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Abstract: Despite the levels of air pollution in Macao continuing to improve over recent years, there
are still days with high-pollution episodes that cause great health concerns to the local community.
Therefore, it is very important to accurately forecast air quality in Macao. Machine learning methods
such as random forest (RF), gradient boosting (GB), support vector regression (SVR), and multiple
linear regression (MLR) were applied to predict the levels of particulate matter (PM10 and PM2.5)
concentrations in Macao. The forecast models were built and trained using the meteorological
and air quality data from 2013 to 2018, and the air quality data from 2019 to 2021 were used for
validation. Our results show that there is no significant difference between the performance of the
four methods in predicting the air quality data for 2019 (before the COVID-19 pandemic) and 2021
(the new normal period). However, RF performed significantly better than the other methods for
2020 (amid the pandemic) with a higher coefficient of determination (R2) and lower RMSE, MAE,
and BIAS. The reduced performance of the statistical MLR and other ML models was presumably
due to the unprecedented low levels of PM10 and PM2.5 concentrations in 2020. Therefore, this study
suggests that RF is the most reliable prediction method for pollutant concentrations, especially in the
event of drastic air quality changes due to unexpected circumstances, such as a lockdown caused by
a widespread infectious disease.

Keywords: random forest; gradient boosting; support vector regression; multiple linear regression;
air quality forecast; COVID-19; air quality; air pollution

1. Introduction

Air pollution kills more than 7 million people annually, with 4.2 million deaths from
outdoor air pollution and 3.8 million deaths from indoor air pollution [1]. The regions
affected by air pollution include over 2 million people in the South-East Asian Region
and the Western Pacific Region, nearly 1 million people in the African Region, about
500,000 people in the Eastern Mediterranean Region and the European Region, and more
than 300,000 people in the American Region [1]. The cause of death from air pollution
includes 21% due to pneumonia, 20% from stroke, 34% from ischemic heart disease, 19%
from chronic obstructive pulmonary disease (COPD), and 7% from lung cancer [1,2]. Due
to the threats of air pollution, there is a great urge to successfully predict the air pollution
episodes ahead of time, in order to alert the population and reduce the number of deaths
caused by air pollution. Air quality forecast models are common amongst highly developed
and densely populated cities and regions worldwide.

At the beginning of 2020, the COVID-19 pandemic vastly changed the way of living
for most people in the world and caused a substantial decrease in air pollution, leading
to cleaner ambient air. During the partial lockdown measures in February 2020, the levels
of carbon monoxide (CO), nitrogen dioxide (NO2), and PM10 decreased, while ozone (O3)
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increased due to the decrease in NO2 levels in a VOC-controlled scenario in Rio de Janeiro,
Brazil [3]. Furthermore, the lockdown measures caused a significant decrease in NO2
concentrations in European countries, including France, Germany, Italy, and Spain, and a
substantial decrease in both levels of NO2 and PM2.5 in China [4].

At the same time, it became more challenging to predict air quality because the overall
seasonal and temporal trend of air pollution changed; therefore, new methods must be
investigated to accurately predict air quality in the future. Deterministic models, also
known as chemical transport models (CTM), are the traditional methods widely used to
forecast air quality, but the downside of CTM is that they require extensive and expensive
computational resources; therefore, the use of random forest (RF) and multiple linear
regression (MLR) was applied to successfully improve the forecast of the levels of O3
concentration in Kennewick, WA [5].

This paper aims to determine whether machine learning or statistical methods are
best suited for a prediction model under different scenarios, using Macao as a case study.
To predict the next-day concentrations of particulate matter (PM10 and PM2.5) for Taipa
Ambient, the background representative station of Macao, a forecast model was devel-
oped in this study based on RF, gradient boosting (GB), support vector regression (SVR),
and MLR.

2. Previous and Related Works

An innovative framework using the combination of pollutant concentration, urban
traffic, aerial imagery, and weather conditions was conducted during a study in Cam-
bridge, UK, to investigate the different forecast models such as statistical methods, machine
learning, and neural networks [6]. Weather normalized models (WNMs) are used for
air pollution assessment, using various methods, including machine learning and deep
learning, and later to compare their performance with GB [7].

