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Machine Learning to Predict Homolytic Dissociation
Energies of C� H Bonds: Calibration of DFT-based Models
with Experimental Data
Wanli Li,[a] Yue Luan,[a] Qingyou Zhang,*[a] and Joao Aires-de-Sousa*[b]

Abstract: Random Forest (RF) QSPR models were developed
with a data set of homolytic bond dissociation energies
(BDE) previously calculated by B3LYP/6-311+ +G(d,p)//
DFTB for 2263 sp3C� H covalent bonds. The best set of
attributes consisted in 114 descriptors of the carbon atom
(counts of atom types in 5 spheres around the kernel atom
and ring descriptors). The optimized model predicted the
DFT-calculated BDE of an independent test set of 224 bonds
with MAE=2.86 kcal/mol. A new data set of 409 bonds

from the iBonD database (http://ibond.nankai.edu.cn) was
predicted by the RF with a modest MAE (5.36 kcal/mol) but
a relatively high R2 (0.75) against experimental energies. A
prediction scheme was explored that corrects the RF
prediction with the average deviation observed for the k
nearest neighbours (KNN) in an additional memory of
experimental data. The corrected predictions achieved
MAE=2.22 kcal/mol for an independent test set of 145
bonds and the corresponding experimental bond energies.

Keywords: density functional calculations · bond energy · machine learning · learning transfer · quantitative structure-property relationship

1 Introduction

The homolytic dissociation energy of C� H bonds is a key
parameter playing a decisive role in the assessment of
chemical reactivity, e.g., predicting the major possible
metabolic sites of xenobiotics,[1] metabolic stability,[2] au-
tooxidation of drugs,[3] anti-oxidant activity,[4] or reaction
pathways of pollutants in the atmosphere.[5]

The experimental determination of bond dissociation
energies (BDE) for polyatomic molecules is difficult and has
a typical uncertainty of ca. 1–2 kcal/mol.[6] Furthermore,
predictions from the molecular structural formula are
required for compounds not yet prepared or for virtual
screening.

Theoretical calculations by quantum chemistry methods
can provide accurate estimations of BDEs, but they are too
computationally demanding for datasets with millions of
compounds. Several methodologies were explored and
compared.[7–9] Recently, St. John et al.[6] reported a bench-
mark study of three DFT functionals (B3LYP-D3, ωB97XD,
and M06-2X) and two basis sets (6-31G(d) and def2-TZVP)
using 368 experimental BDEs; the M06-2X/def2-TZVP com-
bination performed best and achieved a mean absolute
error (MAE) of 2.1 kcal/mol, which approaches the under-
lying uncertainty in the experimental measurements.

Chemoinformatics quantitative structure-property rela-
tionships (QSPR) can predict BDEs very rapidly and achieve
high accuracies if appropriate data sets are available for
training the models. QSPR studies were reported for specific
types of compounds that relied on small data sets of
experimental data, and some of them incorporated quan-
tum chemistry descriptors. Cherkasov et al.[10] developed an

additive empirical relationship with a data set of 79
molecules to predict the BDE of C� H bonds within
3.75 kcal/mol in molecules where resonance contributions
and captodative stabilization are insignificant. Stanger[11]

observed a correlation coefficient of 0.951 for a second
order polynomial fit between the hybridization (calculated
at B3LYP/6-311G*) and the intrinsic C� H BDEs for 17 alkyl
C� H bonds. Przybylak and Cronin[12] investigated the C� H
bonds at the α-position of 43 ethers and reported a high
correlation (R2 =0.852) in a linear regression analysis of the
BDEs versus spin distributions (calculated at B3LYP/6-
311G**); correlations were higher within different subcate-
gories of ethers based on structural features. Feng et al.[13]

constructed a QSPR equation for the homolytic C� H BDE of
strained hydrocarbons, from the hybridization associated
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with the C� H bond of the parent compound, the hybrid-
ization of the carbon radical, and the extent of spin
delocalization of the radical for 89 bonds (calculated at
UB3LYP/6-311+ +G(2df,p)//UB3LYP/6-31G(d)); the model
exhibited a correlation coefficient of 0.927 and standard
deviation of 2.9 kcal/mol. Zhao et al.[2] proposed an equa-
tion with 15 independent parameters associated with
structural features that were optimized to predict benzylic
C� H BDEs of 303 diverse heterocyclic compounds calcu-
lated with the DFT B3LYP functional; a standard deviation
of 1.1 kcal/mol was observed for the whole set.

