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Abstract

This thesis seeks to understand the effect of the inclusion of spacial heterogeneity in

a SEIRS transmission model by considering a reaction-diffusion SEIRS model. Hetero-

geneity may correspond to different factors such as the different age classes, contact or

spatial matrices, stage of the disease or behaviour. The model in study is suitable for a

non-homogeneous population in which the epidemiological parameters depend on the

spatial position of each individual.

A spatial SEIRS reaction-diffusion model is developed and we focus our theoretical

study in the existence of solutions for the equilibrium problem of the epidemic model

and their respective steady states. First a global solution of the model is shown to exist.

The disease free equilibrium (DFE) is established and its asymptotic profiles determined

depending on the basic reproduction number, R0, is defined for two distinguished prob-

lems - one with all diffusion coefficients set as positive constants and the other with some

diffusion coefficients equal to zero. It is shown for both epidemic problems that if R0 < 1

then the DFE is locally asymptotically stable, else it is unstable.

A numerical method based on finite difference schemes is considered to approximate

the solution of the reaction-diffusion system of equations and using the proposed method

we present simulations that illustrate the theoretical results stated in the previous chap-

ters.

Lastly, the model is parameterized according to studies for COVID-19 transmission dy-

namics in Portugal. Here, we illustrate the model predictions for the non-spatial and spa-

tial case. Furthermore, different scenarios for the implementation of non-pharmacological

interventions are illustrated from February 2020 to June 2020. Simulations suggest that

the lockdown imposed in Portugal on the 18th of March 2020 reduced the number of

infected individuals in approximately 254490 daily cases.

Keywords: Spatial heterogeneity, ∆-SEIRS model, Basic reproduction number, Disease-

free equilibrium, Endemic equilibrium, SARS-Cov-2
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Resumo

A presente tese de mestrado tem como objetivo compreender o efeito da inclusão da

heterogeneidade espacial em modelos epidémicos usando um modelo SEIRS de reação-

difusão. A heterogeneidade pode corresponder a diferentes fatores, tais como as diferentes

classes etárias, matrizes de contacto ou espaciais, fase da doença ou comportamento. O

modelo em estudo está adaptado a uma população não homogénea em que os parâmetros

epidemiológicos dependem da posição espacial de cada indivíduo.

Inicialmente desenvolvemos o nosso estudo teórico do modelo espacial SEIRS de

reação-difusão. Demonstramos a existência de uma solução global do modelo. Para o

problema de equilíbrio associado prova-se a existência de um equilíbrio sem doença

(DFE) e é feito o estudo dos perfis assimptóticos da DFE. O número básico de reprodução,

R0, é definido para dois problemas distintos - um com todos os coeficientes de difusão

definidos como constantes positivas e o segundo com alguns dos coeficientes de difusão

definidos iguais a zero. É demonstrado para ambos os problemas epidémicos que se

R0 < 1, então a DFE é localmente assimptoticamente estável, caso contrário é instável.

Um método numérico baseado em esquemas de diferenças finitas é considerado para

aproximar a solução do sistema reação-difusão e utilizando o método proposto apresen-

tamos simulações que ilustram os resultados teóricos declarados nos capítulos anteriores.

Por último, o modelo é parametrizado de acordo com a literatura disponível sobre a

dinâmica de transmissão de COVID-19 em Portugal. Aqui, ilustramos as simulações do

modelo para o caso não-espacial e espacial. Além disso, são ilustrados diferentes cenários

para a implementação de intervenções não-farmacológicas entre fevereiro de 2020 e junho

de 2020. As simulações apresentadas sugerem que o confinamento imposto em Portugal

a 18 de Março de 2020 reduziu o número de indivíduos infetados em aproximadamente

254490 casos diários.

Palavras-chave: Heterogeneidade espacial, Modelo ∆-SEIRS, Número básico de reprodu-

ção, Equilibrío sem doença, Equilíbrio endémico, SARS-Cov-2
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Introduction

In the mathematical theory of epidemics it is fundamental to understand how indi-

vidual organisms being modeled interact with each other and the environment, and how

these interactions determine the distribution of populations and structure of communi-

ties.

The classical epidemic model susceptible-infected-type (SI-type) was first developed

by Kermack and Mckendrick (1927). Kermack and Mckendrick published a leading contribu-

tion to theoretical epidemics, in which a single infection was modeled with the contact

rates estimated according to a mass-action law. The authors were concerned with under-

standing how a contagious disease can spread in a population where one infected person

is introduced to a community of individuals totally susceptible to the disease in question.

The purpose of their research was to obtain more insight regarding the effects of the

various factors which govern the spread of contagious epidemics. Since then, different

SI-type models have been developed. These have varied from discrete to continuous-time

and non-spatial to spatial epidemic models.

The effect of the inclusion of space in these models has been subject of discussion in

epidemiology and would not be of any great interest if there were no empirical reasons

to suspect that space has an influence in population dynamics. In fact, there is extensive

evidence (Huffaker, 1958; MacArthur, 1972; Yodzis, 1989) that suggest that space can

affect the dynamics of populations and structure of communities.

Different frameworks have been proposed to include space heterogeneity, from patch

models, where space is discrete, to continuous models, which are described by partial

differential equations (PDE) such as reaction-diffusion models. Reaction-diffusion models

provide a proper way to express movement of individuals and study the effects that

migration has in the spread of diseases. Thus, they bring a good framework to understand

the disease persistence or extinction. This type of model is spatially explicit and typically

incorporate quantities such as diffusion or local growth rates.

Over the past few years, several SI-type epidemic reaction-diffusion models have been

developed. In mathematics applied to epidemiology we have focused on the works of

Allen et.al [2, 3], Deng and Wu [6], Diekmann et.al [7], Van den Driessche and Watmough [8]
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CHAPTER 1. INTRODUCTION

and Wang and Zhao[21].

In [2] the authors study a susceptible-infected-susceptible (SIS) epidemic model where

space is treated as a discrete collection of patches. Allen et.al show that when susceptible

and infected individuals can move between patches, then an endemic equilibrium is

reached in every patch, but that if only infected individuals are allowed to move then the

disease does not persist in any patch in equilibrium.

Later, Allen and colleagues expand their findings to a space-continuous SIS model

in [3]. Results on asymptotic profiles of the equilibrium are established, which have im-

portant implications for disease control. Furthermore, a similar model is established in [6]

with the small difference that while in [3] a frequency-dependent interaction is taken,

Deng and colleagues focus their study on a SIS reaction-diffusion model with mass-action

type non-linearity. Consequently, the arguments for proving the global existence equilib-

rium of the model, the existence of an endemic equilibrium and the global attractivity of

the endemic equilibrium require different approaches.

In [7], one of the most important concepts in mathematical theory of epidemics is

introduced. The basic reproduction number, R0, is a threshold parameter, derived from

a disease-free equilibrium solution, that allows us to study conditions in which the infec-

tious disease is able to invade and prevail in a population. Diekmann et.al define R0 as

the spectral radius of the next generation matrix. The authors in [8] apply in detail this

definition to a general compartmental model suited to heterogeneous populations that

can be modelled via a system of ordinary differential equations.

Wang and Zhao [21] expand the notion of the basic-reproduction number to a general

reaction-diffusion space and time-continuous model, taking use of an associate elliptic

eigenvalue problem for the study of the threshold dynamics.

First, we will study a continuous time transmission model. To build the mathematical

model, we followed the standard strategy developed in the literature concerning the SIS

model [3].

Suppose that the transmission dynamics of the disease is governed by the following

system of differential equations, which we shall denote susceptible-exposed-infected-

recovered-susceptible (SEIRS) model:

S
′
(t) = −βI(t)S(t) +αR(t), t > 0,

E
′
(t) = βI(t)S(t)− εE(t), t > 0,

I
′
(t) = εE(t)−γI(t), t > 0,

R
′
(t) = γI(t)−αR(t), t > 0,

(1.1a)

(1.1b)

(1.1c)

(1.1d)

that is represented schematically in Figure 1.1.

Here, S(t), E(t), I(t) and R(t) denote the fraction of susceptible, exposed, infectious

and recovered (or removed) individuals at time t ≥ 0, respectively, and the parameters β,

ε, γ and α define the transmission intensity, the rate of progression to the infectious state,

the recovery rate and the loss of immunity rate, respectively. We assume non-negative

2
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Figure 1.1: Schematic diagram of the SEIRS model.

normalized initial conditions, i.e., S(0),E(0), I(0) and R(0) non-negative and

S(0) +E(0) + I(0) +R(0) =N, (1.2)

for some constant N .

We suppose that the disease does not have vertical transmission. In addition, for the

sake of simplicity, we do not consider population dynamics, meaning that birth rate and

natural death or death induced by the disease are here disregarded.

This system of differential equations does not take into account spatial dynamics,

assuming that the population experiences the same homogeneous environment. Our

main objective of this work is to expand (1.1) to a continuous-space reaction-diffusion

model where spatial effects are taken into account.

We now consider a SEIRS reaction-diffusion model of the disease transmission for a

population where individuals in each class move according to a diffusion process with

non-negative constant diffusion coefficients dS , dE , dI and dR, respectively, with at least

one positive diffusion coefficient. Moreover, S(x, t), E(x, t), I(x, t) and R(x, t) are set as the

density of susceptible, exposed, infected and recovered individuals at location x and time

t, respectively.

To incorporate the spatial heterogeneity in the parameters, we set the disease trans-

mission intensity, β(x), rate of progression to the infectious state, ε(x), recovery rate, γ(x),

and the lost of immunity rate, α(x), as positive Hölder-continuous functions dependent

of x in Ω.

We get the following reaction-diffusion system, which we will refer to as the ∆-SEIRS

model:

∂S(x, t)
∂t

= dS∆S(x, t)− β(x)I(x, t)S(x, t) +α(x)R(x, t), x ∈Ω, t > 0,

∂E(x, t)
∂t

= dE∆E(x, t) + β(x)I(x, t)S(x, t)− ε(x)E(x, t), x ∈Ω, t > 0,

∂I(x, t)
∂t

= dI∆I(x, t) + ε(x)E(x, t)−γ(x)I(x, t), x ∈Ω, t > 0,

∂R(x, t)
∂t

= dR∆R(x, t) +γ(x)I(x, t)−α(x)R(x, t), x ∈Ω, t > 0,

(1.3a)

(1.3b)

(1.3c)

(1.3d)

where Ω ⊂ Rl (l ≥ 1) is a bounded domain with smooth boundary ∂Ω (when l > 1) and

∆(·) denotes the Laplacian operator.

Furthermore, we assume that there is no flux across the boundary ∂Ω, i.e.,

∂S
∂n

=
∂E
∂n

=
∂I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω, (1.4)

3



CHAPTER 1. INTRODUCTION

where n denotes the outward unit normal vector to ∂Ω.

We will first study the global solution of the system and the related equilibrium prob-

lem for which we establish the disease free equilibrium and study its stability depending

on the basic reproduction number. Moreover, we apply this model to a current infectious

disease. We take Coronavirus disease 2019 (COVID-19) as our case study and focus on

the spread of the disease in Portugal, where good quality data for model parameteriza-

tion is available. In this framework we refer the reader to the work of Caetano et.al [5],

Mammeri [14] and Viana et.al [20].

The following chapters are organized as follows. In Chapter 2, we introduce the con-

cept of the basic reproduction number. We define R0 as the spectral bound of the next

generation operator and describe the computation of R0 for a general reaction-diffusion

epidemic model. In addition the computation of R0 is exemplified for two simple epi-

demic models.

In Chapter 3, we study in more detail the ∆-SEIRS model (1.3). Global existence and

boundedness results are proved, the equilibrium problem is introduced and the disease-

free equilibrium is shown to exist. Moreover, the study of the disease-free equilibrium is

distinguished in two cases: the first case focus on the model with all diffusion coefficients

set as positive constants and the second with only the exposed individuals diffusion

coefficient set as non-zero. Lastly, the basic reproduction number is defined for both

problems.

In Chapter 4, a numerical method is presented in order to approximate the solution

of the epidemic model (1.3) and illustrations of the theoretical results stated in Chapter 3
are given. We use a centered finite difference scheme for the Laplacian and a backward

finite difference formula to approximate the derivative in time.

In Chapter 5 we introduce COVID-19 and detail the parameters choice for model

(1.3) in relation to those observed in Portugal from February 2020 to June 2020. Illus-

trations of the model simulations for this period are showed for the non-spatial case and

for a heterogeneous population distributed between two big cities. Moreover, for the

spatially heterogeneous population, we present the model predictions for the effect that

non-pharmaceutical interventions implemented in Portugal had on the disease transmis-

sion and create scenarios to evaluate the effect of different lockdown and unlockdown

measures.

Lastly, in Chapter 6 we discuss the results presented from Chapter 3 to 5 and express

our proposal for future work.

In addiction, for further reference, we included an Appendix with auxiliary definitions

and results to complement the work here presented.
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2

Basic Reproduction Number

One of the most important concerns about any infectious disease is its capability to

invade a population.

The basic reproduction number, R0, is a crucial concept in epidemiology. Firstly

developed for the study of demographics (Böckh, 1886; Sharp and Lotka, 1911; Dublin

and Lotka, 1925; Kuczynski, 1928), it was latterly singly studied for vector-borne disease,

such as malaria (Ross, 1911; MacDonald, 1952), and directly transmitted human diseases

(Kermack and McKendrick, 1927; Dietz, 1975; Hethcote, 1975). It is now extensively

used in the study of infectious diseases.

For modelling purposes, in a population which can be broken into homogeneous

subpopulations, or compartments, such that individuals in a given compartment are

indistinguishable from one another, R0 defines the expected number of secondary indi-

viduals produced by an infected individual in its life span. In epidemiology, R0 is taken

as the number of new infectious cases caused by a single infected individual during its

infectious period, in a population which is completely susceptible. R0 can characterize

the infection threat of a disease, having an important implication for disease control.

Here, we study the concept of the basic reproduction number and the theory associ-

ated with it. Firstly, a definition for R0 is given following Diekmann’s formulation. A

general reaction-diffusion epidemic model is considered in Section 2.2. It is shown in

Theorem 2.2.6 that for epidemic models with positive diffusion coefficients, the respective

reproduction number agrees with the spectral radius of an operator associated with the

model and in Theorem 2.2.7 a similar result is taken for models with at least one diffu-

sion coefficient equal to zero. Lastly, the definition of the basic reproduction number is

illustrated by some preliminary examples in Section 2.3.

For the definitions of spectral radius, spectral bound, quasi-positive matrix and prin-

cipal eigenvalue, we redirect the reader to Appendix in page 73.

5



CHAPTER 2. BASIC REPRODUCTION NUMBER

2.1 The Next Generation Operator

Suppose that we wish to study if an infectious disease will invade or not a population,

which is in its steady demographic state with all individuals susceptible. In the analysis

of the simplest models, to answer this question, it was defined the basic reproduction

number R0 as the expected number of secondary cases produced, in a completely suscepti-

ble population, by a typical infected individual during its infective period and developed

the Threshold Criterion:

The disease can invade the population if R0 > 1, whereas it cannot if R0 < 1. (2.1)

Diekmann et al. [7] expanded this notion to less simple models involving heterogeneity in

the population.

Following [7], let ξ denote the individuals in h-state (h for heterogeneity), S = S(ξ)

the density function of susceptibles describing the steady demographic state in the ab-

sence of disease, and A(t,ξ,η) be the expected infectivity of an individual which was

infected t time units ago, while having h-state η, towards a susceptible which has h-state

ξ. Diekmann et al. [7] defined the next generation factor of η as the quantity given by∫
Ω

S(ξ)
∫ ∞

0
A(t,ξ,η)dtdξ, (2.2)

where Ω denotes the domain of ξ. This quantity describes the expected number of

infections produced by an individual during its entire infectious period, which was also

infected while having h-state η.

However, (2.2) does not give an exact representation of what happens in the subse-

quent generations since the new cases arise with h-states different from η. Hence, we

consider a density φ that represents a “distributed” individual.

From [7], the next generation operator K(S) is defined as(
K(S)φ

)
(ξ) = S(ξ)

∫
Ω

∫ ∞
0
A(t,ξ,η)dtφ(η)dη. (2.3)

After m generations the magnitude of the infected population is (in the linear approx-

imation) K(S)mφ and consequently the per-generation growth factor is ||K(S)m||
1
m . Here

|| · || denotes the operator norm given by

||K || = sup
||S ||=1

||K(S)||.

Taking m to∞ in order to study the further generations, we have

lim
m→∞

||K(S)m||
1
m = inf

m≥1
||K(S)m||

1
m = ρ(K(S)), (2.4)

where ρ denotes the spectral radius of an operator. One can specify conditions on K (for

example compactness) that guarantee that ρ(K(S)) is an eigenvalue, which we shall call

the dominant eigenvalue and denote by ρd .
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2.2. R0 OF A REACTION-DIFFUSION EPIDEMIC MODEL

Note that, starting from the zeroth generation φ, the mth generation K(S)mφ converges

to zero for m→∞ if ρ(K(S)) < 1, whereas it can be made arbitrarily large by a suitable

choice of φ and m when ρ(K(S)) > 1. In addition, we have

K(S)mφ ∼ C(φ)ρmd φd , as m→∞, (2.5)

where φd is the corresponding eigenvector (which is positive) and C(φ) a scalar which is

positive whenever φ is non-negative and not identically zero. Therefore after M genera-

tions, forM >m chosen big enough, each generation is ρd times bigger than the preceding

one.

We are now in conditions to define the expected number of secondary individuals

produced by an individual in its infective life span. The next result establishes the basic

reproduction number, R0.

Definition 2.1.1 [7]
The basic reproduction number is defined as

R0 = ρ(K(S)) = ρd , (2.6)

where K is the next generation operator defined by (2.3).

As we will further verify, with this definition the threshold criterion (2.1) still can be

established.

2.2 R0 of a Reaction-Diffusion Epidemic Model

To explore the basic reproduction number of a general reaction-diffusion epidemic

model, we first proceed to study the formulation developed by Wang and Zhao [21].

Consider a heterogeneous population whose individuals can be grouped into n homo-

geneous compartments. Let ∇ denote the Delta operator. Consider the reaction-diffusion

epidemic model described by

∂ui
∂t

= ∇ · (di(x)∇ui) + fi(x,u), 1 ≤ i ≤ n, t > 0, x ∈Ω,

∂ui
∂n

= 0, ∀1 ≤ i ≤ n with di(x) > 0, t > 0, x ∈ ∂Ω,

(2.7a)

(2.7b)

where ui is the density of a population in compartment i, di(x) the diffusion coefficient of

population ui , fi the reaction term in compartment i under the influence of demographic

processes and epidemic interactions, Ω is the spatial habitat in Rl with smooth boundary

∂Ω and n denotes the unit normal vector on ∂Ω.

Following the settings of [21], let u = (u1, . . . ,un)T , with each ui ≥ 0, be the number of

individuals in each compartment. We assume that u is sorted into two types: infected

compartments, labeled by i = 1, . . . ,m, and uninfected compartments, labeled by i =

m+ 1, . . . ,n.
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CHAPTER 2. BASIC REPRODUCTION NUMBER

In order to compute R0, it is important do distinguish new infections from other

changes. Note that, as highlighted in [8], this decomposition is biologically driven, mean-

ing that it is dependent of the biological interpretation of the model. Thus, we first set

Fi(x,u) as the input rate of newly infected individuals in the ith compartment, 1 ≤ i ≤ n,

V +
i (x,u) the rate of transfer of individuals into compartment i by other means and V −i (x,u)

the rate of transfer of individuals out of compartment i. Hence, the disease transmission

model can be written as the following system of equations

∂ui
∂t

= ∇ · (di(x)∇ui) + Fi(x,u)−Vi(x,u), 1 ≤ i ≤ n, t > 0, x ∈Ω,

∂ui
∂n

= 0, ∀1 ≤ i ≤ n with di(x) > 0, t > 0, x ∈ ∂Ω,

(2.8a)

(2.8b)

together with the assumption that initial conditions are non-negative, where Vi = V −i −V
+
i ,

1 ≤ i ≤ n.