A support vector machine (SVM) was used to predict the air quality index (AQI)
in a study. The results proved to be effective and accurate with a high coefficient of
determination (R2) and a low sum square error (SSE) and mean sum square error (MSSE) [8].
A study in Taiwan used machine learning methods to forecast PM with past air quality
datasets. The results show that the machine learning models displayed better performance
in the air quality forecast, evaluated by model performance indicators including R2, root
mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE), in
comparison to traditional deterministic models [9].

RF, SVM, adaptive boosting (AdaBoost), artificial neural networks (ANNs), and stack-
ing ensemble showed promising results in the forecast of AQI, with stacking ensemble
having the best outcome for R2 and RMSE, and AdaBoost showing the best performance
for MAE [10]. The use of RF, CART, and logistic regression, along with variable selections
by an expert group and with two automatic selection methods, showed that the selected
variables with expert knowledge had better results compared to the automatic methods in
the air quality forecast of the levels of PM10 concentrations in Bogotá, Columbia [11].

Extreme gradient boosting (XGB) and RF were used to successfully forecast the hourly
air quality in Delhi, India [12]. A study to predict the air quality in Beijing showed that GB
performed much better in prediction accuracy and operation efficiency in comparison to
XGB [13]. RF and SVM were used to explore the relationship between air pollutants (O3,
NOx, and CO) and meteorological parameters (wind speed, solar radiation, temperature,
and relative humidity) in Rio de Janeiro, Brazil, and successfully forecast the level of ozone
concentrations with high R2 [14]. SVM was applied to build a regression model to forecast
air quality in the urban area of Avilés, Spain, and the SVR model successfully forecast the
levels of air pollutants [15].
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3. Materials and Methods
3.1. Air Quality Dataset of Macao

The air quality data and the surface meteorological input data required for the tested
prediction models were obtained from the Macao Meteorological and Geophysical Bureau
(SMG), and the upper-sounding data were obtained from Hong Kong King’s Park Station
(Number 45004). The hourly data (air quality and meteorological variables) obtained from
SMG were preprocessed and converted into daily values. In contrast, the upper-sounding
data were obtained from 12:00 UTC, which is used in building machine learning and
statistical models. In the first step, the 2013 to 2018 data were used to train a model,
and the 2019 to 2021 data were used to test the model. One statistical method (MLR)
and three widely used machine learning algorithms (RF, GB, and SVR) were employed
to construct the models. Finally, their performances were compared. Table 1 shows the
different variables considered as predictors in the machine learning and statistical models
in the air quality forecast for Macao.

Table 1. Variables considered as predictors in the machine learning models in the air quality forecast.

Variable Type Variable Name Variable Description (Units)/Observations

Air quality
variables

NO2, PM10, PM2.5 Average hourly concentration values (µg/m3)

O3 MAX Maximum hourly concentration values (µg/m3)

16D#, 23D#
23D#: 24 h concentration averaging period between 00 h and 23 h

16D#: 24 h concentration averaging period between 16 h of D1 and 15 h of D0
e.g.: PM10_16D1, O3_MAX_23D1.

D0, D1, D2, D3 D0: Forecast Day; D1: Previous Day (Forecast Day-1); D2: Forecast Day-2; and D3: Forecast
Day-3.

Meteorological
variables

Upper-air obs. *

H1000, H850, H700, H500 Geopotential height of 1000 hPa, 850 hPa, 700 hPa, and
500 hPa (m)/indicator of synoptic-scale weather pattern.

TAR925, TAR850, TAR700 Air temperature of 925 hPa, 850 hPa, and 700 hPa (◦C)/measure
of strength and height of the subsidence inversion.

HR925, HR850, HR700 Relative humidity of 925 hPa, 850 hPa, and
700 hPa (%).

TD925, TD850, TD700 Dew point temperature of 925 hPa, 850 hPa, and
700 hPa (◦C).

THI850, THI700, THI500 Thickness of 850 hPa, 700 hPa, and 500 hPa (m)/related to
the mean temperature in the layer.

STB925, STB850, STB700 Stability of 925 hPa, 850 hPa, and
700 hPa (◦C)/indicator of atmospheric stability.

