
The Journal of Systems & Software 200 (2023) 111644

A

o
s
d
a
i
r
m

I

f

h
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

PHP code smells inweb apps: Evolution, survival and anomalies✩

mérico Rio a,b,∗, Fernando Brito e Abreu a

a Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Lisboa, Portugal
b NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 7 September 2022
Received in revised form 6 February 2023
Accepted 8 February 2023
Available online 11 February 2023

Dataset link: https://github.com/studydatac
s/servercs, https://doi.org/10.5281/zenodo.
7626150

Keywords:
Code smells
PHP
Software evolution
Survival
Web apps

a b s t r a c t

Context: Code smells are symptoms of poor design, leading to future problems, such as reduced
maintainability. Therefore, it becomes necessary to understand their evolution and how long they
stay in code. This paper presents a longitudinal study on the evolution and survival of code smells
(CS) for web apps built with PHP, the most widely used server-side programming language in web
development and seldom studied.
Objectives: We aimed to discover how CS evolve and what is their survival/lifespan in typical PHP
web apps. Does CS survival depend on their scope or app life period? Are there sudden variations
(anomalies) in the density of CS through the evolution of web apps?
Method: We analyzed the evolution of 18 CS in 12 PHP web applications and compared it with changes
in app and team size. We characterized the distribution of CS and used survival analysis techniques to
study CS’ lifespan. We specialized the survival studies into localized (specific location) and scattered
CS (spanning multiple classes/methods) categories. We further split the observations for each web app
into two consecutive time frames. As for the CS evolution anomalies, we standardized their detection
criteria.
Results: The CS density trend along the evolution of PHP web apps is mostly stable, with variations,
and correlates with the developer’s numbers. We identified the smells that survived the most. CS
live an average of about 37% of the life of the applications, almost 4 years on average in our study;
around 61% of CS introduced are removed. Most applications have different survival times for localized
and scattered CS, and localized CS have a shorter life. The CS survival time is shorter and more CS
are introduced and removed in the first half of the life of the applications. We found anomalies in
the evolution of 5 apps and show how a graphical representation of sudden variations found in the
evolution of CS unveils the story of a development project.
Conclusion: CS stay a long time in code. The removal rate is low and did not change substantially in
recent years. An effort should be made to avoid this bad behavior and change the CS density trend to
decrease.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and motivation

‘‘Code smell’’ is a term introduced by Kent Beck in a chapter
f the famous Martin Fowler’s book (Fowler, 1999) to describe a
urface indication in source code that usually corresponds to a
eeper problem. Code smells (CS) are symptoms of poor design
nd implementation choices that may lead to increased defect
ncidence, decreased code comprehension, and longer times to
elease. CS come in different shapes, such as a method with too
any parameters or a complex body. Their detection may be

✩ Editor: Dr. Alexander Chatzigeorgiou.
∗ Corresponding author at: Instituto Universitário de Lisboa (ISCTE-IUL),

STAR, Lisboa, Portugal.
E-mail addresses: jaasr@iscte-iul.pt, americo.rio@novaims.unl.pt (A. Rio),

ba@iscte-iul.pt (F. Brito e Abreu).
ttps://doi.org/10.1016/j.jss.2023.111644
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
subject to some subjectivity (Bryton et al., 2010; Pereira dos Reis
et al., 2017), but that issue is beyond the scope of this paper.
Keeping CS in the code may be considered a manifestation of
technical debt, a term coined by Cunningham (1992). Usually, to
remove a CS, a refactoring operation is performed (Fowler, 1999).

The Software Engineering community has been proposing new
techniques and tools, both for CS detection and refactoring (Fer-
nandes et al., 2016; Pereira dos Reis et al., 2021; Zhang et al.,
2011), in the expectation that developers become aware of their
presence and get rid of them. However, a good indicator of the
success of that quest is the reduction of CS survival time (lifes-
pan), the elapsed time since one CS appears until it disappears
due to refactoring or code dropout. Therefore, software evolution
(longitudinal) studies are required to assess CS survival time
while revealing other aspects of CS evolution, such as possible
causes, trends, and evolution anomalies.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.jss.2023.111644
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111644&domain=pdf
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://github.com/studydatacs/servercs
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jaasr@iscte-iul.pt
mailto:americo.rio@novaims.unl.pt
mailto:fba@iscte-iul.pt
https://doi.org/10.1016/j.jss.2023.111644
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