For our purposes, we define a disease free-equilibrium (DFE) of (2.8) to be a locally

asymptotically stable equilibrium solution of the disease free model.

Suppose that system (2.8) admits a disease free steady state

u0(x) =
(
0, . . . ,0,u0

m+1(x), . . . ,u0
n(x)

)
, (2.9)

where u0
i (x) ≥ 0, m+ 1 ≤ i ≤ n, for all x ∈Ω, with at least one u0

i (x) > 0.

In view of the results in [Section 3, 21], we impose the following assumptions:

(A1) For each 1 ≤ i ≤ n, functions Fi(x,u), V +
i (x,u), V −i (x,u) and di(x) are non-negative,

continuous on Ω×Rl+ and continuously differential with respect to u;

(A2) If ui ≡ 0 then V −i ≡ 0. In particular, if u is a DFE then V −i ≡ 0 for i = 1, . . . ,m;

(A3) Fi ≡ 0 for 1 ≤ i < m;

(A4) If u is a DFE, then Fi ≡ V +
i ≡ 0 for 1 ≤ i ≤m.

Note that since each function describes a direct transfer of individuals, they are all

non-negative. Biologically, (A2) means that there is no transfer of individuals out of a

compartment if the compartment is empty, (A3) indicates that there is no infection for

uninfected compartments and (A4) implies that the population will remain free of disease

if it is free of disease at the beginning.

From assumptions (A1)-(A4), we can set

DuF (x,u0) =

F(x) 0

0 0

 , DuV (x,u0) =

V (x) 0

J(x) −M0(x)

 ,
where F(x) and V (x) are m×m matrices defined by

F(x) =
{
∂Fi (x,u0)

∂uj

}
1≤i,j≤m

, V (x) =
{
∂Vi (x,u0)
∂uj

}
1≤i,j≤m

, (2.10)
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2.2. R0 OF A REACTION-DIFFUSION EPIDEMIC MODEL

J(x) is a (n−m)×n matrix and

M0(x) =
{
∂fi (x,u0)
∂uj

}
m+1≤i,j≤n

. (2.11)

Observe that, from assumptions (A1) and (A4), F(x) is a non-negative matrix, i.e., it has

non-negative entries for all x ∈Ω.

Set X1 := C (Ω,Rm), X+
1 := C (Ω,Rm+ ) and

uI =
(
u1(x, t), . . . ,um(x, t)

)T
, dI (x) =

(
d1(x), . . . ,dm(x)

)T
,

uS =
(
um+1(x, t), . . . ,un(x, t)

)T
, dS(x) =

(
dm+1(x), . . . ,dn(x)

)T
.

Linearizing system (2.8) around the disease-free equilibrium (DFE), u0, the parabolic

problem becomes

∂uI
∂t

= ∇ · (dI (x)∇uI ) +F(x)uI −V (x)uI , t > 0, x ∈Ω,

∂uS
∂t

= ∇ · (dS(x)∇uS )− J(x)uI +M0(x)uS , t > 0, x ∈Ω,

∂ui
∂n

= 0, ∀1 ≤ i ≤ n with di > 0, t > 0, x ∈ ∂Ω.

(2.12a)

(2.12b)

(2.12c)

We now divide this system into two separate problems, one regarding only the infectious

compartments and the other regarding the non-infectious compartments.

Let T (t) be the solution semigroup on X1 associated with the following linear reaction-

diffusion system

∂uI
∂t

= ∇ · (dI (x)∇uI )−V (x)uI , t > 0, x ∈Ω,

∂ui
∂n

= 0, ∀1 ≤ i ≤m with di > 0, t > 0, x ∈ ∂Ω.

(2.13a)

(2.13b)

We take the following assumption

(A5) −V (x) is quasi-positive for all x ∈Ω and

λ0(−V ) := s
(
∇ · (dI (x)∇)−V

)
< 0,

where s(B) is the spectral bound of the operator B (see Appendix A). Resulting from the

previous decomposition, consider the linear reaction-diffusion system

∂uS
∂t

= ∇ · (dS(x)∇uS ) +M0(x)uS , t > 0, x ∈Ω,

∂ui
∂n

= 0, ∀m+ 1 ≤ i ≤ n with di > 0, t > 0, x ∈ ∂Ω,

(2.14a)

(2.14b)

where M0(x) is given by (2.11). Following [21], in order to ensure that the disease-free
equilibrium is linearly stable in the disease-free space we impose a condition on M0(x):

(A6) M0(x) is quasi-positive for all x ∈Ω and

λ0(M0) := s
(
∇ · (dS(x)∇) +M0

)
< 0.
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2.2.1 An Eigenvalue Problem

In this Section, we give a characterization of the R0 of (2.7) from the spectral bound

of the eigenvalue problem associated with system (2.12). For that purpose, we first intro-

duce two results characterizing the eigenvalues of two general eigenvalue problems, the

first with all diffusion coefficients set as positive constants and the last with at least one

diffusion coefficient identically zero.

Let M(x) be a continuous k × k matrix-valued function of x ∈Ω. Following [21], we

take the eigenvalue problem:

∇ ·
(
dK (x)∇uK

)
+M(x)uK = λuK , x ∈Ω,

∂ui
∂n

= 0, ∀1 ≤ i ≤ k such that di > 0, x ∈ ∂Ω,

(2.15a)

(2.15b)

where uK = (u1(x), . . . ,uk(x))T , dK (x) = (d1(x), . . . ,dk(x))T and MuK denotes the multiplica-

tion operator defined by M(φ)(x) =M(x)φ(x). We assume the following

(D1) there exists a d0 > 0 such that di(x) ≥ d0, for all x ∈Ω and 1 ≤ i ≤ k.

The next result characterizes the spectral bound of the operator L+M, with L(φ)(x) =

∇ ·
(
dK (x)∇φ(x)

)
, associated to the eigenvalue problem (2.15).

Theorem 2.2.1 [21]
Let (D1) hold.
If M(x) is quasi-positive for all x ∈ Ω and there exists an x0 ∈ Ω such that M(x0) is
irreducible, then λ∗ := s(L + M) is an algebraically simple eigenvalue of (2.15) with a
strongly positive eigenvector, and Re(λ) < λ∗ for all λ ∈ σ (L+M) \ {λ∗}.

When some diffusion coefficients in (2.15) are zero, we cannot obtain the existence

of the principal eigenvalue by the same arguments as in the last result. Without loss of

generality, we assume

(D2) There exists a positive constant, d0, and an integer 1 ≤ j1 < k such that di(x) ≥ d0 for

all x ∈Ω, 1 ≤ i ≤ j1, and dj1+i(x) = 0 for all x ∈Ω, 1 ≤ i ≤ j2 := k − j1.

Let Y1 = C (Ω,Rj1) and Y2 = C (Ω,Rj2). We split matrix M(x) into the following form

M(x) =

M11(x) M12(x)

M21(x) M22(x)

 , (2.16)

where M11(x) and M22(x) are j1 × j1 and j2 × j2 matrices, respectively.
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Let Q(t) be the solution semigroup on X associated with the linear parabolic system

∂uj1
∂t

= ∇ ·
(
dj1(x)∇uj1

)
+M11(x)uj1 +M12(x)uj2 , t > 0, x ∈Ω,

∂uj2
∂t

=M21(x)uj1 +M22(x)uj2 , t > 0, x ∈Ω,

∂uj1
∂n

= 0, x ∈ ∂Ω,

(2.17a)

(2.17b)

(2.17c)

where uj1 =
(
u1(x), . . . ,uj1(x)

)T
, uj2 =

(
uj1+1(x), . . . ,uk(x)

)T
and dj1 =

(
d1(x), . . . ,dj1(x)

)T
.

Q(t) is a positive semigroup on X and its generator B is a closed and resolvent-positive

operator, which can be written as

B =

L1 +M11 M12

M21 M22

 ,
where L1(uj1)(x) := ∇ ·

(
dj1(x)∇uj1

)
.

Let T2(t)φ2(x) = eM22(x)tφ2(x). Then T2(t) is a positive C0-semigroup on Y2 with its

generator M22 being resolvent-positive. Following Theorem A.0.8, in Auxiliary Definitions
and Results, we have

(
λI −M22

)−1
φ2 =

∫ ∞
0
e−λtT2(t)φ2dt, ∀λ > s(M22), φ2 ∈ Y2. (2.18)

Thus, we can define a one-parameter family of linear operators

Lλ = L1 +M11 +M12(λI −M22)−1M21, ∀λ > s(M22). (2.19)

We now establish a similar result to Theorem 2.2.1 for eigenvalue problems with some

diffusion coefficients identically zero.

Theorem 2.2.2 [21]

Let (D2) hold. Suppose that M(x) is quasi-positive for all x ∈ Ω, and that for any
λ > s(M22), there exists some xλ ∈ Ω such that M11(xλ) +M12(λI −M22)−1M21(xλ) is
irreducible. If there exists λ0 > s(M22) and φ0 > 0 such that

Lλ0
φ0 ≥ λ0φ0,

then the following statements are valid:

(i) s(B) is a geometrically simple eigenvalue of (2.17) with a positive eigenvector;

(ii) s(B) is the unique λ ∈
(
s(M22),∞

)
with s(Lλ) = λ;

(iii) s(B) has the same sign a s(L0) provided that s(M22) < 0.
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Suppose now that system (2.7) has an equilibrium solution, i.e., a solution u of prob-

lem

∇(di(x)∇ui(x)) + fi(x,u) = 0, 1 ≤ i ≤ n, t > 0, x ∈Ω,
∂ui
∂n

= 0, ∀1 ≤ i ≤ n with di(x) > 0, t > 0, x ∈ ∂Ω.

(2.20a)

(2.20b)

An important question usually raised in relation with the equilibrium solution is

whether this solution is stable, i.e., whether it remains unchanged on the infinite time

interval under small changes in the initial data.

Let φ(t,p) denote the solution of system (2.20) that takes the value p when t = 0. The

next definition explains the different characterizations for the stability of equilibrium

solutions.

Definition 2.2.3 Equilibrium Solution [9]
Consider the problem

dx
dt

+Ax = f (t,x), t > t0, (2.21)

where A be a linear operator in a Banach space X and f : U → X. Let x0 be an

equilibrium point of (2.21), i.e., x0 ∈ D(A) = {x(t)| x(t) solution of (2.21) and x(t0) =

x0} and

Ax0 = f (t,x0), t > t0.

An equilibrium point, x0, is stable if, for any ε > 0, there exists δ > 0 such that any

solution x of (2.21) with ||x(t0)− x0||α < δ exists on [t0,∞) and satisfies

||x(t)− x0||α < ε,

for all t ≥ t0.

The equilibrium point, x0, is asymptotically stable if it is stable and for x(t) solution

of (2.21) where x(t1) = x1, with t1 > t0, x(t)→ x0 as t→∞ and

||x − x0||α < δ,

for some constant δ.

We now characterize the stability of a solution from the eigenvalues of the equilibrium

problem (2.20).

Theorem 2.2.4
The DFE is asymptotically stable for problem (2.21) if the real part of every eigenvalue of
the operator A is negative. It is unstable if any eigenvalue has a positive real part.

Returning to the study of problem (2.7) and in view of (2.3), we now introduce the

distribution of initial infections, described by φ(x), and the distribution of those infective
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members as times evolves, given by T (t)φ(x). Thus, the next generation operator K(φ) for

system (2.8) is given by

K(φ)(x) :=
∫ ∞

0
F(x)T (t)φdt = F(x)

∫ ∞
0
T (t)φdt. (2.22)

Therefore the basic reproduction number for model (2.8) is defined as the spectral radius

of K , i.e.,

R0 := ρ(K). (2.23)

Recalling system (2.13), let

B := ∇ · (dI∇)−V . (2.24)

The following result characterizes the basic reproduction number computed for sys-

tem (2.8), using the eigenvalues of the eigenvalue problem associated with (2.12) and

the local stability of the equilibrium solution. In addition, it states that if R0 < 1 the

DFE is locally asymptotically stable which implies that the disease is eliminated and the

population does not become endemic.

Theorem 2.2.5 [21]
Let (A1)-(A5) hold. The following statements are valid:

(i) R0 − 1 has the same sign as λ∗ := s(B+ F), where F and V are given by (2.10) and
(2.24), respectively;

(ii) If in addition (A6) holds and R0 < 1, then u0 is asymptotically stable for system
(2.8).

Proof. In view of the results presented in Chapter 3, we are primarily interested in the proof
of condition (i). For the proof of (ii) we redirect the reader to [Theorem 3.1, 21].

Without loss of generality, suppose that all diffusion coefficients are positive constants.

Set X1 := C (Ω,Rl) and X+
1 := C (Ω,Rl+). Let T (t) be the solution semigroup on X1 as-

sociated with system (2.13). Observe that T (t) is a positive semigroup in the sense that
T (t)X+

1 ⊆ X
+
1 for all t ≥ 0.

Following the settings of Diekmann et al. [7] for the basic reproduction number, we have
that the distribution of new infections at time t is F(x)T (t)φ(x), whereφ(x) sets the distribution
of initial infection. Thus, from (2.2), we define the next generation operator of problem (2.8)
as

K(φ)(x) := F(x)
∫ ∞

0
T (t)φ(x)dt. (2.25)

Hence, following (2.6), we have that the basic reproduction number for model (2.8) is
defined as

R0 := ρ(K).
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Let B denote the operator defined in (2.24). Clearly B is the generator semigroup of T (t) on
X1.

From Theorem A.0.8, in Auxiliary Definitions and Results, it then follows thatB is resolvent
positive and

(λI −B)−1φ =
∫ ∞

0
e−λtT (t)φ(x)dt, ∀λ > s(B), ∀φ(x) ∈ X1. (2.26)

Since V (x) verifies assumption (A5), we have s(B) < 0. Letting λ = 0, (2.26) becomes

−B−1φ =
∫ ∞

0
T (t)φ(x)dt, ∀φ(x) ∈ X1.

Thus, following (2.25), we have

K(φ)(x) = −FB−1.

Let A denote the linear operator A := B + F. Then A generates a positive C0-semigroup.
Following Theorem A.0.8, A is a resolvent-positive operator and thus it follows from Theorem
A.0.9 that s(A) has the same sign as ρ(−FB−1)− 1 = R0 − 1.

From Theorem 2.2.1, we have that the eigenvalue problem associated with (2.13) has a
principal eigenvalue λ∗, which is defined as

λ∗ := s(B+F) = s(A).

Hence, R0 − 1 has the same sign as the principal eigenvalue λ∗ of the eigenvalue problem
associated with (2.13).

�

2.2.2 Characterization of R0

We now state the two main results of [21], that characterize the basic reproduction

number, R0, in terms of the principal eigenvalue of an elliptic eigenvalue problem.

Theorem 2.2.6 [21]
Let (A1)–(A4) hold. Assume that there exists d0 > 0 such that di(x) ≥ d0, for all 1 ≤ i ≤m.
If the elliptic eigenvalue problem

−∇ · (dI (x)∇φ) +V (x)φ(x) = µF(x)φ, x ∈Ω,
∂φ

∂n
= 0, x ∈ ∂Ω,

admits a unique positive eigenvalue µ0 with a positive eigenfunction, then

R0 = ρ(−FB−1) = ρ(−B−1F) =
1
µ0
, (2.27)

where F and B are given by (2.10) and (2.24), respectively.
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In the case where some di(x) are identically zero, we can reduce the computation of

R0 to that of the principal eigenvalue of a lower dimensional elliptic eigenvalue problem

under additional conditions.

Theorem 2.2.7 [21]
Let (A1)-(A4) hold, and assume that s(−V22) < 0. Let B1 := ∇ · (di1∇) − V1, where V1 :=

V11 −V12V
−1
22 V21. Then the following statements are valid:

(i) If F12 = 0 and F22 = 0, then R0 = ρ(−B−1F) = ρ(−B−1
1 F1), where F1 = F11 −

V12V
−1
22 F21;

(ii) If F21 = 0 and F22 = 0, then R0 = ρ(−B−1F) = ρ(−B−1
1 F2), where F2 = F11 −

F12V
−1
22 V21.

2.3 Illustration of the Computation of R0

The decomposition of f (x) into components F and V and the computation of the

basic reproduction number is here illustrated using two simple disease models.

The first describes a disease transmission model without space and the latter a discrete

in space disease transmission model, and so we may take a simpler theory to compute

their respective R0. Hence, we adopt the settings of van den Driessche et al, [8], to charac-

terize the basic reproduction number of the following models via the matrices F , V , F

and V for discrete type models.

2.3.1 SEIRS Model

Let S(t), E(t), I(t), R(t) be the fraction of susceptible, exposed, infectious and recovered

individuals at time t ≥ 0.

Consider the simple model described by the following differential equations together

with non-negative initial conditions

dE
dt

= βI(t)S(t)− εE(t), t > 0,

dI
dt

= εE(t)−γI(t), t > 0,

dS
dt

= −βI(t)S(t) +αR(t), t > 0,

dR
dt

= γI(t)−αR(t), t > 0,

(2.28a)

(2.28b)

(2.28c)

(2.28d)

where β, ε, γ , α are non-negative constants that define the transmission intensity, the

rate of progression to the infectious state, the recovery rate and the lost of immunity rate,

respectively. We assume non-negative normalized initial conditions, i.e., S(0),E(0), I(0)

and R(0) non-negative and

S(0) +E(0) + I(0) +R(0) =N,

15



CHAPTER 2. BASIC REPRODUCTION NUMBER

for some constant N .

Note that progression from compartment E to I is not considered to be new infections,

since it only describes the progression of an infected individual through different infected

compartments. Hence

F (u) =


βS0I(t)

0

0

0


and V (u) =


εE(t)

γI(t)− εE(t)

βI(t)S(t)−αR(t)

αR(t)−γI(t)


.

Following from (2.9), an equilibrium solution with E = I = 0 has the form

u0 =
(
0,0,S0,0

)T
=

(
0,0,N ,0

)T
.

Then

F =

0 βN

0 0

 , V =

 ε 0

−ε γ

 ,
giving

V −1 =

 1
ε 0
1
γ

1
γ

 .
Hence

FV −1 =

 βγN β
γN

0 0

 ,
and

R0 = ρ(FV −1) =
β

γ
N.

Following Diekmann et al. [7], we define FV −1 to be the next generation matrix for

(2.28). To interpret its entries, consider the rate of an infected individual introduced into

compartment k of a disease free population. The (j,k) entry of V −1 describes the average

length of time this individual spends in compartment j, assuming that the population

remains near the DFE. The (i, j) entry of F is the rate at which infected individuals in

compartment j produce new infections in compartment i. Therefore, the (i,k) entry of

the matrix product FV −1 is the expected number of new infections in compartment i

produced by the infected individual originally introduced in compartment k.

Note that since γ defines the recovery rate of the infectious state, 1
γ translates the

number of days that an individual stays in the infectious compartment. Therefore R0 is

simply the product of the infection rate and the mean duration of the infection times the

total population N .

Thus, we have that R0 < 1 if, and only if, the recovery rate is bigger than the infection

rate, meaning that the infection cannot persist. Conversely, R0 > 1 if, and only if, the re-

covery rate is smaller than the infection rate. Hence the disease can invade the population

when R0 > 1 .
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2.3. ILLUSTRATION OF THE COMPUTATION OF R0

2.3.2 SIS Patch Model

Now, to consider the spacial contribution to the definition of R0 but in a simpler

context, we consider a SIS patch model as in [2]. Let n ≥ 2 be the number of patches, Ω =

{1,2, . . . ,n} and Sj(t) and Ij(t) denote the number of susceptible and infected individuals

in patch j at time t ≥ 0.

Consider the following system of differential equations

dSj
dt

= dS
∑
k∈Ω

(
LjkSk −LkjSj

)
−
βjSjIj
Sj + Ij

+γIj , j ∈Ω, t > 0,

dIj
dt

= dI
∑
k∈Ω

(
LjkIk −LkjIj

)
+
βjSjIj
Sj + Ij

−γIj , j ∈Ω, t > 0,

(2.29a)

(2.29b)

where dS and dI are positive diffusion coefficients for the susceptible and infected sub-

populations, Ljk represents the degree of movement from patch k into patch j, and βj and

γj are nonnegative constants that express the rate of disease transmission and recovery

in patch j.

