrweiler, in a future flooding scenario.  
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Chapter 5 

DISCUSSION AND CONCLUSION 

 

5.1 Discussion 

Transferring flood simulations into flood-risk remains a broad field with limited 

applications. While there are numerous hydraulic and hydrological models with 

different capabilities depending on the study aim, the LISFLOOD-OS model was 

chosen in this work for its ability to simulate hydrological processes in large 

European basins (Dottori et al., 2017; Feyen et al., 2007; Hirpa et al., 2018; 

Shustikova et al., 2019). Many other studies also found that calibration of the 

LISFLOOD model improved simulations (Cantoni et al., 2022; Feyen et al., 2007; 

Gai et al., 2019; Hirpa et al., 2018) which was also found in this work.  

Results showed that the manual calibration strategy employed in this work was able 

to improve simulations to a KGE score of 0.438. Compared to the model default 

parameter values, which produced a KGE of -4.343, model calibration greatly 

improved simulated streamflow. The calibration result in this work is comparable 

to other studies which also used the LISFLOOD model and the KGE as the 

objective function. For example, through usage of the DEAP calibration strategy, 

Gai et al. (2019) achieved a KGE value of 0.85 in their calibration of the 

LISFLOOD model in the Wei River Basin, China. Also using the DEAP algorithm, 

Cantoni et al. (2022) achieved a KGE score of 0.48 in their calibration of the 

LISFLOOD model for catchments located in Tunisia, North Africa. Hirpa et al. 

(2018) achieved a median KGE score of 0.15 across all basins using the DEAP 

algorithm in their global calibration of the Global Flood Awareness System 

(GloFAS), which utilizes the LISFLOOD model. While perfect agreement between 

observations and simulations would produce a KGE score of 1, as noted by Cantoni 

et al. (2022), a KGE of -0.41 is the value corresponding to a mean flow benchmark. 

Thus, a KGE score of 0.438 produced in this work means that the model was able 

to simulate water discharge levels close to reality.  

While other works applied the DEAP algorithm with the LISFLOOD model 

(Cantoni et al., 2022; Gai et al., 2019; Hirpa et al., 2018; Knighton et al., 2020; 

Peredo et al., 2022; Ruijsch et al., 2021), the calibration strategy applied in this 

work was nonetheless able to find parameter values which were reasonable for the 

Upper Rhine catchment. Furthermore, the results from the calibration affirm that 

the parameters which were calibrated by Feyen et al. (2007) in the Dutch-Belgian-

French Meuse catchment could also apply to the Upper Rhine catchment.  

Most studies found within the literature which used the LISFLOOD model focused 

on model calibration; although this was not the main focus of this work, it was still 

a vital component to ensure that model simulations were correctly implemented 

according to the Upper Rhine Catchment. In this way, successful model calibration 
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helps to validate that the simulation outputs used in the flood-risk analysis were 

reliable. In truth it is difficult to transfer streamflow data into flood-risk; while 

Dottori et al. (2017) used flood forecast data in their risk assessment for Europe, 

this work is novel in that it uses the LISFLOOD model in combination with the EU 

flood depth-damage functions in a classification schema. By drawing on 

methodologies employed by other flood-risk assessments (Afsari et al., 2022), this 

work presents a way to classify flood-risk by taking into account flood damage 

functions, which are an important element for flood damage assessment and impact 

studies (Huizinga, 2007).  

The flood-risk methodology demonstrated in this work was able to show land-use 

classes which were impacted in the flooding event of 2021, as well as in a future 

flooding scenario. Interestingly, damage values changed in a future flooding 

scenario depending on land use class. Namely, for the Moselle River area,  

while agricultural, industrial, and infrastructure areas received the same amount of 

risk, residential areas received a higher amount of risk. For Bad Neuenahr-

Ahrweiler, agricultural areas in a future flooding scenario remained the same in 

terms of damage values, while residential, industrial, and the lower-bound of 

damage for infrastructural areas, all increased in damage values. This shows that 

flood-risk changes differentially for land use classes, and highlights the importance 

of taking into account spatial differences when quantifying risk. As noted by Afsari 

et al. (2022), vulnerability is highly dependent on environmental conditions and 

contexts, with differing outcomes of vulnerability being attributed to spatial 

distinctions; from the differing amounts of risk that incurred depending on land use 

class in a future flooding scenario, this was supported by the results of this work.  