In a different approach, large databases with tens/
hundreds of thousands of BDEs were calculated by
quantum chemistry methods and were used to train
machine learning methods. In 2013 one of the authors
reported a data set of >12,000 BDEs calculated by B3LYP/6-
311+ +G(d,p)//DFTB and machine learning models trained
with 2D structural descriptors to predict the BDE; a MAE of
3.35 kcal/mol and R2 =0.953 was observed for an independ-
ent test set of 887 bonds covering a range of 17.67–
202.30 kcal/mol.[14] The data set included neutral molecules
and bonds with atoms of elements C, H, O, N, or S.

St John et al.[6] developed a database of 290,664 unique
covalent non-cyclic bonds and their BDEs calculated at the
M06-2X/def2-TZVP level of theory. The bonds were from
42,557 parent neutral molecules of general formula
CxHyOzNm with 10 or fewer heavy atoms, taken from the
PubChem Compound database. A graph neural network
trained on a subset of these data achieved a MAE of
0.58 kcal/mol (vs DFT) for 6948 unique BDEs of unseen
molecules. Predictions for a set of molecules larger than 10
heavy atoms that were not a part of the training database
yielded a MAE of 3.4 kcal/mol against experimental values.

Wen et al.[15] constructed a dataset of over 64,312
unique homolytic and heterolytic bond dissociations of
neutral and charged (-1 and +1) molecules including
organic and inorganic species (with elements C, H, O, F or
Li), closed-shell and radical molecules, and molecules
coordinated with metal ions. A chemically inspired graph
neural network (BonDNet) was trained to predict BDEs; it
maps the difference between the molecular representations
of the reactants and products to the BDE of the correspond-
ing reaction. A MAE of 0.51 kcal/mol was reported for a test
set of unseen data. The BDE was calculated as the Gibbs
free energy of dissociation at the ωB97X-V4 level of theory
with the def2-TZVPPD basis set.

Here we report the development of a local model for
BDEs of sp3C� H bonds with data previously published.[14]

The bonds were represented by atomic descriptors of the
carbon atom – counts of atom types in spheres around the
atom, and sizes of rings incorporating the atom. The
Random Forest algorithm was used for machine learning.
The model was validated with a test set and was also
challenged with a data set of experimental BDEs. Further-
more, a prediction scheme was explored that corrects the
RF prediction with the average deviation observed for the k

nearest neighbors (KNN) in an additional memory of
experimental data. In this way we investigated the
possibility of transferring the knowledge acquired with DFT
data at a certain level of theory to an improved prediction
of experimental BDEs. Learning transfer in ML approaches is
of high interest to overcome the limitations of quantum
chemistry calculation of properties and the more limited
access to experimental data.[16,17]

2 Methodology

2.1 Data Sets

2.1.1 Data Set of DFT-calculated Bond Dissociation Energies

Data were retrieved for covalent bonds between hydrogen
and sp3 carbon atoms from a more general data set
consisting of molecular structures and homolytic bond
dissociation energies (BDE) for a training set of 4242
compounds and a test set of 100 compounds.[14] The BDE
had been calculated from the energies of the molecule and
the energies of the two fragments formed by breaking the
bond. The geometries of the molecule and the two
fragments were optimized with DFTB. Single point energies
were calculated for the molecule and for the fragments at
B3LYP level in conjunction with the 6–311+ +G** basis set.
The zero point energy correction and vibrational entropic
terms were not included.

A subset of 4837 sp3C� H bonds in the training set and
510 sp3C� H bonds in the test set were retrieved. The
equivalent C� H bonds were identified according to the
uniqueness of the carbon atom by using a highly discrim-
inating atomic index – the aATID index[18] as one of a series
of highly selective topological indices[19,20] previously sug-
gested by one of the authors. After excluding equivalent
C� H bonds, we obtained 2039 sp3C� H bonds in the
training set and 224 sp3C� H bonds in the test set.