(
e
(
d
s
c
P
l
e
c
(
c
t
a
a

a
w
t
t
u
g
p
C
u
t

r
l
a
m
a
e

w
w
i
o
t
m
s

2

i
r
s
e
d

2

i
d
o
s
c
e
i
s

The most frequent target in CS studies are Java desktop apps
Rasool and Arshad, 2015; Singh and Kaur, 2018; Pereira dos Reis
t al., 2021). However, few CS studies exist in other domains
web, mobile) and other languages. Web applications differ from
esktop and mobile applications since some components or code
egments run on a web server and others on a browser. The
ode that runs on a server is called the server-side code (using
HP, C#, Java, Python, Node.js’ JavaScript, or other languages). The
atter can communicate with other servers, such as a database or
mail servers, besides the host file system (e.g., storing files). The
lient-side code is the code that renders or runs inside a browser
HTML, CSS, JavaScript). Typical web apps have both server and
lient code. However, depending on the application’s architec-
ure, this code can be together as a monolithic app, separated
s a distributed app (Frontend/Backend), or as a microservices
rchitecture.1
In particular, evolution studies of CS in web apps using PHP

s server language are still scarce, as reported in the related
ork section. We aim to mitigate this gap through this study on
he evolution and survival of CS in the server-side PHP code of
ypical web apps. The PHP programming language is the most
sed server-side programming language in web apps.2 In this lon-
itudinal study, we considered for each web app as many years as
ossible, summing up to 811 releases. We intend to discover how
S evolve in web apps, characterize CS survival/timespan, and
se a method to reveal sudden changes in CS density throughout
ime.

This paper extends and updates our previous research work
eported in Rio and Brito e Abreu (2019, 2021). Since then, we col-
ected more metrics from a larger sample of PHP web apps, which
llowed us to address more research questions by considering
ore factors in data analysis. We also added novel discussions
nd conclusions on the evolution of CS and its relation to the
volution of app and team sizes.
We structured this paper as follows: After the introduction

ith the motivation in Section 1, Section 2 overviews the related
ork on longitudinal studies on CS and web apps. Next, Section 3

ntroduces the study design, and Section 4 describes the results
f our data analysis. After Section 5 deals with identifying validity
hreats, and in Section 6 we discuss the findings and what they
ean to developers and scholars. Finally, Section 7 outlines the
ignificant conclusions and required future work.

. Related work

Much literature on software evolution has been published
n recent decades, but few on web apps or CS evolution. We
eviewed the literature on the evolution of CS, with and without
urvival techniques, studies with web apps or web languages (not
volution), and evolution studies with PHP, but not with CS. We
id not find any evolution study on CS in PHP web apps.

.1. Evolution on CS

The evolution of 2 CS in 2 open-source systems is analyzed
n Olbrich et al. (2009). The authors compare the increase and
ecrease of classes infected with CS and total classes in windows
f 50 commits in a SVN (Subversion) repository. Their results
how different phases in the evolution of CS and that CS-infected
omponents exhibit a higher change frequency. Later, in Olbrich
t al. (2010), they investigate if the higher change frequency
s true for God Classes and Brain Classes in 7–10 years of 3
ystems. Without normalization, God and Brain Classes were

1 https://www.martinfowler.com/articles/microservices.html
2 https://w3techs.com/technologies/overview/programming_language
2

changed more frequently and contained more defects than other
kinds of classes, but when normalized by size, they were less
subject to change and had fewer defects than other classes.

The lifespan of CS and developers’ refactoring behavior in 7
systems mined from a SVN repository is discussed in Peters and
Zaidman (2012). The authors’ conclusions are: (a) CS lifespan is
close to 50% of the lifespan of the systems; (b) engineers are
aware of CS but are not very concerned with their impact, given
the low refactoring activity; (c) smells at the beginning of the
systems life are prone to be corrected quickly.

