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Abstract: The type 2 diabetes epidemic is real and hardly coming to an end in the upcoming
years. The efforts of the scientific community to develop safer and more effective compounds for
type 2 diabetes based on the structure of natural (poly)phenols are remarkable and have indeed
proven worthwhile after the introduction of gliflozins in clinical practice. However, low-quality
reports on the antidiabetic potential of plant-derived lipophilic (poly)phenols continue to pile up
in the literature. Many of these compounds continue to be published as promising functional
nutrients and antidiabetic pharmaceutical leads without consideration of their Pan-Assay Interference
Compounds (PAINS) profile. This evidence-based opinion article conveys the authors’ perspectives
on the natural (poly)phenol artillery as a valuable and reliable source of bioactive compounds for
diabetes. Ultimately, in light of the already established membrane-perturbing behavior of lipophilic
(poly)phenols, together with the multiple benefits that may come with the introduction of a C-glucosyl
moiety in bioactive compounds, we aim to raise awareness of the importance of contemplating the
shift to (poly)phenol–carbohydrate combinations in the development of functional nutrients, as well
as in the early stages of antidiabetic drug discovery.

Keywords: Pan-Assay Interference Compounds; invalid metabolic panaceas; functional nutrients;
natural product-based drug discovery; C-glucosylation

According to the International Diabetes Federation (IDF), 537 million adults are
presently living with diabetes, which corresponds to a global prevalence of 10.5% [1].
If the trend evolves as predicted, the number of adults with diabetes will have risen to an
astonishing 783 million by 2045 [1]. However, it is estimated that over 90% of the diabetes
population has type 2 diabetes—a rather preventable and, at times, even reversible type of
diabetes that mostly arises from unhealthy lifestyle choices, including the consumption of
foods with a high fat content and lack of physical activity [1,2]. Dietary changes towards an
increased intake of nutritious and bioactive-rich plant-based foods, such as whole grains,
nuts, seeds, legumes, fruits, and vegetables, together with reduced consumption of sat-
urated fatty acids, refined sugars, and red meats, have been proven to work effectively
in the prevention and management of type 2 diabetes [3,4]. As much as these changes
in diet are encouraged with a primary focus on weight loss and (poly)phenol-mediated
gut microbiota modulation to achieve physiological insulin sensitivity and normal pan-
creatic function [4–6], the exploitation of the most recommended foods as natural sources
of antidiabetic compounds is not only logical but also undeniably tempting for scientific
community members looking for functional nutrients, bioactives, and lead compounds in
antidiabetic drug discovery.

From in vitro to clinical studies, the number of published reports covering the potential
of dietary lipophilic (poly)phenols to treat diabetes and its comorbidities is countless [7,8].
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Resveratrol, curcumin, genistein, quercetin, phloretin, caffeic acid, and epigallocatechin
gallate—just to name a few—are remarkably popular natural compounds that, together
with their glycosides, make up some of the most vastly studied sets of molecules for
diabetes. In spite of the high amount of in vitro cell-based assays claiming promising
(poly)phenol-induced antidiabetic effects, those results translate very poorly into successful
outcomes in clinical studies [9]. Indeed, the antidiabetic effects of natural (poly)phenols in
human subjects are often small or non-significant, with high variability between studies [9].
Overall, the existing data has been found to be rather limited and even contradictory,
highly contrasting with lab bench research. Study design quality, population heterogeneity,
interindividual variability, low compound bioavailability, and administration of multi-
component mixtures (e.g., plant extracts) are some of the reasons frequently pointed out
to explain these contradictions. Moreover, even when statistically significant antidiabetic
effects are found, studies often fail to prove that these are sustainable in time with no
relevant toxic effects [9]. All of these complex issues call for internationally harmonized
natural product research recommendations. However, the fact that many of the target
polyphenols are nowadays well-known for their promiscuous behavior is often forgotten.