2.1.2 Data Set of Experimental Bond Dissociation Energies

Data were retrieved from the Internet Bond-energy Data-
bank (pKa and BDE) – iBonD (http://ibond.nankai.edu.cn)
and consisted of 419 molecules with experimental BDE
(homolytic bond dissociation enthalpy at 298 K) for one
sp3C� H bond in each molecule. Among them, one bond
was the same as one of the bonds in the whole DFT data
set (based on the aATID index). In addition, one molecule
contained an arsenic atom and eight molecules contained
silicon atoms. These ten molecules were removed, and the
remaining 409 molecules were used as the experimental
data set. If more than one BDE value exist for a bond in the
data set, the average bond energy was calculated as the
final experimental BDE of the bond; the mean absolute
deviation from the average was 1.264 kcal/mol for cases
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with two values and 1.338 kcal/mol for cases with more
than two values.

The data set was randomly partitioned into a training
set composed of 327 bonds and a test set of 82 bonds.

2.2 Bond Descriptors

2.2.1 Atomic Type (AT) Descriptors

As all the bonds in this study have a hydrogen atom in
common, the bonds were represented by descriptors of the
carbon atom - counts of atom types in spheres around the
atom. The atom types were described in a previous work,[21]

and are defined in terms of the element, number of
attached hydrogen atoms, number of attached non-hydro-
gen atoms and aromaticity – 34 atom types. The definition
of atom types based on elements and number of neighbors
does not require information concerning bond orders, thus
avoiding differences in descriptors caused by alternative
representations of the same structure (e.g., mesomers).
Aromaticity was detected with the CXCALC tool from the
JChem package v. 6.1.3, 2013, ChemAxon (http://www.
chemaxon.com).

The AT descriptors of the bond were derived from
counts of atom types in several spheres around the carbon
atom (called kernel atom for its descriptors). In this case,
34n descriptors were generated for each atom. Here n is the
number of layers around the atom (the layer of the kernel
atom is the first layer). The default number of layers is 5.
The descriptors are developed in terms of topological
connectivity spheres and no 3D coordinates are involved.

2.2.2 Modified Atom Type (MAT) Descriptors

No ring information was introduced into the 34 atom types,
except aromaticity indirectly implying ring information.
However, the number and size of the rings encompassing
the carbon atom of the bond were suggested as important
factors affecting the BDE. Thus, the AT descriptors were
extended by adding the sizes of rings encompassing the
kernel atom – modified atom type descriptors (MAT).
Additional 20 descriptors were appended to the AT
descriptors to encode the sizes of rings from 3 to 22
members – each descriptor is the number of corresponding
rings. Two examples are illustrated in Figure 1. In total, 34n
+20 MAT descriptors were generated with an in-house
program written in Java. Here, n is the number of layers,
and the default number of layers is 5.

2.2.3 Modified Distance Descriptors (MD)

Molecular MD descriptors were previously suggested and
applied to the prediction of HOMO and LUMO energies by

the authors.[22] Herein, atomic MD descriptors were obtained
by extracting the corresponding atomic part of the
molecular descriptors. These descriptors were designed
exclusively based on the molecular connectivity and making
no use of bond orders and atomic formal charges. Modified
distances (MD) descriptors were implemented that count
the pairs of atoms in a molecule at specific “modified
distances” defined in terms of the radius of the atoms and
electronegativity of neighbors. The descriptors consist in
the counts of pairs of atoms within specific intervals of
modified distances. Herein the default parameters are 1010
intervals, a resolution of 0.017, interatomic distances up to
4 bonds, and a distance factor of 4. As with MAT
descriptors, the MD descriptors of the sp3 carbon atom was
used to represent the sp3C� H bond.