The respective equilibrium solution (S,I) satisfies

dS
∑
k∈Ω

(
LjkSk −LkjSj

)
−
βjSjI j

Sj + I j
+γI j = 0, j ∈Ω, t > 0,

dI
∑
k∈Ω

(
LjkIk −LkjI j

)
+
βjSjI j

Sj + I j
−γI j = 0, j ∈Ω, t > 0,

(2.30a)

(2.30b)

Following the previous theory, we can write (2.29b) as

dI
dt

= F −V ,

where F denotes the vector of new infections and V the vector of transitions in the n

infected states. Thus, the basic reproduction number for (2.29) is the spectral radius of

the next generation matrix, ρ(FV −1), with

F = diag(βj ), V = diag(γj + dILj )− dIL,

where V depends on the rate of recovery and the connection matrix between the different

patches, L, which determine the average time of stay in each infectious compartment.
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3

The Model

In this Chapter we consider an epidemic problem modeled using a non-linear reaction-

diffusion system. Chapter 3 is organized as follows. In Section 3.1 the epidemic model

is presented, the initial conditions and assumptions are stated and the global existence

and uniform boundedness of solution of the model is established. In Section 3.2 the

equilibrium problem is formulated and the different equilibrium solutions are defined.

Lastly, in Section 3.3 the existence of a disease-free equilibrium is proved and we investigate

the threshold dynamics in terms of the basic reproduction number for two different

problems: we consider the case where all the diffusion coefficients are positive and the

case where only the diffusion coefficient of the exposed individuals is positive and the

others are set to zero.

3.1 The ∆-SEIRS Model

We now consider a SEIRS reaction-diffusion model of the disease transmission for a

population where individuals in each class move according to a diffusion process with

non-negative constant diffusion coefficients dS , dE , dI and dR, respectively, with at least

one positive diffusion coefficient. Moreover, S(x, t), E(x, t), I(x, t) and R(x, t) are set as the

density of susceptible, exposed, infected and recovered individuals at location x and time

t, respectively.

To incorporate the spatial heterogeneity, we set the disease transmission intensity,

β(x), rate of progression to the infectious state, ε(x), recovery rate, γ(x), and the lost of

immunity rate, α(x), as positive Hölder-continuous functions dependent of x in Ω. Table
3.1 describes the model’s parameters.

The SEIRS reaction-diffusion model, which we will refer to as the ∆-SEIRS model,

corresponds to the following partial differential equation system:
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CHAPTER 3. THE MODEL

∂S(x, t)
∂t

= dS∆S(x, t)− β(x)I(x, t)S(x, t) +α(x)R(x, t), x ∈Ω, t > 0,

∂E(x, t)
∂t

= dE∆E(x, t) + β(x)I(x, t)S(x, t)− ε(x)E(x, t), x ∈Ω, t > 0,

∂I(x, t)
∂t

= dI∆I(x, t) + ε(x)E(x, t)−γ(x)I(x, t), x ∈Ω, t > 0,

∂R(x, t)
∂t

= dR∆R(x, t) +γ(x)I(x, t)−α(x)R(x, t), x ∈Ω, t > 0,

(3.1a)

(3.1b)

(3.1c)

(3.1d)

where Ω ⊂ Rl (l ≥ 1) is a bounded domain with smooth boundary ∂Ω (when l > 1).

Furthermore, we assume that there is no flux across the boundary ∂Ω, i.e.,

∂S
∂n

=
∂E
∂n

=
∂I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω, t > 0, (3.2)

where n denotes the outward unit normal vector to ∂Ω. This means that no individuals

cross the boundary.

Parameter Description

S(x, t), E(x, t), I(x, t), R(x, t) Density of individuals at location x and time t
dS , dE , dI , dR Diffusion coefficients

β(x) Disease transmission intensity
β(x)S(x, t)I(x, t) Density-dependent transmission

ε(x) Progression to the infectious state rate
γ(x) Recovery rate
α(x) Lost of immunity rate

Table 3.1: Description of the parameters used in the model.

We will also assume that the initial values S(x,0), E(x,0), I(x,0) and R(x,0) are non-

negative continuous functions in Ω. Moreover, assume that there are initially positive

number of exposed or infected individuals, i.e.,∫
Ω

E(x,0)dx > 0 or
∫
Ω

I(x,0)dx > 0, (3.3)

and that the total number of individuals in Ω at time t = 0 is equal to some positive

constant N0 > 0, i.e., ∫
Ω

(
S(x,0) +E(x,0) + I(x,0) +R(x,0)

)
dx =N0. (3.4)

Note that, from adding equations (3.1a)-(3.1d), we have

∂S
∂t

+
∂E
∂t

+
∂I
∂t

+
∂R
∂t

= dS∆S + dE∆E + dI∆I + dR∆R

⇔ ∂
∂t

(
S +E + I +R) = ∆(dSS + dEE + dI I + dRR)

⇒
∫
Ω

∂
∂t

(
S +E + I +R

)
dx =

∫
Ω

∆

(
dSS + dEE + dI I + dRR

)
dx.
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3.2. THE EQUILIBRIUM PROBLEM

From Green’s formula, we know∫
U

(
∇u · ∇v

)
dy = −

∫
U
u∆vdy +

∫
∂U
u
∂v
∂n
dSy , (3.5)

which implies∫
Ω

∂
∂t

(
S +E + I +R

)
dx =

∫
Ω

∆

(
dSS + dEE + dI I + dRR

)
dx

⇔ ∂
∂t

∫
Ω

(
S +E + I +R

)
dx = −

∫
Ω

∇1 · ∇
(
dSS + dEE + dI I + dRR

)
dx+

+
∫
∂Ω

∂
∂n

(
dSS + dEE + dI I + dRR

)
dSy

Hence, from (3.2), we have

∂
∂t

[∫
Ω

(
S(x, t) +E(x, t) + I(x, t) +R(x, t)

)
dx

]
= 0, (3.6)

which, in addition to (3.4), implies that the total population size over time is a constant

given by ∫
Ω

(
S(x, t) +E(x, t) + I(x, t) +R(x, t)

)
dx =N0, t ≥ 0. (3.7)

The next result establishes the global existence for the solution of problem (3.1)-(3.4).

Theorem 3.1.1
Suppose that S(x,0), E(x,0), I(x,0) and R(x,0) are non-negative continuous functions in Ω,
and that assumptions (3.3) and (3.4) hold. Then problem (3.1)-(3.2) has a unique solution
globally, such that

S(x, t),E(x, t), I(x, t),R(x, t) ≥ 0, x ∈Ω, t > 0. (3.8)

Proof. The proof is similar to that of [Theorem 2.1, 6].
�

3.2 The Equilibrium Problem

Throughout this section we will be interest primarily in the equilibrium solutions of

system (3.1) with (3.2), i.e., solutions (S,E, I,R) such that there exists a t0 > 0 such that

∂S(x, t)
∂t

=
∂E(x, t)
∂t

=
∂I(x, t)
∂t

=
∂R(x, t)
∂t

= 0, ∀x ∈Ω, t > t0.
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Thus the equilibrium solution (S,E, I,R) satisfies

dS∆S(x)− β(x)I(x)S(x) +α(x)R(x) = 0, x ∈Ω,

dE∆E(x) + β(x)I(x)S(x)− ε(x)E(x) = 0, x ∈Ω,

dI∆I(x) + ε(x)E(x)−γ(x)I(x) = 0, x ∈Ω,

dR∆R(x) +γ(x)I(x)−α(x)R(x) = 0, x ∈Ω,

∂S(x)
∂n

=
∂E(x)
∂n

=
∂I(x)
∂n

=
∂R(x)
∂n

= 0, x ∈ ∂Ω.

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.9e)

Here, S(x), E(x), I(x) and R(x) denote the densities of susceptible, exposed, infected and

recovered individuals, respectively, at equilibrium for x ∈Ω . From (3.7) follows∫
Ω

(
S(x) +E(x) + I(x) +R(x)

)
dx =N0. (3.10)

For the purpose of our study, we are only interested in non-negative solutions (S,E, I,R)

of system (3.9).

Since the infected subgroups are linked in such a way that one infected subgroup

cannot go to zero unless all of the infected subgroups go to zero, we define a DFE as

a solution of problem (3.9)-(3.10) in which E(x) and I(x) are identically zero for every

x ∈Ω. Biologically, this means that a DFE is a solution of system (3.9)-(3.10) where all

infectious compartments become extinct. By close inspection of system (3.9), we see that

by replacing E ≡ I ≡ 0 on equation (3.9d) and integrating both parts of the equation in Ω,

we have ∫
Ω

dR∆R(x)dx︸            ︷︷            ︸
=0

−
∫
Ω

α(x)R(x)dx = 0⇔
∫
Ω

α(x)R(x)dx = 0.

Since α(x) is positive and continuous in Ω and R(x) is non-negative and continuous in Ω,

we conclude that R(x) ≡ 0 for all x ∈Ω when E ≡ I ≡ 0. Thus, the disease-free equilibrium
is of the form

(
S(x),0,0,0

)
.

On the other hand, an endemic equilibrium (EE) is a solution of system (3.9) on which

E(x) or I(x) are positive functions for some x ∈Ω, i.e., the disease still prevails.

For notational purposes, we will denote the DFE by (S̃,0,0,0) and the EE by (Ŝ, Ê, Î , R̂).

3.3 The Disease-Free Equilibrium

Suppose that assumptions taken on Theorem 3.1.1 hold and N0 in (3.7) is fixed. Con-

sider the reaction-diffusion epidemic model described by (3.1)-(3.4). We distinguish two

different reaction-diffusion epidemic problems.
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3.3. THE DISEASE-FREE EQUILIBRIUM

First we focus our study in the problem with all diffusion coefficients set as positive

constants where we establish the existence and uniqueness of a DFE for this problem.

Following the settings of Wang and Zhao studied in Chapter 2, the respective basic repro-

duction number is defined and the threshold criterion is shown to hold.

Next, a reaction-diffusion problem with some diffusion coefficients equal to zero is

studied. Similar results to those of the first problem are proved. Lastly, an explicit

characterization of the basic reproduction number is given and the respective threshold

dynamics are studied.

3.3.1 Reaction-diffusion epidemic problem with all diffusion coefficients
positive

Suppose that all diffusion coefficients dS ,dE ,dI and dR are positive.

First we study the existence and uniqueness of a disease-free equilibrium of problem

(3.1)-(3.4).

Proposition 3.3.1
Problem (3.1)-(3.4) has a unique DFE on Ω, which is given by(

S̃, Ẽ, Ĩ , R̃
)

=
(N0

|Ω|
,0,0,0

)
, (3.11)

where |Ω| denotes the measure of Ω.

Proof. Observe first, by replacing
(
N0
|Ω| ,0,0,0

)
in (3.1), that this is a solution of the equilibrium

problem. Thus, existence of a DFE comes directly from noting that
(
N0
|Ω| ,0,0,0

)
is by definition

a DFE since it is a non-negative solution of (3.1)-(3.4) and

Ẽ = Ĩ = 0.

Now, let (S̃,0,0,0) be any DFE. From (3.9), we have

dS∆S̃(x) = 0.

Therefore, since by hypothesis dS > 0, S̃(x) satisfies

∆S̃(x) = 0, x ∈Ω and
∂S̃(x)
∂n

= 0, x ∈ ∂Ω.

Hence, by the maximum principle, we have that S̃ is constant in Ω. In view of (3.10), we then
obtain

S̃(x) =
N0

|Ω|
, ∀x ∈Ω,

which establishes the uniqueness of the DFE solution.

�
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Following the settings in Chapter 2, we now define matrices F(x) and V (x), with x ∈Ω,

for model (3.1)-(3.4). Here we point out that, as F is defined by the infection process and

this process only occurs from susceptibles to exposed individuals, we have FI (x,u) = 0

given that new individuals in this compartment are only transfers from the previous one.

Hence, we have

F (x,u) =


FE(x,u)

FI (x,u)

FS(x,u)

FR(x,u)


=


β(x)I(x, t)S(x, t)

0

0

0


and

V (x,u) =


VE(x,u)

VI (x,u)

VS(x,u)

VR(x,u)


=


V −E (x,u)−V +

E (x,u)

V −I (x,u)−V +
I (x,u)

V −S (x,u)−V +
S (x,u)

V −R (x,u)−V +
R (x,u)


=


ε(x)E(x, t)

γ(x)I(x, t)− ε(x)E(x, t)

β(x)I(x, t)S(x, t)−α(x)R(x, t)

α(x)R(x, t)−γ(x)I(x, t)


.

Note that, for all compartments, functions F (x,u) and V (x,u) satisfy assumptions (A1)−
(A4).

We then can set

DuF (x,DFE) =


0 N0

|Ω|β(x) 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , DuV (x,DFE) =


ε(x) 0 0 0

−ε(x) γ(x) 0 0

0 N0
|Ω|β(x) 0 −α(x)

0 −γ(x) 0 α(x).


Hence matrices F(x) and V (x), only related to the infectious compartments, are defined

by

F(x) =

0 N0
|Ω|β(x)

0 0

 , V (x) =

 ε(x) 0

−ε(x) γ(x)

 . (3.12)

Since ε(x) and γ(x) are positive, then −V (x) is a quasi-positive matrix, for x ∈Ω. Let

C be the operator defined by

C := ∇ · (dinf (x)∇)−V (x) =

dE∆− ε(x) 0

ε(x) dI∆−γ(x)

 ,
with dinf (x) = diag

(
dE ,dI

)T
. Operator C is resolvent-positive with s(C) < 0 [13].

Our goal now is to study the stability of the DFE. First we establish an eigenvalue

value problem associated to system (3.1).

Let η(x, t) = S(x, t) − S̃(x), ξ(x, t) = E(x, t), µ(x, t) = I(x, t) and ν(x, t) = R(x, t). For the

susceptibles, since ∂S̃
∂t = 0, we have

∂η

∂t
= dS∆S(x, t)− β(x)I(x, t)S(x, t) +α(x)R(x, t)

⇔
∂η

∂t
= dS∆η(x, t)− β(x)µ(x, t)

[
η(x, t)− S̃(x)

]
+α(x)ν(x, t).
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3.3. THE DISEASE-FREE EQUILIBRIUM

Hence, disregarding the non-linear factor β(x)µ(x, t)η(x, t), equation (3.1a) linearized

around the DFE becomes
∂η

∂t
= dS∆η(x, t)− N0

|Ω|
β(x)µ(x, t) +α(x)ν(x, t).

Following the same arguments, we get similar equations for the exposed, infected and

recovered variables. Therefore, linearizing (3.1) around the DFE, we obtain

∂η

∂t
= dS∆η(x, t)− N0

|Ω|
β(x)µ(x, t) +α(x)ν(x, t), x ∈Ω, t > 0,

∂ξ
∂t

= dE∆ξ(x, t) +
N0

|Ω|
β(x)µ(x, t)− ε(x)ξ(x, t), x ∈Ω, t > 0,

∂µ

∂t
= dI∆µ(x, t) + ε(x)ξ(x, t)−γ(x)µ(x, t), x ∈Ω, t > 0,

∂ν
∂t

= dR∆ν(x, t) +γ(x)µ(x, t)−α(x)ν(x, t), x ∈Ω, t > 0.

(3.13a)

(3.13b)

(3.13c)

(3.13d)

Suppose that(
η(x, t),ξ(x, t),µ(x, t),ν(x, t)

)
=

(
eλtφS(x), eλtφE(x), eλtφI (x), eλtφR(x)

)
, (3.14)

is a solution of the linear system (3.13), with λ ∈ R. Replacing (3.14) into (3.13) and

dividing the resulting by eλt, we get the following linear eigenvalue problem

dS∆φS(x)− N0

|Ω|
β(x)φI (x) +α(x)φR(x)−λφS(x) = 0, x ∈Ω,

dE∆φE(x) +
N0

|Ω|
β(x)φI (x)− ε(x)φE(x)−λφE(x) = 0, x ∈Ω,

dI∆φI (x) + ε(x)φE(x)−γ(x)φI (x)−λφI (x) = 0, x ∈Ω,

dR∆φR(x) +γ(x)φI (x)−α(x)φR(x)−λφR(x) = 0, x ∈Ω.

(3.15a)

(3.15b)

(3.15c)

(3.15d)

From (3.2), we must impose

∂φS(x)
∂n

=
∂φE(x)
∂n

=
∂φI (x)
∂n

=
∂φR(x)
∂n

= 0, x ∈ ∂Ω. (3.16)

On the other hand, from (3.10) and Proposition 3.3.1, we have∫
Ω

[η(x, t)+ξ(x, t)+µ(x, t)+ν(x, t)]dx =
∫
Ω

[S(x, t)+E(x, t)+I(x, t)+R(x, t)]dx−
∫
Ω

S̃(x)dx = 0,

and thus

eλt
∫
Ω

[
φS(x) +φE(x) +φI (x) +φR(x)

]
dx = 0

⇔
∫
Ω

[
φS(x) +φE(x) +φI (x) +φR(x)

]
dx = 0. (3.17)

We now wish to focus our study in the system associated only with the equations

regarding the infectious compartments in system (3.15)-(3.16), which is given by

dE∆φE(x) +
N0

|Ω|
β(x)φI (x)− ε(x)φE(x)−λφE(x) = 0, x ∈Ω,

dI∆φI (x) + ε(x)φE(x)−γ(x)φI (x)−λφI (x) = 0, x ∈Ω,
∂φE
∂n

=
∂φI
∂n

= 0, x ∈ ∂Ω.

(3.18a)

(3.18b)

(3.18c)
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We are now in conditions to study system (3.13) and the stability of the disease-free
equilibrium.

In view of the elliptic eigenvalue problem (3.18), the next result establishes the exis-

tence of a principal simple eigenvalue with a positive eigenfunction.

Lemma 3.3.2
The elliptic eigenvalue problem (3.18) has a principal simple eigenvalue λ∗.

Proof. Our goal is to apply Theorem 2.2.1.
Let d0 := min{dS ,dE ,dI ,dR}. Then condition (D1) in Theorem 2.2.1 is satisfied.
Set

M(x) =

−ε(x) N0
|Ω|β(x)

ε(x) −γ(x)

 ,
and

L = diag
(
dE∆,dI∆

)
.

Since ε(x) and β(x) are positive functions, M(x) is a quasi-positive matrix for all x ∈ Ω.
Thus, it is enough to show that there exists an x0 ∈Ω such that M(x0) is irreducible.

We have

(I + |M(x)|) =

1 + ε(x) N0
|Ω|β(x)

ε(x) 1 +γ(x)

 ,
with |M(x)| denoting the matrix given by M(x) entries in module.

Functions ε(x), β(x) and γ(x) are positive, then all entries of matrix (I + |M(x)|) are bigger
than zero. Hence (I + |M(x)|) is a positive matrix for all x ∈Ω. Following Theorem A.0.6, in
Auxiliary Definitions and Results, we conclude thatM(x) is an irreducible matrix for all x ∈Ω.

Therefore, from Theorem 2.2.1, system (3.18) has an algebraically simple eigenvalue with
a strongly positive eigenvector.

�

Following the settings of Wang and Zhao studied in Chapter 2, let R0 represent the

basic reproduction number of system (3.1)-(3.4).

To prove the DFE local stability we cannot apply directly Theorem 2.2.5 (ii), since, as

we will see more in detail, condition (A6) is not verified for our system. Hence we divide

our analysis into two steps. First, we establish an important relation between the sign of

R0 − 1 and the principal eigenvalue of system (3.18). The proof is similar to the proof of

Theorem 2.2.5 (i).

Theorem 3.3.3 [21]
R0−1 has the same sign as λ∗, where λ∗ is the principal eigenvalue of (3.18) with a positive
eigenfunction.

