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Abstract  

The Internet of Things (IoT) and machine learning algorithms (ML) are enabling a revolutionary 

change in digitization in numerous areas, benefiting Industry 4.0 in particular. Predictive maintenance 

using machine learning models is being used to protect assets in industry. In this paper, an architecture 

for predicting anomalies in industrial processes was proposed in which SMEs can be guided in 

implementing an IIoT architecture for predictive maintenance (PdM). 

This research was conducted to understand what machine learning architectures and models are generally 

used by industry for PdM. An overview of the concepts of the Industrial Internet of Things (IIoT), machine 

learning (ML), and predictive maintenance (PdM) was provided, and through a systematic literature 

review, it was possible to understand their applications and which technologies enable their use. The 

survey revealed that PdM applications are increasingly common and that there are many studies on the 

development of new ML techniques. 

The survey conducted confirmed the usefulness of the artifact and showed the need for an architecture 

to guide the implementation of PdM. This research can be a contribution for SMEs, allowing them to 

become more efficient and reduce both production and maintenance costs in order to keep up with 

multinational companies. 
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1 – Introduction  

1.1 Context  

Digital transformation is a defining feature of modern society and a major trend in this century. It 

is not only the integration of digital technologies into all areas of business, but also a cultural shift that 

requires companies to constantly rethink the status quo.  

At the heart of the digital transformation revolution is the Internet of Things (IoT), which has seen 

steady growth in recent years. It's about extending the power of the internet to a whole host of other 

things, processes, and environments. The industry 4.0 revolution that is currently taking place is one of 

the focus areas of IoT, where innovation for those who want to modernize their business processes is at 

its core. The convergence of sensor technology with affordable pricing and the increased capacity of 

information systems to store and analyze vast amounts of data are key components of Industry 4.0, also 

the ability to easily access data and infer trends and behaviors is transforming the way decisions are made 

and creating new business models and services. The IoT is ubiquitous, with approximately 35 billion IoT 

devices installed by 2021 and an estimated 46 billion devices will be connected by the end of 2021(Juniper, 

2020) . By the end of 2020, the amount of data generated is estimated to be 44 zettabytes, and by 2025, 

the amount of data generated daily is expected to reach 463 exabytes (Bulao, 2022; Vuleta, 2021). The 

fact that all this data is available enables the discovery of disruptive market strategies, the discovery of 

trends that were previously hidden, the application of machine learning algorithms, the automation of 

processes and the identification and prediction of anomalies. 

Factors driven by the Internet of Things include demand for customization, higher customer 

expectations, the complexity of a global supply chain, and manufacturing efficiency. To meet these 

demands, the manufacturing industry must find new and innovative ways to compete. To increase 

productivity and improve manufacturing and supply chain operations, manufacturers are embracing 

digital transformation and finding new ways to improve their business (Shiklo, 2021). 

The concept of Industrial Internet of Things (IIoT) includes wireless, smart sensors, Big Data, and 

artificial intelligence (AI). Smart sensors enable the collection of large amounts of data in real time, 

followed by its processing and storage. Prior analysis enables the discovery of new trends or behaviors, 

including the identification and prediction of anomalies.  
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In this era of digital transformation, one of the most challenging concepts is that of predictive 

maintenance. Recently, the algorithms of ML have seen a great development in terms of their 

performance and application in industry, especially in maintenance. Their application enables predictive 

maintenance (PdM), which offers great efficiency gains. 

1.2 Motivation  

SMEs face several challenges in adopting IIoT: Large investments are required without ensuring 

ROI (return on investment); data security, 58% of IIoT users believe there is increased risk associated with 

it; integration of new technology with legacy systems; lack of skilled employees, Inmarsat states that 72% 

of companies have a shortage of employees with experience in IoT, 80% of employees do not have the 

skills to use IoT technology. There are also specific skills that are lacking such as analytics with expertise 

in Big Data, embedded software development, embedded electronics, IT security and artificial intelligence 

(Shiklo, 2021).  

Industrial IoT technology enables SMEs to remain competitive by digitally transforming their 

industrial operations. However, the adoption of IIoT remains complex and costly for SMEs, and security 

concerns also remain a barrier (Dhaher, 2021). As the IIoT and predictive market grows and is led by large 

enterprises, small and medium enterprises need to keep up.  

Anticipating outcomes and predicting risks is one of the great benefits of AI. For small and medium 

sized growing businesses, this can mean business survival and new doors opened. These are at a severe 

disadvantage compared to competing companies in Asia and the United States, which tend to be one step 

ahead because they are already successfully using AI. Small and medium-sized enterprises need to do 

something, but they do not know what and how.  

Many SMEs know that artificial intelligence and Big Data are essential for the industrial sector, 

but they do not know how to process, analyze, and extract value from industrial data or how to use 

algorithms and tools to implement a solution that works for them.  

The existence of an already researched and extensively studied architecture for the different 

industries, which can be easily adapted by small and medium enterprises, is a great competitive 

advantage. Even if it does not serve them completely, it is always an indication of the steps to be taken 

towards the use of AI in the industrial sector.  
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1.3 Objectives  

The research goal is to develop an architecture for predicting anomalies in industrial processes 

that can assist SMEs in a future IIoT implementation.  

It is assumed that Artificial Intelligence techniques, together with cloud computing and open-

source software can perform a very important role in this architecture and allow the digital transformation 

in the field of AI possible for SMEs. 

Thus, more than developing a general architecture for predicting anomalies in industrial processes, the 

aim of this work is to propose a solution that can be easily used/adapted by any industrial SME.  

To achieve this goal, the following intermediate objectives have been defined: 

• Make a comprehensive study of already implemented IoT architectures. 

• Make a comprehensive study of different industries and their associated sensors.  

• Make comprehensive study of data science techniques and processes for anomaly detection. 

• Create the architecture. 

• Test and validate. 

 

1.4 Study Relevance and Importance 

SMEs are the engine of the European economy, creating jobs and economic growth. In 2021, 

around 22.6 million SMEs supported 84 million jobs and they contribute an average value of 56% to the 

EU economy. Given their importance to the European economy, they receive a lot of attention. The 

European Commission promotes entrepreneurship and improves the industrial environment for SMEs. 

Predictive maintenance (PdM) is an advanced form of maintenance based on the concept of IIoT 

that offers more benefits than current maintenance methods. For a long time, manufacturers took a time-

based approach to maintaining their equipment, where the age of the machine was the most important 

factor in scheduled maintenance. The group ARC notes that only 18% of equipment fails due to age, while 

the remaining 82% are random failures (Grizhnevich, 2021). This shows that traditional time-based 

maintenance is not cost effective as a device can be maintained without needing it.  

To avoid this, manufacturers can leverage the IIoT and Data Science by reducing both traditional 

maintenance and downtime (Vishwa, 2021). Companies are taking advantage of AI and ML technologies 
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to achieve greater precision, accuracy, and speed in analyzing IoT data than with traditional business 

intelligence tools. Predictive maintenance enables businesses to make predictions 20 times faster and 

with tremendous accuracy than normal monitoring systems. AI-based IoT applications enable businesses 

to predict failure in advance. As the industrial sector becomes more aware of maintenance costs and 

downtime caused by unexpected failures, PdM is becoming increasingly popular in this sector.  

According to a study by CGI, 62% of companies surveyed are already implementing digital 

transformation programs, Bsquare states that 86% of manufacturers have already implemented IoT 

solutions and 84% of them consider IoT to be very effective, and McKinsey also predicts that 

manufacturing applications will generate $1.2 to $3.7 trillion annually by 2025 (Shiklo, 2021). According 

to Gartner, 61% of companies have a high IoT maturity level and 63% of them expect a return on 

investment for their IoT projects in 3 years (Gartner, n.d.). The PdM market is forecast to grow from $4.0 

billion in 2020 to approximately $13.9 billion in 2026, at a Compound Annual Growth Rate of 25% during 

the forecast period (ReportLinker, 2021). PdM helps to eliminate 30% of time-based maintenance and 

reduces downtime by 50% (Grizhnevich, 2021). 

By predicting anomalies in an industrial process, the company can: reduce costs, increase 

productivity, improve product quality, optimize the use of maintenance resources, improve asset 

condition and performance, and increase customer satisfaction. The key drivers for industrial IoT/AI 

solutions are: 

Reduced maintenance cost, machine downtime, machine labor cost, product’s quality Non-

conformance; Increased machine reliability and availability.  

 Cost reduction: optimized asset and inventory management, reduced machine downtime, more 

flexible operations, efficient energy consumption - all leading to lower operating costs. Unplanned 

downtime due to machine breakdowns can severely impact vertical industries such as offshore oil and 

gas.  

Shorter product cycles: faster and more efficient manufacturing means shorter product cycles. 

Harley-Davidson reconfigured its plant in York, Pa, reducing production time for a motorcycle from 21 

days to 6 hours.  

Safety: The IoT is helping to make the workplace safer. Worker health can be monitored with 

wearable devices, and it also alerts workers to potentially hazardous environments (Shiklo, 2021). 
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This research in IS will enable knowledge to be gained that will enable architecture development 

and implementation, improvement or problem solving. Organizations usually have goals such as cost 

reduction or profit maximization, which they achieve by designing effective business processes. IS plays 

an important role in enabling the effective execution of such processes. 
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2- Methodology 

The output of design science research in information systems is by definition an "IT artifact" 

created for the purpose of innovating or improving an organizational problem. Design science research 

must produce a viable artifact in the form of a construct, model, method, or instantiation (A. R. Hevner et 

al., 2004). The instantiation of an artifact demonstrates the viability of the design process and the 

designed product.  

Design science research at IT usually solves problems related to the design of an information 

system so that the generated instantiations are in the form of intellectual tools or software to improve 

the information system development process. 

The architecture to be studied in this paper is an instantiation, therefore Design Science Research 

is the appropriate methodology. 

 

2.1. Design Science Research 

The idea of "design science" was developed almost half a century ago, where the differences 

between natural and design science were pointed out (Simon, 1996). The obvious purpose of design 

science is design itself, to produce something that does not exist, or to innovate existing solutions to 

achieve better results (Lacerda et al., 2013). 

The paradigm of design science research (DSR) is problem solving. It aims to improve technology 

and scientific knowledge by creating artefacts that innovate, solve problems, and thus improve the 

environment in which they are used. Research in design science has its roots in engineering and the 

science of the artificial (Simon 1996). The goal of DS research is to push the boundaries of humans and 

the capacities of organizations by designing new and innovative artefacts represented by constructs, 

models, methods, and instances (Gregor & Hevner, 2013; A. R. Hevner et al., 2004).  

DSR aims to generate knowledge about how things should be constructed and organized, usually by a 

human actor and to achieve a set of goals. The discipline of information systems (IS) encompasses 

knowledge about how to make efficient decisions based on data analysis, how to structure and build a 

database, how to align information systems with organizational strategy, how to model business 

processes (Becker et al., 2010), and is also aware of how to use information to support sustainable 
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practices (Brocke et al., 2012). DSR is also used as a research paradigm in other disciplines such as 

engineering, architecture, business, and economics. 

The performance of DSR projects can be measured in various ways, e.g., Hevner or Kuchler & Vaishnavi 

(A. Hevner, 2014; Kuechler et al., 2008). However, the most common model specifically for IS is that of 

(Peffers et al., 2006). The design science research methodology model (DSRM) is shown in Figure 1. 

 

Figure 1 - Design science research methodology model (Peffers et al., 2006). 

 

This methodology includes six steps and four possible entry points. A description of each step of the 

activity follows: 

1st step - Problem identification and motivation. This activity defines the research problem and justifies 

the value of the solution. Justifying the value of the solution motivates the researcher and the reader to 

find a solution and shows the reader that the researcher has understood the problem. Since the problem 

in question serves to develop an artifact that can eventually lead to a solution, it is important to atomize 

the problem so that the solution can capture its complexity. This activity requires knowledge of the state 

of the problem and the importance of its solution (Peffers et al., 2006). 

2nd step - Define the objectives for a solution. The goals of the solution must be derived from the definition 

of the problem as well as from what is possible and feasible. The goals can be quantitative, i.e., whether 

the solution is better or worse than the current one, or qualitative, i.e., how will the new artifact support 
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solutions that were not previously supported. Knowledge of the state of the problems and their solutions 

and their effectiveness is required. 

3rd step – Design and development. In this phase, the artifact is created. Artifacts can be constructs, 

models, methods, or instantiations (A. R. Hevner et al., 2004). An DSR artifact can be any object that has 

been designed and has an investigation built into it. This activity also includes determining the 

functionality and architecture of the artifact. It is necessary to move from goals to design and 

development. This requires theoretical knowledge that can be used for a solution. 

4th step – Demonstration. This activity involves a demonstration of the artifact in solving one or more 

problems. This demonstration can be experimental, in a case study, or in a simulation. The demonstration 

assumes that you know how to use the artifact to solve the problem. 

5th step – Evaluation. This step measures the effectiveness of the artifact in solving the problem. In this 

activity, the solution goals are compared to the results of using the artifact to solve a problem. At the end 

of this activity, if the results are not satisfactory, the researchers may decide to return to step 3 to improve 

the artifact or they may proceed to the next step, communication. 

6th step – Communication. This phase involves communicating the problem and its importance, as well as 

the artifact, its utility, its novelty, and its effectiveness to researchers and interested parties. 

Communication requires knowledge of disciplinary culture. 

2.2. Research Strategy  

1. Step - Problem identification and motivation. 

The problem has been identified as an existing need in the market where SMEs are at a distinct 

disadvantage compared to large enterprises. The motivation is that SMEs need a document to rely on 

when installing an IoT architecture for anomaly detection. 

2. Step - Define the goals for a solution 

The objectives defined to achieve a solution is the study of the architectures currently installed and their 

adaptation to the different types of industries. Investigation of the techniques that have been used 

depending on the problem. Creation of an architecture based on the previous studies that will allow SMEs 

to apply an anomaly detection architecture. In this way, the SMEs will have a document that will guide 

them and show them what is required to implement an anomaly detection architecture. 
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3. Step - Design and Development. 

A global study of predictive maintenance concepts was conducted to understand the scope of the study 

and the tools required to develop an architecture. A survey of the most commonly used techniques and 

the technologies that enable predictive maintenance was conducted. An overview of the techniques used 

in predictive maintenance and the steps required to implement them was created. After this research, it 

was possible to create a systematic literature review and thus gather the necessary knowledge to propose 

an architecture. 

4. Step - Demonstration. 

The artifact is applied in a case where it is supposed to predict the lifetime of a battery. The data used to 

predict the lifetime comes from the public dataset provided by NASA. 

5. Step - Evaluation. 

The artifact is evaluated by interviewing the CEO of an SME. This person may not be knowledgeable in 

technical aspects, so advice on non-technical aspects is expected. 

6. Step - Communication. 

Scientific communication of this potential item is a possible way to communicate this artifact so that the 

details of its development are shared and others can make suggestions.  
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3 -Literature Review 

3.1 Industry 

It is necessary to have a global theoretical vision in order to perceive the topic addressed in this 

study. Therefore, some important concepts related to PdM are presented. The following sections provide 

an overview of the evolution of the industry, which industries use it, and which technologies are used. 

3.1.1. Overview 

Go back in time to the 1800's when the first industrial revolution took place and the first steam 

engines appeared. Production increased and with-it small businesses that became large organizations. 

Maddie Walker of Accenture (U.K.) says, "Industrial revolutions are more than a sequence of events, 

ranging from machines to production.” The impact of the first revolution is hard to measure. Agriculture 

was replaced by the production of essential materials, steam power became the country's main economic 

source, leading to a population boom and economic growth. It was a great advance for human productivity 

and production, especially in textiles, where what was once made by hand was now made by machines 

and with much greater ease. The second industrial revolution was triggered at the end of the 19th century 

using electricity. It was more efficient than steam engines and was therefore used by Henry Ford in mass 

production on the assembly line in the automobile sector. At the end of the 19th and beginning of the 

20th century, new sources of energy appeared, such as gas, oil and electricity, whose presence allowed 

factories to evolve and improve our processes on the assembly line. In the 1970s, the third industrial 

revolution began with the partial use of computers and programmable controllers. This same revolution 

introduced computer technology, allowing automated production through electronics and information 

technology. Semiconductors were invented, giving rise to personal computers, cell phones, and eventually 

the Internet. Industry 4.0 - It was in 2011 at the Hannover Messe when the term "Industry 4.0" was first 

introduced by a group of scientists from Acatech (German Academy of Science and Engineering), 

symbolizing the beginning of the fourth industrial revolution. Information and communication tools in 

production. This concept overlaps with other concepts in other European countries, concepts like: IIoT, 

smart factories, smart industry, advanced manufacturing. The fourth industrial revolution goes one step 

further: people, machines and products are all connected to each other and to the environment around 

them. Figure 2 illustrates the 4 industrial revolutions and their influence on manufacturing processes 

(Acatech, 2013; Wilson, 2021).  
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The goal is to include the individualization of customer needs, the flexibility and adaptation of the 

production and logistics system and thus better decision-making, the integration of cyber-physical 

systems of ICT and CPS, the introduction of advanced production technologies, intelligent automation 

systems, adapted business models and concepts for sustainable production and logistics (Spath et al., 

2013). 