Rani and Chhabra (2017) perform an empirical study on the
distribution of CS in 4 versions of 3 software systems. The study
concludes that: (a) the latest version of the software has more
design issues than older ones; (b) the ‘‘God’’ smell has more
contribution to the overall status of CS, and ‘‘Type Checking’’ less.
However, they also note that the first version of the software is
cleaner.

Digkas et al. (2017) analyze 66 Java open-source software
projects on the evolution of technical debt over five years with
weekly snapshots. They calculate the technical debt time-series
trends and investigate the components of this technical debt.
Their findings are: (a) technical debt together with source code
metrics increases for most of the systems; (b) technical debt
normalized to the size of the system decreases over time in
most systems; (c) some of the most frequent and time-consuming
types of technical debt are related to improper exception han-
dling and code duplication. Later in Digkas et al. (2020), the
authors investigate the reasons for introducing technical debt,
within 27 systems, in 6-month sliding temporal windows. Their
findings are: (a) the number of Technical Debt Items introduced
through new code is a stable metric, although it presents some
spikes; (b) the number of commits performed is not strongly
correlated to the number of introduced Technical Debt Items.
They propose to divide applications into stable and sensitive (if
they have spikes). They use SMF (Software Metrics Fluctuation) to
perform this classification, defined as the average deviation from
successive version pairs.

2.2. Evolution on CS, with survival analysis

Chatzigeorgiou and Manakos (2010) study the evolution of
3 CS in a window of successive versions of 2 Java systems.
They extend the work in Chatzigeorgiou and Manakos (2014) to
use four smells and survival analysis with survival curves. Their
conclusions are: (a) in most cases, CS persist up to the latest
examined version, thus accumulating; (b) survival analysis shows
that smells ‘‘live’’ for many versions; (c) a significant percentage
of the CS was introduced in the creation of a class/method; (d)
very few CS are removed from the projects, and their removal
was not due to refactoring activities but a side effect of adaptive
maintenance.

The change history of 200 projects is reported by Tufano et al.
(2015) and later extended to include survival analysis in Tufano
et al. (2017). Reported findings are: (a) most CS instances are
introduced when an artifact is created and not because of its
evolution, (b) 80 percent of CS survive in the system, and (c)
among the 20 percent of removed instances, only 9 percent
are removed as a direct consequence of refactoring operations.
In Tufano et al. (2016), the authors analyze when test smells (TS)
occur in Java source code, their survivability, and if their presence
is associated with CS. They found relationships between TS and
CS. They include survival analysis to study the lifespan of TS.

The survival of (Java) Android CS with 8 Android CS is analyzed
by Habchi et al. (2019). The authors conclude that: (a) CS can
remain in the codebase for years before being removed; (b) in
terms of commits, it takes 34 effective commits to remove 75%
of them; (c) Android CS disappear faster in bigger projects with
higher releasing trends; (d) CS that are detected and prioritized
by linters tend to disappear before other CS.

https://www.martinfowler.com/articles/microservices.html
https://w3techs.com/technologies/overview/programming_language

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

2

t

q
a
m
e
p

-
a
i
C
o
w

C
C
t
t
h
c
h

e
m
s
a
t
W
r
t
r

-
o
l
h

.3. Cross-sectional or mixed studies in web apps or web languages

These studies include Saboury et al. (2017), whose authors find
hat, for JavaScript applications, files without CS have hazard rates
65% lower than files with CS. As an extension to the previous
paper, Johannes et al. (2019) conclude that files without CS have
hazard rates of at least 33% lower than files with CS. Amanatidis
et al. (2017), a study with PHP TD (Technical Debt) which includes
CS, the authors find that, on average, the number of times that a
file with high TD is modified is 1.9 times more than the number
of times a file with low TD is changed. In terms of the number of
lines, the same ratio is 2.4. Bessghaier et al. (2020), the authors
find: (a) complex and large classes and methods are frequently
committed in PHP files; (b) smelly files are more prone to change
than non-smelly files. Studies in Java (Palomba et al., 2018) report
similar findings to the previous two studies.