Proof. The proof is similar to that of Theorem 2.2.5 (i).
�
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LetM0(x) denote matrix (2.11) defined in Chapter 2. For our epidemic model, we have

M0(x) =

0 α(x)

0 −α(x)

 . (3.19)

Although M0(x) is a quasi-positive matrix, from close inspection one can see that it does

not verify assumption (A6) since we do not have

s
(
diag(dS∆,dR∆) +M0(x)

)
< 0.

Hence, the next result is a reformulation of the proof of statement in Theorem 2.2.5 (ii),
following Theorem 2.2.4.

Theorem 3.3.4
If R0 < 1 then the DFE is asymptotically stable for problem (3.1).

Proof. Suppose that R0 < 1.

Our goal is to show that the disease-free equilibrium is asymptotically stable. Following
Theorem 2.2.4, we then want to show that if (λ, ~φ) is a solution of problem (3.15)-(3.17), where
~φ =

(
φS ,φE ,φI ,φR

)T
with at least one entry not identically zero, then

Re(λ) < 0.

For this purpose, we argue by contradiction. Suppose that (λ, ~φ) is a solution of system
(3.15)-(3.17), with ~φ not identically zero and

Re(λ) ≥ 0. (3.20)

Assume that φE ≡ 0. Then, following (3.15), we have

dI∆φI (x)−γ(x)φI (x) = λφI (x), x ∈Ω,
∂φI (x)
∂n

= 0, x ∈ ∂Ω.

Since γ(x) is positive in Ω, from [21], we have

s
(
dI∆−γ(x)

)
< 0 and Re(λ) < s

(
dI∆−γ(x)

)
.

Then λ < 0 which is a contradiction. Hence φI ≡ 0.

Note that, if φE and φI are identically zero, from (3.15d) we have

dR∆φR −α(x)φR(x)−λφR(x) = 0, x ∈Ω,
∂φR(x)
∂n

= 0, x ∈ ∂Ω.

Since α(x) is positive in Ω, we can argue in the same way as before. Hence, we have Re(λ) < 0

and so we come to a contradiction. Thus φR ≡ 0.
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If φE , φI and φR are identically zero, following equation (3.15a) we have

dS∆φS(x)−λφS(x) = 0, x ∈Ω (3.21)

∂φS(x)
∂n

= 0, x ∈ ∂Ω. (3.22)

Since the laplacian is a self-adjoint operator, then λ is real. Following (3.21), we have

dS∆φS −λφS(x) = 0⇔ dSφS(x)∆φS(x)−λφ2
S(x) = 0.

Then ∫
Ω

dSφS(x)∆φS(x)dx = λ
∫
Ω

φ2
S(x)dx,

and using Green’s Formula, (3.5), we get

−
∫
Ω

dS |∇φS(x)|2dx = λ
∫
Ω

φ2
S(x)dx

⇔ λ =
−dS

∫
Ω
|∇φS(x)|2dx∫

Ω
φ2
S(x)dx

< 0.

Thus, from (3.20), we come to a contradiction. Therefore, φS ≡ 0 which implies that ~φ ≡ 0,
which is a contradiction and so we conclude that φE . 0.

Now suppose that φS ≡ 0. Then, from equation (3.15b), we have

dE∆φE(x)− ε(x)φE(x)−λφE(x) = 0, x ∈Ω,
∂φE(x)
∂n

= 0, x ∈ ∂Ω.

Since ε(x) is a positive function on Ω, using the same arguments as before we get that λ < 0,
which is a contradiction. Hence, φS . 0.

Now, since φE . 0 then we must have φI . 0.
Let ~φinf =

(
φE(x),φI (x)

)
. Since by assumption (λ, ~φ) is a solution to system (3.15)-(3.17),

then (λ, ~φinf ) is a solution of the following eigenvalue problem

B~φinf +F ~φinf −λ~φinf = 0, x ∈Ω, (3.23)

∂φE
∂n

=
∂φI
∂n

= 0, x ∈ ∂Ω, (3.24)

where F is defined as in (3.12) and B = diag
(
dE∆,dI∆

)
−V .

Let λ∗ := s(B+F). From Theorem 2.2.1 and (3.20), we have

λ∗ > Re(λ) ≥ 0.

However, Theorem 3.3.3 implies that λ∗ has the same sign as R0 − 1, i.e.,

λ∗ < 0,

hence we come to a contradiction.
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We conclude that if (λ, ~φ) is a solution to (3.15)-(3.17), with at least one of φS , φE , φI or
φR not identically zero on Ω, then

Re(λ) < 0.

This proves that the DFE is asymptotically stable.

�

It is only left to study the conditions where the DFE is not a stable solution of system

(3.9). We have the following result:

Theorem 3.3.5
If R0 > 1 then there exists ε0 > 0 such that any positive solution of (3.1) satisfies

limsup
t→∞

‖
(
S(·, t),E(·, t), I(·, t),R(·, t)

)
−
(N0

|Ω|
,0,0,0

)
‖L∞(Ω) ≥ ε0.

Proof. Suppose that R0 > 1. Theorem 3.3.3 states that R0 − 1 has the same sign as λ∗,
where λ∗ is the principal eigenvalue of the elliptic eigenvalue problem (3.18) with a positive
eigenfunction. Hence

λ∗ > 0.

For ε ∈
(
0, N0
|Ω|

)
, we consider the following eigenvalue problem

dE∆E(x) + β(x)I(x)
(N0

|Ω|
− ε

)
− ε(x)E(x) = λE(x), x ∈Ω,

dI∆I(x) + ε(x)E(x)−γ(x)I(x) = λI(x), x ∈Ω, x ∈Ω,
∂E
∂n

=
∂I
∂n

= 0, x ∈ ∂Ω.

(3.25a)

(3.25b)

(3.25c)

One can show, by the same arguments as in Lemma 3.3.2, that problem (3.25) has a
principal eigenvalue λ∗ε with a positive eigenfunction φ∗ε(x). We set φ∗ε(x) =

(
φ∗Eε0

(x),φ∗Iε0
(x)

)T
.

Taking ε→ 0, problem (3.25) becomes problem (3.18) and we conclude

lim
ε→0

λ∗ε = λ∗ > 0.

Then we can fix a small ε0 ∈
(
0, N0
|Ω|

)
so that λ∗ε0

> 0.

For the sake of contradiction, assume that there exists a positive solution
(
S(x, t),E(x, t), I(x, t),R(x, t)

)
of problem (3.1) such that

limsup
t→∞

∣∣∣∣∣∣(S(x, t),E(x, t), I(x, t),R(x, t))−
(N0

|Ω|
,0,0,0

)∣∣∣∣∣∣
L∞(Ω)

< ε0. (3.26)

Then there exists a large enough t0 > 0 such that

∂E(x, t)
∂t

≥ dE∆E(x) + β(x)I(x)
(N0

|Ω|
− ε0

)
− ε(x)E(x), (3.27)

∂I(x, t)
∂t

≥ dI∆I(x) + ε(x)E(x)−γ(x)I(x), (3.28)
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for all t ≥ t0. Since E(·, t0) and I(·, t0) are non-negative in C (Ω), we can choose a sufficiently
small number η > 0 such that

E(·, t0) ≥ ηφ∗Eε0
(x) and I(·, t0) ≥ ηφ∗Iε0

(x).

Set u(x, t) = ηeλ
∗
ε0

(t−t0)φ∗ε0
(x). Note that u(x, t) is a solution of the following linear system

∂E
∂t

= dE∆E(x, t) + β(x)I(x, t)
(N0

|Ω|
− ε0

)
− ε(x)E(x, t), x ∈Ω,

∂I
∂t

= dI∆I(x, t) + ε(x)E(x, t)−γ(x)I(x, t), x ∈Ω,

∂E
∂n

=
∂I
∂n

= 0, x ∈ ∂Ω,

(3.29a)

(3.29b)

(3.29c)

for all t ≥ t0. It then follows from inequalities (3.27) and (3.28) that
(
E(x, t), I(x, t)

)
and

u(x, t) are, respectively, a super-solution and sub-solution of the linear system (3.29). From the
Comparison Principle, we get

E(·, t0) ≥ ηeλ
∗
ε0

(t−t0)φ∗Eε0
(x) and I(·, t0) ≥ ηeλ

∗
ε0

(t−t0)φ∗Iε0
(x),

for all x ∈Ω and t ≥ t0. Hence E(x, t) and I(x, t) approach∞ as t→∞, which is a contradiction
in view of (3.26).

We conclude that

limsup
t→∞

‖
(
S(·, t),E(·, t), I(·, t),R(·, t)

)
−
(N0

|Ω|
,0,0,0

)
‖L∞(Ω) ≥ ε0.

�

3.3.1.1 Characterization of the R0

The subsequent result characterizes the basic reproduction number, R0, of system

(3.1)-(3.4) in terms of the principal eigenvalue of the following elliptic eigenvalue prob-

lem.

Theorem 3.3.6
Let µ0 be the unique positive eigenvalue with a positive eigenfunction of the eigenvalue
problem

− dE∆φE(x) + ε(x)φE(x) = µ
N0

|Ω|
β(x)φI (x), x ∈Ω,

− dI∆φI (x)− ε(x)φE(x) +γ(x)φI (x) = 0, x ∈Ω,
∂φE
∂n

=
∂φI
∂n

= 0, x ∈ ∂Ω.

(3.30a)

(3.30b)

(3.30c)

Then
R0 =

1
µ0
.

30



3.3. THE DISEASE-FREE EQUILIBRIUM

Proof. From (3.12), we have

F(x) =

0 β(x)N0
|Ω|

0 0

 , V (x) =

 ε(x) 0

−ε(x) γ(x)

 .
Let

B := diag
(
dE∆,dI∆

)
−V . (3.31)

Following the same arguments as [10], it follows that the eigenvalue problem

−Bφ(x) = µFφ(x), x ∈Ω
∂φ

∂n
= 0, x ∈ ∂Ω,

(3.32a)

(3.32b)

has a unique positive eigenvalue with a positive eigenfunction, µ0.

Applying Theorem 2.2.6 to the triple (F,V ,B), it then follows

R0 = ρ(B−1F) =
1
µ0
.

�

Even with the characterization obtained in the previous model, it is difficult to numer-

ical compute R0. The next result gives an estimate for the basic reproduction number.

Lemma 3.3.7 [18]
For any dE > 0 and dI > 0 the following inequalities hold:

min
{N0

|Ω|
β(x)
γ(x)

,x ∈Ω
}
≤R0 ≤max

{N0

|Ω|
β(x)
γ(x)

,x ∈Ω
}
. (3.33)

Proof. Following Theorem 3.3.6, we have that R0 = 1
µ0

, where µ0 denotes the unique positive

eigenvalue with a positive eigenfunction, φ(x) =
(
φE(x),φI (x)

)T
, of the eigenvalue problem

(3.30). Hence, from adding (3.30a) together with (3.30b), we get

− dE∆φE(x) + ε(x)φE(x)− dI∆φI (x)− ε(x)φE(x) +γ(x)φI (x) =
1

R0

N0

|Ω|
β(x)φI (x)

⇔− dE∆φE(x)− dI∆φI (x) +γ(x)φI (x) =
1

R0

N0

|Ω|
β(x)φI (x), x ∈Ω.

Integrating by parts on Ω and using Green’s Formula, (3.5), we have∫
Ω

(−dE∆φE(x)− dI∆φI (x))dx︸                                 ︷︷                                 ︸
=0

+
∫
Ω

γ(x)φI (x) =
∫
Ω

1
R0

N0

|Ω|
β(x)φI (x)dx

⇔
∫
Ω

γ(x)φI (x)
[
R0 −

N0

|Ω|
β(x)
γ(x)

]
dx = 0. (3.34)
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Let f (x) = N0
|Ω|

β(x)
γ(x) be a positive and continuous function on Ω. Then, following (3.34), we

get that there exists a c ∈Ω such that∫
Ω

γ(x)φI (x)
[
R0 − f (x)

]
dx = 0⇔

[
R0 − f (c)

]∫
Ω

γ(x)φI (x)dx = 0.

Thus, since γ(x) and φI (x) are positive on Ω, we have that

R0 = f (c), (3.35)

which implies that
min
x∈Ω

f (x) ≤R0 ≤max
x∈Ω

f (x).

�

3.3.2 Reaction-diffusion epidemic problem with dS = dI = dR = 0

Our main goal in this subsection is to understand how the interactions of individuals

between each other and the environment affect the spatial distribution of the disease.

In the previous subsection a reaction-diffusion model was studied where all diffusion

coefficients were set as positive constants, describing in this way a random dispersal of

individuals. However, for longer periods of time this may lead to a spatial uniform disper-

sal of individuals due to natural migration. Thus, for larger time periods, a more realistic

model of biological diffusion may come from setting only the diffusion coefficient of the

exposed non zero, to capture only infection dispersal and not the total population disper-

sal. In this case, we can reduce the computation of R0 to that of the principal eigenvalue

of a lower dimensional elliptic eigenvalue problem under additional conditions.

Here we focus our study in the case where only the diffusion coefficient of the exposed

individuals, dE , is positive. Thus, throughout this subsection we set

dS = dI = dR = 0.

Hence, system (3.1) for this case is given by

∂S(x, t)
∂t

= −β(x)I(x, t)S(x, t) +α(x)R(x, t), x ∈Ω, t > 0,

∂E(x, t)
∂t

= dE∆E(x, t) + β(x)I(x, t)S(x, t)− ε(x)E(x, t), x ∈Ω, t > 0,

∂I(x, t)
∂t

= ε(x)E(x, t)−γ(x)I(x, t), x ∈Ω, t > 0,

∂R(x, t)
∂t

= γ(x)I(x, t)−α(x)R(x, t), x ∈Ω, t > 0,

∂E
∂n

= 0, x ∈ ∂Ω, t > 0,

(3.36a)

(3.36b)

(3.36c)

(3.36d)

(3.36e)

with ∫
Ω

(
S(x, t) +E(x, t) + I(x, t) +R(x, t)

)
dx =N0, t ≥ 0. (3.37)
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and so the equilibrium problem becomes

−β(x)I(x)S(x) +α(x)R(x) = 0, x ∈Ω,

dE∆E(x) + β(x)I(x)S(x)− ε(x)E(x) = 0, x ∈Ω,

ε(x)E(x)−γ(x)I(x) = 0, x ∈Ω,

γ(x)I(x)−α(x)R(x) = 0, x ∈Ω,

∂E(x)
∂n

= 0, x ∈ ∂Ω,

(3.38a)

(3.38b)

(3.38c)

(3.38d)

(3.38e)

with ∫
Ω

(
S(x) +E(x) + I(x) +R(x)

)
dx =N0. (3.39)

We first show that the disease-free solution exists.

Proposition 3.3.8
Problem (3.38)-(3.39) has a disease-free equilibrium on Ω.

Proof. Let (S̃(x),0,0,0) be any DFE. By replacing (S̃(x),0,0,0) in (3.38)-(3.39), one can see
that this is a solution of the equilibrium problem. Thus, existence of a DFE comes directly
from observing that (S̃(x),0,0,0) is by definition a DFE since it is a non-negative solution to
(3.38)-(3.39) and

Ẽ(x) = Ĩ(x) = 0, x ∈Ω.

�

Note that
(
N0
|Ω| ,0,0,0

)
is also a solution to the equilibrium problem (3.38)-(3.39). How-

ever, for the case where only the diffusion coefficient of exposed individuals is non-zero

we cannot obtain uniqueness of the disease-free equilibrium solution. Moreover, the DFE

can be non-homogeneous in space.

For notation purposes, let u = (S̃(x),0,0,0) denote a disease-free equilibrium for sys-

tem (3.38)-(3.39).

As we did for the preceding section, linearizing (3.36) around the DFE, we obtain

∂η

∂t
= −S̃(x)β(x)µ(x, t) +α(x)ν(x, t), x ∈Ω,

∂ξ
∂t

= dE∆ξ(x, t) + S̃(x)β(x)µ(x, t)− ε(x)ξ(x, t), x ∈Ω,

∂µ

∂t
= ε(x)ξ(x, t)−γ(x)µ(x, t), x ∈Ω,

∂ν
∂t

= γ(x)µ(x, t)−α(x)ν(x, t), x ∈Ω,

(3.40a)

(3.40b)

(3.40c)

(3.40d)

where η(x, t) = S(x, t)− S̃(x), ξ(x, t) = E(x, t), µ(x, t) = I(x, t) and ν(x, t) = R(x, t).
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Observe now that, knowing the solution of (3.40b)-(3.40d) then (3.40a) together with

the initial conditions is only a differential problem, i.e., if
(
ξ∗(x, t),µ∗(x, t),ν(x, t)∗

)
is a

solution of problem (3.40b)-(3.40d) then

∂η

∂t
= g(x, t) = −S̃(x)β(x)µ∗(x, t) +α(x)ν∗(x, t), x ∈Ω,

η(x,0) = η0, x ∈Ω,

is a differential equation whose solution is given by

η(x, t) =
∫ t

0
g(x, t)dt + η0.

Thus, we can focus the study of the linearized system only in (3.40b)-(3.40d), decreas-

ing in this way the number of equations for our problem.

Suppose that (
ξ(x, t),µ(x, t),ν(x, t)

)
=

(
eλtφE(x), eλtφI (x), eλtφR(x)

)
, (3.41)

is a solution of the linear system (3.40b)-(3.40d), with λ ∈ R. Replacing (3.41) into (3.40b)-

(3.40d) and dividing the resulting by eλt, we get the following linear eigenvalue problem

dE∆φE(x) + S̃(x)β(x)φI (x)− ε(x)φE(x)−λφE(x) = 0, x ∈Ω,

ε(x)φE(x)−γ(x)φI (x)−λφI (x) = 0, x ∈Ω,

γ(x)φI (x)−α(x)φR(x)−λφR(x) = 0, x ∈Ω.

(3.42a)

(3.42b)

(3.42c)

In view of (3.36e) we must impose the additional condition

∂φE
∂n

= 0, x ∈ ∂Ω. (3.43)

In this case, the eigenvalue problem associated to the system of equations (3.18) regarding

the infectious compartments, is given by

dE∆φE(x) + β(x)S̃(x)φI (x)− ε(x)φE(x)−λφE(x) = 0, x ∈Ω,

ε(x)φE(x)−γ(x)φI (x)−λφI (x) = 0, x ∈Ω,
∂φE
∂n

= 0, x ∈ ∂Ω.

(3.44a)

(3.44b)

(3.44c)

The next result establishes the existence of a principal simple eigenvalue to system

(3.44).

Lemma 3.3.9
The elliptic eigenvalue problem (3.44) has a principal simple eigenvalue λ∗ with a positive
eigenfunction.
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Proof. Our goal is to apply Theorem 2.2.2. Consider the one parameter family of the linear
operators Lλ given by

Lλ = L1 +M11 +M12(λI −M22)−1M21 ∀λ > s(M22),

where L1 = dE∆ and

M(x) =

−ε(x) β(x)S̃(x)

ε(x) −γ(x)

 .
Note that ε(x) and β(x) are positive functions of x and M(x) is a quasi-positive matrix. Hence,
it follows

Lλφ(x) = dE∆φ(x)− ε(x)φ(x) + S̃(x)
β(x)ε(x)
λ+γ(x)

φ(x) ∀λ > − inf
x∈Ω

γ(x).

Let

A := min
x∈Ω

β(x)ε(x)S̃(x),

and λ1 denote the principal eigenvalue of the elliptic eigenvalue problem

dE∆φ(x)− ε(x)φ(x) = λφ(x), x ∈Ω,
∂φ

∂n
= 0, x ∈ ∂Ω.

Set

γm = max
x∈Ω

γ(x),

and

λ0 :=
λ1 −γm +

√
(λ1 +γm)2 + 4A

2
. (3.45)

Observe now that, given that by definition A > 0, we have

λ0 > −γm⇔ λ0 +γm > 0.

Since γm ≥ γ(x), we have

λ0 +γm ≥ λ0 +γ(x)

⇔ 1
λ0 +γm

≤ 1
λ0 +γ(x)

, ∀x ∈Ω,

and so it follows

Lλ0
φ∗(x) ≥ dE∆φ∗(x)− ε(x)φ∗(x) +

A
λ0 +γm

φ∗(x)

= λ1φ
∗(x) +

A
λ0 +γm

φ∗(x).