Smart factories: 

A smart factory represents the transition from traditional automation to a networked system that 

uses data (Sage, 2019). The concept of smart factory is broad, a smart factory is a digital and networked 

factory. The entire process is based on optimized and self-organizing processes. This includes processes 

such as logistics, production planning and product development. In a smart factory there is very little 

human interaction, the processes are controlled by artificial intelligence, Big Data and IoT (LeanIX, n.d.-

b). Manufacturing is about rapid decision making, constant change, and big data. This new approach to 

manufacturing, where industrial assets are connected to communicate their condition and health, is 

having a major impact on the way factories operate. By analyzing large amounts of data, it is possible to 

create knowledge and information upon which decisions can be made in a safe manner. A smart factory 

has several benefits: Cost savings, less wasted materials, fewer workers, and lower operating costs. It is 

also more agile as it can quickly change the way a product is made depending on customer needs without 

sacrificing quality (Sage, 2019). James Woodall, CTO of Infoware said, “Moving towards the smart factory 

Figure 2 - The four stages of industrial revolution (Acatech, 
2013). 
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doesn’t mean a complete overhaul with huge upfront investment”. It means a factory can start small, for 

example, by retrofitting the sensors on existing machines by finding a vendor that offers an IoT retrofit 

solution (Sage, 2019). 

SMEs: 

  A small or medium-sized SME is a company whose profits, assets and number of employees are 

below a certain level. The definition of SME is not uniform around the world, each country has its own 

definition criteria which may also vary from industry to industry. An example of this is the difference in 

the definition of SME between the United States and Europe. In Europe, a company with less than 250 

employees is considered an SME, while in the United States this number can be as high as 1200 (Ward, 

2020). In the European Union, an SME is defined by either the number of employees, annual turnover, or 

annual balance sheet total. The number of employees is a mandatory criterion; for the other two criteria, 

companies can choose any one and exceed one of them. The following table shows the values of the above 

criteria (European Commission, 2020).  

 

 

 

 

 

 

 

 

 

Maintenance strategies:  

Industrial maintenance programs are the foundation of a productive and reliable business. The 

best way to keep maintenance costs down is to implement maintenance strategies. The maintenance of 

equipment, machinery, systems, and plants is becoming increasingly sophisticated and requires 

continuous improvement of the maintenance process. Maintenance includes several activities: 

Monitoring, routine maintenance, condition analysis, overhaul, repair or rebuild. According to the 

European standard 13306:2017, maintenance is defined by a combination of technical, administrative and 

management activities during the life cycle of a plant (European Committee for Standardization, 2017).  

Figure 3 - SME Thresholds (European Commission, 
2020) 
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Maintenance strategies can be divided in four big groups:  

 

 

Figure 4 - Maintenance Strategies (Heavy.AI, n.d.). 

 

Reactive Maintenance, also known as corrective maintenance. This type of maintenance is based on the 

principle of repair when equipment deteriorates or fails. There is no planning for the repairs. This method 

is applicable to equipment that is not essential to the operation. It is not usually used as a strategy because 

it can lead to unplanned downtime and usually results in longer downtime and high maintenance costs 

(Valuekeep, 2021). 

Preventive Maintenance (schedule maintenance), Is the most common strategy. It is performed 

according to predefined maintenance schedules; it relies on visual inspection and other routine health 

checks like adjustments, cleaning, lubrification, repairs and parts replacement (MRI, 2021). Most of the 

companies rely on this type of maintenance to prevent having to recur to reactive maintenance 

(Valuekeep, 2021).  

Predictive Maintenance (PdM), Its goal is to predict when equipment malfunction will occur. When 

undesirable conditions are detected, repairs are scheduled before the equipment fails, reducing repair 

costs compared to reactive maintenance. This type of maintenance uses machine sensor data and ML 

techniques to alert you to the risk of failure. Using Computerized Maintenance Management System 

(CMMS) software is one of the easiest ways to apply this type of strategy (Valuekeep, 2021). 
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Using control graphs like the one in Figure 5, you can see if the device is operating correctly 

between the upper and lower limits, defined by the green area. If the values are outside the upper or 

lower limits, the process is statistically out of control.  

 

Figure 5 - Illustration of a control chart for condition-based maintenance (Jensen, 2019). 

 

Predictive maintenance is based on advanced statistical methods, such as machine learning, that 

dynamically determine when a machine needs maintenance. This type of model attempts to find a pattern 

among all the sensors involved in the process, resulting in a multivariate predictive model. The amount of 

data is crucial, the more data, the better the model's predictions and the better it can predict future 

failures. This type of model can find complex patterns that would be impossible for a human to detect. 

On a temporal level, the model's predictions can range from minutes to hours. This depends on the quality 

of the data and the frequency with which it is available (Jensen, 2019). 

 

Figure 6 - Illustration of a simplified predictive maintenance model (Jensen, 2019). 
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In Figure 6, it is possible to detect small variations in behaviour. Again, the entire green range is considered 

normal, any value outside this range is considered an anomaly. In table 1 there’s a summary of differences 

between condition-based maintenance and PdM. 

 

Condition-based maintenance Predictive Maintenance 

Some types rely on data Relies on data 

Human defines decision-rule Data defines decision-rule 

Static decision rule Dynamic decision rule 

Tells if something is wrong here and now Predicts failures in the future 

Can lead to excessive maintenance Can be used for just-in-time maintenance 

Sensitive to noise Less sensitive to noise 

Table 1 - Summary of similarities and differences of condition-based maintenance and predictive 
maintenance (Jensen, 2019). 

Prescriptive Maintenance, this type of maintenance deals with the analysis of all possible failures in each 

device and automatically creates a maintenance plan that corresponds to the situation of each device 

(Valuekeep, 2021). By combining the above maintenance strategies, prescriptive maintenance determines 

the best maintenance strategy depending on the current context of the operation (MRI, 2021). This 

strategy ensures that maintenance is performed efficiently, cost effectively, reliably, and safely. This 

maintenance can be preventive, predictive or inspection. Prescriptive maintenance was originally used in 

the aerospace industry but has been adopted by many other industries. Of all the strategies, this is the 

most complex. It requires a maintenance team that is proficient in prevention, predictive maintenance, 

inspections, and has access to reliable data (Valuekeep, 2021). 

 

3.1.2 Industries 

There are a variety of industries using IIoT for predictive maintenance: Gas and Oil, 

Manufacturing, Energy and Utilities, Transportation and Logistics, Healthcare, Agriculture, and others. In 

this work we are going to focus on the 5 industries that take the most out of predictive maintenance.  

Oil and Gas Industry: One of the pioneering industries for this type of maintenance was the oil and gas 

industry. The need was based on a desire to reduce maintenance costs while reducing the risk of 
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environmental disasters. The fact that these companies have such a predictive maintenance system in 

place means that there is no need for constant secondment of workers to carry out technical checks on 

equipment (Christiansen, 2019; Lee, 2019).  

Manufacturing Industry: In this industry, failures, or downtime cost so much that large manufacturers 

can lose thousands of dollars per minute. Any type of reactive maintenance is extremely expensive, and 

sometimes it is impossible to predict how long production will be down and how much it will cost the 

company. However, with enough data and research, downtime can be significantly reduced. Using PdM 

can extend the useful life of equipment by 3 to 5%. Another plus is that there are sensors that support 

predictive maintenance, as well as predictive analytics that also improve product quality and equipment 

efficiency. With PdM it is possible to monitor and test various indicators like, vibration, infrared and sonic 

acoustical (Christiansen, 2019). 

IT Industry: As in other industries, computers show signs of fatigue and future failure. Since any signal 

coming from one of these machines is much more difficult to identify than in other industries, extremely 

sensitive sensors are used to detect the anomalies. Anomaly detection is important in various fields as it 

avoids the disruption of essential services in our society, such as government, hospitals, data centers, 

navigation controls, and telecommunications. For example, a telecommunications server failure can affect 

millions of people (Christiansen, 2019; Industry Perspectives, 2016).  

Energy Industry: Power plants must provide a continuous and reliable supply of energy. Predictive 

maintenance is able to ensure an uninterrupted supply by detecting faults in the various components that 

make up the different energy sources. In the case of wind energy, for example, the equipment that needs 

to be monitored are pumps, fans, gearboxes, and generators. There are companies in this field that 

present interesting data: 90% of faults can be detected 5 months in advance, greater efficiency in 

maintenance and longer uptime lead to an annual return on investment of 175%, energy consumption is 

reduced through access to efficient metrics and emergency maintenance trips are reduced by 50% 

(Christiansen, 2019; Samotics, n.d.). 

Railways: Companies that manage railroads take advantage of predictive maintenance to ensure that the 

rails and rolling stock are in good condition. A variety of sensors can be installed, from infrared to audible 

signals, which can be used to detect malfunctions in wheelsets, bearings, brakes, rail curves, or even 

immediate damage. This solution improves the speed of rolling stock, reduces delays due to breakdowns 

and increases safety (Grizhnevich, 2021). 



18 

3.1.3 Technologies  

Industry 4.0 

Industry 4.0 is the information-based transformation of manufacturing in a connected 

environment of Big Data, people, processes, services, systems and IIoT assets that generate data and 

information that can be used to create smart industries and ecosystems for industrial innovation and 

collaboration (I-Scoop, 2022). We are in a transitional phase in the way things are produced, and that is 

closely linked to the IoT. Advances in networks, machine learning, data analytics, robotics, 3D printing, 

and other technologies are improving industrial processes and reducing reliance on human labor and 

decision making (Buchberger, 2021). There are clearly defined frameworks and architectures for Industry 

4.0, characterized primarily by the connection of physical assets with digital technologies through cyber-

physical systems (I-Scoop, 2022). The Internet of Things (IoT) plays a big role in Industry 4.0, from multi-

level layers to IoT platforms to industrial gateways. There are other technologies that are part of this 

revolution: Cloud computing, Big Data (which implies advanced analytics, data lakes, edge intelligence and 

enables the application of artificial intelligence), data analytics, storage and edge computing, data 

communication over mobile networks, changes in systems such as HMI and SCADA, manufacturing 

execution systems (MES), enterprise resource planning, programmable logic controllers (PLCs), sensors 

and actuators. The combination of these technologies with AI is coming to fruition in various business 

areas, such as information management and business process management (I-Scoop, 2022). There are 

four design principles for the industry 4.0, Interconnection, information transparency, technical 

assistance, decentralized decisions (Buchberger, 2021).  

According to the definition of the European Commission (Davies, 2015), Industry 4.0 consists of the 

following technologies:  

o ICT - The application of information and communication systems to digitize information 

and thus integrate all systems at every stage of product creation and use, including 

logistics and delivery, both inside and outside companies. 

o CPS - Cyber-physical systems use ICT to monitor and control physical systems and 

processes. 

o Network communications - Communication and technology networks that enable 

machines, products, systems, and people to be connected, both inside the factory and 

outside with suppliers and distributors. 
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o Simulation through virtualization and modeling in product design and manufacturing 

process implementation. 

o Data - Storage of large amounts of data for analysis and exploration that can be processed 

in the factory or via cloud computing. 

o Intelligent tools – Digital assistance systems for workers through ICT, including robots, 

augmented reality, artificial intelligence. 

 

Big data Analytics. 

Big Data is the field that deals with processing and analyzing data to obtain information when the 

data set is too large to analyze using conventional systems. It is usually defined by five V's: Volume, 

Velocity, Variety, Veracity and Value. The interest in IIoT and predictive maintenance gives meaning to Big 

Data in the industrial sector. Data is collected from various sources, through common systems, sensors 

and electronics, the amount of data stored is huge. The industry is working on developing methods to 

interpret and analyze this data for use in production. It is expected that most devices will change in terms 

of incorporating sensors, making it possible to generate knowledge in real time. This technology combined 

with cloud computing will enable manufacturers to better understand their business, which is essential 

for decision making (Boggess, 2022; Saratchandran, 2021; Twi-Global, n.d.). 

Cloud Computing. 

This technology has the ability to connect all parts of a company, from manufacturing to logistics to 

factories within the same company. This technology is already being used on a large scale. This technology 

is one of the most important factors in a manufacturing revolution. Massive computing power offered as 

a service is changing manufacturing in many ways. Be it how companies operate, how their products are 

designed and manufactured and how they are used by customers. It is enabling manufacturers to deploy 

new manufacturing systems such as 3D printing, high-performance computing (HPC), robotics, IIoT and 

subsequently predictive maintenance. In this way, access to these technologies becomes more 

democratic and enables SMEs to use them (Ezell & Swanson, 2017; Laura, n.d.; Saratchandran, 2021). 

Automation. 

Automation is the use of equipment to automate production systems or processes. The overall 

automation process aims to increase efficiency, increase production capacity, or decrease costs, usually 

both. Automation is usually associated with the use of machines to reduce the amount of work done by 
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humans. It is associated with electromechanical processes that are programmed to perform a variety of 

work, an example of which is robotics. With technological advances in robotics, there is a tendency for 

robots to become cheaper, smarter, and more efficient, they are used in numerous areas of a 

manufacturing process (Saratchandran, 2021). It is hard to imagine the manufacturing industry without 

robotics. It is an area where there have been great technological advancements and it is having a huge 

impact on manufacturing. Robots replace human labor in repetitive tasks without tiring, with high 

accuracy, high efficiency, and a very low error rate, allowing workers to focus on more productive tasks 

(Acieta, n.d.). Automated manufacturing processes are key to an operation that seeks maximum 

efficiency, competitive advantage, and safety. In the world of manufacturing, there is a shift in jobs. 

Instead of seeking workers for production and the manufacturing process, companies are seeking skilled 

workers for robotics (Twi-Global, n.d.). 

Cyber-physical systems. 

Fundamental enabler of industry 4.0, are systems that integrate computers, networks, and physical 

processes and monitor and control processes in real time. The merging of cyber and physical processes is 

critical to manufacturing technology. Cyber systems monitor processes, identify where changes need to 

be made, and control physical systems accordingly. This technology is one of the great advances of 

Industry 4.0, which has transformed many aspects of our lives and made concepts such as autonomous 

cars, robots in surgery, smart buildings, smart grids, and smart manufacturing a reality (Twi-Global, n.d.). 

Cybersecurity. 

Manufacturing processes contain confidential information and data from many areas of the 

enterprise, from IT to operating systems. Companies are often hesitant to adopt these cybersecurity 

technologies for fear that it will compromise a process, slowing it down or resulting in lost revenue (Ava 

Reveal, 2021). They can no longer be satisfied with the "normal" levels of security that are in place in their 

factories. Many of these companies thought they were safe, but the connectivity of Industry 4.0 has 

changed that. Cybercrime increased in 2017 and 2018 and did peak in 2020 as companies rely on remote 

work due to pandemic-related restrictions. Manufacturing rose from eighth in 2019 to second in 2020 in 

the ranking of industries most affected by cyberattacks. According to the Global Threat Intelligence Report 

(GTIR) 2021 report, these numbers represent a 300% increase in attacks per year. Cybersecurity and IoT 

certification regulations were published in 2020. Implementing a cybersecurity strategy must be a priority 

in a factory that takes advantage of today's digital processes (LeanIX, n.d.-b; Miller, 2021).  
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Digital Twin. 

A digital twin is a virtual representation of a device or object such as machines, tools, products, 

robots, or even a factory in general. They allow the analysis of data and the simulation of scenarios. 

Through this technology, it is possible to make predictions and perform tests without affecting real 

production, protecting the process from possible errors, and saving time. It is also an essential tool for 

predictive maintenance (LeanIX, n.d.-b). 

Artificial Intelligence and Machine Learning. 

 AI is being used extensively and is making significant progress in the manufacturing sector. Machine 

learning techniques are becoming more advanced, advances in sensors and computing power have helped 

to create a new generation of automation. AI allows machines to collect data, recognize patterns, learn, 

and adapt to new things. This technology facilitates automation processes, enables prediction of design 

flaws, ensures the quality of manufactured products, enables predictive maintenance, efficiently forecasts 

product demand and price, manages inventory, and more (Allinson, 2021; Columbus, 2020; Yap, n.d.). 

Augmented reality. 

Is the combination of real and virtual world created by a computer. An image is captured via video 

and then enhanced with digital information. Not to be confused with virtual reality, where there is a 

separation from the real world. AR has the ability to show digital content in the real world, which allows 

visualization of data, finished products, machine components that exist only in design, and identification 

of unsafe working conditions (Koelsch, 2021). It allows a worker to be trained without endangering them 

or the equipment and informs them that a part is hot without having to touch it. It gives the worker a 

sense of what's going on around them, which machines are nearby, which ones are out of order, where 

they are, where co-workers are, and even prohibited zones in the factory. With remote assistance, it's 

easy for a technician to troubleshoot the problem (Saratchandran, 2021). This technology is new and 

evolving quickly. Implementing augmented reality is difficult, more difficult than implementing VR. AR 

systems need a mechanism by which you can locate things (Koelsch, 2021).  

5G. 