2.4. Evolution with PHP, without CS

Studies of this type include Kyriakakis and Chatzigeorgiou
(2014), where authors study 5 PHP web apps, and some as-
pects of their history, like unused code, removal of functions,
use of libraries, stability of interfaces, migration to OOP, and
complexity evolution. In addition, they found that these sys-
tems undergo systematic maintenance. Later, in Amanatidis and
Chatzigeorgiou (2016), they expanded the study to analyze 30
PHP projects and found that not all of Lehman’s laws of software
evolution (Lehman, 1996) were confirmed in web applications.

2.5. Studies comparing types of CS

The following studies compare CS at different abstraction lev-
els or different scopes. In Fontana et al. (2019), the authors try to
understand if architectural smells are independent of CS or can be
derived from a CS or one category of them. The method used was
to analyze correlations among 19 CS, 6 categories, and 4 architec-
tural smells. After finding no correlation, they conclude that they
are independent of each other. The paper by Sharma et al. (2020)
aims to study architecture smell characteristics and investigate
correlation, collocation, and causation relationships between ar-
chitecture and design smells. They used 19 smells, mining C#
repositories. Their findings are: (a) smell density does not depend
on repository size; (b) architecture smells are highly correlated
with design smells; (c) most of the design and architecture CS
pairs do not exhibit collocation; (d) causality analysis reveals that
design smells cause architecture smells (with statistical means).

3. Methods and study design

3.1. Research questions

We intend to study CS’s evolution in typical web apps, char-
acterizing it quantitatively and qualitatively and uncovering its
trends and probable causes. Furthermore, comparing the survival
time or removal rate with desktop counterparts will be interest-
ing. Some studies of code smells use various releases of software
but independently. However, the evolution of CS is typically per-
formed with a longitudinal study, with time series. Therefore, we
want to characterize, find trends, and correlate the CS evolution
with team and app size metrics. Also, we want to assess how long
CS stay in the code before removal, i.e., how long they survive,
and their distributions, insertion, and removal rate. This study
is done per app and CS, providing insight into the applications
with longer CS lifespans and what CS typically stay in code longer.
The lifespan of individual CS could reveal the relative importance
 a

3

developers give to each and also aid in assessing the difficulty of
diagnosing some of them.

Survival studies can be further specialized. For instance, CS’s
effect can vary widely in breadth (localized or scattered). In
localized ones, the scope is a method or a class (e.g., in Java
Long Method, Long Parameter List, God Class), while the influence
of others may be scattered across large portions of a software
system (e.g., in Java Shotgun Surgery, Deep Inheritance Hierar-
chies, or Coupling Between Classes). The other factor we are
concerned with regards a superordinate temporal analysis: we
want to investigate whether the CS survival time, introduction,
and removal changed over time, possibly caused by CS awareness
by the developers or help in detecting CS from recent IDE’s or
tools.

During a previous analysis study, we noticed what seemed
to be sudden changes in CS density of web applications. These
anomalous situations may occur in both directions (steep increase
or steep decrease) deserved our attention, either for recovering
the history of a project or, in a quality pipeline, to provide aware-
ness or raise alerts to decision-makers that something unusual is
taking place for good or bad. We already know that CS hinder the
quality of the code and its app maintainability, and if we have a
mechanism to avoid the sudden increases in the density of CS, we
can prevent deploying a release with less code quality before it
gets released.

In sum, we aim to provide answers to the following research
questions in the context of web apps using PHP as server-side
language:

RQ1 — How to characterize the evolution of CS? - In this
uestion, we study the evolution of CS, both in absolute number
nd density (divided by logical/effective lines of code - state-
ent lines in the code), to unveil the trends and patterns of CS
volution. Then, we try to find possible causes for the evolution
atterns, looking at team and app metrics.
RQ2 — What is the distribution and survival/lifespan of CS?