Surface
observations

T_AIR_MX, T_AIR_MD,
T_AIR_MN Maximum, average, and minimum air temperature (◦C)

HRMX, HRMD, HRMN Maximum, average, and minimum relative humidity (%)

TD_MD Average dew point temperature (ground level) (◦C)

RRTT Precipitation (mm)/associated with atmospheric washout

VMED Average wind speed (m/s)/related to dispersion

Other variables
DD Duration of the day: number of hours of sun per day (h)

FF Weekday indicator (flag): weekday = 0, weekend = 1

Meteorological variables: * Daily sounding of 12H (GMT+8) at King’s Park Meteorological Station—Hong
Kong Observatory.

The variables to be predicted were PM10_23D0 and PM25_23D0, while the rest of the
air quality and meteorological variables in Table 1 were used as predictors in these models.
For instance, PM25_16D1, PM25_23D1, HRMD, and DD were chosen for the SVR model
with feature selection for PM2.5 prediction.
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3.2. Learning Algorithms
3.2.1. Multiple Linear Regression (MLR)

MLR is a statistical method commonly used to predict the outcome of a variable based
on the value of two or more variables. The advantages of MLR include its simplicity and
ability to have all potential variables in one model [16,17].

MLR and CART were chosen and successfully developed for the air quality forecast
of the next day in Macao, including the pollutant concentration of PM10, PM2.5, NO2,
and O3 with a high coefficient of determination (R2) for all pollutants before and during
the outbreak of the COVID-19 pandemic in Macao [16,17]. The air quality forecast using
statistical methods, including MLR and CART, was applied successfully to three regions,
Greater Lisbon Area, Madeira Autonomous Region, and Macao, to the levels of PM10,
PM2.5, NO2, and O3 concentrations [18].

3.2.2. Random Forest (RF)

RF is a simple, efficient, interpretable method and one of the most popular ensemble
learning techniques based on decision tree predictors. The first step involves bagging the
trees, followed by the second step of splitting the tree using the random subspace method
or the random split selection, applied at each node of the algorithm, with a subset only of
the features to split the node [19]. The model parameters of RF used in this study included
the maximum depth of 9 and the number of trees (n estimator) set as 500. The advantages
of RF included performing both regression and classification tasks and producing good
predictions and results that can be easily interpreted [19].

RF and SVR were used to build regression models to forecast AQI in Beijing and the
nitrogen oxide (NOx) levels in Italy. The results show that RF performed better in the
forecast of NOx concentration. In contrast, SVR performed better at predicting AQI [20].
RF was used to successfully forecast the levels of PM10 concentrations in Blagoevgrad,
Bulgaria, with over nine years of air quality data [21].

3.2.3. Gradient Boosting (GB)

GB is a decision-tree-based ensemble method that builds an ensemble of shallow
and weak successive trees, with each tree learning and improving from the previous
one [22]. The model parameters of GB used in this study included a learning rate of 0.02,
a maximum depth of 6, the number of trees (n estimator) set as 500, and a subsample
of 0.5. The advantages of GB included not requiring any preprocessing of the dataset,
handling the missing values automatically, not requiring data imputation, with feature
selection embedded automatically, and identifying the importance of each variable in the
models [22].

GB was also used to evaluate the outbreak of the COVID-19 pandemic through the
air quality in Quito, Ecuador, with the best model accuracy in the traffic-busy areas [22].
The algorithm of GB was applied successfully to build a forecast model with the past air
quality data and meteorological parameters for the daily prediction of the levels of PM2.5
concentration in Taiwan [23].

3.2.4. Support Vector Regression (SVR)

SVM is a machine learning algorithm that constructs hyperplanes for separating
different classes and is generally used for analyzing data with a categorical output variable.
In the case of the continuous numeric output variable, regression analysis is used, namely
SVR [24]. All of the SVR kernels, including linear, poly, rbf, sigmoid, and precomputed,
were considered in this study and the linear kernel function showed the best results.
Therefore, the model parameter of SVR used in this study was the linear kernel function.
The advantages of SVR include being robust to outliers, having high prediction accuracy,
and easy implementation [19].