The 5G network has accelerated the fourth industrial revolution that is already underway, enabling 

faster development of the factory of the future (Galea-Pace, 2020). This network allows for low latency 

and high fidelity, enabling the switch from fixed to wireless connections. This switch will speed up the 
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manufacturing process and provide more flexibility, lower costs and shorter times for reconfiguring 

manufacturing processes and changes in production (Ericsson, n.d.). Compared to 4G, this technology is 

twenty-five times faster and has very low latency, approaching virtually zero. It will allow factories to use 

many more sensors to monitor the various processes so that virtually everything can be connected (Galea-

Pace, 2020). 

Additive Manufacturing. 

Also called 3D printing has come a long way in the last decade, allowing the production of virtually 

any component from a variety of materials such as metals, plastics, and others (NI Business Info, n.d.). It 

is mainly used to produce spare parts and prototypes faster and cheaper (I-Scoop, 2022; Stefanini Group, 

2020). 

IoT & IIoT: 

The difference between Industrial Internet of Things and Internet of Things: 

IoT, it is about connecting devices with a unique identity that are connected to the Internet and 

have software, electronics, and sensors that enable the collection and transmission of data over the 

Internet without human interaction. The goal of IoT is to transform "dumb" devices into smart devices 

capable of exchanging data in real time. It is possible to connect everyday objects such as thermostats, 

home appliances and televisions to the internet. For example, it is possible to raise or lower the blinds 

through an application on a smartphone (Geeksforgeeks, 2020). 

  IIoT, uses smart sensors and actuators to improve manufacturing processes. Harness the power 

of smart machines and analyze in real time using data generated by machines over the years (Trend Micro, 

n.d.). The term IIoT was coined by General Electrics in late 2012. The Industrial Internet of Things brings 

together critical assets, predictive and prescriptive analytics, and a well-trained workforce (Parris, n.d.). 

Both IoT and IIoT concepts share the same characteristic: they are available, intelligent, and connected. 

While the term IoT is mostly used for the consumer market, IIoT is used for industrial purposes. It is a 

network of industrial devices that are connected through communication processes, resulting in systems 

that can monitor, control, share, analyze, and deliver valuable knowledge. The philosophy behind IIoT is 

that machines are more efficient than humans at capturing and analyzing data in real time and 

communicating critical information for informed business decisions (Trend Micro, n.d.). These networks 

are used in manufacturing, logistics monitoring, and management systems (Gunawan, 2017). The 

application of an IIoT network is more sophisticated and rigorous when it comes to the devices used to 
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monitor industrial systems. They provide a broader and more detailed view and enable automated 

controls and advanced analytics. As the IIoT is used to manage critical systems, more sensitive and 

accurate sensors are used, also the security of the network is more demanding (Gunawan, 2017). 

IIoT reference architectures. 

There are several reference architectures related to the IIoT that are being collaborated on to 

achieve standardization. There are three reference architectures, each related to a continent: Reference 

Architecture Model for Industry 4.0 (RAMI 4.0), which was introduced in Germany as a European solution; 

Intelligent Manufacturing System Framework (IMSA), which was introduced in China; Industrial Internet 

Reference Architecture (IIRA), which was introduced by the Industry IoT Consortium (IIC) in the United 

States (Heidel et al., n.d.). These model architectures present unified concepts and methodologies with 

the goal of stakeholders managing complexity and speaking the same language. In this way, a basic 

structure for a concrete description and specification of architectures is created. There is international 

collaboration between the three architectures to standardize the IIoT internationally (Heidel et al., n.d.). 

The Reference Architecture Model for Industry 4.0 (RAMI 4.0) is an architecture that focuses on IoT and 

cyber-physical systems in the field of industrial manufacturing, taking into account fundamental aspects 

such as assets. Comparing RAMI 4.0 with IIRA, the latter has a broader focus, it tries to push all industrial 

applications (The Open Group, n.d.), while RAMI 4.0 is presented as a reference model for Industry 4.0 

(Schweichhart, 2016). Figure x provides an overview of the different focuses of IIRA and RAMI 4.0. 

 

RAMI 4.0, Reference Architecture Model Industry 4.0 was developed and presented by the 

German company ZVEI with the aim of supporting initiatives in Industry 4.0. This architecture intends to 

Figure 7 - The Internet of Things and Services, Bosch Rexroth AG 
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define communication structures and develop a common language. It is represented by a three-

dimensional map on which one can find an indication of how to approach each issue in a structured way. 

This will ensure that all stakeholders can discuss in a common language, ensuring interdisciplinary 

standardization of technologies that apply to different fields such as mechanical, electronic, electrical, 

communication and information technology (Lydon, 2022; Schweichhart, 2016). The main focus in the 

development of RAMI 4.0 has been on industrial production. Concepts are applied to processes to achieve 

holistic integration of automation, information, and manufacturing execution to improve all aspects of 

production and commerce. There are adjacent projects that help to consolidate the RAMI 4.0 application, 

projects such as: "Process Sensor 4.0 Roadmap" which aims to create building blocks to further develop 

system architectures for process automation, initiated by NAMUR and VDI/VDE in collaboration with 

market leaders such as ABB, BASF, Bayer, Bilfinger, Siemens, Fraunhofer, etc.; the creation of an 

independent protocol by the OPC Foundation and FieldComm Group for an information model for 

automation devices (PA-DIM) based on the industrial interoperability standard OPC UA. It aims to reduce 

implementation times for advanced analytics, Big Data projects, and cloud solutions (Lydon, 2022). The 

RAMI 4.0 architecture and Industry 4.0 components enable companies to create a framework for 

developing products and business models. RAMI 4.0 is a three-dimensional map that shows how to 

approach the application of Industry 4.0 in a structured way. The architecture has been standardized as 

DIN SPEC 91345 (Lydon, 2022) and internationally as IEC PAS 63088 (Heidel et al., n.d.). 

Figure 8 - RAMI 4.0 (Schweichhart, 2016) 
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RAMI 4.0 consists of three axes: "hierarchy levels", "life cycle value steam" and "layers". 

"Hierarchy levels" axis: this axis represents the different standardized levels for IT companies and control 

systems, they are based on IEC 62264. these levels represent the different functionalities within the 

factory floor (Heidel et al., n.d.; Lydon, 2022). They include the workpieces labeled "Product" and the 

services and IoT connections labeled "Connected World" (Lydon, 2022). 

 

Figure 9 - Factory world with Industry 3.0 (Schweichhart, 2016). 

In the “old world” represented in figure 9 we have following characteristics: a hardware-based structure; 

the functions are bound to hardware; hierarchy-based communication; isolated product (Lydon, 2022; 

Schweichhart, 2016).  

 

Figure 10 - Factory world with Industry 4.0 (Schweichhart, 2016). 
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In “new world”, represented at figure 10, we have the following characteristics: flexible systems and 

machines; functions are distributed throughout the network; participants interact across hierarchy levels; 

communication among all participants; the product is part of the network; RAMI 4.0 structure (Lydon, 

2022; Schweichhart, 2016). 

"Life cycle value stream": this axis represents the lifetime of products and equipment, it is based on the 

IEC 62890 standard, Life cycle management for systems and products. This standard is used for 

measurement, control, and automation of industrial processes. In this axis, a distinction is made between 

"type" and "instance". The "type" becomes an "instance" only when the product is real, i.e., when its 

development, production and manufacture are completed. All elements and components of IT are also 

summarized in the layer and life cycle model (Lydon, 2022; Schweichhart, 2016). 

 

Figure 11 - Product Life Cycle (Schweichhart, 2016). 

 

"Layers/Architecture”: The six vertical planes represent a layered representation of the machine that acts 

like a virtual map of the machine. The representations shown are from information, communication, and 

technology systems whose properties are divided into layers (Lydon, 2022; Schweichhart, 2016). 
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Figure 12 - Product Life Cycle (Schweichhart, 2016). 

 

With the definition of these three axes, the most important aspects of Industry 4.0 have been 

established. In this way, the concepts of Industry 4.0 can be described and implemented through RAMI 

4.0. This enables a gradual transition from the current state to Industry 4.0 (Lydon, 2022; Schweichhart, 

2016). The digitization of the real physical object takes place via a management shell. This can be defined 

as: the interface that connects the physical object to I4.0; where data and information about the object is 

stored; serves as an interface to the standardized communication network. The object is connected to 

Industry 4.0 and the management shell forms the digital part (Schweichhart, 2016). 

 

Figure 13 - Administration Shell that allows integration of the object into Industry 4.0 (Schweichhart, 
2016). 
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Each physical object must have its own management shell, and it is possible to have a common 

management shell for several physical objects. 

Figure 14 - Administration Shell for thematic units (Schweichhart, 2016). 

 

RAMI 4.0 integrates different perspectives and presents a common path for implementing 

Industrie 4.0 technologies. In this way, it can be taken up by industry associations and standardization 

bodies. In this way, an understanding of patterns and use cases is provided to all who use this architecture 

(Lydon, 2022). RAMI 4.0 can be used as a map for Industry 4.0 solutions that are deployed nationally and 

internationally. There is international interest in collaboration so that the different reference 

architectures are identical (Heidel et al., n.d.; Lydon, 2022). 

IoT Architectures 

An IoT is an architecture that consists of smart devices that are interconnected to form systems 

that enable the monitoring, collection, and analysis of data in real time (Avsystem, 2019). 

 

Figure 15 – The four Layers of IoT architecture, (Avsystem, 2019) 
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Although every IIoT solution is different, the 4 layers listed below are essential to building an architecture 

that ensures availability, maintenance, and cost effectiveness (Avsystem, 2019). 

Figure 16 - Four Stage IoT Architecture (Geekforgeeks, 2022). 

 

• Perception or sensing layer: this consists of things, like, sensors, actuators, and devices, 

collectively called edge nodes (IIRA). It is responsible for converting analog signals into digital data 

and vice versa (Altexsoft, 2020; Record Evolution, 2020). These devices, connected at farthest 

edge of the IoT network, form the bridge between the digital and real worlds and provide the 

essence of the IIoT, data (Altexsoft, 2020; Avsystem, 2019). 

o Sensors: They collect data about the state of a process, environment, or device. They can 

capture information such as temperature, humidity, chemical composition, vibration, 

fluid levels, or even the speed of a manufacturing process. They can be integrated into 

the device or stand-alone (Altexsoft, 2020; Avsystem, 2019; Jahnke, 2020). 

 

o Actuators: They work in the opposite direction of sensors, they receive information from 

the network to act in a physical way, they are used in motors, lasers, robots, etc (Altexsoft, 

2020; Avsystem, 2019). When a sensor detects an anomaly, the actuator can act in real 

time to fix it (Jahnke, 2020). 

 

o Devices: These may have the sensors or actuators as an integral part or be connected to 

them (Altexsoft, 2020). It is important that the connected devices not only be able to 

communicate in both directions, but also have the ability to communicate with each other 

to add value to the IIoT network (Avsystem, 2019). 
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• Network Layer: This layer operates in close proximity to sensors and actuators and is essential for 

processing the collected data, filtering and compressing it for later transmission to an edge 

infrastructure or cloud platform. This second layer is the bridge for communication between all 

devices, networks and cloud or edge services that are part of the IIoT network (Altexsoft, 2020). 

This network consists of internet/network gateways, data acquisition systems (DAS) (Avsystem, 

2019; Geekforgeeks, 2022; Jahnke, 2020). DAS is responsible for capturing and converting analog 

data into digital data, aggregating, and formatting it before sending it through an internet gateway 

to the next stage of processing. In this layer, the volume of data is enormous, so it is necessary to 

ensure that the data is compressed and filtered so that it can be sent optimally (Jahnke, 2020). 

The connection between the physical layer and the cloud can be done in two ways: directly via 

TCP or UDP/IP or via gateways, which are hardware or software modules that encrypt or decrypt 

data (Altexsoft, 2020). Communication between the cloud and the gateways takes place via 

various network technologies.  

 

 

 

 

Figure 17 – Gateways and Data Acquisition, (System, 2020). 
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Once you have an IoT solution, you need to determine the protocols for messaging between devices 

and between devices and the cloud. See the table below for the most used protocols. 

Ecosystem Description 

DDS (Data Distribution Service) Directly connects IoT devices to each other and to 

applications addressing the requirements of real-

time systems. 

AMQP (Advanced Message Queuing Protocol) Peer-to-peer data exchange between servers. 

CoAP (Constrained Application Protocol) A protocol designed for constrained devices – end 

nodes limited in power and memory. Wireless 

sensors are a good example.  

MQTT (Message Queue Telemetry Transport) A light protocol built on top of TCP/IP for 

centralized data collection from low-powered 

devices.  

Table 2 - Communication protocols, (Altexsoft, 2020). 

 

• Data Processing Layer:  

 

Figure 18 – Edge Analytics (Avsystem, 2019). 

 

Here, the data digitized by the previous layers is processed by devices close to the data source, 

called edge devices. This reduces latency and volume before transmission to the cloud, also, it 

enables initial analysis and preprocessing (Avsystem, 2019; Jahnke, 2020). As a result, they enable 

faster responses and flexibility in processing and analyzing data, essential factors for certain 

industries where making fast and correct decisions is crucial (Avsystem, 2019). Machine learning 

plays an important role in this phase and enables consistent feedback from the system (Jahnke, 
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2020). This layer is essential for IoT systems that want to meet the requirements of 5G mobile 

network such as speed, security, and scalability (Altexsoft, 2020). Related to this level is the 

concept of Fog or Edge Computing, which is based on the idea of processing and storing data as 

fast as possible and as close to the source as possible. 

o Edge Analytics and computing: Occurs on gateways, local servers, or edge nodes across 

the network (Altexsoft, 2020). It relies on an IT infrastructure that performs data 

processing close to the source, usually from sensors. In this way it is possible to define 

workloads for the different machines without relying on a single computer to process a 

large number of devices. Only the results that can be processed are transmitted to the 

servers or the cloud. This results in better bandwidth, less delay compared to systems 

with central servers and less data storage in the cloud. This infrastructure has the 

advantages of better performance, shorter response times, real-time information, and 

unlimited scalability (Altexsoft, 2020). In this layer, the data is: evaluated to determine if 

it will be processed at the next levels, formatted so that it can be processed further, 

decrypted, filtered, and forwarded to another destination if necessary (Altexsoft, 2020). 

o Fog computing: It’s another way of processing data close to the source, it takes place in 

the local network, between edge devices and servers. A bridge is built between the edge 

and the cloud or datacenters. In this layer, data processing is done by gateways. Although 

this layer has more processing power than the Edge, there are still many systems without 

this layer, because Edge computing does not rely on Fog computing, but the opposite is 

not true (Altexsoft, 2020). 

 

• Application Layer / Cloud platform: Unlike edge solutions, this layer is designed to store, process, 

and analyze large amounts of data in depth, which enables machine learning in a way that is not 

possible in an edge system (Avsystem, 2019). At this stage, the information is stored in the cloud 

or in data centers. Here it is possible to combine data from all devices and locations from which 

knowledge is gained and which provide an overview of the company (Jahnke, 2020). In recent 

years, this technology has become more and more prevalent. Cloud computing paves the way for 

higher production, less unplanned downtime, and lower energy consumption. When deployed 

properly, the appropriate solutions enable not only the provision of information about the 



33 

business, but also human interaction with the system, control, and monitoring to make informed 

decisions through reports, dashboards and data displayed in real time (Avsystem, 2019). 

 

Sensors 

Sensors are used to monitor the entire factory, from finished products, their quality, machinery, and 

other equipment, all in real time. This allows for monitoring that would otherwise not be possible. 

Different industries use multiple sensors depending on their needs and processes. These are essential for 

early detection of anomalies. The best strategy for detecting anomalies in an industrial process is to use 

multiple types of sensors associated with different anomaly detection techniques. The following is a table 

of the most used sensors for anomaly detection in industrial processes. 

 

Measurement Sensor Key Information Target Faults 

Vibration Piezo accelerometer Low noise, frequencies up 

to 30 kHz, well established 

in CbM applications 

Bearing condition, gear 

meshing, pump cavitation, 

misalignment, imbalance, 

load condition 

Vibration MEMS accelerometer Low cost/power/size, 

frequencies up to 20 kHz+ 

Bearing condition, gear 

meshing, pump cavitation, 

misalignment, imbalance, 

load condition 

Sound 

pressure 

Microphone Low cost/power/size, 

frequencies up to 20 kHz 

Bearing condition, gear 

meshing, pump cavitation, 

misalignment, imbalance, 

load condition 

Sound 

pressure 

Ultrasonic microphone Low cost/power/size, 

frequencies up to 100 kHz 

Pressure leaks, bearing 

condition, gear meshing, 

pump cavitation, 

misalignment, imbalance 
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Motor current Shunt, current 

transformer 

Low cost, noninvasive, 

usually measured at motor 

supply 

Eccentric rotors, winding 

issues, rotor bar issues, 

supply imbalance, bearing 

issues 

Magnetic field Hall, magnetometer, 

search coil 

Low cost/size, frequencies 

up to 250 Hz, stable over 

temperature 

Rotor bar, end ring issues 

Temperature Infrared thermography Expensive, accurate, 

multiple assets/sources of 

heat at one time 

Heat source location due to 

friction, load changes, 

excessive start/stop, 

insufficient power supply 

Temperature RTD, thermocouple, 

digital 

Low cost, size, accurate Change in temperature due 

to friction, load changes, 

excessive start/stop, 

insufficient power supply 

Oil quality Particle monitor Viscosity, particles, and 

contamination 

Detect debris from wear 

Table 3 - most used sensors for predictive maintenance (Murphy, n.d.). 