35



CHAPTER 3. THE MODEL

Note that, from (3.45), we have the following equivalences

λ1 +
A

λ0 +γm
= λ0

⇔λ1(λ0 +γm) +A = λ0(λ0 +γm)

⇔λ2
0 +λ0(γm −λ1)− (λ1γm +A) = 0

⇔λ0 =
λ1 −γm ±

√
(λ1 −γm)2 + 4(λ1γm +A)

2

⇔λ0 =
λ1 −γm ±

√
λ2

1 +γ2
m + 2λ1γm + 4A

2

⇔λ0 =
λ1 −γm ±

√
(λ1 +γm)2 + 4A

2
.

Thus

Lλ0
φ∗(x) ≥ λ0φ

∗(x). (3.46)

Following Theorem 2.2.2, problem (3.44) has an eigenvalue with geometric multiplicity
one and a non-negative eigenfunction.

Using (3.44) and its associated system, we easily see that this eigenfunction is positive.

�

Let R0 represent the basic reproduction number of system (3.36). To explore more

properties of R0, the next result states an important condition for the sign of R0 − 1.

Theorem 3.3.10 [21]
R0−1 has the same sign as λ∗, where λ∗ is the principal eigenvalue of (3.44) with a positive
eigenfunction.

Proof. The proof is similar to that of Theorem 3.3.3.
�

The following theorem shows that the stability of the DFE relies on the magnitude of

R0.

Theorem 3.3.11
If R0 < 1 then the DFE is asymptotically stable for problem (3.38).

Proof. Suppose that R0 < 1. Following the same arguments as in Theorem 3.3.4, we wish to
demonstrate that if (λ, ~φ) is a solution of problem (3.42)-(3.43), where ~φ(x) =

(
φE(x),φI (x),φR(x)

)
with at least one entry not identically zero, then

Re(λ) < 0. (3.47)
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To this end, we argue by contradiction. Suppose that (λ, ~φ) is a solution of problem (3.42)-
(3.43) with ~φ(x) not identically zero and

Re(λ) ≥ 0. (3.48)

First suppose that φE(x) ≡ 0. Then, following (3.42b),

−γ(x)φI (x) = λφI (x).

Since γ(x) is a positive function on Ω, we have

−γ(x)φI (x) = λφI (x)

⇔ φI (x)
(
−γ(x)−λ

)
= 0

⇒ φI (x) = 0 ∨ −γ(x)−λ = 0.

Observe that the second condition implies that γ(x) is constant in Ω and that γ(x) = −λ < 0.
Since γ(x) is positive on Ω and from (3.48), we conclude that

φI ≡ 0.

Therefore, if φE(x) ≡ 0 we also have φI (x) ≡ 0. Hence, φR(x) . 0.

Note that, from (3.42c) together with φE and φI identically zero, we have

−α(x)φR(x) = λφR(x).

Since α(x) is a positive function on Ω, following the previous arguments, we get that φR ≡ 0

which helds a contradiction. Thus, we have that φE(x) . 0.

Suppose now that φI (x) ≡ 0. Then, from (3.42a) we get

dE∆φE(x)− ε(x)φE(x)−λφE(x) = 0, x ∈Ω,
∂Ω
∂n

= 0, x ∈ ∂Ω.

Following the same arguments as in Theorem’s 3.3.4 proof, we come to a contradiction. There-
fore, we have φE(x) . 0 and φI (x) . 0.

From equations (3.42a)-(3.42a) and (3.43) we get problem (3.44). Thus, by Theorem
3.3.10, the principal eigenvalue problem (3.44) has the same sign as R0 − 1.

Since R0 − 1 < 0 by assumption, we have λ∗ < 0. Thus, following Theorem 2.2.2, we have

Re(λ) < λ∗ < 0,

which contradicts (3.48).

Thus, the DFE is asymptotically stable solution of (3.42)-(3.43).
�

We now state a result which is similar to Theorem 3.3.7.
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Theorem 3.3.12
If R0 > 1 then there exists ε0 > 0 such that any positive solution of (3.36) satisfies

limsup
t→∞

‖
(
S(·, t),E(·, t), I(·, t),R(·, t)

)
−
(
S̃(x),0,0,0

)
‖L∞(Ω) ≥ ε0.

Proof. The proof follows the same arguments as the proof of Theorem 3.3.7.
�

3.3.2.1 Characterization of the R0

In a similar way to Theorem 3.3.6, the following result characterizes the basic repro-

duction number of problem (3.36)-(3.37) using a reduced eigenvalue problem associated

with system (3.44).

Theorem 3.3.13
Let µ1 be the unique positive eigenvalue of the eigenvalue problem

− dE∆φ(x) + ε(x)φ(x) = µS̃(x)
ε(x)β(x)
γ(x)

φ(x), x ∈Ω,

∂φ

∂n
= 0, x ∈ ∂Ω,

(3.49a)

(3.49b)

with a positive eigenfunction. Then

R0 =
1
µ1
.

Proof. By the same arguments as in Theorem 3.3.6 proof, we first set

F̂(x) =

0 β(x)S̃(x)

0 0

 , V̂ (x) =

 ε(x) 0

−ε(x) γ(x)

 ,
and

B̂ := diag
(
dE∆,0

)
− V̂ .

Given that we have F̂21 = 0 and F̂22 = 0, it then follows, from [Theorem 3.3 (ii), 21], that

R0 = ρ(−B̂−1F̂) = ρ(−B̂−1
1 F̂2),

where

B̂1φ1(x) := dE∆φ1(x)− V̂1φ1(x),

V̂1φ1(x) := ε(x)φ1(x),

F̂2φ1(x) := S̃(x)
ε(x)β(x)
γ(x)

.
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From Theorem 2.2.7, as applied to the triple (B̂1, V̂1, F̂2), it follows

ρ(−B̂−1
1 F̂2) =

1
µ1
,

where µ1 is the unique positive eigenvalue of −B̂1φ1(x) = µF̂2φ1(x), i.e.,

−dE
d2φ

dx2 + ε(x)φ = µS̃(x)
ε(x)β(x)
γ(x)

φ, x ∈Ω

with a positive eigenfunction. Therefore we have

R0 =
1
µ1
.

�

We now wish to study the asymptotic properties of the basic reproduction number. In

view of the eigenvalue problem (3.49), we first give an estimate for R0.

Lemma 3.3.14 [18]
For any dE > 0 the following inequalities hold:

min
{
S̃(x)

β(x)
γ(x)

,x ∈Ω
}
≤R0 ≤max

{
S̃(x)

β(x)
γ(x)

,x ∈Ω
}
. (3.50)

Proof. The proof is identical to that of Lemma 3.3.7.
�

From Theorem 3.3.13 we can define the basic reproduction number, R0, for system

(3.36) using the next generation approach for heterogeneous populations. To this end,

consider the eigenvalue problem

− dE∆φ(x) + ε(x)φ(x) = µS̃(x)
ε(x)β(x)
γ(x)

φ(x), x ∈Ω,

∂φ

∂n
= 0, x ∈ ∂Ω.

(3.51a)

(3.51b)

Let 1
λ be an eigenvalue of (3.51) and φ(x) it’s associated eigenfunction. We have

− dE∆φ(x) + ε(x)φ(x) =
1
λ
S̃(x)

ε(x)β(x)
γ(x)

φ(x)

⇒ − dEφ(x)∆φ(x) + ε(x)φ2(x) =
1
λ
S̃(x)

ε(x)β(x)
γ(x)

φ2(x).

Thus, from Green’s Formula (3.5),∫
Ω

(
− dEφ(x)∆φ(x) + ε(x)φ2(x)

)
dx =

1
λ

∫
Ω

S̃(x)
ε(x)β(x)
γ(x)

φ2(x)dx

⇔
∫
Ω

(
dE |∇φ(x)|2 + ε(x)φ2(x)

)
dx =

1
λ

∫
Ω

S̃(x)
ε(x)β(x)
γ(x)

φ2(x)dx.
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Let

ϕ ∈W 1,2(Ω) ≡H1(Ω) :=
{
ϕ2(Ω) : f (x) ∈ L2(x)

}
.

Following [3], the value of µ = 1
λ is given by the following variational characterization:

µ1 = inf


∫
Ω

(
dE |∇ϕ(x)|2 + ε(x)ϕ2(x)

)
dx∫

Ω
S̃(x) ε(x)β(x)

γ(x) ϕ2(x)dx
: ϕ ∈H1(Ω) and ϕ , 0

. (3.52)

Therefore, noting that 1
infx∈D h(x) = supx∈D

(
1
h(x)

)
, from Theorem 3.3.13 and (3.52) we have

R0 = sup


∫
Ω
S̃(x) ε(x)β(x)

γ(x) ϕ2(x)dx∫
Ω

(
dE |∇ϕ(x)|2 + ε(x)ϕ2(x)

)
dx

: ϕ ∈H1(Ω) and ϕ , 0

. (3.53)

Using (3.53), the next result relates the behaviour of R0 with dE .

Theorem 3.3.15
The following statements are valid for the basic reproduction number:

1. R0 is a positive and monotone decreasing function of dE > 0;

2. R0→max
{
β(x)S̃(x)
γ(x) : x ∈Ω

}
as dE → 0;

3. R0→
∫
Ω
β(x)ε(x)γ(x)−1S̃(x)dx∫

Ω
ε(x)dx

as dE →∞.

Proof. First we show statement (i). Since functions β(x), ε(x) and γ(x) are by definition
positive functions on Ω, the right hand side of (3.53) exists and is positive.

Let ϕ∗(x) ∈H1(Ω) with ϕ∗(x) , 0 such that

R0 =

∫
Ω
S̃(x)ε(x)β(x)γ(x)−1ϕ∗2(x)dx∫

Ω
(dE |∇ϕ∗(x)|2 + ε(x)ϕ∗2(x))dx

.

Set g(x) = ε(x)β(x)γ(x)−1ϕ∗2(x). Since g(x) and S̃(x) are continuous and positive on Ω,
we have that there exists a constant c ∈Ω such that∫

Ω

S̃(x)g(x)dx = g(c)
∫
Ω

S̃(x)dx = g(c)N0.

Thus
R0 =

g(c)N0∫
Ω

(dE |∇ϕ∗(x)|2 + ε(x)ϕ∗2(x))dx
.

Observe that, for dE > 0,
∫
Ω

(dE |∇ϕ∗(x)|2 + ε(x)ϕ∗2(x))dx is an increasing function of dE
since ε(x) is positive. It’s only left to show that this dependence is strict.

We have

∂
∂dE

[∫
Ω

(dE |∇ϕ∗(x)|2 + ε(x)ϕ∗2(x))dx
]

=
∫
Ω

|∇ϕ∗(x)|2dx > 0, ∀x ∈Ω,
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which is a positive function on Ω. Therefore
∫
Ω

(dE |∇ϕ∗(x)|2 + ε(x)ϕ∗2(x))dx is a monotone
increasing function for all x ∈Ω.

Hence, from (3.53), we conclude that R0 is a monotone decreasing function of dE .

The proof of (ii) is similar to that of [Lemma 3.1, 12].

It remains to establish (iii). From (3.53) with ϕ2(x) ≡ 1 for all x ∈Ω, we have

R0 ≥

∫
Ω
β(x)ε(x)γ(x)−1S̃(x)dx∫

Ω
ε(x)dx

.

By part (i), R0 is uniformly bounded for dE ≥ 1. Thus, it has a finite limit R0 as dE →∞.
From Theorem 3.3.13, we know that R0 satisfies

−dE∆φ(x) + ε(x)φ(x) =
1

R0
S̃(x)

ε(x)β(x)
γ(x)

φ(x), (3.54)

where φ(x) is a positive eigenfunction with

∂φ

∂n
= 0, x ∈ ∂Ω.

Dividing (3.54) by dE , we have

−∆φ(x) +
ε(x)−R−1

0 ε(x)β(x)S̃(x)γ−1(x)
dE

φ(x) = 0. (3.55)

Since ε(x)−R−1
0 ε(x)β(x)S̃(x)γ−1(x) is positive and continuous, taking dE →∞ then equation

(3.55) becomes
∆φ = 0, x ∈Ω,

together with
∂φ

∂n
= 0, x ∈ ∂Ω.

Hence φ(x)→ φ in C (Ω) as dE →∞, where φ denotes a constant.
Integrating (3.54) on Ω by parts and using Green’s Formula (3.5), we get∫

Ω

(
− dE∆φ(x)

)
dx︸                  ︷︷                  ︸

=0

+
∫
Ω

ε(x)φ(x)dx =
1

R0

∫
Ω

β(x)ε(x)γ(x)−1S̃(x)φ(x)dx.

Thus

R0 =

∫
Ω
β(x)ε(x)γ(x)−1S̃(x)φ(x)dx∫

Ω
ε(x)φ(x)dx

.

Therefore, letting dE →∞ produces the desired relation

R̂0 =

∫
Ω
β(x)ε(x)γ(x)−1S̃(x)φdx∫

Ω
ε(x)φdx

=

∫
Ω
β(x)ε(x)γ(x)−1S̃(x)dx∫

Ω
ε(x)dx

.

�
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4

Numerical Approximation of the

Model in Two-dimensional Case

In this Chapter we present a numerical method based on a finite difference schemes

for the non-linear reaction-diffusion system (3.1)-(3.4), defined on a circular domain in

R2.

This chapter is organized as follows. In Section 4.1, we describe a finite difference

numerical method in order to approximate the solution of the epidemic model (3.1)-(3.4).

In Section 4.2, simulations of the ∆-SEIRS model, using the proposed numerical method,

are computed to illustrate the theoretical results presented in Chapter 3.

4.1 Numerical Method

In this section, following [1], we proposed a numerical method based on a finite dif-

ference scheme to approximate the solutions of the non-linear reaction-diffusion system

studied in the previous chapter. By using this method, we performed several numerical

simulations.

Recall that the system that we intend to obtain an approximate solution is given by

∂S
∂t

= dS∆S(x,y, t)− β(x,y)I(x,y, t)S(x,y, t) +α(x,y)R(x,y, t), (x,y) ∈Ω, t > 0,

∂E
∂t

= dE∆E(x,y, t) + β(x,y)I(x,y, t)S(x,y, t)− ε(x,y)E(x,y, t), (x,y) ∈Ω, t > 0,

∂I
∂t

= dI∆I(x,y, t) + ε(x,y)E(x,y, t)−γ(x,y)I(x,y, t), (x,y) ∈Ω, t > 0,

∂R
∂t

= dR∆R(x,y, t) +γ(x,y)I(x,y, t)−α(x,y)R(x,y, t), (x,y) ∈Ω, t > 0,

∂S(x,y, t)
∂n

=
∂E(x,y, t)

∂n
=
∂I(x,y, t)
∂n

=
∂R(x,y, t)

∂n
= 0, (x,y) ∈ ∂Ω, t > 0.

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.1e)

where Ω is a bounded domain with smooth boundary ∂Ω. Thus, for the sake of simplicity,

we consider a disk domain, hence regular, i.e.,

Ω = {(x,y) ∈ R2| x2 + y2 < r2}, (4.2)
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as our numerical domain for the following method.

Following [1], for (x,y) ∈Ω we consider the following change of variables:

x = r cosθ , y = r sinθ,

where

r =
√
x2 + y2 , θ = tan−1

(y
x

)
.

The motivation behind this change of coordinates comes from the limitations of nu-

merically approximating the points in our circular domain with a grid in cartesian coor-

dinates.

Without loss of generality, we denote S(x,y, t) = S(r cosθ,r sinθ,t), E(x,y, t) = E(r cosθ,r sinθ,t),

I(x,y, t) = I(r cosθ,r sinθ,t) andR(x,y, t) = R(r cosθ,r sinθ,t) by S(r,θ, t), E(r,θ, t), I(r,θ, t)

and R(r,θ, t), respectively.

Taking into account the new set of variables, we have

∂S
∂r

=
∂S
∂x

∂x
∂r

+
∂S
∂y

∂y

∂r
= cosθ

∂S
∂x

+ sinθ
∂S
∂y
.

Hence
∂2S

∂r2 =
∂
∂r

(
cosθ

∂S
∂x

+ sinθ
∂S
∂y

)
= cos2θ

∂2S

∂x2 + sin2θ
∂2S

∂y2 . (4.3)

In a similar way, we also have

∂S
∂θ

= −r sinθ
∂S
∂x

+ r cosθ
∂S
∂y
,

which gives

∂2S

∂θ2 = −r cosθ
∂S
∂x
− r sinθ

∂S
∂y
− r sinθ

(
− r sinθ

∂2S

∂x2 + r cosθ
∂2S
∂x∂y

)
+

+ r cosθ
(
− r sinθ

∂2S
∂x∂y

+ r cosθ
∂2S

∂y2

)
= −r

(
cosθ

∂S
∂x

+ sinθ
∂S
∂y

)
+ r2

(
sin2θ

∂2S

∂x2 − 2cosθ sinθ
∂2S
∂x∂y

+ cos2θ
∂2S

∂y2

)
.

Therefore, since

cosθ
∂S
∂x

+ sinθ
∂S
∂y

=
∂S
∂r
,

we have
1
r2
∂2S

∂θ2 =
−1
r
∂S
∂r

+ sin2θ
∂2S

∂x2 − 2cosθ sinθ
∂2S
∂x∂y

+ cos2θ
∂2S

∂y2 . (4.4)

Finally, adding (4.3) with (4.4), comes

1
r
∂S
∂r

+
∂2S

∂r2 +
1
r2
∂2S

∂θ2 =
∂2S

∂x2 +
∂2S

∂y2 .

We then conclude that the Laplacian operator in polar coordinates is given by

∆S =
∂2S

∂r2 +
1
r
∂S
∂r

+
1
r2
∂2S

∂θ2 . (4.5)
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Similarly we have identical expressions for ∆E,∆I and ∆R.

On the other hand, the Neumann boundary conditions (4.1e) in polar coordinates

become
∂S(x,y, t)

∂n

∣∣∣∣
∂Ω

=
∂S(r,θ, t)

∂r

∣∣∣∣
r=r

= 0, t > 0,

∂E(x,y, t)
∂n

∣∣∣∣
∂Ω

=
∂E(r,θ, t)

∂r

∣∣∣∣
r=r

= 0, t > 0,

∂I(x,y, t)
∂n

∣∣∣∣
∂Ω

=
∂I(r,θ, t)

∂r

∣∣∣∣
r=r

= 0, t > 0,

∂R(x,y, t)
∂n

∣∣∣∣
∂Ω

=
∂R(r,θ, t)

∂r

∣∣∣∣
r=r

= 0, t > 0,

(4.6a)

(4.6b)

(4.6c)

(4.6d)

where r denotes the radius of the circular domain. Thus, system (4.1) becomes

∂S(r,θ, t)
∂t

= dS
(∂2S

∂r2 +
1
r
∂S
∂r

+
1
r2
∂2S

∂θ2

)
− β(r cosθ,r sinθ)I(r,θ, t)S(r,θ, t)+

+α(r cosθ,r sinθ)R(r,θ, t), t > 0,

∂E(r,θ, t)
∂t

= dE
(∂2E

∂r2 +
1
r
∂E
∂r

+
1
r2
∂2E

∂θ2

)
+ β(r cosθ,r sinθ)I(r,θ, t)S(r,θ, t)−

− ε(r cosθ,r sinθ)E(r,θ, t), t > 0,

∂I(r,θ, t)
∂t

= dI
(∂2I

∂r2 +
1
r
∂I
∂r

+
1
r2
∂2I

∂θ2

)
+ ε(r cosθ,r sinθ)E(r,θ, t)−

−γ(r cosθ,r sinθ)I(r,θ, t), t > 0,

∂R(r,θ, t)
∂t

= dR
(∂2R

∂r2 +
1
r
∂R
∂r

+
1
r2
∂2R

∂θ2

)
+γ(r cosθ,r sinθ)I(r,θ, t)−

−α(r cosθ,r sinθ)R(r,θ, t), t > 0,

∂S(r,θ, t)
∂n

=
∂E(r,θ, t)

∂n
=
∂I(r,θ, t)
∂n

=
∂R(r,θ, t)

∂n
= 0, r = r, t > 0.