We intend to study the absolute and relative distribution (by CS
nd app), the survival time of CS (the time from CS introduction
n the code until their removal) and the removal percentage of
S. The answer to this question will help us understand the life
f the 18 different CS in the web apps and compare it between
eb apps.
RQ3 — Is the survival of localized CS the same as scattered

S? - We compare the lifespan and survival curves for localized
S (CS that are solely in a specific location) and scattered CS (CS
hat span over multiple classes or files). The former are easier
o refactor, and the latter more difficult (to refactor them, we
ave to edit several files) and supposedly more harmful. We also
ompare the removal rate of the two categories of CS. This will
elp us understand which CS scope live longer in the systems.
RQ4 — Does the survival of CS vary over time? - We divide

ach application into two consecutive equal time frames and
ake the same methods as the previous question to assess if
urvival time (lifespan) is the same across these time frames. The
nswer to this question will help us understand if the survival
ime of CS is different in both halves and, if so, which is longer.
e also compute and compare the number of introduced and

emoved CS in both halves. This will reveal if special care is being
aken with CS (by lower introduction rate or lifespan, or higher
emoval rate in the second half of the history of the application).

RQ5 — How to detect anomalous situations in CS evolution?
We intend to find a way to detect anomalies in the evolution
f CS, giving us the means to avoid a release to the public with
ess quality software code before it happens. This detection is also
elpful in unveiling the history of the project.
We performed a longitudinal study encompassing 12 web

pps and 18 CS to answer the research questions. For RQ3 only,

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

w
o
a
t
C
t

3

w
b
g
d
s
c
o
m

s
(
c
w
t
(
i
b
o
b

b

C
t
e
a
p
f
s
r

3

c
C
P
l
J
J
a

T
t
T
i

e used a subset of 6 code smells as surrogates of more scattered
r localized scopes. The study will help researchers, practitioners
nd software managers to increase their knowledge of the evolu-
ion behavior of PHP web apps CS and help project managers keep
S’s density under control. Next, we describe the applications and
he CS used in the study.

.2. Applications sample

This work aims to study the evolution and survival of CS in
eb apps built with PHP as the server-side language. PHP was
uilt especially for the web, one of the few programming lan-
uages that can make a web app with or without a framework. A
istributed app (Frontend/Backend) or an app/system with micro-
ervices architecture means separated apps, and the server-side
ode is no longer a web application but a set of web services
r similar; therefore, the PHP web applications studied here are
onolithic.
The inclusion and exclusion criteria used for selecting the

ample of PHP web apps were the following: Inclusion criteria:
i) the code should be available (i.e., should be open source); (ii)
omplete applications/self-contained applications (monolithic),
ith both client- and server-side code, taken from the GitHub
op forked apps; (iii) programmed with an object-oriented style
OOP)3; (iv) covering a long period (minimum five years, more
f possible — some open source applications have long intervals
etween releases); Exclusion criteria: (i) libraries; (ii) frameworks
r applications used to build other applications; (iii) web apps
uilt using a framework;
We selected the 50 most forked apps in GitHub at the begin-

ning of 2019. We tested by description and code inspection the
adherence to the criteria from that list. The OOP criterion is be-
cause most of the CS detected by PHPMD (and used in the study)
are CS for OOP applications. Due to the OOP criterion, we had
to exclude several well-known apps. We excluded frameworks
and libraries because we wanted to study typical web apps (apps
with both client- and server-side code). Some frameworks will
have almost exclusively server-side and console code to run in the
command line, so although they use web languages, they are not
typical web apps. In the same line of thought, PHP libraries only
have server-side code, so we removed them. We also excluded
web apps built with frameworks because we want to analyze the
applications themselves and not the frameworks upon which they
were built. For example, when PHP frameworks first appeared,
having the framework code and external library code mixed with
the application was common. For the same reason, later, in the
pre-processing phase, we excluded folders with external code,
such as libraries or other applications.

With this criterion, we considered four applications for the
first survival study in 2019, doubling the number of apps when
started to extend. Later, we added four more applications (but
we had to go over the 50 most forked because of criterion). Most
of the GitHub projects that came on top of the list are either
frameworks, libraries, or applications made with frameworks,
excluded by criterion.

We collected as many releases for each app as possible. Be-
cause of the survival transformation, we had to consider all the
consecutive releases, a total of 811 releases. However, sometimes
we could not get the beginning of the app lifecycle either because
not all releases were available online or did not match the OOP
criterion in the earlier releases (for example, phpMyAdmin only
from release 3.0.0 upwards). The OOP criterion exists because the
CS used are for OOP code. A brief characterization of each selected
web app follows:

3 PHP can be used with a pure procedural style; the object-oriented style
ecame available from release 4 onwards.
4

• phpMyAdmin is an administration tool for MySQL and Mari-
aDB. The initial release was in September 1998, but we
only considered release 3.0.0 upwards due to a lack of OOP
support and missing release files.