SVR has been applied to overcome non-linear limitations and uncertainties in order to
achieve better prediction accuracy [19]. SVR has been successfully applied to forecast the
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levels of PM10 concentration in Bangkok, Thailand, with air quality data and meteorological
variables (e.g., air pressure, rainfall, relative humidity, temperature, wind direction, and
wind speed) [25]. The algorithm of SVR was applied to improve the forecast of the AQI
using air quality and meteorological parameters for three cities in China, including Beijing,
Tianjin, and Shijiazhuang [24]. SVR was used to successfully forecast CO, SO2, NO2, O3,
and PM2.5 concentration levels, and the AQI in California [26].

3.3. Feature Selection

Feature selection is a dimensionality reduction technique that can select a small subset
of relevant features from the original set by removing noisy, irrelevant, and redundant
features, thereby reducing computing time, improving learning accuracy, and enabling a
better understanding of the data [27,28]. In this study, Shapley additive explanation (SHAP)
values were used to interpret the contribution of features in prediction models. SHAP
calculates the impact of each feature on the predictions made by a model. It expresses
model predictions as linear combinations of binary variables that describe whether each
covariate is present in the model [29,30]. Here, feature selection based on SHAP values was
used to create feature-reduced forecast models, and their performances were compared to
full-featured counterparts. The SHAP graphs show that the four variables with the highest
feature values were selected and applied using machine learning and statistical methods.
The model performance indicators with and without feature selection were compared, and
only the best results are listed in Tables 2–4.

Table 2. Comparison of the MLR, RF, GB, and SVR models trained using 2013–2018 data and tested
on 2019 data.

Method Pollutant
Model Performance Indicator Model Built Using SHAP/Feature Selection

R2 RMSE MAE BIAS Yes No

MLR
PM10 0.90 7.14 4.60 0.81 X

PM2.5 0.89 4.26 2.84 0.57 X

RF
PM10 0.89 7.49 4.73 1.01 X

PM2.5 0.88 4.56 3.00 0.67 X

GB
PM10 0.89 7.47 4.73 0.80 X

PM2.5 0.88 4.47 2.95 0.77 X

SVR
PM10 0.89 7.65 4.70 0.16 X

PM2.5 0.88 4.57 2.92 0.04 X

The best results are shown in bold.

Table 3. Comparison of the MLR, RF, GB, and SVR models trained using 2013–2018 data and tested
on 2020 data.

Method Pollutant
Model Performance Indicator Model Built Using SHAP/Feature Selection

R2 RMSE MAE BIAS Yes No

MLR
PM10 0.81 10.74 7.83 6.12 X

PM2.5 0.61 7.67 5.52 2.91 X

RF
PM10 0.90 8.15 6.64 5.02 X

PM2.5 0.65 6.89 4.78 1.59 X

GB
PM10 0.85 10.59 8.54 7.11 X

PM2.5 0.66 7.43 5.71 3.72 X

SVR
PM10 0.68 16.13 13.01 11.18 X

PM2.5 0.57 11.11 9.24 8.06 X

The best results are shown in bold.
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Table 4. Comparison of the MLR, RF, GB, and SVR models trained using 2013–2018 data and tested
on 2021 data.

Method Pollutant
Model Performance Indicator Model Built Using SHAP/Feature Selection

R2 RMSE MAE BIAS Yes No

MLR
PM10 0.90 7.90 6.08 4.16 2714

PM2.5 0.88 3.92 2.97 1.65 X

RF
PM10 0.89 8.05 6.14 3.84 X

PM2.5 0.89 3.72 2.74 1.47 X

GB
PM10 0.89 8.98 7.32 5.30 X

PM2.5 0.88 4.60 3.85 2.96 X

SVR
PM10 0.86 13.96 11.92 11.30 X

PM2.5 0.79 8.87 7.58 7.40 X

The best results are shown in bold.