In order to obtain an approximate solution of (4.1) we must discretize the domain and

approximate the operators (Laplacian and partial derivatives in order to time).

To discretize Ω we choose a grid such that the points are integers in zimuthal direction

and half-integer in radial direction, i.e.,

ri =
(
i − 1

2

)
∆r, i = 1, . . . , P and θj = (j − 1)∆θ, j = 1, . . . ,M,

where

∆r =
2

2P + 1
, ∆θ =

2π
M
.

We consider an uniform mesh in time, ti = ∆T , i = 0,1, . . . ,N , where

∆T =
T
N
.

Let Smi,j , E
m
i,j , I

m
i,j andRmi,j denote the approximations of S(ri ,θj , tm), E(ri ,θj , tm), I(ri ,θj , tm)

and R(ri ,θj , tm), respectively. Analogously, we will denote parameters β(ri cosθj , ri sinθj ),

ε(ri cosθj , ri sinθj), γ(ri cosθj , ri sinθj) and α(ri cosθj , ri sinθj) as βi,j , εi,j , γi,j and αi,j , re-

spectively.
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(a) Grid in cartesian coordinates (b) Grid in polar coordinates

Figure 4.1: Change on choice of grid.

For i = 2, . . . , P , j = 1, . . . ,M and using centered difference formulas to discretize the

Laplacian operator (4.5), we have

∆Smi,j '
Smi−1,j − 2Smi,j + Smi+1,j

(∆r)2 +
Smi+1,j − S

m
i−1,j

2ri∆r
+
Smi,j−1 − 2Smi,j + Smi,j+1

r2
i (∆θ)2

. (4.7)

Using a a backward difference formula, from Neumann boundary conditions we get

SmP+1,j − S
m
P ,j

∆r
= 0⇔ SmP+1,j = SmP ,j . (4.8)

Hence the numerical boundary values at r = r, SmP+1,j , can be approximated by SmP ,j . Addi-

tionally, given that S is 2π periodic in θ, we also have that the numerical boundary values

at θ = 0 and θ =M + 1, Smi,0 and Smi,M+1, can be approximated by Smi,M and Smi,1, respectively.

In order to approximate the derivative in time of S(ri ,θj , tm), we use a backward

difference formula:

∂S(ri ,θj , tm)

∂t
'
Smi,j − S

m−1
i,j

∆T
. (4.9)
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Following the same arguments as in (4.7)-(4.9), we get similar equations for the ex-

posed, infected and recovered variables and obtain the following numerical scheme

Smi,j − dS∆T
[Smi−1,j − 2Smi,j + Smi+1,j

(∆r)2 +
Smi+1,j − S

m
i−1,j

2ri∆r
+
Smi,j−1 − 2Smi,j + Smi,j+1

r2
i (∆θ)2

]
−

−∆T αi,jRmi,j +∆T βi,jS
m
i,jI

m
i,j = Sm−1

i,j ,

Emi,j − dE∆T
[Emi−1,j − 2Emi,j +Emi+1,j

(∆r)2 +
Emi+1,j −E

m
i−1,j

2ri∆r
+
Emi,j−1 − 2Emi,j +Emi,j+1

r2
i (∆θ)2

]
+

+∆T εi,jE
m
i,j −∆T βi,jS

m
i,jI

m
i,j = Em−1

i,j ,

Imi,j − dI∆T
[ Imi−1,j − 2Imi,j + Imi+1,j

(∆r)2 +
Imi+1,j − I

m
i−1,j

2ri∆r
+
Imi,j−1 − 2Imi,j + Imi,j+1

r2
i (∆θ)2

]
−

−∆T εi,jEmi,j +∆T γi,jI
m
i,j = Im−1

i,j ,

Rmi,j − dR∆T
[Rmi−1,j − 2Rmi,j +Rmi+1,j

(∆r)2 +
Rmi+1,j −R

m
i−1,j

2ri∆r
+
Rmi,j−1 − 2Rmi,j +Rmi,j+1

r2
i (∆θ)2

]
−

−∆T γi,jImi,j +∆T αi,jr
m
i,j = Rm−1

i,j ,

for i = 1, . . . , P , j = 1, . . . ,M and m = 0, . . . ,T .

In the previous system we have a nonlinear term Smi,jI
m
i,j . In order to obtain a linear

system of equations, we consider as approximations of Smi,j and Imi,j the values Sm−1
i,j and

Im−1
i,j , respectively. Finally, the proposed numerical scheme to obtain an approximate

solution of (4.1) is given by

Smi,j − dS∆T
[Smi−1,j − 2Smi,j + Smi+1,j

(∆r)2 +
Smi+1,j − S

m
i−1,j

2ri∆r
+
Smi,j−1 − 2Smi,j + Smi,j+1

r2
i (∆θ)2

]
−

−∆T αi,jRmi,j = Sm−1
i,j −∆T βi,jS

m−1
i,j Im−1

i,j ,

Emi,j − dE∆T
[Emi−1,j − 2Emi,j +Emi+1,j

(∆r)2 +
Emi+1,j −E

m
i−1,j

2ri∆r
+
Emi,j−1 − 2Emi,j +Emi,j+1

r2
i (∆θ)2

]
+

+∆T εi,jE
m
i,j = Em−1

i,j +∆T βi,jS
m−1
i,j Im−1

i,j ,

Imi,j − dI∆T
[ Imi−1,j − 2Imi,j + Imi+1,j

(∆r)2 +
Imi+1,j − I

m
i−1,j

2ri∆r
+
Imi,j−1 − 2Imi,j + Imi,j+1

r2
i (∆θ)2

]
−

−∆T εi,jEmi,j +∆T γi,jI
m
i,j = Im−1

i,j ,

Rmi,j − dR∆T
[Rmi−1,j − 2Rmi,j +Rmi+1,j

(∆r)2 +
Rmi+1,j −R

m
i−1,j

2ri∆r
+
Rmi,j−1 − 2Rmi,j +Rmi,j+1

r2
i (∆θ)2

]
−

−∆T γi,jImi,j +∆T αi,jr
m
i,j = Rm−1

i,j ,

(4.10a)

(4.10b)

(4.10c)

(4.10d)

for i = 1, . . . , P , j = 1, . . . ,M and m = 0, . . . ,T .

The linear system associated to (4.1) is given by

AZ = B,
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where Z denotes the unknown vector 
#»

Sm
#»
Em
#»
I m
#»
Rm

 ,
defined by

#»

Sm =



Sm1,1
...

SmP ,1
...

Sm1,M
...

SmP ,M


,

#»
Em =



Em1,1
...

EmP ,1
...

Em1,M
...

EmP ,M


,

#»
I m =



Im1,1
...

ImP ,1
...

Im1,M
...

ImP ,M


,

#»
Rm =



Rm1,1
...

RmP ,1
...

Rm1,M
...

RmP ,M


.

The matrix A is given by

A =


AS 0 0 0

0 AE 0 0

0 0 AI 0

0 0 0 AR

 ,
with

AS = I − dS∆t
(∆r)2L, AE = I − dE∆t

(∆r)2L, AI = I − dI∆t
(∆r)2L, AR = I − dR∆t

(∆r)2L.

Here I denotes the identity matrix and L a M ×M matrix defined as

L =



Q − 2S S 0 . . . 0 S

S Q − 2S
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . S

S . . . . . . . . . S Q − 2S


,

where

Q =



−2 1 +λ1 0 . . . 0 0

1−λ2
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . −2 1 +λP−1

0 . . . . . . . . . 1−λP 1 +λP


, S =



β1 0 0 . . . 0 0

0 β2
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 . . . . . . . . . 0 βP


,
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with

λi =
1

2(i − 1
2 )

and βi =
1

(i − 1
2 )2(∆θ)2

, i = 1, . . . , P . (4.11)

The known vector B is defined as B =
(

#»
BS ,

#»
BE ,

#»
B I ,

#»
BR

)T
, with

#»
BS =



Sm−1
1,1 −∆T β1,1S

m−1
1,1 Im−1

1,1
...

Sm−1
P ,1 −∆T βP ,1S

m−1
P ,1 Im−1

P ,1
...

Sm−1
1,M −∆T β1,MS

m−1
1,M Im−1

1,M
...

Sm−1
P ,M −∆T βP ,MS

m−1
P ,M I

m−1
P ,M


,

#»
BE =



Em−1
1,1 +∆T β1,1S

m−1
1,1 Im−1

1,1
...

Em−1
P ,1 +∆T βP ,1S

m−1
P ,1 Im−1

P ,1
...

Em−1
1,M +∆T β1,MS

m−1
1,M Im−1

1,M
...

Em−1
P ,M +∆T βP ,MS

m−1
P ,M I

m−1
P ,M


,

#»
B I =



Im−1
1,1
...

Im−1
P ,1
...

Im−1
1,M
...

Im−1
P ,M


,

#»
BR =



Rm−1
1,1
...

Rm−1
P ,1
...

Rm−1
1,M
...

Rm−1
P ,M


.

Let h = dS
∆T

(∆r)2 . The Neumann Lemma [4] shows that the inverse of the matrixA = I−hL
exists whenever h||L|| < 1 for some matrix norm. Therefore for h = dS

∆T
(∆r)2 sufficiently

small the linear algebraic system AZ = B has a unique solution.

4.2 Illustration of the Theoretical Results

In order to illustrate the theoretical results presented in Chapter 3 and to better un-

derstand the basic features of the ∆-SEIRS model, we performed several numerical simu-

lations.

Suppose that we have a circular domain Ω as defined in (4.2), with radius equal to 1.

Thus, |Ω| = π.

In all illustrations below, it is assumed that the infected and recovered individuals at

t = 0 are equal to zero, i.e.,

I(x,y,0) = R(x,y,0) = 0, ∀(x,y) ∈Ω.

Furthermore, functions ε(x,y), γ(x,y), α(x,y) and all diffusion coefficients are fixed. We

set

ε(x,y) =
1
5
, γ(x,y) =

1
6
, α(x,y) =

1
30
, (x,y) ∈Ω,

and N0 = 100. The transmission intensity we define it to be of the form

β(x,y) = β0f (x,y,a,b,c), (x,y) ∈Ω, (4.12)

where β0 denotes a positive constant and

f (x,y,a,b,c) = e−c[(x−a)
2+(y−b)2], (x,y) ∈Ω. (4.13)

In view of assumption (3.4), for the double integral approximations we use the com-

posite trapezoidal rule given by∫ b

a
f (x)dx ' 1

2

n∑
j=1

(xj − xj−1)
[
f (xj−1 − f (xj )

]
. (4.14)
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Hence, for the numerical approximation of the double integral (3.4) we have∫
Ω

(
S +E + I +R

)
(x,y, t)dxdy =

∫ 2π

0

∫ 1

0
r
(
S +E + I +R

)
(r,θ, t)drdθ

'∆r∆θ
4

[(
S +E + I +R

)
(1,2π,tm) +

(
S +E + I +R

)
(1,0, tm)

]
+
∆r∆θ

2

M∑
j=1

(
S +E + I +R

)
(1,θj , tm)+

+
∆r∆θ

2

P∑
i=1

[(
S +E + I +R

)
(ri ,2π,tm) +

(
S +E + I +R

)
(ri ,2π,tm)

]
+

+∆r∆θ
P∑
i=1

M∑
j=1

(
S +E + I +R

)
(ri ,θj , tm),

with i = 1, . . . , P and j = 1, . . . ,M.

For the numerical results presented, we chose P =M = 30 and a step ∆T = 0,05.

4.2.1 Reaction-diffusion epidemic problem with positive diffusion
coefficients

All of the following figures illustrate the model simulations with all diffusion coef-

ficients set as positive constants, implemented using the numerical method (4.10). The

respective diffusion coefficients are fixed as

dS = 0.001, dE = 0.01, dI = 0.01, dR = 0.01. (4.15)

This subsection is formulated as follows. First we focus our simulations for R0 < 1,

for which we expect that the disease does not become endemic and R0 > 1, where it is

expected to have a positive number of exposed and infected individuals in equilibrium.

Since we cannot compute directly the exact value of R0, we guarantee that R0 is lower or

greater then 1 by using the estimates from Lemma 3.3.7. Lastly, we inspect the influences

that changing the transmission intensity function β(x,y) have in our model.

4.2.1.1 R0 < 1

Figures 4.2 and 4.3 present the model simulations for the evolution of the global

variables against time when

β(x,y) =
2

1000
f (x,y,0,0,1), (x,y) ∈Ω. (4.16)

It follows from Lemma 3.3.4 that

R0 ≤max
{100
π

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}

= 0.4. (4.17)

Hence, R0 < 1.

Whereas Figure 4.2 illustrates a spatially homogeneous population where susceptible

and exposed individuals are set as

S(x,y,0) = 0.9
100
π
, E(x,y,0) = 0.1

100
π
,
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in Figure 4.3 susceptible and exposed individuals are distributed as

S(x,y,0) = 0.9
100 · 2

π(1− e−2)
f (x,y,0,0,2), E(x,y,0) = 0.1

100 · 2
π(1− e−2)

f (x,y,0,0,2), (4.18)

for (x,y) ∈Ω, corresponding to a higher concentration of the population in the center of

the domain.

(a) (b)

Figure 4.2: Total population in each compartment for a spatially homogeneous pop-
ulation for R0 < 1. Approximation of the double integral over Ω for: (a) Suscepti-
ble, (b) Exposed, Infected and Recovered. Initial conditions are S(x,y,0) = 0.9100

π and
E(x,y,0) = 0.1100

π with β(x,y) = 2
1000f (x,y,0,0,1).

Figures 4.2(a) and 4.3(a) show the time evolution of the susceptible individuals, as Fig-
ures 4.2(b) and 4.3(b) show the approximation of the model variables E, I and R cases. As

it can be seen, as time evolves the number of exposed, infected and recovered individuals

vanish, which illustrates the stability of the DFE established in Theorem 3.3.6.

Additionally, in Figure 4.3 the spatial distribution of the sum of all individuals, i.e.,
S(x,y) + E(x,y) + I(x,y) +R(x,y) for (x,y) ∈Ω is illustrated. Here it can be seen that, for

t big enough, close to the equilibrium value, the population is uniformly distributed in

space as it was expected for the equilibrium solution, following Theorem 3.3.1.

Note that, by taking a closer look at system (4.10), if the initial spatial conditions are

set uniformly, i.e., S(x,y,0) = c1 and E(x,y,0) = c2 for all (x,y) ∈Ω with"
Ω

(c1 + c2)dxdy = 100,

then the diffusion coefficients have no weight in the following implementations. From

Figures 4.2 and 4.3, it can be seen that the number of total cases for each class in the

homogeneous case shows to be similar to the non-homogeneous case. Hence, for the

following simulations we disregard the case with homogeneous initial conditions.
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(a) (b)

(c) (d)

Figure 4.3: Total population in each compartment and spatial distribution for a spa-
tially non-homogeneous population with R0 < 1. Approximation of the double inte-
gral over Ω for: (a) Susceptible, (b) Exposed, Infected and Recovered. (c) Initial spa-
tial distribution for the total population (t = 0) (d) Final spatial distribution for the
total population (t = 250). Initial conditions are S(x,y,0) = 0.9 100·2

π(1−e−2)f (x,y,0,0,2) and

E(x,y,0) = 0.1 100·2
π(1−e−2)f (x,y,0,0,2) with β(x,y) = 2

1000f (x,y,0,0,1).

4.2.1.2 R0 > 1

Figure 4.4 illustrates the model predictions for the evolution of the global variables

against time when

β(x,y) =
1

40
f (x,y,0,0,1), (x,y) ∈Ω. (4.19)

It follows

1.9 = min
{100
π

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}
≤R0, (4.20)

which guarantees that R0 > 1.

Figures 4.4(a) and 4.4(b) show the time evolution of the susceptible individuals and

the model variables E, I and R cases, respectively. As time evolves, one can see that the

exposed and infected cases do not converge to zero. Thus, when R0 > 1 and as time

increases, the solution (S,E, I,R) does not converge to the DFE, as Theorem 3.3.7 states.

As it was expected but not proved in Chapter 3, Figure 4.4 shows the existence of a EE

solution for problem (3.9)-(3.10).

52



4.2. ILLUSTRATION OF THE THEORETICAL RESULTS

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.4: Total population in each compartment and spatial distribution for a spa-
tially non-homogeneous population with R0 > 1. Approximation of the double integral
over Ω for: (a) Susceptible and Recovered, (b) Exposed and Infected. Spatial distribution
for the total population at: (c) Initial time (t = 0), (d) the moment of higher number of
infected cases (t = 19), (e) at t = 100, (f) close to equilibrium (t = 250). Spatial distribution
for the infectious population at: (g) Initial time (t = 0), (h) the moment of higher number
of infected cases (t = 19), (i) t = 100, (j) close to the equilibrium (t = 250). Initial con-
ditions are S(x,y,0) = 0.9 100·2

π(1−e−2)f (x,y,0,0,2) and E(x,y,0) = 0.1 100·2
π(1−e−2)f (x,y,0,0,2) with

β(x,y) = 1
40f (x,y,0,0,1).
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From Figure 4.5(c) to 4.5(f), the spatial spread of the total population is presented and

in Figures 4.4(g) to 4.4(j) , the spatial spread of the infected individuals for t = 0, t = 19,

t = 100 and t = 250, respectively. The results show that, as time evolves, individuals tend

to scatter among space. However, in contrast to the previous case where R0 < 1, here near

the equilibrium value the population does not become homogeneous in space.

4.2.1.3 Impact of changes in the transmission intensity function

In this subsection the goal is to better understand the spatial influences that the

intensity transmission, β(x,y), have in our epidemic model.

First we study the impact that the difference in the maximum value of the intensity

transmission function has in the behaviour of the model variables. For that purpose,

the following illustrations show the model simulations for two scenarios where β(x,y) is

centered in the same location (center of the domain) for both cases, only differing in the

choice of the positive constant β0.

In Figure 4.5(a) we present the estimate evolution of the model variables for when

β(x,y) =
1

40
f (x,y,0,0,1), (x,y) ∈Ω,

while in Figure 4.5(b) the disease transmission intensity function is set as

β(x,y) =
1

20
f (x,y,0,0,1), (x,y) ∈Ω.

Thus, for both scenarios R0 > 1 and

0.049 '
"

Ω

1
40
f (x,y,0,0,1)dxdy <

"
Ω

1
20
f (x,y,0,0,1)dxdy ' 0.098.

The illustrations show that for the simulation with higher maximum value of β(x,y),

Figure 4.5(b), the disease progresses through the different classes more rapidly and that

the number of exposed, infected and recovered individuals is higher.

In Figures 4.5(c)-4.5(f) and 4.5(g)-4.5(j) the spatial distribution of infected individuals

is showed for the simulations in Figure 4.5(a) and 4.5(b), respectively.

In Figure 4.6 we study the effects of shifting the location where the transmission

intensity function is centered. For the first scenario, Figure 4.6(a), we set

β(x,y) =
1

40
f (x,y,0,0,1), (x,y) ∈Ω,

and for Figure 4.6(b)

β(x,y) =
1

110
+

1
70
f
(
x,y,−1

2
,
1
2
,1

)
, (x,y) ∈Ω.

The transmission intensities were chosen in order to correspond to similar interval

for R0 and similar level of disease at the endemic equilibrium. The estimations for R0 in

Figures 4.6 and 4.6(a) are

1.9 = min
{100
π

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}
≤R0 ≤max

{100
π

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}

= 4.8,
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and

1.9 = min
{100
π

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}
≤R0 ≤max

{100
π

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}

= 4.5,

respectively.

In Figures 4.6(c)-4.6(f) and 4.6(g)-4.6(j) the spatial distribution of the total population

is presented for the simulations in Figure 4.6(a) and 4.6(b), respectively. Confronting

these results, our analysis suggests that, over time, the population migrates to the sites

where the disease transmission intensity function is lower valued.