2.3 Machine Learning (ML) Algorithm

Random Forests (RF)[23] were employed to predict the BDE
from bond descriptors. They are ensembles of unpruned
regression trees created with bootstrap samples of the
training data. The models were first assessed with the
embedded prediction error for the objects left out in the
bootstrap procedure (out-of-bag estimation, OOB). The
definition of distance between objects (required for the k-
nearest neighbors calibration of predictions) was based on
the number of trees in the ensemble that assign the objects
to the same terminal node (divided by the total number of
trees). Therefore, such a comparison relies on the descrip-
tors that were chosen by the RF to build the model. Here,
RFs were grown with the R program[24] version 3.6.1, using
the randomForest library.[25] The number of trees in the
forest was set to 1,000, and the remaining parameters were
set to default.

A prediction protocol was devised that uses an addi-
tional memory of experimental BDEs to correct (calibrate)
the predictions obtained with the RF trained with BDEs
calculated by DFT methods. The procedure is schematically
represented in Figure 2. The bonds in the additional data-
base are predicted by the RF, these predictions are

Figure 1. Ring descriptors in MAT descriptors: atom 1 belongs to
two six-member rings and one ten-member ring, thus, the fourth
descriptor (representing six-member ring) is 2 and the eighth
descriptor (representing ten-member ring) is 1; atom 2 belongs to a
five-, a six- and a nine-member ring, hence the third, fourth and
seventh descriptors are 1.
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compared with the experimental values and the deviations
are computed, which are used to correct the RF predictions
of similar new bonds.

3 Results and Discussion

3.1 Machine Learning Models Trained with DFT Bond
Energies

Random forest models were trained to predict the C� H
bond energies obtained from DFT calculations. The bonds
were represented by the atom type descriptors (AT) and
modified distance descriptors (MD) encoding up to 7 layers.
Constant descriptors were removed. The number of
descriptors and the results for various experiments are in
Table 1 including the out-of-bag (OOB) error estimation of
the training set and predictions for the test set.

AT descriptors performed better than MD descriptors
but increasing the number of layers above 5 did not
improve predictions. Training a RF with the whole data set
represented by AT descriptors up to 5 layers yielded OOB

predictions with R2 =0.770, MAE=3.354 kcal/mol and
RMSE=5.403 kcal/mol.

To investigate the shortcoming of AT descriptors, the
three predicted bonds with the highest errors were
identified – Figure 3. All of them are connected to fused
rings, which suggested the inclusion of information con-
cerning rings in augmented AT descriptors.

A new model was trained with the inclusion of 16
additional descriptors encoding the sizes of rings to which
the carbon atom of the C� H bond belongs. The results
improved significantly, obtaining a MAE of 3.07 kcal/mol in
the OOB estimation and 2.86 kcal/mol for the test set
(Table 2 and Figure 4). The predictions for the test set were
slightly more accurate than those obtained for the same
test set with a previously developed global model.[14] The
global model predicted the test set with R2 =0.840, MAE=

2.952 kcal/mol and RMSE=4.667 kcal/mol.

Figure 2. A small database of experimental BDEs is used to calibrate
the predictions obtained by a RF trained with DFT data.

Table 1. RF prediction of DFT-calculated BDE based on AT and MD descriptors encoding different layers (MAE and RMSE in kcal/mol).

Type of descriptors/number of descriptors/number of layers OOB - training set
(R2/MAE/RMSE)

Test set
(R2/MAE/RMSE)

AT/98/5 0.765/3.407/5.464 0.813/3.145/5.027
AT/204/6 0.762/3.444/5.502 0.807/3.211/5.078
AT/238/7 0.762/3.446/5.499 0.809/3.236/5.080
MD/652/4 0.673/4.058/6.465 0.768/3.441/5.588
MD/663/5 0.670/4.095/6.502 0.766/3.465/5.633

Figure 3. The three main outliers of the training set predicted by
the DFT-based RF model (bonds indicated by the arrows). a: DFT=

113.69 kcal/mol, predicted=78.68 kcal/mol; b: DFT=49.8 kcal/mol,
predicted=84.42 kcal/mol; c: DFT=113.62 kcal/mol, predicted=

80.47 kcal/mol.

Table 2. RF prediction of DFT-calculated BDE based on AT descriptors and AT descriptors augmented with ring information – MAT
descriptors. MAE and RMSE are in kcal/mol.