 

3.1.4 Challenges and Opportunities  

 

Challenges: 

 Companies are increasingly embracing the technologies that define them as part of the industry 

4.0 revolution. Virtually every day we hear about the terms Industry 4.0 or digital transformation. The 

adoption of 4.0 technologies presents companies with challenges they have never seen before. There are 

opportunities and challenges to be overcome for a successful digital transformation (Stefanini Group, 

2021). Businesses are made up of people, interaction between people, and are run by people. Therefore, 

before all the technical difficulties in implementing the technologies that enable successful digital 

transformation, it is important to understand the difficulties that normally arise in a company. First and 

foremost, it is necessary to define a strategy for Industry 4.0 that includes rethinking and implementing 

new business models, understanding the business case, understanding the company for the necessary 
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changes, pilot testing, a good connection between departments, developing and recruiting new talent, 

and finally changing leaders (i-SCOOP, 2022; Rudinschi, 2017). The latter is often overlooked. Lack of 

alignment and preparation between managers, where different business units disagree on how to 

proceed, leads to delays.(Ellingrud et al., 2021; Infopulse, 2019). 

Technical challenges: 

 The gap in technical skills:  Technological progress means that humans are no longer the main 

labor force in production, machines replace humans in many tasks. Automation will have a significant 

impact on employability in the coming years and will greatly change jobs, leaving most workers unable to 

develop their skills (Ellingrud et al., 2021). Difficulties in the use of advanced knowledge, information 

management and artificial intelligence (Khan et al., 2017). There is a need for an evolved workforce as 

some workers often lack the ability to keep up. New hires need to have digital skills and understand the 

process globally, how manufacturing processes work, and the digital tools that support those processes. 

Only with the right workforce is it possible to implement certain business models, introduce new 

technologies, and maintain operations (Stefanini Group, 2021).  

Data: Technology has advanced and so has the concern for data. Companies try to keep their data 

private, which means there is no sharing of data between companies. If that were the case, it would be 

much easier to train artificial intelligence algorithms (Stefanini Group, 2021). If you look at the internal 

system of the companies themselves, there is often no interdepartmental sharing, data is stored and often 

lost because no one or I am a department uses it. To get business intelligence, data and information needs 

to be shared across all departments (Sykes, 2019). In the case of manufacturing companies, one of the 

biggest challenges is knowing how to get value from the data. Data can come from a variety of sources, 

data from machine control systems, product or process quality, manual records, anomaly monitoring 

systems, logistics and customer information. Some of this data is structured, others are semi-structured 

or completely unstructured, in any case, this data is often not used (Schuldenfrei, 2019). 

 Interoperability: A key factor that often prevents a company from innovating in Industry 4.0 is 

the lack of interoperability (Schuldenfrei, 2019). Technologies, systems, data types, protocols, 

components, and products are not aligned. It is not easy to swap parts from one vendor for another, 

limiting opportunities for upgrades(Schuldenfrei, 2019; Stefanini Group, 2021). There is no doubt that 

Industry 4.0 is moving very fast and greatly improving the productivity of companies in various industries, 

but right now we have old systems connected to new systems that do not always work well together 
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(Sykes, 2019). Data can be collected by aftermarket sensors or by sensors already installed in the 

machines. It must be ensured that all these sensors are able to communicate with each other and with 

the central system, usually a CMMS (Computerised Maintenance Management System). This 

communication must be as fast and efficient as possible. In the case of implementing predictive 

maintenance, this is a crucial step because all devices must function correctly as a set (ATS, 2021). 

Security:  Because of their connectivity, the threats associated with Industry 4.0 are high. 

Although rare, a cyberattack on a company can expose it in a variety of ways, exposing or damaging data, 

stealing intellectual property, and thus threatening its competitive advantage (Sundblad, 2019). These 

attacks can be done through ransomware or even a targeted attack on the company in question (E. 

Anderson, 2020). The digital and physical systems that form the backbone of Industry 4.0 are a great asset 

to a company, but they also increase the attack surface. The fact that multiple machines are connected to 

one or more networks makes them vulnerable to attack (Stefanini Group, 2021). Manufacturers need to 

make sure that their company is secure. IT departments need to be supported financially and culturally to 

ensure network security (Sundblad, 2019). 

Data Growth:  

 With the increasing use of AI in businesses, companies will get more data faster and from different 

sources (Schuldenfrei, 2019; Stefanini Group, 2021). It is difficult for traditional IT systems to store and 

process a volume of data of this magnitude. Therefore, enterprises need a solid, state-of-the-art platform 

to take advantage of manufacturing with ML, AI, and predictive analytics (Stefanini Group, 2021). 

 Initial investment:  

One of the factors holding manufacturers back from implementing Industry 4.0 is the fact that ROI is low 

(N. Anderson et al., n.d.). There is no doubt that implementing all the sensors, devices, software, and the 

cost of skilled personnel in this field will cost (ATS, 2021). However, the current prices are much more 

attractive and make the investment possible (N. Anderson et al., n.d.). 

 

Opportunities:  

The benefits are numerous: optimization and automation lead to higher efficiency and 

productivity, real-time data monitoring of supply networks to improve supply and demand, intelligent 

monitoring and maintenance to reduce maintenance downtime and costs, real-time monitoring of robots 
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through the IIoT leads to better quality products, better sustainability and better working conditions, sales 

increases, energy efficiency and gaining customer trust through personalization capabilities(Infopulse, 

2019; LeanIX, n.d.-a; Stefanini Group, 2021). The application of ML and data analysis of industrial systems 

makes it possible to find information to make strategic decisions. This information can provide benefits in 

reducing maintenance costs, schedule control, significant reduction in unplanned downtime, reducing 

repair times, reducing spare parts inventory, extending the life of spare parts, increasing production, 

improved equipment safety, increasing operator safety (ATS, 2021; Khan et al., 2017). 

 

3.2 Anomaly detection 

3.2.1. Overview 

Data science techniques    

The field of data science consists of several components: Mathematics and statistics that extract 

valuable information from data, techniques and algorithms that make it easier to work with large datasets 

through advanced methods and tools that help put the data into the desired format (Schmelzer, 2020). 

Some of these techniques have been around for many years, others are new and come from recent 

research in ML (Schmelzer, 2020).ML is an essential part of AI that manages to use data in new ways by 

suggesting articles, as is the case with Facebook, or by letting computers learn and improve through the 

experience they have with programs that can automatically access data and perform tasks such as 

prediction or recognition (Priyadharshini, 2022). ML is based on algorithms that can learn without 

requiring code rules. It became a scientific discipline in the late 1990s due to major advances in digitization 

and cheaper computing power. Instead of data scientists creating ready-made models, they started 

training computers to do so (Pyle & José, 2019).  

Overall, there are 3 types of ML techniques, supervised learning, unsupervised learning, and 

reinforcement learning: 

Supervised learning: in this type of learning, the process ML begins with inputting data into a particular 

algorithm with the goal of developing a final model. To find out if the algorithm works, it is tested by 

inputting new data and then comparing the prediction with the actual results. If the result is not good, 

the algorithm is trained until the desired result is achieved (Priyadharshini, 2022).  

Supervised learning can be divided into two types of problems: Classification and Regression.  
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Classification is about predicting a class. The algorithm needs to accurately assign data to a specific 

category, for example, sorting spam emails so that they are directed to a different folder. Common 

algorithms for classification are: Linear classifier, SVM (Support Vector Machine), Naïve Bayes classifier, 

K-nearest neighbor, Logistic regression, Random Forest and decision trees, (Delua, 2021; Priyadharshini, 

2022; Schmelzer, 2020). 

Regression predicts a numerical value. The algorithm is used to learn the relationship between 

input or independent variables and the target or dependent variable (Brownlee, 2020a; Delua, 2021). 

Regression models are used to predict values such as sales profit. Common algorithms for regression are: 

Linear regression, lasso regression, multivariate regression, and polynomial regression (Delua, 2021; 

Priyadharshini, 2022; Schmelzer, 2020). 

Unsupervised learning: in this type of learning, algorithms analyze and cluster unlabeled data to extract 

patterns (Brownlee, 2020a; IBM, 2022). In contrast to supervised learning, only the input variables are 

used here, without a target variable (Brownlee, 2020a).The fact that the data is unknown means that 

there is no way to assign it to a particular algorithm, hence the term unsupervised. The data is provided 

to the model and the model tries to find patterns. The algorithm tries to understand the relationships 

between the data without direct human intervention (Priyadharshini, 2022). 

Unsupervised learning can be divided into 3 groups: 

Clustering: this is a technique that groups unlabeled data based on their similarities. These 

algorithms process unclassified data into groups represented by existing structures or patterns in 

the data. There are different types of clustering algorithms namely exclusive, overlapping, 

hierarchical, dense, and probabilistic. Exclusive clustering algorithms specify that a point can 

belong to only one group. They are also called "hard" clustering, an example of which is K-means. 

In overlapping clusters, a point can belong to more than one cluster, and its membership in one 

group can be more pronounced than in another. An example of this is fuzzy K-means. Some 

examples of algorithms for clustering are K-means, K-NN (K-nearest neighbors), Hierarchical 

Clustering, Gaussian Mixture Models (probabilistic), Mean-Shift Clustering, Fuzzy K-means, 

DBSCAN (density) (Brownlee, 2020b; IBM, 2022; Schmelzer, 2020). 

Association: it is a method for discovering relationships between variables. For example, someone 

who buys a house usually also buys furniture (guru99, IBM). They are also used to understand the 

relationships between products bought in the supermarket. They allow the company to identify 
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the relationship between different products (IBM). There are various algorithms used to create 

association rules such as Apriori, Eclat and FP -Growth. Apriori is the most commonly used 

(Brownlee, 2019; IBM, 2022). 

Dimensionality reduction: Usually more data means better results, but this can also be a problem 

due to overfitting and difficulty identifying the most important variables (IBM, 2022; Sunil, 2021). 

Dimensionality reduction is a technique used when the data set has a large number of variables 

or dimensions. This technique allows you to reduce the number of variables while better 

preserving data integrity. It is also used in the preprocessing phase of the data (Delua, 2021). 

Some examples of dimension reduction algorithms: PCA (Principal Component Analysis), SVD 

(Singular Value Decomposition), Autoencoder (IBM, 2022). 

Reinforcement Learning: These algorithms train the machine to make certain decisions (Brownlee, 2019). 

They work by exposing the machine to an environment where it learns by trial and error from past 

experiences and tries to find the best way to make good decisions (Sunil, 2021). In this case, there is no 

data set for the machine to rely on, but a goal, an action to perform, and feedback on its performance 

(Brownlee, 2019).  

In this article, the focus is on anomaly detection algorithms, i.e., techniques that identify rare 

events, objects, or observations (AVI Networks, n.d.; Johnson, 2020; Valcheva, 2020). The anomaly 

detection technique is to identify rare events or observations, i.e., something that does not fit the normal 

behavior of a dataset (Gupta, 2021; Valcheva, 2020). This type of anomaly can have different names, 

outliers, exceptions, surprises or peculiarities (Valcheva, 2020). 

There are different types of anomalies (Cohen, 2022; Gupta, 2021; Valcheva, 2020): 

 

- Point Anomalies or point outliers, these points are also called global outliers and are far from the whole 

dataset. 

 

- Contextual anomalies or contextual outliers, they are anomalies that occur in a particular context, a point 

that is different from all others in a particular context. A point may be an anomaly in the context of one 

data set and not in another. This anomaly often occurs in time series data. A good example is someone 

spending money on ice cream in the winter. In summer this is normal, in winter it is strange. 
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- Collective anomalies or collective outlier is a set of points that are different or abnormal compared to 

other data. An example is the interruption of rhythm in an electrocardiogram. 

 

3.2.2 Techniques for anomaly detection 

There are several ML techniques for detecting anomalies, the most common being: K-NN, K-

means, LOF (Local Outlier Factor), SVM, NN, Isolation Forest, DBSCAN (Brownlee, 2020b; Garbade, 2018; 

Valcheva, 2020). 

K-nearest neighbor (k-NN): It is one of the simplest techniques in the supervised learning category. It is 

most commonly used in classification problems (Patwardhan, 2021). As the name suggests, this algorithm 

considers the k nearest points (data) to predict the class of the new point. The learning of this algorithm 

is instance-based, there are no weights for learning a prediction, all the points are used to predict the 

outcome of data which has never been seen. This classification is based on distance similarities like 

Euclidean distance or hamming distance. This algorithm is lazy to learn, as nothing is learned from the 

existing data until new data comes up, only then are predictions made. This algorithm is also non-

parametric, there is no function you need to predefine (Patwardhan, 2021; Valcheva, 2020). 

Local Outlier Factor (LOF): LOF is an important anomaly detection algorithm. It is based on the concept 

of local density and uses the distance between nearest neighbors to estimate this density. It compares 

the density of an element with the density of its neighbors and is thus able to detect differences in density, 

considering members with lower density as outliers (Valcheva, 2020). Each element is assigned a score 

indicating how isolated it is, or how likely it is to be an outlier, based on the size of its neighborhood 

(Brownlee, 2020b). 

K-means: This algorithm is widely used in data mining. It partitions groups based on similarities between 

data points. It is a very easy algorithm to implement (Thelin, 2021; Valcheva, 2020). There are some things 

to consider with this algorithm. It requires a predefinition of the number of clusters and works only with 

numeric data (Valcheva, 2020).The process starts by randomly assigning k centroids to be used as starting 

points for each cluster, and then performs several iterations to compute the optimal position of the 

centroid. The algorithm for optimization when the centroids are stable, that is, when the value of the 

centroids does not change or when the number of iterations is reached (Garbade, 2018). This algorithm 

is able to detect anomalies by pointing out the points that do not match the rest of the clusters (Thelin, 

2021). 
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Support Vector Machine (SVM): This algorithm is one of the most efficient in detecting anomalies, 

especially in its one-class SVM strand. It is a technique used in regression and classification problems, but 

mainly in classification problems (Thelin, 2021; Valcheva, 2020; Verma, 2021). The SVM algorithm is based 

on the idea of finding a hyperplane that divides the data into two classes as best as possible (Bambrick, 

2016). 

The support vectors are closest points to the hyperplane. These points are critical data elements whose 

removal would cause a change in the position of the hyperplane. The hyperplane can be thought of as a 

line that linearly separates a set of data. When you test new data, it is sorted by which side of the 

hyperplane it lies (Bambrick, 2016).  

For anomaly or outlier detection, the one-class SVM is best. It is so called because it aims to 

classify the anomalies into a different category. There are two ways to apply the algorithm. In the first 

method, anomalies are separated from the feature space and the distance between the hyperplane and 

the feature space is maximized. This technique results in a feature that focuses on the density of the space, 

where observations that lie in the region with more density are assigned +1 and observations that lie in 

the region with less density are assigned -1. The second technique uses a spherical boundary instead of 

planes, resulting in a hypersphere with a center and a radius. The dense space is defined by the distance 

between the center of the hypersphere and the points that are less than or equal to the radius. The 

remaining points that lie outside the radius are considered anomalies (Verma, 2021). 

Artificial Neural Networks (ANN) – When we talk about modern anomaly detection algorithms, we should 

mention neural networks (Valcheva, 2020).Artificial neural networks are inspired by the human brain and 

try to mimic the way it works, so computers are able to recognize patterns and solve problems (IBM, 

2021).NNs consist of several layers with nodes, an input layer, one or more hidden layers and an output 

layer. They are connected by nodes with an associated weight and threshold (IBM, 2021).They can be 

trained for classification, regression, and prediction problems. 

Decision Trees: It is a popular algorithm for sorting and predicting. They work like a flowchart where the 

structure is based on a tree. Each node is a test on an attribute, each branch is the result of the test, and 

each leaf node or terminal node contains information about the class (GeeksforGeeks, 2021). Decision 

trees are used for anomaly detection because they are easy to interpret and because they are less prone 

to the curse of dimensionality (Reif et al., 2008). Anomalies are not as common as the rest of the values, 

so they are much closer to the root of the tree and with fewer separations (Garbade, 2018). 
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Random Forest: It is an ensemble technique capable of solving regression and classification problems with 

multiple decision trees. This technique is called bagging (Dutta, 2022). A decision tree has a large variance, 

but when we combine them in parallel, the variance is smaller because each tree is trained in different 

parts of the dataset, so the output does not depend on a single tree, but on several. The final decision is 

based on the output of this group of trees and is made by majority vote. The process of assigning random 

parts of the dataset to each tree is called bootstrapping (Casas et al., 2016; Dutta, 2022). 

Isolation Forest: They consist of decision trees such as the Random Forest. They were constructed based 

on the fact that anomalies are data points that are different and in small numbers. As with the Random 

Forest, data is randomly assigned to each tree. Data deeper in the tree is less likely to be anomalies, so it 

is easier to identify data in the shortest branches that are likely to be anomalies(Analytics Vidhya, 2021; 

Garbade, 2018). 