4.2.2 Reaction-diffusion epidemic problem with dS = dI = dR = 0

To illustrate the special case where some diffusion coefficients are set as zero, we

simulate the system studied in Section 3.3.2. Hence, for the following simulations we set

dS = dI = dR = 0,

and

dE = 0.01.

The following figures follow the same initial settings as stated above and are dis-

tributed in the following manner. First we illustrate the case where R0 < 1 and then

proceed to the case where R0 > 1. From the results stated in Chapter 3, we expect that for

the first set of simulations the equilibrium solution converges to a DFE, where susceptible

individuals can be non-uniformly distributed in space, and in the second set of simula-

tions for the number of exposed and infected individuals to be positive in equilibrium.

4.2.2.1 R0 < 1

As in Section 4.2.1, the first simulations, Figures 4.7 and 4.8, illustrate the evolution

of global variables against time with the disease transmission intensity set as

β(x,y) =
2

1000
f (x,y,0,0,1), (x,y) ∈Ω.

These two figures only differ from each other in how the initial spatial distribution of

individuals is set up. While Figure 4.7 depicts a spatially homogeneous population, in

Figure 4.8 the susceptible and exposed individuals are distributed as in (4.18).

From Lemma 3.3.11, we have

min
{
Ŝ(x,y)

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}
≤R0 ≤max

{
Ŝ(x,y)

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}
, (4.21)

where Ŝ(x,y) denotes the susceptible individuals of the disease-free equilibrium solution.

For the computation of these estimates, approximate the equilibrium solution Ŝ(x,y) by

the numerical solution of the system with t = 250.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.5: Total population in each compartment and spatial distribution for two
spatially non-homogeneous populations with R0 > 1. Approximation of the double
integral over Ω for: (a) Susceptible, Exposed, Infected and Recovered with β(x,y) =
1

40f (x,y,0,0,1). Spatial distribution for the infectious population at: (c) Initial time
(t = 0), (d) the moment of higher number of infected cases (t = 19), (e) at t = 100, (f)
close to equilibrium (t = 250). (b) Susceptible, Exposed, Infected and Recovered with
β(x,y) = 1

20f (x,y,0,0,1). Spatial distribution for the infectious population at: (g) Initial
time (t = 0), (h) the moment of higher number of infected cases (t = 19), (i) t = 100, (j)
close to the equilibrium (t = 250). Initial conditions are S(x,y,0) = 0.9 100·2

π(1−e−2)f (x,y,0,0,2)

and E(x,y,0) = 0.1 100·2
π(1−e−2)f (x,y,0,0,2).
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.6: Total population in each compartment and spatial distribution for two
spatially non-homogeneous populations with R0 > 1. Approximation of the double
integral over Ω for: (a) Susceptible, Exposed, Infected and Recovered with β(x,y) = 1

110 +
1

70f (x,y,−1/2,1/2,1). Spatial distribution for the total population at: (c) Initial time
(t = 0), (d) the moment of higher number of infected cases (t = 19), (e) at t = 100, (f)
close to equilibrium (t = 250). (b) Susceptible, Exposed, Infected and Recovered with
β(x,y) = 1

20f (x,y,0,0,1). Spatial distribution for the total population at: (g) Initial time
(t = 0), (h) the moment of higher number of infected cases (t = 19), (i) t = 100, (j) close
to the equilibrium (t = 250). Initial conditions are S(x,y,0) = 0.9 100·2

π(1−e−2)f (x,y,0,0,2) and

E(x,y,0) = 0.1 100·2
π(1−e−2)f (x,y,0,0,2).
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Thus, for the transmission intensity function of Figures 4.7 and 4.8, we have

R0 ≤max
{
Ŝ(x,y)

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}

= 0.6.

Hence R0 < 1.

Just as it was expected from Theorem 3.3.11, Figures 4.7 and 4.8 show that when

the basic reproduction number is less than one, the number of infected and exposed

individuals goes extinct. Thus the equilibrium solutions of these are both a DFE.

(a) (b)

Figure 4.7: Total population in each compartment for a spatially homogeneous pop-
ulation for R0 < 1. Approximation of the double integral over Ω for: (a) Suscepti-
ble, (b) Exposed, Infected and Recovered. Initial conditions are S(x,y,0) = 0.9100

π and
E(x,y,0) = 0.1100

π with β(x,y) = 2
1000f (x,y,0,0,1).

In contrast to the results presented in Section 4.2.1.1, in Figure 4.8 it can be seen that

the susceptibles in the DFE are not uniformly distributed.

4.2.2.2 R0 > 1

The following illustrations represent the epidemic model (3.36) simulations with the

transmission intensity function defined as

β(x,y) =
1

40
f (x,y,0,0,1), (x,y) ∈Ω.

We have

R0 ≥min
{
Ŝ(x,y)

β(x,y)
γ(x,y)

: (x,y) ∈Ω
}

= 1.5,

which guarantees that R0 > 1.

Although we were not able to demonstrate the existence of an endemic equilibrium

for the epidemic model, from our findings illustrated in Figure 4.9, we observe that when

the basic reproduction number is bigger than one, the number of infected and exposed

individuals is positive, which corroborates our suspicions of the existence of a EE solution.
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(a) (b)

(c) (d)

Figure 4.8: Total population in each compartment and spatial distribution for a spa-
tially non-homogeneous population with R0 < 1. Approximation of the double inte-
gral over Ω for: (a) Susceptible, (b) Exposed, Infected and Recovered. (c) Initial spa-
tial distribution for the total population (t = 0) (d) Final spatial distribution for the
total population (t = 250). Initial conditions are S(x,y,0) = 0.9 100·2

π(1−e−2)f (x,y,0,0,2) and

E(x,y,0) = 0.1 100·2
π(1−e−2)f (x,y,0,0,2) with β(x,y) = 2

1000f (x,y,0,0,1).

Lastly, Figure 4.9 shows the spatial spread of the total population and infected individ-

uals over time. Although as time evolves the sum of individuals tends to spread spatially,

in contrast to Figure 4.4, we expect that when only dE is set as a non-zero constant this

spread happens at a lower rate than when all diffusion coefficients are set as positive

constants.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.9: Total population in each compartment and spatial distribution for a spa-
tially non-homogeneous population with R0 > 1. Approximation of the double integral
over Ω for: (a) Susceptible and Recovered, (b) Exposed and Infected. Spatial distribu-
tion for: (c) Initial total population (t = 0), (d) Total population at the moment of higher
number of infected cases (t = 19), (e) Total population (t = 100), (f) Final total population
(t = 250), (g) Initial infected individuals (t = 0), (h) Infected individuals at the moment
of higher number of infected cases (t = 19), (i) Infected individuals (t = 100), (j) Final
infected individuals (t = 250). Initial conditions are S(x,y,0) = 0.9 100·2

π(1−e−2)f (x,y,0,0,2)

and E(x,y,0) = 0.1 100·2
π(1−e−2)f (x,y,0,0,2) with β(x,y) = 1

40f (x,y,0,0,1).
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5

Application to COVID-19

In 2019 a disease outbreak, COVID-19, emerged in the city of Wuhan, China. COVID-

19 is an infectious disease caused by the SARS-COV-2 virus [15]. Later on, the World

Health Organization (WHO) declared this global public health emergency a pandemic.

In response to this new public health threat, several countries implemented different

non-pharmaceutical interventions (NPI) with the purpose of slowing any further spread.

The first case of COVID-19, in Portugal, was first confirmed on the 2nd of March

2020 [5]. Following the first reported case, the number of infected individuals increased

significantly, forcing policy makers to act. Schools were closed on the 16th of March,

followed by the implementation of a state of emergency on the 22nd . With a mandatory

stay-at-home order for the population, the movement of individuals was severely reduced,

decreasing in this way the contact rate.

Through the course of COVID-19 outbreak, mathematical models have been adapted

from the SEIR model to give simulations for the future course of the virus transmis-

sion. One of the main purposes of the modelling techniques is to evaluate the impact

of transmission mitigation measures, giving policy makers the correct tools to impose

weighted decisions. Mathematical transmission models firmly adjusted to available data

are among the best tools to provide new simulations. Most mathematical models pro-

posed for COVID-19 spread in Portugal do not take into account the spatial spread of

individuals [5, 20]. However, Mammeri et. al implemented a SEIR epidemic flow model,

where the spatial spread of individuals is taken into account, showing that the spatial

epidemic model fitted to available data in France reproduced the spread of the disease

correctly in this country [14].

In this chapter we present simulations for the spread of COVID-19 using the ∆-SEIRS

epidemic model (3.1)-(3.4), where we consider that the population is concentrated in two

regions corresponding to Portugal’s most populated cities. The goal is to analyze the

spatial distribution of infected cases along time with and without implementation of NPI.

We use information about the impact of these interventions on transmission according to

non-spacial models.

This chapter is organised as follows. First the parameters chosen for the simulations
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of our model are stated and the model strategy is described. In Section 5.2 graphics for

the spatial spread of the virus in Portugal and the number of individuals in each class for

each simulation are presented. Lastly, we discuss the results illustrated in Section 5.2.

5.1 Parameters choice and Model strategy

Whenever possible, Portuguese available data was used to fix some of the disease re-

lated parameters choice. The rate at which exposed individuals progress to the infectious

state, ε(x,y), and the rate of recovery, γ(x,y), were assumed to be constant and the same

as in [5]. We assumed that immunity to infection lasts for 180 days [16]. Parameters

values can be found on Table 5.1.

Date Description Value

γ(x,y) Rate of recovery 1
3.4days

−1

ε(x,y) Rate of progression to the infectious state 1
3.8days

−1

α(x,y) Rate of loss of immunity 1
180days

−1

p Proportion of asymptomatic infected individuals 44,5%

Table 5.1: Description and values of parameters fixed in the epidemic model.

Following the conclusions taken on Section 4.2, we assume that only exposed individ-

uals are moving and we set

dE = 0,001.

Later on, we will vary this value since we did not have information on this parameter.

Dependence of the results on the variation of this parameter will be described. Contact

data was obtained from [20], where the authors estimated that, for the period prior to

the pandemic, the average number of daily contacts was 12.6 and the basic reproduction

number was R0 = 2.20.

We will consider the time period between February to June 2020. Day 0 is assumed

to be 10th February 2020, which was obtained from [5], where the authors estimated this

date by subtracting the incubation period (approximately 5 days) from the first disease

onset in Portugal.

Analogously to the simulations presented in the previous chapter, for the following

illustrations we set Ω as the unit circular domain. We wish to simulate the spread of

COVID-19 in Portugal by replicating it’s two most populated regions, the cities of Lisbon

and Oporto. Following [5], we set the infected and recovered individuals equal to zero in

the initial conditions. For simplicity we assume that the population is exponentially dis-

tributed in two points
(

1
2 ,−

1
2

)
and

(
− 1

2 ,
1
2

)
corresponding to the main urban centers where

population density is higher: Population of Lisbon and Oporto was obtained in [17].
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Initial number of exposed individuals were taken as in [5] and we assumed that these

cases were also exponentially distributed with center on Oporto, as the first COVID-19

cases were notified in this region. Hence the initial conditions for exposed and susceptible

are:

E(x,y,0) = 71
100

10286300
e
−2000

[
(x+ 1

2 )2+(y− 1
2 )2

]
,

S(x,y,0) =
[
0.001 +

1
600

2821876
1722374

e
−2

[
(x− 1

2 )2+(y+ 1
2 )2

]
+

1
400

e
−2 3001

2040

[
(x+ 1

2 )2+(y− 1
2 )2

]]
norm−E(x,y,0),

for (x,y) ∈Ω. The constant norm denotes the normalization value, which guarantees that

assumption (3.4) is satisfied.

The introduction of NPIs such as the use of masks, school closure, social distancing,

was, until the introduction of vaccination, in late December of 2020, the only way to

control disease spread by reducing contacts and its ability to infect. For our study, we

focus on the inclusion of use of mask and social distancing, together with the lockdown

implementation. The course of the first NPI’s implemented in Portugal until June 2020

can be found in Table 5.2.

Date Description

12th March 2020 Announcement of schools closure
16th March 2020 Closure of schools
18th March 2020 State-of-Emergency Announcement
22th March 2020 Beginning of lockdown
28th April 2020 Announcement of lockdown phase-out
04th May 2020 First wave of lockdown phase-out
18th May 2020 Second wave of lockdown phase-out
01st June 2020 Third wave of lockdown phase-out

Table 5.2: Chronology of implementation of Non-Pharmaceutical Interventions in Portu-
gal in combat to COVID-19 pandemic from February to June 2020.

We assume that the NPIs affect the disease transmission intensity and for simplicity

we assumed that it has the same affect in all the domain, hence it will correspond to

a multiplicative factor affecting the transmission intensity function. We assumed that

the closure of schools, lockdown implementation and overall compliance to mask usage

reflected a reduction of 69% on the disease transmission intensity function which took

effect on the 18th of March, as estimated in [5]. Later, with the lifting of some NPI’s,

on the 30th of April it was estimated that transmission intensity suffered an increase of

14% [5].

Hence, we set the disease transmission intensity function to be a piece-wise function

defined as

β(x,y, t) = β0(x,y)δ(t), (x,y) ∈Ω, t > 0, (5.1)
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with

δ(t) =


1 if 0 ≤ t < b1

1− 0.69 if b1 ≤ t < b2

1− 0.55 if t ≥ b2

, t > 0, (5.2)

where b1 and b2 denote the moment of mathematical implementation. For our first simu-

lations we chose b1 = 37 and b2 = 90.

In what follows we assumed β0(x,y) to be constant and set β0(x,y) = 2.2
3.4

100
π , so that

by applying Lemma 3.3.14 we expect R0 to be bigger than 2.2 at the beginning of the

simulations [20].

Lastly, it is important to note that although a percentage of the infected individuals

with COVID-19 do not develop symptoms, these are still able to infect others. For the

sake of simplicity, in our model we aggregate the symptomatic and asymptomatic infected

individuals in the same class. To be able to compare the result of our simulations to

the number of cases notified, following [5], we have assumed that the proportion of

asymptomatic infected individuals is constant over time and it represents 44.5% of all

infected cases.

5.2 Results and Simulations

In this section we consider the ∆-SEIRS model with the adapted parameters described

in the previous section and using the numerical method proposed in Chapter 4 we obtain

some numerical results that are illustrated in Figures 5.1-5.5.

First we study the impact of changes in the diffusion coefficient of exposed individ-

uals, which determines the velocity of dispersal of the disease in the population. The

illustrations progress from the non-spatial model, i.e., model with population uniformly

distributed in space and dE = 0, to dE equal to 0.0001, 0.001 and 0.01, respectively. In

Figure 5.1 we plot the total exposed and infected population for a non-spatial SEIRS

model and for three different scenarios of the spatially non-homogeneous ∆-SEIRS model,

taking those several choices of dE .

For the non-homogeneous model simulations, the spatial distribution of infected indi-

viduals is illustrated in Figure 5.2. In Figure 5.2 the first column of the circular graphics

regards the distribution of infected individuals in the initial conditions, the second and

third columns to the instants of higher values of daily total infected population and the

last column represents the final spatial distribution of infected individuals.

For the remaining simulations we will fix dE = 0.001.

Following the chronology of events in Portugal displayed in Table 5.2, we defined

several scenarios for the implementation of NPI’s. First, Figure 5.3 illustrates the ∆-

SEIRS model simulations for the course of the COVID-19 disease in Portugal, where the

lockdown is implemented on the 18th of March and the lockdown phase-out on the 10th

of May. Figures 5.3(b)-5.3(e) represent the spatial distribution of infectious cases.
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(a) (b)

(c) (d)

Figure 5.1: Total population in Exposed and Infected compartments for: (a) Non-
spatial model. Spatially non-homogeneous model with: (b) dE = 0.0001, (c) dE = 0.001,
(d) dE = 0.01. Disease transmission intensity function is set as β0(x,y) = 2.2

3.4
100
π .

Note that the time points for which the NPIs take effect were estimated using an age-

structured model that has no spatial heterogeneity. We vary these time points to evaluate

the impact on disease transmission. We first studied the impact of changing the lockdown

implementation and next we proceeded to analyse the impact of changes in the lockdown

phase-out dates. Our simulations correspond to changing the date of the first reduction in

the disease transmission intensity to 8th of March, 18th of March and to the 26th of March.

In the second set of simulations we illustrated different lockdown phase-out scenarios,

where the increase on β(x,y) corresponds to the 1st of April, 17th of April and 10th of May,

assuming that the lockdown started on the 18th of March for all scenarios. Hence these

correspond to two week, one month and two months lockdowns, respectively. Figures 5.4
and 5.5 depict these simulations where only the proportion of asymptomatic infected

cases is shown and the grey vertical lines indicate the date of lockdown implementation

or phase-out, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.2: Spatial distribution of Infected individuals for non-homogeneous model
with: dE = 0.0001 at:(a) t = 0 (b) t = 60 (c) t = 100, (d) t = 150. dE = 0.001 at: (e) t = 0, (f)
t = 60, (g) t = 120, (h) t = 150. dE = 0.01 at: (i) t = 0, (j) t = 100, (k) t = 120, (l) t = 150.

5.3 Discussion

We now briefly discuss the simulations illustrated from Figure 5.1 to 5.5 and some

implications of these results on disease control.

First we studied the difference between the non-spatial SEIRS model versus the spa-

tially non-homogeneous ∆-SEIRS. In Figure 5.1 we see that for the non-spatial model the

peak is higher. Although it is not visible in Figure 5.1(a) because of the scale of the two

dimensional graphic, the non-spatial model approximations show that the population

would have reached the first 1000 cases as soon as t = 28, which corresponds to the 9th of

March.

Furthermore, we also inspect the impact of changing the value of the diffusion coeffi-

cient of the exposed individuals, dE , which will determine the velocity of dissemination of

the disease. Analysing the model simulations for the different values of dE we see that we

can have more than one peak with different heights. By further comparing Figures 5.1(b)-
5.1(d) with their respective circular graphics referring to the spatial dynamics of infected

66



5.3. DISCUSSION

(a)

(b) (c) (d) (e)

Figure 5.3: Lockdown implementation and phase-out. (a) Exposed and Infected. The
disease transmission intensity function is decreased on the 18thof March following lock-
down measures and increases on the 10thof May following the lockdown phase-out. Spa-
tial distribution of Infected individuals for: (b) t = 0, (c) t = 60, (d) t = 120, (e) t = 150.
Diffusion coefficient of exposed individuals set as dE = 0.001.

individuals, we see that for the intermediate value of the diffusion coefficient de = 0.001

we have two epidemic waves, the first affecting mainly Oporto, where the initial exposed

individuals were located, and then affecting Lisbon. We note that the second wave reaches

a higher number of infected individuals, which is expected given that Lisbon is a more

populated region. For lower the diffusion coefficient de = 0.0001 we only see, in this time

frame, the first wave affecting the population located in the region of Oporto. Finally, for

the higher diffusion coefficient de = 0.01 the two waves happen almost simultaneously.

By close inspection of Figures 5.1(b) and 5.1(d) together with the circular graphics, we

conclude that whereas for dE set equal to 0.0001 the disease spreads at a much lower rate

then what was reported in Portugal, for 0.01 the disease dissemination is quicker then

what available data demonstrates.

We are then led to analyse the scenario illustrated in Figure 5.1(c), which is of special

interest. Analysing the instants in higher number of daily infected cases together with the

respective circular graphics we see that the first increase in the total infected population

67



CHAPTER 5. APPLICATION TO COVID-19

Figure 5.4: Asymptomatic infected individuals for a spatially non-homogeneous
model with implementation of lockdown on the 8th of March, 18th of March and 17th

of April, respectively. Dashed grey lines refer to different lockdown implementations
and continuous grey line to lockdown phase-out.

Figure 5.5: Asymptomatic infected individuals for a spatially non-homogeneous
model with phase-out of lockdown on the 1st of April, 17th of April and 10th of May,
respectively. Continuous grey line refers to lockdown implementation and dashed grey
lines to different lockdown phase-outs.
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is due to the spread of the disease in the city of Oporto and the second in the city of

Lisbon. Thus, for this choice of dE , the spatial model illustrates that each city generates

separate epidemics in the total population of infected individuals. Hence, this simulation

illustrates the advantages that the inclusion of spatial dynamics adds to an epidemic

model.