In the context of medicinal chemistry applied to drug discovery, Pan-Assay Inter-
ference Compounds (PAINS) were described for the first time in 2010 as molecules with
structural features that are able to interfere with drug screening assays, often leading to
false positive results [10]. These features can account for their effects as redox cyclers, metal
chelators, covalent modifiers, self-aggregators, and even membrane disruptors which, in
turn, prevent PAINS from having their structure rationally optimized into potential drug
candidates with adequate target selectivity and low toxicity [10,11]. This concept can be
applied not only to synthetically made compounds but also to molecules derived from
natural sources—the so-called invalid metabolic panaceas (IMPS) [12,13]. In particular,
plant-derived lipophilic compounds with several hydroxy groups, such as curcumin, epi-
gallocatechin gallate, quercetin, genistein, and resveratrol have been put in the spotlight
for their action as membrane disruptors, bearing the capacity to modulate the activity of
membrane receptors and transmembrane proteins [10]. This capacity arises from a fine com-
bination of lipophilicity, molecular planarity, and the presence of multiple hydroxy groups,
which allows the compounds to be inserted into the cell membrane and consequently mod-
ify their physiological properties [14]. Phloretin (Figure 1), for instance, has been known for
its ability to reduce membrane dipole potential since 2013 [15]. Still, it was in 2021, with the
combined study of resveratrol, genistein, and phloretin, that membrane dipole potential
reduction was proposed as a mechanism by which lipophilic polyphenol PAINS or IMPS
are able to interfere with the electric profile of membranes in a non-specific way [14]. Strik-
ingly enough, the C-glucoside of phloretin, nothofagin (but not the O-glucoside, phlorizin),
did not follow the aglycone in its promiscuous behavior. These results were impecca-
bly corroborated by C-glucosyl resveratrol and C-glucosyl genistein—so much so that
C-glucosylation was proposed as a tool to prevent PAINS-induced membrane dipole poten-
tial alterations [14]. Here, it is important to understand that membrane dipole potential
changes are strongly implicated in the regulation of transmembrane protein conformation
and function, particularly in cholesterol-enriched domains such as lipid rafts [16]. As
changes in protein activity may have a profound effect on the way intracellular signaling
cascades are activated or inhibited, compounds that are able to alter the membrane dipole
potential may therefore elicit illusory pharmacological effects that are not caused by any
specific drug–target interaction.
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Figure 1. The natural structural heritage of dapagliflozin: Effects of O- and C-glucosylation in the 
potency, selectivity, and membrane-disrupting PAINS/IMPS profile of the natural lipophilic 
(poly)phenol phloretin. The green leaf icon indicates the presence of the compound in natural 
sources. IC50 values were retrieved from refs. [17,18]. 

Although the exact mechanisms by which C-glucosyl (poly)phenols are able to 
prevent membrane dipole potential alterations caused by (poly)phenol PAINS are 
unknown, there are some theories. As highlighted elsewhere [14], these compounds are 
expected to locate more superficially in the membrane compared to their aglycones, which 
may completely change the way (poly)phenol hydroxy groups remodel the naturally 
existing hydrogen-bond networks between phospholipid headgroups and surface water 
molecules, as well as the relative orientation of their electric dipoles. As the membrane 
dipole potential is strongly affected by the way water molecules are positioned on the 
surface of the membrane, the modulation of surface hydration mechanisms can, indeed, 
result in significant membrane dipole potential alterations [14]. Furthermore, it is not yet 
entirely understood why C-glucosyl polyphenols are so unique in achieving this effect 
when compared to their O-glucosyl counterparts. Nonetheless, fewer rotatable bonds 
arising from the replacement of the anomeric C-O-C triad by a C-C bond is expected to 
result in enhanced molecular rigidity, which ought to more favorably sustain the 
conformation of the molecule that promotes proper membrane insertion for minimal 
changes to the membrane dipole potential. 

More extensive experiments are warranted to confirm the hypothesis that C-
glucosylation can in fact be used as a general way of converting membrane-disrupting 

Figure 1. The natural structural heritage of dapagliflozin: Effects of O- and C-glucosylation in
the potency, selectivity, and membrane-disrupting PAINS/IMPS profile of the natural lipophilic
(poly)phenol phloretin. The green leaf icon indicates the presence of the compound in natural sources.
IC50 values were retrieved from refs. [17,18].