Extreme Grandient Boosting (XGBoost): It is an ensemble method of decision trees, usually CARTs. It is 

an improvised version of the gradient boosting algorithm. A key difference with the gradient boosting 

algorithm is that XGBoost implements parallel processing at the node level, making it better and faster. It 

manages to reduce overfitting and achieve better performance through regularization techniques as it 

can be adjusted by hyperparameters (Morde, 2021; Walia, 2021). 

Adaptative Boosting (Adaboost): It is a ML technique used as an ensemble. The algorithm most commonly 

used in Adaboost is single-level decision trees, meaning there is only one subdivision, these trees can also 

be called decision stumps (Walia, 2021). This works by giving more weight to instances that are harder to 

sort and less weight to instances that have already been sorted easily (Desarda, 2021). 

 

3.3 Systematic literature review 

3.3.1 Methods 

The systematic review of the literature allows an evaluation of the contributions of the scientific 

community on the subject of anomaly detection in industrial processes. The method used is based on the 

PRISMA approach (Moher et al., 2009). The phases of the PRISMA method are as follows: 1- Identification 

of relevant manuscripts to the field of interest; 2- Screening of titles, abstracts, articles without 

experiments and opinion articles; 3 - Eligibility; 4- Full screening of texts; 5- Articles analyzed in detail. 
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According to the proposed method, this section is organized as follows: Research questions; article search 

strategy; bibliometric map followed by exclusion and inclusion criteria; selected articles; Literature.  

 

Literature Research Questions 

The purpose of this study is to provide an overview of studies that have been conducted in the area of 

predictive maintenance. In particular, it aims to investigate which methods are used in the field of 

predictive maintenance in different industries. In this way, the following research questions will be 

answered: 

Literature Review Question 1: 

What techniques are used to detect or predict anomalies in an industrial context? 

Literature Review Question 2:  

What performance metrics are used to measure the success of each technique? 

 

Search Strategy 

To answer the above questions, the most relevant studies need to be selected. It is recommended to 

search different sources such as journals or conference proceedings to determine which studies are 

relevant. Two databases were used, Scopus and IEEE Xplore, the former being a more general database 

and the latter a more specific database. The search was performed using a Boolean query and, in order to 

include the most recent studies, was limited to papers published in the last 5 years. The search string was 

as follows: 

 

 

All articles that were not in English or were not academic were not included. 

("anomaly detection" or "predictive maintenance") AND ("Industry 4.0" or "smart factories") 

AND ("IIoT" or "sensor") 
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Figure 19 - PRISMA flow chart. 

 

The result was a total of 419 articles searched in online repositories on the proposed string between 2016 

and 2022. 

1st process: All duplicates 141 duplicated records were eliminated. Leaving a total of 278 records. 

2nd process: Consists of several steps. In the first step, records are deleted based on their title, removing 

the articles that do not belong in the scope, leaving a total of 212 records. In the second step, 93 records 

were removed based on abstract analysis, leaving a total of 119 records. In the third step, the records 

without experience were excluded, leaving a total of 96 records. Finally, in the fourth and last step of this 

process, opinion articles were removed, leaving a total of 71 records for a complete review of the entire 

text. 

4th process: in this step, the records were fully read, resulting in the deletion of 58 records. Therefore, 

the result of the search is a list of 13 articles to be analyzed in detail. 

In the following table presents an overview of the analyzed items: the methods that were used 

and for what purpose, in what industry it was applied and what performance metrics were used to 

measure success. As for the objectives, three types are defined: Remaining Useful Life (RUL), Detecting 

Anomalies (AD), and Predicting Anomalies (AP). 
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ID Reference ML Techniques Industry Method 

Objective 

Performance 

Metrics 

1 (Ferraro et 

al., 2020) 

Gramian Angular Field 

and deep learning CNN 

IT Infrastructures 

HDD 

RUL Accuracy, Precision 

and Recall 

2 (Kaleli et 

al., 2021) 

Deep Learning - GRU Nasa Turbofan 

Engine 

Degradation 

Simulation Data 

Set 

RUL & AP Regression (MAE, 

R2), Classification 

(Accuracy, precision, 

Recall, F1, AUC) 

3 (Dhibi et al., 

2021) 

Kernel PCA + Ensemble 

Learning (Bagging, 

Boosting, Random 

Subspace) with SVM + 

KNN + DT   

Photovoltaic 

Systems 

AD Accuracy, Precision, 

Recall and F1 

4 (Canizo et 

al., 2019) 

Deep Learning Multi-

head CNN-RNN 

Service Elevator AD G-mean 

5 (Iftikhar et 

al., 2020) 

Ensemble Learning & 

clustering algorithms 

Industry sensors 

in general 

AD Silhouette 

Coefficient/Calinski-

Harabasz 

Index/Davies-

Bouldin Index 

6 (Castellani 

et al., 2021) 

Weakly Supervised 

Learning & Siamese auto 

encoders based on 

Neural Networks  

Electrical System - 

Combined heat 

and power (CHP) 

module 

AD AUC, Average 

Precision (AP) 

7 (Hsieh et 

al., 2019) 

Deep Learning LSTM 

with Auto Encoders 

Factory 

Production Line 

AD Precision, Recall, F1-

Score 

8 (Hatanaka 

& Nishi, 

2021) 

Deep learning - 

Generative Adversarial 

Network (GAN) 

Refrigeration 

Units 

AD F1-Score 
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9 (Rousopoul

ou et al., 

2019) 

Deep Learning & 

Clustering Techniques 

Industrial Ovens AP Accuracy, Precision, 

Recall, F1-Score 

10 (Karagiorgo

u et al., 

2019) 

Deep Learning LSTM 

Regression 

Manufacturing 

Production Line 

AP MAE, RMSE 

11 (de Vita et 

al., 2021) 

Semi-Supervised 

Bayesian 

IIoT systems AP Accuracy, Precision, 

Recall and F1 

12 (Langone et 

al., 2020) 

Logistic Regression Chemical Plant - 

Plunger Pump 

AP Kappa scores, F1, 

AUC, PRAUC 

13 (Pezze et 

al., 2022) 

Deep Learning + 

Transformers + NLP 

Manufacturing - 

Dairy product 

packaging 

AP Macro F1, Macro 

Precision, Macro 

Recall 

Table 4  -Techniques used by industry. 

3.3.2 Discussion  

This section provides for a detailed analysis of the articles found, in order to find scientific gaps and thus 

allow the creation of a new model that overcomes the difficulties pointed out. The research helped to 

understand the gap in the literature. The discussion is divided into the three main techniques used in PdM. 

The main techniques are anomaly detection, anomaly prediction, and remaining useful life estimation. A 

summary is given of the ML techniques used in each article and what metrics were used to measure their 

effectiveness. 

1- RUL - Remaining useful life approaches:  

Articles A1 and A2 are about predicting the lifetime of devices. Both use models based on neural 

networks. Article A1 presents a novel approach that aims to extend Remaining Useful Life (RUL) by 

predicting the state of hard disk drives (HDD), it predicts 4 classes, Good, Very Fair, Warning and Alert. It 

is based on Convolutional Neural Networks where the input are images generated by Gramian Angular 

Fields (GAF). It highlights that HDDs are the most important type of storage in IT infrastructures, which 

are highly prone to failure and are the main cause of data center downtime. The results show that it was 

possible to predict failures 45 days in advance with a precision, accuracy, and recall of 85.22%, 74.6%, and 

85.1%, respectively. The values are the average of the values for the four classes. In A2, a solution for 

simultaneously predicting the useful life of a machine and possible anomalies in a turbo fan motor using 
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the dataset NASA is presented. The proposed architecture is based on a combination of two GRU 

networks, one predicting RUL and the other predicting possible anomalies, in order to reduce 

computation time. In this section we will present the results of both approaches. For the RUL results, MAE 

and R2 are 11.29 and 0.86, respectively. For anomaly prediction, the Accuracy, Precision, Recall, and F1 

metrics yielded the following results: 0.99, 0.97, and 0.98, respectively. 

2- Anomaly detection approaches: 

The articles from A3 to A8 aim to identify anomalies in a wide range of industries. Methods based on 

neural networks, ensemble learning, and clustering are used. In A3 the authors propose an extended 

ensemble learning method (EL) for anomaly detection in grid-connected photovoltaic (PV) systems. Faults 

in PV systems are due to harsh environmental conditions or internal malfunctions, which can range from 

short circuits to efficiency problems. The proposed method combines EL techniques and a data-driven 

approach with data set reduction. The EL technique consists of 3 algorithms, Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN) and Decision Tress (DT). Since these classical machine learning 

algorithms ignore the temporal dependencies of the data, a novel technique was developed. The EL 

method is fused with multivariate statistical analysis Kernel PCA (KPCA), which allows sensitive and 

significant features from the data to be transferred to the EL algorithms. KPCA is used for feature selection 

and extraction. The result was an accuracy of 100% with a computation time of 110.36 seconds. In A4, a 

supervised Deep Learning architecture for multi-time series using Convolutional Neural Networks (CNN) 

and Recurrent Neural Networks (RNN) is presented. The model is applied to data related to a service 

elevator. Unlike other solutions that access all sensors at once, the authors of this method use multiple 

convolutional heads (multi-head) to access each sensor independently without pre-processing the data. 

Since the data comes from sensors of different types present in an industrial environment, applying a 

convolutional head to each sensor allows the model to better fit the type of sensor and extract relatively 

important features. The results presented have a g-mean of approximately 0.97 for all RNN variants. In 

A5, an ensemble method based on unsupervised machine learning is presented to predict possible outliers 

in a medium-sized manufacturing company. Clustering techniques are used in a first phase, and 

classification algorithms are used in a second phase to separate normal from anomalous clusters. The 

presented clustering technique is a combination of classical clustering techniques such as K-means, Mean-

shift, K-modes and DBSCAN with biclustering techniques such as Coclust Mod/Spec Mod, Spectral 

biclustering/Co-Clustering, Delta biclustering. Classical techniques are used to find patterns globally while 

biclustering is used to find local patterns. Biclustering techniques help to find abnormal patterns and 
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reduce the dimensionality of the data by selecting small subsets of data based on local patterns. After the 

clustering techniques are applied the algorithms are trained for one-class classification, using models such 

as One-Class Support Vector Machines (OC-SVM), Isolation Forest (IForest), Local Outlier Factor (LOF). The 

model with the best results was the combination of K-modes and SpectalBiclustering with OC-SVM with 

event accuracy of 85% and 80% for normal and rare events, respectively. In A6, new approaches to 

multivariate time series using weakly supervised learning for anomaly detection are presented. The 

authors point out that much of the data in the industrial world is unlabeled, highlighting the importance 

of unsupervised learning algorithms. They also point out several problems that are commonplace in 

industry: the problem of false positives, where the complexity of machines makes it difficult to define 

what an anomaly is. Another problem is drift, which is related to the fact that sensors are decalibrated 

and wear out, so algorithms need to be trained periodically. Two approaches are proposed: cluster centers 

(CC) as weakly unsupervised classification and Siamese auto-encoders (SAE) as weakly supervised 

classification. The approach SAE was the one that achieved the best results on the three metrics evaluated 

by the authors: AP = 0.872, AUC ROC = 0.935, F2 = 0.823. In A7, the authors propose a semi-supervised 

Bayesian anomaly detection algorithm that model’s uncertainty because generating false alarms can be 

expensive in an industrial setting. Bayesian Gaussian Mixtures (BGM) are used to cluster data points while 

measuring a degree of uncertainty. Compared to traditional clustering algorithms such as K-means, BGM 

is considered a more general model due to the assumption of ellipsoidal clusters with different sizes and 

orientations in space.  The probabilistic property of BGM allows the algorithm to perform soft clustering 

instead of hard clustering by calculating the probability of a data point belonging to a particular cluster, 

thus measuring the degree of confidence in diagnosing the data points. Two approaches are proposed, 

one supervised and one semi-supervised. To test the presented technique, the authors did not use data 

from a real industry but created a full-scale replica of an assembly line for transporting car parts, with two 

motors and six belts to transport the car. The test platform was equipped with 5 sensors: current, 

vibration, noise, temperature, and distance. An important feature of the test rig is the ability to enter 

manual mechanical faults. This helps solve a common problem in IIoT, namely the lack of empirical data. 

For the supervised learning proposal, the results for the following metrics Accuracy, Precision, Recall, and 

F1 are 0.98, 0.97, 1, and 0.985, respectively. For the semi-supervised proposal, the results for the same 

metrics are 0.998, 0.997, 1, 0.998. 
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3- Anomaly prediction approaches: 

The articles from A9 to A13 aim to identify anomalies in a wide range of industries. Methods based 

on neural networks, Bayesian techniques, and logistic regression are used. In A9, study is conducted on 

predictive maintenance of industrial furnaces used in Boston Scientific's printed circuit board (PCB) 

production line. A common problem in these furnaces is the fans inside, which are responsible for 

maintaining a balanced temperature inside the furnace. These fans deteriorate over time, resulting in 

suboptimal conditions inside the furnace that later lead to machine deterioration and malfunction. Two 

proposals are presented for predicting anomalies in the fan/motor set. One is based on deep learning 

techniques where the model is trained on data from historical logs of existing sensors, focusing mainly on 

temperature sensors. The other is based on outlier detection techniques such as Mean Absolute Deviation 

(MAD), Local Outlier Factor (LOF), and Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN), along with the Support Vector Machine (SVM) classification technique and is trained on data 

from external acoustic sensors attached to the furnaces. The proposal based on deep learning techniques 

showed the following results (for a 25-minute prediction) for the metrics Recall, F1, and Matthew's 

correlation coefficient: 0.79, 0.83, and 0.691, respectively. The proposal based on outlier detection 

techniques obtained the following results for Accuracy, Precision, Recall, and F1 score: 0.85, 0.76, 1, and 

0.86, respectively. In A10, a method called Interpretable Anomaly Detection (IAP) is presented, the core 

of which is based on regularized logistic regression as a predictive model. The goal is to present a method 

that is explainable and easy to interpret, where explain ability is a direct effect of interpretation. The 

model is applied to data related to a plunger pump from a chemical plant. The data are represented by a 

multivariate time series with high class imbalance, about 3 million corresponding to normal operation and 

only 13 malfunctions. The presented model starts the process by representing the time series in a hump-

based plot. It also calculates various statistics such as: Mean, Standard Deviation, Skewness, Kurtosis, 

Trend, Average Autocorrelation, Burstiness, etc. These allow the model to be more accurate. The authors 

call it an extended bucket-based representation. Results obtained for AUC, F1, kappa, PRAUC: 0.76, 0.56, 

0.55, 0.44, respectively. In A11, the authors propose a deep-learning approach to predict rare alarms in 

dairy packaging equipment to avoid downtime and maintenance costs. The approach is called FORMULA 

(alarm FORecasting in Multi-Label setting). It uses natural language processing (NLP) and object 

recognition through a popular neural network architecture called transformers in the NLP field. The goal 

is to predict which alarms will occur based on knowledge of previous alarms. A list of different possible 

alarms that may occur in a future time window is much more interesting to the operator. Therefore, a 

multi-label classification approach is proposed where it is possible to predict whether an alarm will occur 



50 

based on previous alarms. Three NN-based models were considered: REC: a bidirectional recurrent model 

based on gated recurrent units; ATT: combines an attention mechanism with recurrent units; TRM: based 

on a transformer block (FORMULA). When comparing the proposed algorithms trained with different loss 

functions, the proposed TRM + WFL approach is the one with better results for target alarms (S.T) and 

rare alarms (S.R), with a macro F1 of 0.546 and 0.367, respectively. 

 

In the solutions presented, there is little mention of the sensors used. There seems to be a general 

lack of feature engineering, most articles only apply a simple normalization process. Most of the presented 

models are very specific, i.e. they are only used for data from a specific industry. There is a lack of a global 

model architecture applicable to more than one industry. There is also a lack of information on 

connectivity and data management. Few models have been found to predict RUL. 
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4- Architecture to predict anomalies in industrial processes   

4.1 Assumptions 

The systematic review of the literature made it possible to identify the companies in which PdM is applied. 

Table 5 lists the ML techniques used in each industry and their respective objectives. 

  Predictive Maintenance Objective 

  Remaining Useful Life Anomaly Detection Anomaly Prediction 

Te
ch

n
ic

s 

Deep Learning – LSTM  Manufacturing Manufacturing 

Deep Learning – GRU Airspace  Airspace 

Deep Learning – CNN IT Transport&Logistics  

Deep Learning – GAN  Transport&Logistics  

GAF – Gramian Angular 

Fields 

IT   

Transformers Manufacturing   

NLP Manufacturing   

Autoencoder   Energy 

Manufacturing 

 

Semi-Supervised 

Bayesian 

 Manufacturing  

Ensemble Learning  Energy; 

Manufacturing 

 

Biclustering algorithms  Manufacturing  

Kernel PCA  Energy  

Support Vector 

Machines 

 Energy  

Distance Clustering 

algorithms 

 Energy  

Density Clustering 

Algorithms 

  Manufacturing 

Decision Trees  Energy  

Siamese Autoencoders  Energy  
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Neural Networks  Energy Manufacturing 

Logistic Regression   Manufacturing 

Table 5 - A resume table of technics and approaches taken per industry. 