5.1.1 Limitations 

It must be noted that this work was limited in several different aspects. Firstly, even 

though the manual calibration strategy resulted in a KGE score of 0.438, water 

discharge levels for the flooding event of 2021 were still underestimated by the 

model. Although a KGE score of 0.438 indicates that the model was able to produce 

reasonable discharge levels, simulated impacts will always be different from actual 

impacts (Dottori et al., 2017). Model underestimations for the flooding event of 

2021 and the future flooding event scenario therefore must be considered as a 

limitation of this work.  

Secondly, the spatial resolution of input data was also a limitation in this work. 

Since the input data for both static maps and meteorological forcings was 

approximately 1km spatial resolution, this means that for smaller-scale areas such 

as the Moselle River area and Bad Neuenahr-Ahrweiler, simulated outputs did not 

perfectly align with smaller-scale land use classes. Even though simulated outputs 

were able to capture areas which were flooded in 2021, this is an obvious limitation 

as areas outside of flooded areas were also classified as having water depth, and 

thus having damage values. While the LISFLOOD model is able to simulate data 

at any spatial resolution, using higher spatial resolution data was not feasible in this 
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work, because there is not currently readily available data at a finer resolution for 

the static inputs that the LISFLOOD model requires.   

 

5.1.2 Further Applications  

 

As it was a limitation, increasing the spatial resolution of input data, in terms of 

static maps and meteorological forcings, could be an avenue of further 

development. Increasing the spatial resolution of input data would enable the 

simulation of the flooding event on at a finer scale, and possibly improve the 

accuracy of the risk quantification. While the creation of static input maps is a very 

complex process, the creation of these higher-resolution data could create many 

more opportunities of use-cases with the LISFLOOD model, especially in 

simulating flooding and flooding events which may occur in smaller study areas.  

Another application could be to use the LISFLOOD-FP model in combination with 

the LISFLOOD-OS model. While other literature sources also employed the 

LISFLOOD-FP model (Knighton et al., 2020; Shustikova et al., 2019), in this work 

only the LIFLOOD-OS model was used for flood simulation. Use of the 

LISFLOOD-FP model could also prove to be advantageous, however, especially in 

simulating flood extent.  

In terms of the flood-risk quantification, another interesting application mentioned 

by Dottori et al. (2017) would be to use LISFLOOD-OS model simulations to 

determine the effects that flooding events may have on human life, specifically by 

calculating probabilistic risk methods by using mortality rates from previous flood 

events. This application could also be useful for policy makers, and add to the risk-

quantification, to not only see areas which would be affected by a future flooding 

event, but also how many lives could be in danger.  

5.2 Conclusion 

Due to climate change and urban growth, extreme flooding events are occurring 

more frequently on a global scale (Gai et al., 2019; Surminski & Thieken, 2017). 

This means that populations which live in flood-prone areas are in need more than 

ever of flood mitigation and management efforts. This work presented the 

application of a flood-risk quantification approach using the LISFLOOD-OS model 

in the Upper Rhine River basin. Through flood simulation and risk classification, 

flood-risk maps provide residents and governments a classification of damages that 

occurred in the flooding event of 2021 in the Rhineland Pfalz region, as well as the 

damages that may incur with higher levels of precipitation for the same region. 

Results showed that the flooding event of 2021 could be modeled with reasonable 

discharge levels compared to observations from the Mainz gauging station, 

producing a KGE score of 0.438. Further, land use classes which received the 

highest damage values in both the simulated flooding event of 2021 and in the 

future flooding event scenario were agricultural and residential areas. Damage 

values between the flooding of 2021 and a future flooding scenario changed 

depending on land use class, showing the importance of spatial distinctions when 

quantifying risk. While the flood-risk maps may serve as a way to show areas which 
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could be at high-risk in a future flooding scenario, these maps should not be used 

for any final decision-making purposes. As noted by Dottori et al. (2017), the 

present methodology would need to undergo an accurate uncertainty analysis 

before the risk assessments could be used for emergency management. 

Nonetheless, the present work demonstrates an application of the LISFLOOD 

model with a flood-risk quantification approach that has the potential to be used in 

future planning efforts, namely, to help reduce the impacts of large-scale flooding 

events. Since flooding events can strike at any time, it is important to be able to 

identify where to focus flood mitigation efforts; the flood-risk analysis in this work 

thus showcases one possible way to identify high-risk areas, which could be 

focused on for FRM practices. Considering that pluvial floods have largely been 

neglected in Germany (Surminski & Thieken, 2017), flood simulations and the 

quantification of risk could be advantageous not only in reducing economic losses, 

but also in saving human lives. 
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