Descriptors/number of descriptors OOB - training set
(R2/MAE/RMSE)

Test set
(R2/MAE/RMSE)

OOB - whole data set
(R2/MAE/RMSE)

AT/98 0.765/3.407/5.464 0.813/3.145/5.027 0.770/3.354/5.403
MAT/114 0.812/3.068/4.906 0.846/2.862/4.567 0.818/3.006/4.822
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3.2 Prediction of Experimental Bond Energies with
DFT-based ML Models

C� H bonds with sp3-hybridized carbon atoms were
retrieved from the iBonD database (http://ibond.nankai.edu.
cn) with their experimental homolytic bond energies. The
409 bonds in this data set were predicted by the RF model
trained with DFT data. A graphical representation of the
predictions vs the experimental values is displayed in
Figure 5. The mean absolute deviation between the RF
predictions and the experimental values was 5.36 kcal/mol,
but a relatively high R2 (0.75, Figure 5) suggested that
systematic deviations of the DFT methods employed for the
original training data might be a major source of the
observed errors. In the next section we report the
calibration of RF models (trained with DFT data) with a
small data set of experimental data.

3.3 Calibration of DFT-based ML Models with
Experimental Bond Energies

The data set of 409 bonds and their experimental energies
were used to explore the possibility of approximating the
ML predictions to the experimental values based on an
additional small database of experimental data. A subset of
327 bonds was used as the additional database and the
remaining 82 bonds as a test set.

The 82 bonds of the test set were submitted to the RF,
which had been trained to predict the DFT-calculated
energies. Predictions were obtained (uncorrected predic-

tions), as well as the RF profile of each bond – the terminal
nodes of the forest trees assigned to the bond. The RF
predictions and profiles were pre-calculated for the addi-
tional database of 327 bonds. These were used to calculate
distances between the 82 bonds of the test set and the
bonds of the additional database, and to obtain the k-
nearest neighbors (KNN) of each test bond. The procedure
is illustrated in Figures 2 and 6. The mean deviation
between the RF prediction and the experimental value for
the KNN was used to correct the RF prediction for each test
bond. The results are presented in Table 3 and Figure 7.

Correction with the most similar bond yielded a MAE of
1.917 kcal/mol, and the best results were observed with the
3 nearest neighbors (1.519 kcal/mol). To investigate the
relationship between the similarity of the KNN and the
improvement of the predictions, the errors were deter-
mined separately for groups of bonds in the test set with
specific ranges of RF similarities to the nearest neighbor (>
0.9, 0.9–0.7, 0.7–0.5, 0.5–0.3 and <0.3) – Table 4.

Figure 4. RF predictions of the test set compared with the DFT-
calculated bond energies.

Figure 5. Prediction of 409 BDEs by a RF model trained with DFT-
calculated bond energies and comparison with experimental
values.

Table 3. MAE of calibrated predictions for a test set of 82 BDEs
(corrections based on the experimental values of the k-nearest
neighbors in the additional database, k from 1 to 5).

k 1 2 3 4 5

MAE of the test set (kcal/mol) 1.917 1.623 1.519 1.532 1.558
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A calibration was also investigated with a linear
regression of experimental BDEs against the predictions by
the RF trained with the DFT data. This was built with the
bonds in the additional database, and the following
equation was obtained: calibrated prediction=1.0026 × RF
uncorrected prediction - 4.631 kcal/mol. The MAEs obtained
by this alternative calibration for the test set, as well as the
uncorrected predictions, are included in Table 4 separately

for bonds with specific ranges of RF similarity to the nearest
neighbor in the additional database.

The results suggest that a high similarity to a KNN is not
required for significant improvement of the predictions. The
larger error for the KNN-based corrections with similar-
ities>0.9 is partly due to one bond in this range yielding a
large error (9.95 kcal/mol). If that bond is excluded, the MAE
in the range of similarity >0.9 becomes 1.6 kcal/mol. The
bond and its nearest neighbor are displayed in Figure 8.