Although the exact mechanisms by which C-glucosyl (poly)phenols are able to prevent
membrane dipole potential alterations caused by (poly)phenol PAINS are unknown, there
are some theories. As highlighted elsewhere [14], these compounds are expected to locate
more superficially in the membrane compared to their aglycones, which may completely
change the way (poly)phenol hydroxy groups remodel the naturally existing hydrogen-
bond networks between phospholipid headgroups and surface water molecules, as well as
the relative orientation of their electric dipoles. As the membrane dipole potential is strongly
affected by the way water molecules are positioned on the surface of the membrane, the
modulation of surface hydration mechanisms can, indeed, result in significant membrane
dipole potential alterations [14]. Furthermore, it is not yet entirely understood why C-
glucosyl polyphenols are so unique in achieving this effect when compared to their O-
glucosyl counterparts. Nonetheless, fewer rotatable bonds arising from the replacement of
the anomeric C-O-C triad by a C-C bond is expected to result in enhanced molecular rigidity,
which ought to more favorably sustain the conformation of the molecule that promotes
proper membrane insertion for minimal changes to the membrane dipole potential.

More extensive experiments are warranted to confirm the hypothesis that C-glucosylation
can in fact be used as a general way of converting membrane-disrupting lipophilic polyphe-
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nols into non-IMP (poly)phenols for a wider range of molecular entities. In this context,
however, it is also important to reinforce that such a strategy would only be valid for
(poly)phenols that do not check the box for other types of PAINS/IMPS features, and
many of them actually do. Catechol and hydroquinone moieties, which are very frequently
found in natural products, are both prone to autoxidation followed by covalent modifi-
cation, likely leading to the formation of multiple and non-specific protein adducts often
masked as protein aggregation inhibition [19–21]. This does not mean that compounds
with these features should be immediately discarded, but rather that appropriate assays
must be conducted in order to exclude this (quite probable) possibility before any claims of
groundbreaking bioactivity are established.

Notwithstanding, for natural (poly)phenols that do pass that stage, there are strong
hints that C-glucosylation should be considered when it comes to the pursuit of non-reactive
lipophilic (poly)phenols with antidiabetic properties: (1) C-glucosides extracted from nat-
ural plant sources are increasingly recognized as functional ingredients for their potent
antihyperglycaemic, anti-aggregation, and antioxidant bioactivities, both alone or in com-
bination with other antidiabetic compounds [17,22–26]; (2) sugar-linked compounds may
exhibit improved toxicity, solubility, and membrane permeability profiles versus their agly-
cones, which may enhance their bioavailability [27–29]; (3) when compared to O-glycosides,
their (poly)phenol C-glucosyl analogs may also lead to improved selectivity and metabolic
stability [17,30]; (4) as mentioned above, they seem to prevent membrane-disrupting ef-
fects of lipophilic (poly)phenol PAINS/IMPs [14]. Let us consider the successful case of
gliflozins, a class of C-glucosyl aromatic compounds originally developed and approved
as SGLT2 inhibitors for the treatment of type 2 diabetes [31]. The primary ancestor of
gliflozins is the natural membrane dipole potential reducer phloretin, found in apples,
pears, and other fruits [32]. This low-affinity and non-selective sodium-glucose cotrans-
porter 2 (SGLT2) inhibitor (SGLT2 IC50 25,000 nM vs. SGLT1 IC50 50,000 nM [18]) sees its
potency enhanced with the introduction of an O-glucosyl moiety (SGLT2 IC50 21–67 nM
vs. SGLT1 IC50 290–499 nM [22,32]), but it is not until it is linked to a C-glucosyl group
that both potency and selectivity are dramatically improved (SGLT2 IC50 12 nM vs. SGLT1
IC50 19,000 nM [17]) (Figure 1). Notably, selective SGLT2 inhibition is crucial in avoiding
gastrointestinal adverse events [33]. Even though Washburn and colleagues were inspired
by natural O-glucoside for the development of the first SGLT2 inhibitor to receive regula-
tory approval—dapagliflozin (SGLT2 IC50 of 1.1 nM vs. SGLT1 IC50 1400 nM [32])—the
team quickly realized that C-glucosylation was the only way to prevent extensive in vivo
sugar–aglycone hydrolysis [33]. This and several other steps of structural optimization
culminated in the approval of dapagliflozin in 2014, a life-changer for millions of diabetic
patients around the world. Many more gliflozins have been developed for the treatment
of type 2 diabetes since, and additional indications focused on typical comorbidities of
diabetes, such as heart and kidney disease, have been approved in recent years [31]. This
further highlights the intrinsic value of these C-glucosyl aromatic molecules as multitarget
antidiabetic agents.