3.4. Performance Measures

The machine learning models were built in JupyterLab 3.2.1, using Python 3 and the
scikit-learn library. Table 1 shows the variables considered as predictors in the training
dataset for the machine learning and statistical models in the air quality forecast in Macao.
Model performance indicators, including R2 calculated by Equation (1), RMSE calculated
by Equation (2), MAE calculated by Equation (3), and systematic error (BIAS) calculated by
Equation (4), were used to evaluate the performance of the air quality forecast models with
the testing dataset. The equations are defined as

R2 =
[
∫ n

i=1( fi − f )− (oi − o )]2

[
∫ n

i=1 ( fi− f )
2
] [

∫ n
i=1(oi − o )2]

. (1)

RMSE =

√
1
n

n

∑
i=1

( fi − oi)
2 (2)

MAE =
1
n

n

∑
i=1
| fi − oi| (3)

BIAS =
1
n

n

∑
i=1

( fi − oi) (4)

where fi is the forecast value of the sample i, f is the forecast average, oi is the observation
of the sample i, o is the observation average, and the n is the number of samples.

4. Results and Discussion
4.1. Air Quality Forecast, 2013–2018 Trained Data, 2019 Test Data

The results of the model performance indicator are listed in Table 2, which shows that
MLR without feature selection performed the best in the prediction of PM10 and PM2.5
amongst different machine learning models with 2013 to 2018 trained data, and validated
with 2019 test data. Nevertheless, there is no significant difference amongst MLR, RF, GB,
and SVR, with high R2 recorded between the predicted and observed data (between 0.88
and 0.90), low RMSE (between 4.26 and 7.65), low MAE (between 2.84 and 4.73), and low
BIAS (0.04 to 1.01). The reduced-feature models based on SHAP values do not necessarily
yield better results.

Figure 1 shows the observed and predicted PM10 concentrations using MLR in 2019,
which offers a high R2 of 0.90, the best result out of all the models, and the use of reduced-
feature models based on SHAP values was not applied. Figure 1 shows that it is very
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challenging to predict some of the extremely high-pollution episodes, and the outliers refer
to the high concentration, which is challenging to predict by the respective method.
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Figure 1. Observed and predicted PM10 concentrations using MLR for the year of 2019.

Figure 2 shows the observed and predicted PM2.5 concentrations using RF in 2019,
which offers a high R2 of 0.88, a very promising result in the air quality prediction. Figure 2
shows that it is very challenging to predict some of the extremely high pollution episodes,
and the outliers refer to the high concentration, which is challenging to predict by the
respective method.

Figure 3 shows the SHAP values in the RF model using the 2013 to 2018 trained data
and the 2019 test data, which shows the importance and the weighting of each variable of
the forecast models. It indicates that PM25_16D1 and PM25_23D1 were the most critical
variables in the forecast model as they obtained the highest SHAP values in Figure 3. This
result was expected as the pollutant concentrations of previous days had a significant
influence on the next day’s forecast.
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4.2. Air Quality Forecast, 2013 to 2018 Trained Data, 2020 Test Data

The results of the model performance indicators are listed in Table 3, which shows that
RF without the use of SHAP values performed the best in the prediction of PM10, and GB
without the use of SHAP values performed the best in the prediction of PM2.5 in the 2013
to 2018 trained data, validated with 2020 test data. Nevertheless, there is a more significant
variation in the R2 in the 2013 to 2018 trained data validated with 2020 test data (R2 between
0.57 and 0.90), high RMSE (between 7.43 and 16.13), high MAE (between 4.78 and 13.01),
and high BIAS (between 1.59 and 11.18) in comparison to 2019 test data (with R2 from
0.88 to 0.90, RMSE from 4.26 to 7.47, MAE from 2.84 to 4.73, and BIAS from 0.04 to 1.01).
This may be attributed to the unusually low levels of PM10 and PM2.5 concentrations in
the second half of 2020 due to the outbreak of the COVID-19 pandemic, which affected the
performance of the air quality forecast models. SVR struggled the most to predict the levels
of PM2.5 concentrations in 2020, with an unusual low R2 of 0.57. In contrast, MLR, RF, and
GB did relatively well in the prediction of PM10 (R2 of 0.81, 0.90, and 0.85, respectively) and
the prediction of PM2.5 (R2 of 0.61, 0.65, and 0.66, respectively) in the air quality forecast of
2020. The reduced-feature models based on SHAP did not yield better results.