The atoms within the five layers of the two sp3C� H bonds
are the same. As a result, the descriptors of the two bonds
are the same and the similarity is 1. The optimized model
involving counts of atom types up to 5 layers of atoms
around the kernel bond cannot predict effects arising from
structural features further away.

The bonds less similar to the additional database
(proximity<0.3) were less well predicted after calibration
(MAE=3.096 kcal/mol). The results of Table 4 show this is

Figure 6. Calibration of a DFT-based RF prediction with experimen-
tal data. The prediction of the test set C� H bond of the molecule
on the right (te) was corrected by the observed deviation for the
most similar C� H bond in the additional database (tr, left molecule).
Involved bonds are highlighted in bold.

Figure 7. Prediction of 82 BDEs by a DFT-based RF calibrated with
experimental data (calibration based on the KNN in the additional
database) and comparison with experimental values.

Table 4. MAE (kcal/mol) of predictions for a test set of 82 BDEs
separately determined for bonds with specific ranges of RF
similarity to the nearest neighbor in the additional database
(predictions obtained by the DFT-based RF with a) calibration based
on the experimental values of the KNN, b) calibration based on a
default correction obtained from a linear regression and c)
uncorrected).

RF similarity >0.9 0.9–
0.7

0.7–
0.5

0.5–
0.3

<0.3

a) RF calibrated with KNN 2.236 1.267 1.989 1.575 3.096
b) RF calibrated with default
correction

2.412 3.773 2.874 1.938 3.877

c) Uncorrected RF 5.361 6.186 5.347 4.347 3.999

Figure 8. Illustration of an outlier concerning a C� H bond with a
KNN with high RF similarity in the additional database.
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due to the not so good correction applied by the
calibration. Other bonds more similar to the additional
database were predicted by the uncorrected RF with even
higher MAE and the calibration lowered the error much
more significantly. The calibration with a default correction
based on the linear regression improved the RF predictions
but not so much as the KNN calibration.

Prediction of the test set by a simple KNN based on the
Euclidean distance of the normalized bond descriptors
(instead of RF profiles) and the 327 experimental bond
energies yielded MAEs of 2.3–2.5 kcal/mol, which are higher
than the RF KNN-calibrated predictions. This shows that the
knowledge acquired by the RF was relevant for the best
calibration method.

The results of calibrated predictions were compared
with the results of the available ALFABET graph neural
networks trained with 276,717 BDE calculated by M06-2X/
def2-TZVP.[6] We used 145 C� H bonds that are simultane-
ously in the data set of experimental values and in the test
set of the reference work.[14] Now the additional database
with experimental data consisted in the remaining 409–
145=264 bonds. The 145 bonds were predicted by the RF,
and the KNN-calibrated predictions achieved a MAE=

2.22 kcal/mol. The ALFABET model predicted the same
bonds with a MAE of 3.11 kcal/mol.

3.4 Machine Learning Models Trained with Experimental
Bond Energies

RF models were also built exclusively with the training set
of 327 bonds and their experimental BDE using different
descriptors (AT, MAT, MD, and MAT+MD). The same test
set of 82 bonds was used to evaluate the models. The
results are shown in Table 5 and Figure 9.

According to the OOB of the training set the best model
was obtained with MAT descriptors. The MAE of the test set
is 1.63 kcal/mol. The plot of the experimental BDE and
predicted BDE for test set are shown in Figure 9. The results
show that the accuracy of the DFT-RF calibrated with
experimental data could surpass the accuracy of models
trained with experimental data.

4 Conclusions

Fast QSPR predictions of DFT-calculated Csp3-H BDEs were
achieved by RF models with a MAE of 2.9 kcal/mol (vs DFT
calculations). The comparison of predicted and experimen-
tal values for a data set of 409 bonds yielded a mean
absolute deviation of 5.4 kcal/mol and R2 =0.75. A calibra-
tion scheme was devised to approximate the RF predictions
to the experimental values using an additional small data
set of experimental data. Prediction of experimental values
were thus achieved for an independent test set with MAE=

1.52 kcal/mol for 3 KNN.
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0.865/2.224/3.376
0.8795/2.123/3.200
0.7416/3.034/4.705
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