 

LRQ1 raises the question of what algorithms are used to detect or predict anomalies in industrial 

processes. After examining articles 1 to 13., it was found that there are three types of approaches: 

Detection of anomalies (60%), prediction of anomalies (33.3%), and remaining useful life (13.3%). The 

articles are analyzed according to the mentioned groups. In general, several methods were found, with 

neural networks being the most used method with 73.3% of the models found, the rest being ensemble 

learning, logistic regression, and Bayesian methods. Another conclusion is that predictive maintenance is 

used in a wide range of industries, such as IT infrastructure, energy sector, production lines in factories or 

elevators. The most represented industry is the manufacturing sector with a share of 60%.  

Regarding LRQ2, the metrics that stand out are Accuracy, Precision, Recall and F1 Score due to the fact 

that most of the models presented in the literature review are classification problems. The table x resumes 

the results found.  

Accuracy Precision Recall F1 AUC MAE Others 

33,3% 60% 53,3% 60% 20% 13,3% 6,7% 

Table 6 - Resume of the sensors and technologies found in the literature. 

Artificial intelligence techniques combined with cloud or edge computing and all available open-source 

software are expected to play an extremely important role in this architecture, facilitating the digital 

transition for SMEs. 
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The following table provides an overview of the industries using PdM and the various sensors, 

technologies, and algorithms. 

 

Table 7 - Resume of the sensors and technologies found in the literature. 

 

 

 

Industry Process Sensors Support 

Technologies 

Algorithms 

Manufacturing Production Line (4) Vibration/Acoustic/T

emperature/Distanc

e/Current/ Power 

consumption/move

ment/velocity 

IIoT, Stack4Things 

(open Stack), Influx 

DB, Kafka, 

TensorFlow 

LSTM 

Manufacturing Chemical Plant Pressure/ 

voltage/current/rota

tional 

speed/temperature/

flow 

IIoT Logistic 

Regression 

with elastic 

Net 

Regularization 

Manufacturing Industrial Ovens 

(PCBs) 

Temperature, Power 

consumption, 

Pressure, acoustic 

IIoT Deep Learning 

- LSTM 

Airspace Turbofan Engines 

(NASA) 

Turbofan engine 

sensors 

IIoT Deep Learning 

- GRU 

IT HDD Health Data From Smart 

Attrbutes 

HDD Smart 

Technology 

Gramian 

Angular Field 

& CNN 

Energy Sector Photovoltaic 

Systems – 

Power Module 

Emulated with Grid 

Emulator 

Grid Emulator/IIoT RKPCA-EL 

Energy Sector Electrical Systems Not Specified. IIoT SAE - Siamese 

Auto Encoders 

 

Transport & 

Logistics 

Refrigeration Units Directional acoustic 

sensors. 

IIoT, Digital Twins Efficient GAN 

Transport & 

Logistics 

Service Elevator 20 Sensors (not 

identified). 

IIoT Multi Head 

CNN 
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4.2 Architecture to assist SMEs in implementing PdM. 

Before describing each step, it is important to mention that the business part must be considered, 

even though it is outside the scope of this article. In this phase, a decision must be made as to the direction 

in which digitization for PdM should go. The feasibility of the project must be assessed, considering the 

benefits and challenges related to the process. It is also necessary to weigh all the necessary investments, 

both in terms of human resources and financial resources. In addition to the invested capital, coordination 

with all departments in this regard should not be ignored. Determine which machines or process will be 

monitored to decide what type of sensors and what type of network connections are required. At this 

stage, the goal of the PdM must also be defined, i.e., whether it is to detect anomalies, predict anomalies, 

or predict RUL. Below is a swot matrix that should be considered when making decisions about project 

implementation. 

 

Figure 20 - SWAT Analysis. 
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The conditions are met to propose an implementation guide for an IIoT architecture to predict anomalies 

in industrial processes. The following guide shows the steps required to implement a PdM architecture. 

 

 

Figure 18 - Architecture Framework. 

 

The RAMI 4.0 - Reference Architecture Model Industry 4.0, is the reference architecture in Europe. 

The following flowchart correlates the previous flowchart with this architecture. This is important because 

interoperability is an important aspect of Industry 4.0. The main goal of the architecture is to create a 

common framework so that all stakeholders in the different industries understand each other. 
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Figure 19 – RAMI 4.0: Reference Architecture Model Industry 4.0 
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1º – Integration 

 

Figure 20 - 1st Step Architecture  

 

This phase consists of a single step, but it is extremely important because without sensors 

installed, it is not possible to obtain information about the operation of the machines. After determining 

in which plant or part of the plant the PdM is to be used, an inventory must be made of the plants that 

already have some type of sensor and whether it can be used. It should be noted that the sensor may be 

present but may not be able to transmit this information to the network. A table with sensors normally 

used for PdM with type of sensor, key information and target faults can be found in the annexes.   

 

2º IIoT Infrastructure  

 

Figure 21 - 2nd step of the IIoT infrastructure. 

 

In this step, the framework for the IIoT must be defined, which serves as a bridge between 

sensors and data collection systems. The type of connectivity must be chosen based on the location of 

the devices and the amount of data to be transmitted. The collected data must be stored in a database. 

If historical data databases do not exist, it is necessary to wait until there is sufficient data to proceed to 

the fourth step. If historical data exists, it must be migrated to the new database. Due to the technical 

part of this step, it is advisable to use solutions already on the market, both in terms of hardware and 
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software. It is possible to do this with your own resources, but the cost of errors, security flaws and lost 

time does not justify it. You should start with a small project, with one or two machines, to ensure the 

quality and frequency of the data. Once the foundation is established, the project can easily be 

expanded to include more machines. In the initial phase, preference should be given to a local database, 

as cloud services are expensive.  

Table 8 - Networks and respective characteristics. 

Network Connectivity Pros & Cons Use cases 
Ethernet Wired, Short-range High speed 

Security 

Range limited due to wire 

length 

Limited mobility 

Expensive due to cable install. 

Simple applications in the 

industry.  

Wi-Fi Wireless 

Short-range 

 

High speed 

Good compability 

Limited Range (50 m with 

5Ghz) 

Security 

High power consumption 

Small applications 

Zigbee Wireless 

Short-range 

Low power consumption 

Scalability 

 

Limited range 

Compliance issues 

For applications with sensors 

powerd by battery with low data 

output. 

Bluetooth Wireless 

Short-range 

High speed 

Low power consumption 

limted range (10m) 

low bandwidth 

Lights, chemical monitors, HVAC 

systems.  

Cellular networks – LTE-M & NB-

IoT 

Wireless 

Long-range 

Good global coverage 

High speed (250Kbps to 

1Mbps) 

Realibility 

Design specially for IoT 

devices. 

High Cost 

High power consumption 

LTE-M: For applications that 

require data from very far, like 

predictive maintenance on a 

supply chain. 

 

NB-IoT: Utility Monotoring 

LPWAN Wireless 

Long-range 

Long range 

Low power consumption 

Low bandwidth 

High Latency 

Region locked (China) 

For connected devices over 

unlicensed spectrum with small 

data output over long distances.  

5G Wireless 

Long-range 

Long Range 

Low Latency 

High speed 

Supports 1 million devices 

(from 1000 from 4G)  

Limited Global Coverage 

Decreased Broadcast Distance 

Cyber Security 

Upload speeds 

Can be used for big projects, like 

smart grids, smart factories.  
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In Figure 22, we can see how an IIoT infrastructure is defined. 

  

Figure 22 - IoT infrastructures example (TechTarget) 

 

3º - Predictive Maintenance 

 

 

Figure 23 – 3rd step of the IIoT infrastructure. 

 

At this stage, the data for training the algorithm can come from the past or from the collection of 

an IIoT system. Most of the data for anomaly prediction comes from sensors and is therefore often 

time series; all the steps and techniques mentioned below are in the spirit of preprocessing time series 

data. This entire phase is possible when the IIoT framework is installed, when data is collected either 
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in a cloud or in a local database, and when the customer has access to this data. In this phase, tools 

from the contracted cloud service or free tools available on the market can be used. In the initial 

phase, it is advisable to use the on-premises service with the support of free tools. The entire cloud 

service is chargeable, including traffic, data storage and eventual training of the models. 

Objective 

definition 

It must be determined which approach to take, i.e., whether we want to detect or predict 

anomalies or predict RUL. It is important that this step is specified because the overall 

preprocessing and algorithm will vary depending on the nature of the problem. 

Raw data 
The data is usually in a raw and unstructured state, i.e., stored without any processing and often 

in complicated formats, which is a very time-consuming phase. 

Pre-

Processing 

The data of a device are represented by variables related to different indicators such as 

pressure, temperature or current, depending on the sensors installed. These variables can be 

manipulated and transformed into features used for predictions with machine learning 

algorithms. There are several phases that can and should be performed in this phase. 

Outlier 

removal 

Outliers should be removed from the data, keeping in mind that there are cases where the 

outliers are the target, so it makes no sense to eliminate them, i.e. anomaly detection or 

prediction. 

Handling 

missing data 

There are some rules for dealing with missing data that must be followed. If you remove them, 

you’ve to make sure that they don’t exceed 5% of the total data. 

Smoothing Time series smoothing is usually applied to time series data to facilitate algorithm prediction. 

Stationarity 

Stationarity is often applied to time series whose statistical properties are not constant over 

time. When a series is non-stationary, it is more difficult for the model ML to make predictions 

on that basis. One way to make time series stationary is through mathematical transformations, 

including first difference. Predictions made on the basis of a stationary time series are also 

stationary, so it is necessary to reverse the mathematical transformation applied. One should 

never attempt to extrapolate regression problems based on non-stationary time series. 

Scaling 

All data must be on the same scale, because if pressure is in the thousands and temperature is 

in the tens, the algorithm will give more importance to the variable with the largest dimension 

when passing this information. In this step, it is necessary to take into account that it must be 

performed only for the training data, i.e., after splitting the data into training, validation and 

test. The normalization parameters used for normalizing the training data must be the same as 

those used for normalizing the validation and test data. Any kind of information about the latter 

must not be accessible during training. 

Principal 

Component 

Analysis 

(PCA) 

This technique is used for dimension reduction while forming relevant features. The resulting 

data is a linear combination of the original data, capturing most of the variance in the data. This 

technique can be used when there is multicollinearity between features, when there are many 

features, or when noise reduction or data compression is required. 

Feature 

engineering: 

Here, raw data can be transformed into new features not present in the original dataset to 

improve the model. The features can be statistical or topic related.  
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Table 9 - Technics used to pre-process data. 

 

Modeling: The goal of this step is to train a model that performs well on new data. Normally, there is no 

access to new data, so this must be simulated using a procedure called train test split. In this procedure, 

the data is split into three subsets: Training data, validation data, and test data. The first subset is used to 

train the model, the second subset is used to fine-tune the model's hyperparameters during training, and 

the third subset is used as a final test of the model after fine-tuning is complete. The 2nd subset is 

important because this way we ensure that the model never sees the 3rd subset. If we only had two 

subsets, training and testing, while fine tuning the model, there would be data loss. If there is no need to 

tune the model in terms of hyperparameters, then the creation of the 2nd subset can be done. Normally, 

when using train-test split techniques, the data is split randomly, meaning there is no dependence 

between data points, which is not the case for time series where data points have dependence. In this 

case, the data must be split in an orderly manner, i.e., older data should be used for training and newer 

data should be used for testing. Typically, the split ratio is 80% for training, 10% for validation, and 10% 

for testing. 

 

4.3 Use case 

The company in question is an SME whose business is based on the sale and installation of burglar 

alarm systems. The company intends to apply PdM to its intrusion detection systems, focusing on the 

backup batteries built into the control system. Since the battery is an important element in the event of 

a network power outage, it is responsible for keeping the system operational during this time. The goal is 

to predict battery life RUL to make maintenance more efficient while ensuring that customers never have 

a battery in poor condition, meaning that it is unable to power the system during a power outage. If the 

company can predict when a battery will reach the end of its life, the delivered system also becomes safer, 

and maintenance becomes more efficient. The company benefits financially by not having to replace 

Categorical 

Data 

Categorical data cannot be fed into the model, it must be converted to numbers, so techniques 

such as one-hot encoding should be used when possible. 

Feature 

Selection 

This is an important preprocessing process to select the most important features. It helps to 

reduce the number of features to be input into the predictive model and to reduce redundancy. 

There are several ways to perform this process: by correlation between features, by algorithms 

specifically designed for this purpose such as RFE (Recursive Features Elimination), or with auto-

encoders, the latter being a more sophisticated approach. 
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batteries unnecessarily, and it also benefits in terms of quality of service by assuring the customer that 

the batteries have the required capacity in the event of a power outage. 

 

1º Integration:  

At this stage, it is necessary to consider what kind of data can be collected through the control 

system. Often the data is already read but not transmitted. If there is no type of reading, it is necessary to 

ensure that sensors are installed that can collect data on the battery. The installation of the collection 

mechanism must be done together with the next step, hiring specialized companies. In the case of 

batteries, the most important data are voltage, amperage, internal resistance, number of cycles, 

charges/discharges.  

2º IIoT Infrastructure:  

At this stage, it is advisable to hire a company specialized in this field. The entire process is 

extremely technical and requires skilled labor. This company will opt for a framework that includes a cloud 

service because of the need to monitor the systems installed remotely. The customer also decided that 

the application of the PdM framework should only be carried out at two customers to test the functioning 

of the system. Although the data would be uploaded to the cloud, the customer decided that it should 

also be stored in a local database for testing purposes. This decision was made because in an initial phase, 

several tests are performed on different models and techniques, all of which are paid for in the cloud 

service. So, until the best model is decided, if the data is of the quality and frequency required for the best 

model, all the tests can be done with this database on site, reducing the initial cost. 

3º PdM:  

To exemplify the prediction of RUL in a battery, the NASA dataset that is available for public use 

will be used. This is a univariate regression problem, we will only use battery capacity to predict battery 

life. All tools used to perform this task are open source software. Tools such as VSCode and Jupyter 

notebook were used. Python was the language used, it is the indicated language due to the large amount 

of libraries available for data manipulation and modeling. In figure 24 are the libraries used to predict the 

battery RUL. The random state must be set at the beginning so that all operations are reproducible. 
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Figure 24 – Imported libraries 

 

The data collected are variables such as: the number of charge and discharge cycles of the battery, 

the ambient temperature, the remaining data are measured directly on the battery, namely the capacity, 

voltage, current and temperature of the battery itself. drums. In the figure below, the first step, we see 

their arrangement after import. It is not possible to determine the time interval between the measured 

values, because the timestamp in this data set always records the same time. 

Figure 25 – Sample of the dataset variables 
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In figure 26 there is a summary of the dataset, indicating the number of data points, the times between 

which they were found, the number of variables, the data type of each variable, and the amount of 

memory this dataset occupies.  

In figure 27 there is a brief statistical description of the variables included in the dataset  

 

Figure 28 shows how to check for missing data in any of the data points. All variables turn out false so 

there are no NaN(Not a number).  

 

Figure 28 - Check for NaN 

Figure 27 - Dataset summary 

Figure 26 – Data statistics summary 
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Although this problem is a univariate one, it is important to know that there are tools that are 

essential for multivariate problems. The correlation between variables is important for feature selection. 

A correlation table in figure 29 can be used to see which variables are redundant and which variables 

contribute to the target variable. The value zero stands for uncorrelated, the value 1 for fully correlated 

and the value -1 for inversely correlated.  

 

 

 

 

 

 

 

 

 

 

In figure 30, descriptive box plot statistics graphical tool was used to check for outliers in the capacity 

variable.  

 

Figure 30 - Capacity Boxplot 

 

Figure 29 - Correlation table, Pearson method. 
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Data points were down sampled to daily values by applying the average. In figure 31 we can see that after 

resample 56 days of data remain, where 14 are NaN due to resampling, normally there’s missing 

timestamps, and that translates to NaN. 

 

 

 

  

 

 

We can double check for NaN, there are 14 days for which there is no data. To fill the missing data an 

interpolation was performed using the spline method, figure 32. 

 

 In figure 33 we can analyze time series related to capacity, the degradation of the capacity along time is 

obvious. 

 

 

 

 

 

Figure 31 - Resampled datapoints 

Figure 32 - Checking NaN after down sample. 

Figure 33 - Capacity Time Series 
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In figure 34 the time series is decomposed using an additive model. We can see that the time series is not 

stationary but has a downward trend. It is also possible to check if it is seasonal. Another way to check 

whether the time series is stationary or not is the Augmented Dickey Fuller Test. 

 

Figure 34 - Time series decomposition. 

 

For RUL prediction of the battery, we use a linear degradation model, where our HI -Health index 

is the battery capacity. The idea is to predict the battery capacity in 20 days. If it reaches the defined 

threshold of 1.4 Ahr, the minimum capacity for normal operation, the maintenance team receives a 

warning that the battery needs to be replaced; if the threshold is not reached, there is no warning. For 

this task, we used a library called ScaleCast, which is specifically designed to easily work with time series, 

such as a forecast for 20 days. With this library we can easily decide what percentage of the test data set, 

how many days we want to forecast, whether we want to differentiate the time series or not, since it is 

easily reversible, we can add autoregressive terms or even a time trend. Two models are tested, MLR - 

Multiple Linear Regression and lightGBM. It should be mentioned that there is often a mistake made when 

predicting time series: The models make predictions in one step, i.e. instead of predicting, say, 20 days, 

they predict one day at a time, making the results look good even though they are not. 
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Figure 35 - Twenty-day prediction results for both algorithms, LightGBM and MLR. 