All in all, gliflozins serve as a great illustrative example of the power of C-glucosylation
when considering the development of (poly)phenol-based functional nutrients and drug-
like molecules. We recommend testing natural (poly)phenols regarding membrane in-
terference prior to being published for their promising bioactivity in cell-based assays
(Figure 2), hence counteracting the presumption that they owe their broad antidiabetic
effects to specific interactions with biological targets. We also encourage consideration of
C-glucosylation as a means of converting membrane-disrupting IMPS into compounds
that, at the very least, are much more likely to progress to the market as antidiabetic phar-
maceuticals or functional nutrients. It is important to note that, although more technically
challenging than O-glucosylation, (poly)phenol C-glucosylation is entirely feasible both
synthetically and through biotransformation, with an increasing number of methodologies
being created and made available to the scientific community [34–36].
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Figure 2. Proposed stepwise approach for the identification/development of natural (poly)phenol-
based compounds for type 2 diabetes, either as functional nutrients or as potential pharmaceuti-
cal agents. All compounds should be purified and carefully examined regarding their potential
PAINS/IMPS-type behavior. In the case of non-glycosylated planar lipophilic (poly)phenols, which
bear an intrinsic risk for behaving as membrane disruptors, C-glucosylation may be considered,
either via biotransformation or chemical synthesis, in an attempt to halt non-specific interactions
with cell membranes. Non-PAINS/non-IMPS can then be evaluated regarding their antidiabetic
bioactivity and toxicity, both in vitro and in vivo. Compounds being assessed and/or developed as
functional nutrients for type 2 diabetes should be validated as such in both pre-clinical and clinical
studies, which must include the evaluation of long-term antidiabetic and toxic effects. With a favor-
able benefit/risk profile, such functional nutrients could be incorporated into enriched antidiabetic
functional foods, monitored by competent regulatory authorities, and recommended to patients
under medical supervision. For drug discovery and development, target identification is mandatory
(i.e., should be conducted if not yet established in the first bioactivity experiments), after which
structural optimization and pharmaceutical development can potentially lead to regulatory approval
and launch.
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Finally, it should also be made clear that while the rationale herein proposed focuses
on the development of small compounds with robust antidiabetic activity against specific
molecular targets for the treatment and management of type 2 diabetes, this does not imply
that dietary non-glycosylated lipophilic (poly)phenols cannot have an important adjuvant
role with regard to the prevention of this condition. In fact, lipophilic (poly)phenols have
been shown to positively modulate the composition of gut microbiota, including the above-
described IMPS resveratrol and curcumin [6,37].With mounting evidence supporting the
link between gut microbiota dysbiosis and the development of obesity, insulin resistance,
and glucose intolerance, among other metabolic dysfunctions, beneficial changes in gut
microbiota composition alone may predispose the host towards a lower risk for metabolic
syndrome [38,39].Therefore, this opinion article is not intended to discourage the regular
consumption of naturally (poly)phenol-enriched plant-based foods in any way; rather, we
aim to encourage natural product and medicinal chemists to carefully evaluate the validity
of any (poly)phenol bioactivity claims, while working to find solutions for the frequently
encountered problems of lipophilic (poly)phenol IMPS.

In summary, given their potential for improved bioactivity and non-PAINS profile
regarding membrane disruption, polyphenol C-glucosides deserve more credit than they
have been given as lead molecules for both the development of functional food ingredients
and pharmaceuticals for type 2 diabetes. Aromatic C-glucosylation is feasible through a
variety of methods, and has not only been proven to enable the fine-tuning of (poly)phenol
antidiabetic effects and drug-like properties, but has also led to tangible results when
it comes to the discovery of nature-inspired molecules able to make a difference in the
treatment of type 2 diabetes and its comorbidities, as exemplified with the case of gliflozins.
There is no question that natural (poly)phenols are valuable sources of active scaffolds;
the question is simply about understanding how to use them and, above all, how to make
them thrive.
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