From the scenarios studied and taking into account the available data in reference

to the spread of COVID-19 in Oporto and Lisbon between February and June 2020, we

conclude that, from our simulations, the diffusion coefficient dE = 0.001 represents the

most suitable choice for modelling the implementation of mitigation measures.

Note that, Figure 5.2 illustrates the model simulations for the worst case scenario,

where no NPI’s or treatment is implemented. Here it can be seen that, without the

employment of any mitigation measures, the epidemic model estimates that the number

of infected individuals (symptomatic and asymptomatic) would have reached almost

700000 infected individuals.

Finally, we introduce the implementation of some mitigation measures to understand

if the model has the ability to correctly depict how COVID-19 disseminated in Portu-

gal and the effect that the NPIs had in the spread of the disease. First we focused our

simulations on the mathematical implementation of lockdown and lockdown phase-out

according to the unfolding events in Portugal. This simulation is depicted in Figure 5.3,

where it can be seen that the model projections estimate that the implementation of lock-

down at 18th of March reduced the daily total infectious population in 254490 infected

individuals. Analysing the circular graphics with respect to the infected individuals

spatial distribution in contrast to Figures 5.2(e)-5.2(h), we see that the implementation

of lockdown delayed the speed of propagation of COVID-19, only progressing the in-

fected individuals from Oporto to the rest of the domain when the transmission intensity

function is increased (lockdown phase-out).

In Figure 5.4 and 5.5 several lockdown implementation and phase-out scenarios are

investigated, respectively. Following the model simulations, it can be seen that if the in-

troduction of NPI’s and lockdown was introduced as soon as 6th of March 2020 (only four

days after the first confirmed case) the increase of infected individuals would have been

delayed to a month later. Looking at the lockdown phase-out simulations we understand

that, as it was expected, the longer the lockdown measures are implemented the longer

the delay in the disease incidence is observed.

Although the ∆-SEIRS epidemic model simulations do not replicate with exactness

the number of COVID-19 infected individuals confirmed in Portugal, from our analysis

we conclude that this model is capable of replicating the dissemination of the disease.

The difference from the number of infected cases simulated to those observed in Portugal

from February to June 2020 may also be explained by some inaccuracy in the model fit

strategy.
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Nonetheless, from the results here presented, we conclude that mathematical mod-

elling of infectious diseases is one of the most beneficial and useful tools to predict in-

fectious diseases spread, giving policymakers useful data to assess which mitigation

measures to implement.
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Discussion and Future Work

In this work, we proposed a SEIRS reaction-diffusion population model and demon-

strated the existence of a global solution. We then introduced the equilibrium problem

where the equilibrium solutions, the disease-free equilibrium (DFE) and the endemic

equilibrium (EE) were defined. The main focus of our study was the DFE solution where

the existence of a DFE was proved for our ∆-SEIRS model and the steady states were

studied. For this purpose, two separate epidemic problems were distinguished. The first

considered all diffusion coefficients to be positive constants and the second explored the

case where only the diffusion coefficient of the exposed individuals, dE , was a non-zero

constant. For the first case, we were able to show the uniqueness of a DFE, the basic

reproduction number, R0, was characterized and estimated, and the threshold criterion

was shown to hold. In the second problem, similar results were demonstrated, but since

the number of positive diffusion coefficients departed from the previous problem, the

arguments for characterizing the R0 of the model and the local asymptotic stability of

the DFE’s required different approaches. Furthermore, an explicit definition of basic

reproduction number was established and asymptotic results, related to the dE , of R0

were studied.

In order to obtain an approximate solution of the system of partial differential equa-

tions associated to the ∆-SEIRS model a numerical method, based on finite difference

schemes, for the two dimensional case in a circular domain was used. To illustrate the

theoretical results proved in Chapter 3, the proposed numerical method was applied to

the ∆-SEIRS epidemic model for several choices of the parameters.

Finally, the epidemic model was considered to a small case study of a current in-

fectious disease, COVID-19. The spread of coronavirus-19 in Portugal was simulated

between the period of February 2020 and June 2020. Here, we presented the parameters

choice and the model strategy. Different scenarios were illustrated, where the importance

of including heterogeneous spatial population distribution was demonstrated from im-

plementing a non-spatial and a spatial case with the chosen parameters. Moreover, the

introduction of non-pharmaceutical interventions was studied. Here, we also concluded
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that, although the model presents a simple adaptation of COVID-19 disease, the reaction-

diffusion model is still able to correctly model the spread of the contagious disease.

We now point out that in [3] the authors proved the global asymptotic stability of

the DFE and the existence of an endemic equilibrium. However, due to the non-locality

of the density-dependent transmission factor and for the complexity of working with a

system of four equations, we were unable to establish similar results. Such results will be

left as future work.

In addition, for future work we intend to study the convergence properties of the

numerical method presented in Chapter 3, to develop a numerical method to approxi-

mate the eigenvalues of the elliptic problems (3.30) and (3.49) and also to explore the

introduction of local health enclosures and vaccination to the case study of the spread of

COVID-19 in Portugal.
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A

Auxiliary Definitions and Results

Definition A.0.1 Spectrum
Let A : Ω → Ω be a bounded linear operator on a normed complex space X. The

spectrum of A, σ (A), is defined as the set of λ ∈Ω such that the operator A−λI is not

invertible.

Definition A.0.2 Spectral Radius
Let λ1, . . . ,λn be the eigenvalues of a n× n matrix, A. Then its spectral radius ρ(A) is

defined as

ρ(A) = max {|λ1|, . . . , |λn|} .

Definition A.0.3 Spectral Bound
The spectral bound of a closed linear operator A is defined as

s(A) := sup{Re λ| λ ∈ σ (A)},

where σ (A) denotes the spectrum of A.

Definition A.0.4 Quasi-positive Matrix
A square matrix, A = [aij], is said to be quasi-positive if it is not the zero matrix and

it’s off-diagonal elements are non-negative, i.e.,

ai,j ≥ 0 ∀i , j.

Definition A.0.5
For any given n×m matrix A = [aij ], define |A| = [|aij |] and ind(A) = [µij ], in which

µij =

1, if aij , 0

0, if aij = 0
.

The matrix ind(A) is denoted as the indicator matrix of A.
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Theorem A.0.6 [11]
Let A denote a n × n matrix and I define the n × n identity matrix. The following are
equivalent

1. A is irreducible;

2. (I + |A|)n−1 > 0;

3. (I + ind(A))n−1 > 0.

Definition A.0.7 Principal Eigenvalue
Let L be an elliptic differential operator and Ω a bounded domain. The principal

eigenvalue, λ(L,Ω), of the operator L in Ω is defined as

λ(L,Ω) = sup
{
µ ∈ R : ∃ϕ ∈ C (Ω) with ϕ > 0 in Ω,such that (L+µ)ϕ ≤ 0 in Ω

}
.

Theorem A.0.8 [19]
Let A be the generator of a C0-semigroup, S, on an ordered Banach space X with a nor-
mal and generating cone X+. Then A is resolvent-positive if, and only if, S is a positive
semigroup, i.e., S(t)X+ ⊆ X+ for all t ≥ 0. If A is resolvent positive, then

(λ−A)−1x = lim
b→∞

∫ b

0
eλtS(t)xdt, λ > s(A), x ∈ X.

Theorem A.0.9 [19]
Let B be a resolvent-positive operator in X with s(B) < 0, and A = C +B a positive pertur-
bation of B. If A is resolvent-positive, then s(A) has the same sign as ρ(−CB−1)− 1.
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I

Numerical Method Implementation

The numerical method studied in this work was implement using Python.

import numpy as np

import matplotlib.pyplot as plt

import math

import copy

from sympy import *

def beta(x,y):

#return math.exp(-15*(x+1/2)**2-15*(y-1/2)**2)/1000

return 2.5/2000

def alpha(x,y):

return 1/10

def gamma(x,y):

return 1/6

def epsilon(x,y):

return 1/5

def maximum_list(lista,P,M):

a = lista[0,0]

for i in range(P):

for j in range(M):

a = max(a,lista[i,j])

return a

def minimum_list(lista,P,M):

a = lista[0,0]
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for i in range(P):

for j in range(M):

a = min(a,lista[i,j])

return a

def met2d(

r, a, b, c, d, P, M, t, T, ds, de, di, dr, n0

):

hr=(2*r)/(2*P+1)

hTh = (2*math.pi)/M

ht= t/T

iterR = [(i+1-1/2)*hr for i in range(P)]

iterTh = [j*hTh for j in range(M)]

iterT = [ht*i for i in range(T+1)]

#Initial Conditions

susc = np.zeros( (P,M) )

expo = np.zeros( (P,M) )

inf = np.zeros( (P,M) )

rec = np.zeros( (P,M) )

total_pop = np.zeros( (P,M) )

inf[:,:] = 0

rec[:,:] = 0

for j in range(M):

for i in range(P):

expo[i,j]=5

susc[i,j]=100/(math.pi)-5

for i in range(P):

for j in range(M):

total_pop[i,j]=susc[i,j]+expo[i,j]+inf[i,j]+rec[i,j]

#Auxiliar

betalist = np.zeros( (P,M) )

alphalist = np.zeros( (P,M) )

gammalist = np.zeros( (P,M) )

epsilonlist = np.zeros( (P,M) )

for i in range(P):
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for j in range(M):

betalist[i,j] = beta(iterR[i]*math.cos(iterTh[j]),

iterR[i]*math.sin(iterTh[j]))

alphalist[i,j] = alpha(iterR[i]*math.cos(iterTh[j]),

iterR[i]*math.sin(iterTh[j]))

gammalist[i,j] = gamma(iterR[i]*math.cos(iterTh[j]),

iterR[i]*math.sin(iterTh[j]))

epsilonlist[i,j] = epsilon(iterR[i]*math.cos(iterTh[j]),

iterR[i]*math.sin(iterTh[j]))

alph = alphalist[0,0]

gama = gammalist[0,0]

epsil = epsilonlist[0,0]

#Calculo para R_0:

betagammalist = np.zeros( (P,M) )

for i in range(P):

for j in range(M):

betagammalist[i,j] = betalist[i,j]/gama

maximo_beta_gamma = maximum_list(100*betagammalist,P,M)

print(’Maximo(beta(x)/gamma(x))= %.1f’ %(maximo_beta_gamma))

if maximo_beta_gamma<1:

print(’R0<1’)

else:

print(’Não temos R0<1’)

#Main Matrix

delta = [1/(2*(i-0.5)) for i in range(1,P+1,1)]

sigma = [1/(((i-0.5)*hTh)**2) for i in range(1,P+1,1)]

dim = P*M

S = np.diagflat([sigma[i] for i in range(P)])

Q = np.diagflat([1-delta[i] for i in range(1,P)],-1)+np.diagflat([-2

for i in range(P)])+np.diagflat([1+delta[i] for i in range(P-1)], 1)

Q[P-1,P-1] = -1+delta[P-1]

J = np.zeros( (M,M) )

J[1,0] = 1

J[M-1,0] = 1

J[0,M-1] = 1
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J[M-2,M-1] = 1

for i in range(1,M-1):

J[i-1,i]=1

J[i+1,i]=1

L1 = np.kron(np.eye(M,dtype=int),Q-2*S)

L2 = np.kron(J,S)

L = L1+L2

ct = -ht/(hr**2)

As=np.identity(dim)+ds*ct*L

Ae=np.identity(dim)+de*ct*L

Ai=np.identity(dim)+di*ct*L

Ar=np.identity(dim)+dr*ct*L

A0 = np.zeros( (dim,dim) )

A = np.block([[As, A0, A0, A0],[A0, Ae, A0, A0],[A0, A0, Ai, A0],

[A0, A0, A0, Ar]])

aux_s = np.diagflat([-ht*alph for i in range(dim)])

aux_e = np.diagflat([ht*epsil for i in range(dim)])

aux_i1 = np.diagflat([-ht*epsil for i in range(dim)])

aux_i2 = np.diagflat([ht*gama for i in range(dim)])

aux_r1 = np.diagflat([-ht*gama for i in range(dim)])

aux_r2 = np.diagflat([ht*alph for i in range(dim)])

A0 = np.zeros( (dim,dim) )

Fs = np.block([[A0, A0, A0, aux_s],[A0, A0, A0, A0],[A0, A0, A0, A0],

[A0, A0, A0, A0]])

Fe = np.block([[A0, A0, A0, A0],[A0, aux_e, A0, A0],[A0, A0, A0, A0],

[A0, A0, A0, A0]])

Fi = np.block([[A0, A0, A0, A0],[A0, A0, A0, A0],[A0, aux_i1, aux_i2, A0],

[A0, A0, A0, A0]])

Fr = np.block([[A0, A0, A0, A0],[A0, A0, A0, A0],[A0, A0, A0, A0],

[A0, A0, aux_r1, aux_r2]])

AA = A+(Fs+Fe+Fi+Fr)

#Auxialiar Matrices for Circular Graphics

susc_aux_graf = np.zeros((P,M+1))

expo_aux_graf = np.zeros((P,M+1))

inf_aux_graf = np.zeros((P,M+1))

rec_aux_graf = np.zeros((P,M+1))
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total_pop_aux_graf = np.zeros((P,M+1))

for i in range(P):

susc_aux_graf[i,M]=susc[i,0]

expo_aux_graf[i,M]=expo[i,0]

inf_aux_graf[i,M]=inf[i,0]

rec_aux_graf[i,M]=rec[i,0]

total_pop_aux_graf[i,M] = total_pop[i,0]

for j in range(M):

for i in range(P):

susc_aux_graf[i,j] = susc[i,j]

expo_aux_graf[i,j] = expo[i,j]

inf_aux_graf[i,j] = inf[i,j]

rec_aux_graf[i,j] = rec[i,j]

total_pop_aux_graf[i,j] = total_pop[i,j]

new_susc1 = copy.deepcopy(susc_aux_graf)

susc_record = []

susc_record.append(new_susc1)

new_expo1 = copy.deepcopy(expo_aux_graf)

expo_record = []

expo_record.append(new_expo1)

new_inf1 = copy.deepcopy(inf_aux_graf)

inf_record = []

inf_record.append(new_inf1)

new_rec1 = copy.deepcopy(rec_aux_graf)

rec_record = []

rec_record.append(new_rec1)

new_total_pop1 = copy.deepcopy(total_pop_aux_graf)

total_pop_record = []

total_pop_record.append(new_total_pop1)

soma_pop_lista = np.zeros( (T+1) )

soma_s = np.zeros( (T+1) )

soma_e = np.zeros( (T+1) )

soma_i = np.zeros( (T+1) )

soma_r = np.zeros( (T+1) )

zeros = np.zeros( (P,M) )
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ANNEX I. NUMERICAL METHOD IMPLEMENTATION

soma_pop_lista[0] = soma_pop(susc, expo, inf, rec, hr, hTh, P, M, iterR)

soma_s[0] = soma_pop(susc, zeros, zeros, zeros, hr, hTh, P, M, iterR)

soma_e[0] = soma_pop(zeros, expo, zeros, zeros, hr, hTh, P, M, iterR)

soma_i[0] = soma_pop(zeros, zeros, inf, zeros, hr, hTh, P, M, iterR)

soma_r[0] = soma_pop(zeros, zeros, zeros, rec, hr, hTh, P, M, iterR)

B = np.zeros( (4*P*M) )

#Local R0 calculation

r0 = np.zeros( (P,M+1) )

for i in range(P):

for j in range(M):

r0[i,j]=(betalist[i,j]/gama)*(susc[i,j]/(total_pop[i,j]))

r0[i,M]=r0[i,0]

new_r0 = copy.deepcopy(r0)

r0_record = []

r0_record.append(new_r0)

#Iteration

for ti in range(1,T+1):

for j in range(M):

for i in range(P):

B[j*P+i] = (susc[i,j]-ht*betalist[i,j]*susc[i,j]*inf[i,j])

B[M*P+j*P+i] = (expo[i,j]+ht*(betalist[i,j]*susc[i,j]*inf[i,j]))

B[2*M*P+j*P+i] = (inf[i,j])

B[3*M*P+j*P+i] = (rec[i,j])

seirs = np.linalg.solve(AA,B)

for j in range(M):

for i in range(P):

susc[i,j] = seirs[j*P+i]

expo[i,j] = seirs[M*P+j*P+i]

inf[i,j] = seirs[2*M*P+j*P+i]

rec[i,j] = seirs[3*M*P+j*P+i]

for i in range(P):

for j in range(M):

total_pop[i,j]=susc[i,j]+expo[i,j]+inf[i,j]+rec[i,j]
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for i in range(P):

susc_aux_graf[i,M]=susc[i,0]

expo_aux_graf[i,M]=expo[i,0]

inf_aux_graf[i,M]=inf[i,0]

rec_aux_graf[i,M]=rec[i,0]

total_pop_aux_graf[i,M] = total_pop[i,0]

for j in range(M):

for i in range(P):

susc_aux_graf[i,j] = susc[i,j]

expo_aux_graf[i,j] = expo[i,j]

inf_aux_graf[i,j] = inf[i,j]

rec_aux_graf[i,j] = rec[i,j]

total_pop_aux_graf[i,j] = total_pop[i,j]

for i in range(P):

for j in range(M):

r0[i,j]=(betalist[i,j]/gama)*(susc[i,j]/total_pop[i,j])

r0[i,M]=r0[i,0]

new_susc = copy.deepcopy(susc_aux_graf)

new_expo = copy.deepcopy(expo_aux_graf)

new_inf = copy.deepcopy(inf_aux_graf)

new_rec = copy.deepcopy(rec_aux_graf)

new_total_pop = copy.deepcopy(total_pop_aux_graf)

new_r0 = copy.deepcopy(r0)

susc_record.append(new_susc)

expo_record.append(new_expo)

inf_record.append(new_inf)

rec_record.append(new_rec)

total_pop_record.append(new_total_pop)

r0_record.append(new_r0)

soma_pop_lista[ti] = soma_pop(susc, expo, inf, rec, hr, hTh, P, M, iterR)

soma_s[ti] = soma_pop(susc, zeros, zeros, zeros, hr, hTh, P, M, iterR)

soma_e[ti] = soma_pop(zeros, expo, zeros, zeros, hr, hTh, P, M, iterR)

soma_i[ti] = soma_pop(zeros, zeros, inf, zeros, hr, hTh, P, M, iterR)

soma_r[ti] = soma_pop(zeros, zeros, zeros, rec, hr, hTh, P, M, iterR)

return soma_pop_lista, soma_s, soma_e, soma_i, soma_r, total_pop_record,

susc_record, expo_record, inf_record, rec_record, r0_record

83








	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	2 Basic Reproduction Number
	2.1 The Next Generation Operator
	2.2 R0 of a Reaction-Diffusion Epidemic Model
	2.2.1 An Eigenvalue Problem
	2.2.2 Characterization of R0

	2.3 Illustration of the Computation of R0
	2.3.1 SEIRS Model
	2.3.2 SIS Patch Model


	3 The Model
	3.1 The -SEIRS Model
	3.2 The Equilibrium Problem
	3.3 The Disease-Free Equilibrium
	3.3.1 Reaction-diffusion epidemic problem with all diffusion coefficients positive
	3.3.2 Reaction-diffusion epidemic problem with dS=dI=dR= 0


	4 Numerical Approximation of the Model in Two-dimensional Case
	4.1 Numerical Method
	4.2 Illustration of the Theoretical Results
	4.2.1 Reaction-diffusion epidemic problem with positive diffusion coefficients
	4.2.2 Reaction-diffusion epidemic problem with dS=dI=dR=0


	5 Application to COVID-19
	5.1 Parameters choice and Model strategy
	5.2 Results and Simulations
	5.3 Discussion

	6 Discussion and Future Work
	Bibliography
	A Auxiliary Definitions and Results
	I Numerical Method Implementation
	Back Matter
	Back Cover