 

In figure 35 we can see the prediction made by both models. In the case of the MLR model, better results 

were obtained without differentiating the time series, that is, without making it stationary, for LightGBM 

the results are better making the time series stationary. Both approachs showed a good result regarding 

RMSE. 

Metric MLR LightGBM 

RMSE 0.016 0.014 

 

4.4 Evaluation & Discussion  

In an attempt to verify usefulness and obtain suggestions for improvement, the architecture was 

evaluated. In accordance with the chosen methodology, an interview was conducted with the head of an 

SME, not a specialist, to understand the usefulness of the architecture and obtain feedback on possible 

improvements. The interview was conducted online via a video call and recorded. After a short 

presentation of the architecture, the participant was asked some questions: 

Question 1 - Do you think the proposed framework is useful and why? If not, why do you think it is not 

useful? 

I think the architecture is useful because with a plan that defines the different phases of the 

process, it is possible to get an overview of the need for human and financial resources. The architecture 

is informative, it has value for a possible application, the fact that the architecture includes the different 

steps from the sensors to the application of the model is important for those who will analyze it to 

understand how it is done. In general, the architecture is good because it has defined an input and an 

output, meaning you have the situation you are in now and where you will arrive. 
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Question 2 - Do you have any criticisms of the proposed framework? Please elaborate on them. 

I think that in some ways the architecture presented is very general in its application, at an 

academic level it works, but in a real-world application there would have to be changes that are not 

accounted for by the proposed architecture. 

I think that there should be a procedure as the first step of the architecture that says that a survey 

of the existing needs and resources should be done, that is, the technology that the company has already 

installed for other purposes and that serves for this application. The mentioned procedure is important in 

the sense of reusing equipment that may not be the most advanced, but if it works, we save the company 

money. It is also important in case we conclude that it is not worth using any of the current technologies 

and it is better to invest in a new infrastructure. 

Question 3 - Do you have any recommendations or suggestions for further improvements to the proposed 

framework? 

I think that in the first step of the architecture, a table of necessary requirements for the 

implementation of the architecture should be created to validate the existing technology. I also think that 

a financial approach is needed because the first question a business owner will ask you is, "How much am 

I going to spend?". What technology are you going to use in terms of data integration? What database are 

you going to use? I think it added value to the framework to explain what technologies will connect 

between the IIoT gateway and the database. 
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5- Conclusions    

This chapter is a reflection of the work developed in this dissertation, discussing the main 

conclusions and limitations, as well as future work. In this way, it is possible to have an overall view of the 

achievement of the objectives. Considering that the artifact gives an overview of the steps to be 

considered in an implementation and the positive feedback given in the evaluation process, we can 

assume that the objectives have been achieved. 

 

5.1 Synthesis of the developed work 

During the development of this thesis, several topics related to the IIoT, ML and PdM were 

addressed. This knowledge enabled the development of an architecture that will serve as a guide for SMEs 

that want to implement PdM. The architecture was validated by a CEO of a metalworking company that 

has a strong interest in implementing PdM. 

 

5.2 Limitations 

Due to time constraints, only one interview was conducted, although feedback at the business 

implementation level was good, more interviews should have been conducted with both technical and 

non-technical audiences. Clearly, in the case of this dissertation, technical revisions were lacking. 

In an attempt to simplify the architecture and not make it exhaustive, certain technical aspects were not 

taken into account, an example being the technologies related to databases and data processing. 

The communication step, scheduled in the methodology, remained to be fulfilled. Thus, its usefulness, 

novelty and efficiency for other researchers and interested parties was compromised. 

 

5.3 Future Work  

Regarding the evaluation of architecture, one step for future work is to gather more information 

from others, both technical and non-technical. 
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Since this is a field that is constantly evolving, it would be important to keep the architecture up 

to date with new technologies and devices that appear on the market. In addition, research into each of 

the steps proposed in the architecture should be deepened to provide more clarity. Another need is to 

include as many available devices and technologies as possible and analyze them to decide on the best 

integrations between technologies. 

Finally, this dissertation needs to be published to be available to the general public and contribute 

to other research. 

 

 

 

 

 

 

 

 

  



72 

Bibliography 

Acatech. (2013). Recomendations for implementing the strategic initiative INDUSTRIE 4.0. National 

Academy of Science and Engineering. 

https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-

implementing-industry-4-0-data.pdf 

Acieta. (n.d.). Manufacturing Robots, Industrial Robot Manufacturing. https://www.acieta.com/robotic-

automation/automation-for-every-industry/general-manufacturing/ 

Allinson, M. (2021, July 20). Top 5 Cases to Use AI in Manufacturing. 

https://roboticsandautomationnews.com/2021/07/20/top-5-cases-to-use-ai-in-

manufacturing/44239/ 

Altexsoft. (2020, August 12). Internet of Things (IoT) Architecture: Key Layers and Components | AltexSoft. 

https://www.altexsoft.com/blog/iot-architecture-layers-components/ 

Analytics Vidhya. (2021). Isolation Forest | Anomaly Detection with Isolation Forest. 

https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-

complete-guide/ 

Anderson, E. (2020). Challenges of Industry 4.0 and how to address them. 

https://www.forescout.com/blog/3-challenges-of-industry-4-0-and-how-to-address-them/ 

Anderson, N., Faruki, A., & Mehl, D. (n.d.). A brave new world for manufacturing. 

https://www.kearney.com/operations-performance-transformation/article/?/a/the-state-of-

industry-4.0-article 

ATS. (2021). Top Considerations When Evolving to Predictive Maintenance. Advanced Technology Services, 

Inc. https://www.advancedtech.com/blog/predictive-maintenance-benefits-challenges/ 

Ava Reveal. (2021). Risk solution for manufacturing industries. https://www.avasecurity.com/ 

AVI Networks. (n.d.). Anomaly Detection. https://avinetworks.com/glossary/anomaly-detection/ 

Avsystem. (2019, July 16). What is IoT Architecture? Explanation with Example of IoT Architecture. 

https://www.avsystem.com/blog/what-is-iot-architecture/ 



73 

Bambrick, N. (2016). Support Vector Machines: A Simple Explanation. 

https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html 

Becker, J., Pfeiffer, D., Falk, T., & Räckers, M. (2010). Semantic Business Process Management. In 

Handbook on Business Process Management 1 (pp. 187–211). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-642-00416-2_9 

Boggess, M. (2022). 11 Trends That Will Dominate Manufacturing in 2023. https://global.hitachi-

solutions.com/blog/top-manufacturing-trends/ 

Brocke, J., Seidel, S., & Recker, J. (2012). Green Business Process Management (J. vom Brocke, S. Seidel, & 

J. Recker, Eds.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27488-6 

Brownlee, J. (2019, November 10). 14 Different Types of Learning in Machine Learning. Machine Learning 

Mastery. https://machinelearningmastery.com/types-of-learning-in-machine-learning/ 

Brownlee, J. (2020a, August 14). A Tour of Machine Learning Algorithms. Machine Learning Mastery. 

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ 

Brownlee, J. (2020b). 4 Automatic Outlier Detection Algorithms in Python. Machine Learning Mastery. 

https://machinelearningmastery.com/model-based-outlier-detection-and-removal-in-python/ 

Buchberger, C. (2021, July 15). An Introduction to Industry 4.0 | EMnify Blog. 

https://www.emnify.com/blog/industry-4-0?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-

DSA-NoFu-

DSA_Pilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=1392040221

1&hsa_grp=126181834538&hsa_ad=552870760244&hsa_src=g&hsa_tgt=dsa-

1429721505347&hsa_kw=&hsa_mt=b&hsa_net=adwords&hsa_ver=3&gclid=CjwKCAiAvriMBhAuEi

wA8Cs5lWIsRPPN6OhZU2yR15d3_ebHIZhBk2Ph9AUodlW684C7cBJ25kvwBhoCcqoQAvD_BwE 

Bulao, J. (2022, October 13). How Much Data Is Created Every Day in 2022? 

https://techjury.net/blog/how-much-data-is-created-every-day/#gref 

Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN–RNN for multi-time series 

anomaly detection: An industrial case study. Neurocomputing, 363, 246–260. 

https://doi.org/10.1016/j.neucom.2019.07.034 



74 

Casas, P., Fiadino, P., & D’Alconzo, A. (2016). Machine-Learning Based Approaches for Anomaly Detection 

and Classification in Cellular Networks. Austrian Insitute of Technology. 

https://tma.ifip.org/2016/papers/tma2016-final50.pdf 

Castellani, A., Schmitt, S., & Squartini, S. (2021). Real-World Anomaly Detection by Using Digital Twin 

Systems and Weakly Supervised Learning. IEEE Transactions on Industrial Informatics, 17(7), 4733–

4742. https://doi.org/10.1109/TII.2020.3019788 

Christiansen, B. (2019, August 9). Which Industries Reap The Biggest Benefits From Predictive Maintenance 

And Why - Dataconomy. https://dataconomy.com/2019/08/which-industries-reap-the-biggest-

benefits-from-predictive-maintenance-and-why/ 

Cohen, I. (2022, April 6). What is Anomaly Detection? Anodot. https://www.anodot.com/blog/what-is-

anomaly-detection/ 

Columbus, L. (2020, May 18). 10 Ways AI Is Improving Manufacturing In 2020. 

https://www.forbes.com/sites/louiscolumbus/2020/05/18/10-ways-ai-is-improving-

manufacturing-in-2020/?sh=3f2842ef1e85 

Davies, R. (2015). Industry 4.0 Digitalisation for productivity and growth. 

de Vita, F., Bruneo, D., & Das, S. K. (2021). A Semi-Supervised Bayesian Anomaly Detection Technique for 

Diagnosing Faults in Industrial IoT Systems. Proceedings - 2021 IEEE International Conference on 

Smart Computing, SMARTCOMP 2021, 31–38. 

https://doi.org/10.1109/SMARTCOMP52413.2021.00025 

Delua, J. (2021, March 12). Supervised vs. Unsupervised Learning: What’s the Difference? IBM. 

https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning 

Desarda, A. (2021). Understanding AdaBoost - Towards Data Science. Medium. 

https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe 

Dhaher, O. (2021, April 26). New SME Guide on Industrial Internet of Things (Special Focus on Security). 

https://www.digitalsme.eu/blog/2021/04/21/new-sme-guide-on-industrial-internet-of-things/ 

Dhibi, K., Mansouri, M., Bouzrara, K., Nounou, H., & Nounou, M. (2021). An Enhanced Ensemble Learning-

Based Fault Detection and Diagnosis for Grid-Connected PV Systems. IEEE Access, 9, 155622–

155633. https://doi.org/10.1109/ACCESS.2021.3128749 



75 

Dutta, A. (2022). Random Forest Regression in Python. GeeksforGeeks. 

https://www.geeksforgeeks.org/random-forest-regression-in-python/?ref=gcse 

Ellingrud, K., Gupta, R., & Salguero, J. (2021). Building the vital skills for the future of work in operations. 

McKinsey & Company. https://www.mckinsey.com/business-functions/operations/our-

insights/building-the-vital-skills-for-the-future-of-work-in-operations 

Ericsson. (n.d.). 5G in Manufacturing - 5G Industry automation - Ericsson. Retrieved November 19, 2022, 

from https://www.ericsson.com/en/5g/manufacturing 

European Commission. (2020). User guide to the SME definition. https://doi.org/10.2873/255862 

European Committee for Standardization. (2017). Maintenance Terminology. 

Ezell, S., & Swanson, B. (2017, June 22). How Cloud Computing Enables Modern Manufacturing | ITIF. 

https://itif.org/publications/2017/06/22/how-cloud-computing-enables-modern-manufacturing/ 

Ferraro, A., Galli, A., Moscato, V., & Sperli, G. (2020). A novel approach for predictive maintenance 

combining GAF encoding strategies and deep networks. Proceedings - 2020 IEEE 6th International 

Conference on Dependability in Sensor, Cloud and Big Data Systems and Application, DependSys 

2020, 127–132. https://doi.org/10.1109/DependSys51298.2020.00027 

Galea-Pace, S. (2020, August 24). The transformation of 5G in manufacturing | Manufacturing Digital. 

https://manufacturingdigital.com/technology/transformation-5g-manufacturing 

Garbade, M. (2018). Understanding K-means Clustering in Machine Learning. Medium. 

https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-

6a6e67336aa1 

Gartner. (n.d.). Internet of Things (IoT) - Key Business Insights | Gartner. Retrieved November 19, 2022, 

from https://www.gartner.com/en/information-technology/insights/internet-of-things 

Geekforgeeks. (2022, October 19). Architecture of Internet of Things (IoT) - GeeksforGeeks. 

https://www.geeksforgeeks.org/architecture-of-internet-of-things-iot/ 

Geeksforgeeks. (2020, July 9). Difference between IIOT and IOT - GeeksforGeeks. 

https://www.geeksforgeeks.org/difference-between-iiot-and-iot/ 

GeeksforGeeks. (2021, June 22). Decision Tree. https://www.geeksforgeeks.org/decision-tree/ 



76 

Gregor, S., & Hevner, A. R. (2013). Positioning and Presenting Design Science Research for Maximum 

Impact. MIS Quarterly, 37(2), 337–355. https://doi.org/10.25300/MISQ/2013/37.2.01 

Grizhnevich, A. (2021, June 9). IoT for Predictive Maintenance: Essence, Architecture, Applications. 

https://www.scnsoft.com/blog/iot-predictive-maintenance-guide#architecture 

Gunawan, R. (2017, January 11). IoT vs IIoT - CTI. https://computradetech.com/blog/trends-and-

solution/iot-vs-iiot/ 

Gupta, A. (2021, August 18). Machine Learning for Anomaly Detection. GeeksforGeeks. 

https://www.geeksforgeeks.org/machine-learning-for-anomaly-detection/ 

Hatanaka, S., & Nishi, H. (2021). Efficient GAN-Based Unsupervised Anomaly Sound Detection for 

Refrigeration Units. IEEE International Symposium on Industrial Electronics, 2021-June. 

https://doi.org/10.1109/ISIE45552.2021.9576445 

Heavy.AI. (n.d.). What is Predictive Maintenance? Definition and FAQs | HEAVY.AI. Retrieved November 

19, 2022, from https://www.heavy.ai/technical-glossary/predictive-maintenance 

Heidel, R., Hoffmeister, M., Hankel, M., & Döbrich, U. (n.d.). RAMI 4.0. Standardization Council Industry 

4.0. https://www.sci40.com/english/rami4-0/ 

Hevner, A. (2014). A Three Cycle View of Design Science Research. 

https://www.researchgate.net/publication/254804390 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). DESIGN SCIENCE IN INFORMATION SYSTEMS 

RESEARCH 1. In Design Science in IS Research MIS Quarterly (Vol. 28, Issue 1). 