Figure 4 shows observed and predicted PM10 concentrations using RF in 2020, with a
high R2 of 0.90, the same results as 2019 and 2021. The outbreak of the COVID-19 pandemic
did not influence the performance of the PM10 prediction in 2020, which showed the
robustness of RF compared to other methods (MLR, GB, and SVR). The use of reduced-
feature models based on SHAP values was not applied. Figure 4 shows that it is very
challenging to predict some of the extremely low- and high-pollution episodes during the
pandemic, and the outliers refer to the low and high concentration, which is challenging to
predict by the respective method.
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Figure 5 shows observed and predicted PM2.5 concentrations using GB in 2020, with
a moderate R2 of 0.66, which tends to overestimate the peaks and misses most of the
low-pollution episodes. This may be due to the unusually low levels of PM2.5 concentration
in 2020 compared to the previous years, which falls out of the prediction range for the
machine learning and statistical models. Figure 5 shows that it is very challenging to
predict some of the extremely low- and high-pollution episodes during the pandemic, and
the outliers refer to the low and high concentration, which is challenging to predict by the
respective method.
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Figure 5. Observed and predicted PM2.5 concentrations using GB in 2020.

4.3. Air Quality Forecast, 2013 to 2018 Trained data, 2021 Test Data

The results of the model performance indicators are listed in Table 4, which shows
that MLR without feature selection performed the best in the prediction of PM10, and
RF without feature selection served the best in the prediction of PM2.5 amongst different
machine learning and statistical methods in 2013 to 2018 trained data, validated with
2021 test data. The obtained result of MLR, RF, GB, and SVR in 2019 (R2 between 0.88 and
0.90) shows similar results to 2021 (R2 between 0.79 and 0.90), with low RMSE (between
3.72 and 13.96), low MAE (between 2.74 and 11.92), and low BIAS (between 1.47 and 11.30).
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Therefore, there is no significant difference between MLR, RF, and GB, with a high R2

recorded between the predicted and observed data (between 0.88 and 0.90), while SVR
performed the worst in the prediction of PM2.5 (with an R2 of 0.79). The reduced-feature
models based on SHAP do not necessarily yield better results.

Figure 6 shows observed and predicted PM10 concentration using MLR in 2021, with
a high R2 of 0.90, maintaining a similar level in 2019 and 2020. The use of reduced-feature
models based on SHAP values was not applied. Figure 6 shows that it is very challenging
to predict some of the extremely high-pollution episodes during the new normal period,
and the outliers refer to the high concentration, which is challenging to predict by the
respective method.
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Figure 6. Observed and predicted PM10 concentrations using MLR in 2021.

Figure 7 shows observed and predicted PM2.5 concentrations using RF in 2021, with
a high R2 of 0.89, showing that the performance of the PM2.5 prediction was restored to
2019 levels. The use of reduced-feature models based on SHAP values was not applied.
Figure 7 shows that it is very challenging to predict some of the extremely high pollution
episodes during the new normal period, and the outliers refer to the high concentration,
which is challenging to predict by the respective method.
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Figure 7. Observed and predicted PM2.5 concentrations using RF in 2021.

5. Conclusions

The application of machine learning and statistical methods to forecast the daily
average concentration of PM10 and PM2.5 for the next day, from 2019 to 2021 in the region
of Macau, was successful in the Taipa Ambient Air Quality Monitoring Station. The results
show that it was more challenging to forecast the levels of PM2.5 concentration in 2020, as
suggested by a lower R2 and higher RMSE, MAE, and BIAS, than the PM10 concentration.
The levels of PM2.5 concentration during the outbreak of the COVID-19 pandemic reached a
record low, which falls outside of the detection range of the machine learning and statistical
methods, thus making it very difficult to make an accurate prediction of the levels of
PM2.5 concentration. Due to the significant decrease in the emission of PM10 and PM2.5
in the Greater Bay Area (GBA) region, the difficulty of accurately predicting air quality
increased substantially. In addition, the variables PM10_16D1, PM10_23D1, PM25_16D1,
and PM25_23D1, representing pollutant concentration persistence, played an essential role
in predicting PM10 and PM2.5 for the following days. Nevertheless, the levels of PM10 and
PM2.5 concentration in Macao slowly returned to normal in 2021 as the world adapted
to a new normal environment, and the prediction of air quality models in 2021 has been
restored to a similar performance before the COVID-19 pandemic in 2019.
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