Hsieh, R. J., Chou, J., & Ho, C. H. (2019). Unsupervised online anomaly detection on multivariate sensing 

time series data for smart manufacturing. Proceedings - 2019 IEEE 12th Conference on Service-

Oriented Computing and Applications, SOCA 2019, 90–97. 

https://doi.org/10.1109/SOCA.2019.00021 

IBM. (2021, August 3). Neural Networks. IBM. https://www.ibm.com/cloud/learn/neural-networks 

IBM. (2022, March 25). Unsupervised Learning. IBM. https://www.ibm.com/cloud/learn/unsupervised-

learning 



77 

Iftikhar, N., Baattrup-Andersen, T., Nordbjerg, F. E., & Jeppesen, K. (2020). Outlier detection in sensor data 

using ensemble learning. Procedia Computer Science, 176, 1160–1169. 

https://doi.org/10.1016/j.procs.2020.09.112 

Industry Perspectives. (2016, February 11). Curb Data Center Downtime with Predictive Maintenance | 

Data Center Knowledge | News and analysis for the data center industry. 

https://www.datacenterknowledge.com/archives/2016/02/11/curb-data-center-downtime-

predictive-maintenance 

Infopulse. (2019). Why adopting Industry 4.0 in Manufacturing? https://www.infopulse.com/blog/the-

main-benefits-and-challenges-of-industry-4-0-adoption-in-manufacturing 

I-Scoop. (2022). Industry 4.0 and the fourth industrial revolution explained. https://www.i-

scoop.eu/industry-4-0/ 

i-SCOOP. (2022). Industry 4.0 and the fourth industrial revolution explained. https://www.i-

scoop.eu/industry-4-0/ 

Jahnke, A. (2020, July 31). The 4 Stages of IoT Architecture | Digi International. 

https://www.digi.com/blog/post/the-4-stages-of-iot-architecture 

Jensen, M. (2019, August 2). Condition-Based Maintenance vs Predictive Maintenance | neurospace. 

https://neurospace.io/blog/2019/08/condition-based-maintenance-vs-predictive-maintenance/ 

Johnson, J. (2020, September 16). Anomaly Detection with Machine Learning: An Introduction. BMC Blogs. 

https://www.bmc.com/blogs/machine-learning-anomaly-detection/#ref1 

Juniper. (2020, March 31). IoT Connections to Reach 83 Billion by 2024. 

https://www.juniperresearch.com/press/iot-connections-to-reach-83-bn-by-2024 

Kaleli, A. Y., Unal, A. F., & Ozer, S. (2021). Simultaneous Prediction of Remaining-Useful-Life and Failure-

Likelihood with GRU-based Deep Networks for Predictive Maintenance Analysis. 2021 44th 

International Conference on Telecommunications and Signal Processing, TSP 2021, 301–304. 

https://doi.org/10.1109/TSP52935.2021.9522592 

Karagiorgou, S., Vafeiadis, G., Ntalaperas, D., Lykousas, N., Vergeti, D., & Alexandrou, D. (2019). Unveiling 

trends and predictions in digital factories. Proceedings - 15th Annual International Conference on 



78 

Distributed Computing in Sensor Systems, DCOSS 2019, 326–332. 

https://doi.org/10.1109/DCOSS.2019.00073 

Khan, M., Wu, X., Xu, X., & Dou, W. (2017). Big data challenges and opportunities in the hype of Industry 

4.0. 2017 IEEE International Conference on Communications (ICC). 2017 IEEE International 

Conference on Communications (ICC). https://doi.org/10.1109/icc.2017.7996801 

Koelsch, J. R. (2021, February 2). How Augmented Reality Became a Serious Tool for Manufacturing | 

Automation World. https://www.automationworld.com/process/iiot/article/21259479/how-

augmented-reality-became-a-serious-tool-for-manufacturing 

Kuechler, W., Vaishnavi, V., & Kuechler, B. (2008). On theory development in design science research: 

anatomy of a research project Design-Centric Innovation: Methods and Patterns View project Theory 

Development in Design Science Research: Anatomy of a Research Project. 

https://www.researchgate.net/publication/220393130 

Lacerda, D. P., Dresch, A., Proença, A., & Antunes Júnior, J. A. V. (2013). Design Science Research: Método 

de pesquisa para a engenharia de produção. Gestao e Producao, 20(4), 741–761. 

https://doi.org/10.1590/S0104-530X2013005000014 

Langone, R., Cuzzocrea, A., & Skantzos, N. (2020). Interpretable Anomaly Prediction: Predicting anomalous 

behavior in industry 4.0 settings via regularized logistic regression tools. Data and Knowledge 

Engineering, 130. https://doi.org/10.1016/j.datak.2020.101850 

Laura, L. (n.d.). Cloud Technology in The Manufacturing Industry | Benefits. Retrieved November 19, 2022, 

from https://mantec.org/how-the-manufacturing-industry-uses-cloud-tech/ 

LeanIX. (n.d.-a). Smart Factory | Manufacturing | LeanIX. https://www.leanix.net/en/wiki/ea/smart-

factory#Solutions 

LeanIX. (n.d.-b). Smart Factory | Manufacturing | LeanIX. Retrieved November 19, 2022, from 

https://www.leanix.net/en/wiki/ea/smart-factory#Solutions 

Lee, S. (2019, January 11). IoT Applications in the Oil and Gas Industry. https://www.iotforall.com/iot-

applications-oil-and-gas-industry 

Lydon, B. (2022). RAMI 4.0 Reference Architectural Model for Industrie 4.0. https://www.isa.org/intech-

home/2019/march-april/features/rami-4-0-reference-architectural-model-for-industr 



79 

Miller, J. (2021, July 1). Top 7 Cyber Threats for Manufacturing Companies. 

https://www.bitlyft.com/resources/cyber-threats-manufacturing-companies 

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews 

and meta-analyses: the PRISMA statement. BMJ, 339(jul21 1), b2535–b2535. 

https://doi.org/10.1136/bmj.b2535 

Morde, V. (2021, December 9). XGBoost Algorithm: Long May She Reign! - Towards Data Science. Medium. 

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-

may-rein-edd9f99be63d 

MRI. (2021, February 26). Maintenance management strategies: 4 main types & when to use them. 

https://www.mrisoftware.com/blog/4-types-of-maintenance-management-strategies/ 

Murphy, C. (n.d.). Choosing the Most Suitable Predictive Maintenance Sensor. 

Parris, C. (n.d.). Everything you need to know about IIoT | GE Digital. Retrieved November 19, 2022, from 

https://www.ge.com/digital/blog/what-industrial-internet-things-iiot 

Patwardhan, S. (2021, April 21). KNN Algorithm | What is KNN Algorithm | How does KNN Function. 

Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-

implementation-of-knn-algorithm/#h2_5 

Peffers, K., Tuunanen, T., & Rossi, M. (2006). The design science research process: A model for producing 

and presenting information systems research DSR Curriculum View project Means-end 

Understanding of Consumer Decision Making View project. 

https://www.researchgate.net/publication/228650671 

Pezze, D. D., Masiero, C., Tosato, D., Beghi, A., & Susto, G. A. (2022). FORMULA: A Deep Learning Approach 

for Rare Alarms Predictions in Industrial Equipment. IEEE Transactions on Automation Science and 

Engineering, 19(3), 1491–1502. https://doi.org/10.1109/TASE.2021.3127995 

Priyadharshini, P. (2022, February 25). What Is Machine Learning and How Does It Work? Simplilearn.com. 

https://www.simplilearn.com/tutorials/machine-learning-tutorial/what-is-machine-

learning|insights/an-executives-guide-to-machine-learning 

Record Evolution. (2020, December 9). The IIoT Architecture: How to Tap Into Its Full Potential? . 

https://www.record-evolution.de/en/blog/the-iiot-architecture-design-an-overview/ 



80 

Reif, M., Goldstein, M., Stahl, A., & Breuel, T. (2008). Anomaly Detection by Combining Decision Trees and 

Parametric Densities (No. 1051–4651). (Issues 1051–4651). German Research Center for Artificial 

Intelligence (DKFI). 

ReportLinker. (2021, July 5). Global Predictive Maintenance Market to Reach $13.9 Billion. 

https://www.globenewswire.com/news-release/2021/06/25/2253321/0/en/Global-Predictive-

Maintenance-Market-to-Reach-13-9-Billion-by-2026.html 

Rousopoulou, V., Nizamis, A., Giugliano, L., Haigh, P., Martins, L., Ioannidis, D., & Tzovaras, D. (2019). Data 

analytics towards predictive maintenance for industrial ovens: A case study based on data analysis 

of various sensors data. Lecture Notes in Business Information Processing, 349, 83–94. 

https://doi.org/10.1007/978-3-030-20948-3_8 

Rudinschi, C. (2017). Nine challenges of Industry 4.0. IIoT World. https://www.iiot-world.com/industrial-

iot/connected-industry/nine-challenges-of-industry-4-0/ 

Sage. (2019, November 13). What is the Smart Factory and Smart Manufacturing? - Sage Advice US. 

https://www.sage.com/en-us/blog/glossary/what-is-the-smart-factory-and-smart-manufacturing/ 

Samotics. (n.d.). Predictive maintenance in the wind industry - Samotics. Retrieved November 19, 2022, 

from https://www.samotics.com/industries/predictive-maintenance-in-the-wind-energy-industry 

Saratchandran, V. (2021, October 28). Top 10 Technologies That Will Transform Manufacturing in 2023 - 

Fingent Technology. https://www.fingent.com/blog/top-10-technologies-that-will-transform-

manufacturing-in-2021/ 

Schmelzer, R. (2020, December 10). 15 common data science techniques to know and use. 

SearchBusinessAnalytics. https://www.techtarget.com/searchbusinessanalytics/feature/15-

common-data-science-techniques-to-know-and-use 

Schuldenfrei, M. (2019). Big Data Challenges of Industry 4.0. Datanami. 

https://www.datanami.com/2019/04/25/big-data-challenges-of-industry-4-0/ 

Schweichhart, K. (2016). Reference Architectural Model Industrie 4.0 (RAMI 4.0). Plattform Industry 4.0. 

Plattform Industry 4.0. https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-

reference_architectural_model_industrie_4.0_rami_4.0.pdf 



81 

Shiklo, B. (2021, July 8). IoT in Manufacturing: The Ultimate Guide. https://www.scnsoft.com/blog/iot-in-

manufacturing#Adoption_drivers 

Simon, H. A. (Herbert A. (1996). The sciences of the artificial. 

Spath, D., Ganschar, O., Hämmerle, M., & Krause, T. (2013). Production work of the future - Industry 4.0. 

https://www.researchgate.net/publication/244486109_Produktionsarbeit_der_Zukunft_-

_Industrie_40#fullTextFileContent 

Stefanini Group. (2020, September 28). Top 5 Industry 4.0 Technologies in Digital Manufacturing - 

Stefanini. https://stefanini.com/en/insights/news/top-5-industry-4-0-technologies-in-digital-

manufacturing 

Stefanini Group. (2021). The Fourth Industrial Revolution: Industry 4.0 Challenges and Opportunities for 

Your Business | Stefanini. https://stefanini.com/en/trends/news/the-fourth-industrial-revolution-

industry-4-0-challenges-and-opp 

Sundblad, W. (2019). Security Is Key To The Success Of Industry 4.0. Forbes. 

https://www.forbes.com/sites/willemsundbladeurope/2019/04/11/security-is-key-to-the-success-

of-industry-4-0/ 

Sunil, S. (2021, August 26). Commonly Used Machine Learning Algorithms | Data Science. Analytics Vidhya. 

https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/ 

Sykes, N. (2019). Big Data Challenges Of Industry 4.0 Worth Considering. SmartData Collective. 

https://www.smartdatacollective.com/big-data-challenges-of-industry-4-0-worth-considering/ 

The Open Group. (n.d.). Reference Architectures and Open Group Standards for the Internet of Things – 

Four Internet of Things Reference Architectures. http://www.opengroup.org/iot/wp-

refarchs/p3.htm 

Thelin, R. (2021, July 14). Get started with anomaly detection algorithms in 5 minutes. Educative: 

Interactive Courses for Software Developers. https://www.educative.io/blog/anomaly-detection-

algorithms-tutorial#basic 

Trend Micro. (n.d.). Industrial Internet of Things (IIoT) - Definition. Retrieved November 19, 2022, from 

https://www.trendmicro.com/vinfo/us/security/definition/industrial-internet-of-things-iiot 



82 

Twi-Global. (n.d.). What is Manufacturing Technology? - TWI. Retrieved November 19, 2022, from 

https://www.twi-global.com/technical-knowledge/faqs/manufacturing-technology 

Valcheva, S. (2020, May 24). Anomaly Detection Algorithms: in Data Mining (With Comparison). Blog for 

Data-Driven Business. https://www.intellspot.com/anomaly-detection-algorithms/ 

Valuekeep. (2021, July 29). What are the most used maintenance strategies? - Valuekeep. 

https://valuekeep.com/resources/what-are-the-4-most-used-maintenance-strategies/ 

Verma, Y. (2021, October 13). How to use Support Vector Machines for One-Class Classification? -. 

Analytics India Magazine.Classification? -. https://analyticsindiamag.com/how-to-use-support-

vector-machines-for-one-class-classification/ 

Vishwa, G. (2021, March). Predictive Maintenance Market Size | Industry Forecast - 2027. 

https://www.alliedmarketresearch.com/predictive-maintenance-market 

Vuleta, B. (2021, October 28). How Much Data Is Created Every Day? https://seedscientific.com/how-

much-data-is-created-every-day/ 

Walia, M. S. (2021, April 27). Best Boosting Algorithm In Machine Learning In 2021. Analytics Vidhya. 

https://www.analyticsvidhya.com/blog/2021/04/best-boosting-algorithm-in-machine-learning-in-

2021/ 

Ward, S. (2020, June 29). SMEs: What Are They? https://www.thebalancemoney.com/sme-small-to-

medium-enterprise-definition-2947962 

Wilson, G. (2021, June). Factories of the future. Manufacturing Global. Manufacturing Global. 

https://manufacturingglobal.com/magazine-read/166586 

Yap, M. (n.d.). The Impact of AI in Manufacturing: Unleashing Productivity | Jabil. Retrieved November 

19, 2022, from https://www.jabil.com/blog/artificial-intelligence-in-manufacturing.html 

  

 

 

 



83 

Annexes  

ANNEX 1: Major Networking Technologies used in IoT projects. 

Major Networking Technologies used in IoT projects, (Altexsoft, 2020). 
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ANNEX 2: Table with information about sensors and their respective target faults.  
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Measurement Sensor Key Information Target Faults 

Sound Acoustic sensor Acoustic sensors measure sound levels and 
convert this information into digital or 
analogue data signals. 

Bearing/engine condition, detect 
equipment change.  

Vibration Piezo 
accelerometer 

Low noise, frequencies up to 30 kHz, well 
established in CbM applications 

Bearing condition, gear meshing, 
pump cavitation, misalignment, 
imbalance, load condition 

Vibration MEMS 
accelerometer 

Low cost/power/size, frequencies up to 20 
kHz+ 

Bearing condition, gear meshing, 
pump cavitation, misalignment, 
imbalance, load condition 

Sound 
pressure 

Microphone Low cost/power/size, frequencies up to 20 
kHz 

Bearing condition, gear meshing, 
pump cavitation, misalignment, 
imbalance, load condition 

Sound 
pressure 

Ultrasonic 
microphone 

Low cost/power/size, frequencies up to 100 
kHz 

Pressure leaks, bearing condition, 
gear meshing, pump cavitation, 
misalignment, imbalance 

Motor 
current 

Shunt, current 
transformer 

Low cost, noninvasive, usually measured at 
motor supply 

Eccentric rotors, winding issues, 
rotor bar issues, supply imbalance, 
bearing issues 

Magnetic 
field 

Hall, 
magnetometer, 
search coil 

Low cost/size, frequencies up to 250 Hz, 
stable over temperature 

Rotor bar, end ring issues 

Temperature Infrared 
thermography 

Expensive, accurate, multiple 
assets/sources of heat at one time 

Heat source location due to friction, 
load changes, excessive start/stop, 
insufficient power supply 

Temperature RTD, 
thermocouple, 
digital 

Low cost, size, accurate Change in temperature due to 
friction, load changes, excessive 
start/stop, insufficient power supply 

Oil quality Particle monitor Viscosity, particles, and contamination Detect debris from wear 

Distance  Ultrasonic Low cost, Low range, low read freq, not for 
complex objects, external conditions 
sensitive, not 3D image compatible. 

Robot applications, distance 
measurement, production line 
distances 

Distance Infrared Distance  Low cost, Low range, low read freq, suitable 
for complex objects, not sensitive to 
external conditions, not suitable for 3D 
imaging.  

Robot applications, distance 
measurement, production line 
distances 

Distance Laser Distance: 
LIDAR 

High cost, High range, high read freq, 
suitable for complex objects, not sensitive 
to external conditions, 3D imaging 
compatible 

Robot applications, distance 
measurement, production line 
distances 

Distance Time of Flight  Medium cost, High range, high read freq, 
suitable for complex objects, unsensitive to 
external conditions, 3D imaging compatible 

Robot applications, distance 
measurement. 

Rotation 
Speed 

Rotational Speed Wide range of frequencies, can be pressure 
resistance, leak proof, resistent to oil, salt, 
acid/alkaline solutions, wide range of 
temperatures. 

Hydraulic drives, machine tools, wind 
power plant, transmissions, eletric 
drives 

Movement 
detection 

Motion/occupancy 
detection 

Wide range of working temperatures, 
analogue and digital, medium/high cost. 
The occupancy sensor returns a signal when 
something is still.  

Flow of products in a production line, 
check if a producti is in fact where it's 
supposed to be.  

Velocity, 
acceleration 

Motion velocity 
sensors and 
accelerometers 

Motion velocity sensors are linear or 
angular and indicate how fast an object is 
moving or rotating along a straight line. 
Accelerometers measure changes in 
velocity. 

CNC cutting speed, production line 
movement speed, robots’ 
movements 

Chemicals Chemical sensors Chemical sensors measure the 
concentration of chemicals in a system. It is 
usually trying to identify a specific chemical 
from a mixture. A CO2 sensor, for example, 
only detects carbon dioxide. 

Fire detection systems. Chemical leak 
detection.  

Pressure Pressure sensors Pressure sensors are related to load cells 
and measure the force exerted by liquids or 
gases. Pressure is measured in terms of 
force per unit surface area 

Lack or surplus of pressure in gas 
pipelines.  

Liquid Flow  Flow sensors These sensors record a liquid’s flow rate. 
They measure the volume (mass flow rate) 
or the quantity (flow rate) of liquid going 
thought a system. 

Detect lack or surplus of flowrate.  
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Force Applied Load cells Force sensors detect whether a physical 
force is being applied and whether this 
exceeds a certain threshold. 

Bearings load: Stress and strain 
levels, a gradual or sudden change in 
weight, a gradual or sudden change 
of forces.  

Humidity Humidity sensors Humidity sensors detect the humidity 
(amount of water vapour) in the air or in a 
mass. Humidity can be measured in several 
ways. 

Moisture in oil; Humidity in 
controlled environments.  

Position Position sensor A position sensor measures the position of 
an object. This can either be absolute 
(location) or relative to certain markers 
(displacement). Position sensors can be 
linear, angular, or multi-axis. 

Gas turbine shell expansion; bearing 
vibrations;  
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