• DokuWiki is a wiki engine that works on plain text files and
does not need a database.

• OpenCart is an online store management system, or e-
commerce or shopping cart solution. It uses a MySQL
database and HTML components. The first release was on
May 99.

• phpBB is an internet forum/bulletin board solution, sup-
ports multiple database (PostgreSQL, SQLite, MySQL, Oracle,
Microsoft SQL Server) and started in December 2000.

• phpPgAdmin is an administration tool for PostgreSQL. It
started as a fork of phpMyAdmin but now has a completely
different code base.

• MediaWiki is a wiki engine developed for Wikipedia. It was
first released in January 2002 and dubbed MediaWiki in
2003.

• PrestaShop is an e-commerce solution. It uses a MySQL
database. It started in 2005 as phpOpenStore and was re-
named in 2007 to PrestaShop.

• Vanilla is a lightweight Internet forum package/solution. It
was first released in July 2006.

• Dolibarr is an enterprise resource planning (ERP) and cus-
tomer relationship management (CRM), including other fea-
tures. The first release came out in 2003.

• Roundcube is a web-based IMAP email client. The first stable
release of Roundcube was in 2008.

• OpenEMR is a medical practice management software that
supports Electronic Medical Records (EMR) and migrated to
open software in 2002.

• Kanboard is a project management application. Uses a Kan-
ban board to implement the Kanban process management
system. Initial release 2014.

Table 1 shows the complete list of applications. The LOC and
lasses numbers are from the last release and were measured by
he PHPLOC4 tool. As with detecting code smells, we excluded
ach app’s folders from other vendors in the LOC measures. As
n example, the excluded folders for two of the apps were:
hpMyAdmin: doc, examples, locale, sql, vendor, contrib, pmd and
or Vanilla: cache, confs, vendors, uploads, bin, build, locales, re-
ources. The excluded folders for the other applications are on the
eplication package (file excluded folders.txt).

.3. Code smells sample

This section describes the code smells used in the studies. To
ollect them we used PHPMD,5 an open-source tool that detects
S in PHP. PHPMD is used as a plugin in some IDE (example:
HPStorm) and other tools that act as a front end to code ana-
yzers. From the supported CS in PHPMD, we ask a specialist in
ava CS to help choose the most similar to the ones used in the
ava world. The ‘‘unused code’’ list of CS is commonly used in Java
s a group (unused code CS).
A brief characterization of all CS used is presented in Table 2.

he CS names are the ones used by PHPMD, but we added (Exc.)
o mean excessive, denoting that it is a CS and not a metric.
he thresholds used are the default ones used in PHPMD, which
n turn came from PMD,6 and are generally accepted7 from the

4 https://phpqa.io/projects/phploc.html
5 https://phpmd.org/
6 https://pmd.github.io/
7 https://pmd.github.io/latest/pmd_java_metrics_index.html

https://www.phpmyadmin.net
https://www.dokuwiki.org
https://www.opencart.com
https://www.phpbb.com
http://phppgadmin.sourceforge.net
https://www.mediawiki.org
https://www.prestashop.com
https://open.vanillaforums.com
https://www.dolibarr.org
https://roundcube.net
https://www.open-emr.org
https://kanboard.org
https://www.jetbrains.com/phpstorm/
https://phpqa.io/projects/phploc.html
https://phpmd.org/
https://pmd.github.io/
https://pmd.github.io/latest/pmd_java_metrics_index.html

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

l
a
f

Table 1
Characterization of the target web apps.
Name Purpose #Releases(period) Releases LOCa #Classesa

phpMyAdmin Database administration 179 (09/2008–09/2019) 3.0.0–4.9.1 163057 375

DokuWiki Wiki 40 (07/2005–01/2019) 2005-07-01–
2018-04-22b 118000 294

OpenCart Shopping cart 26 (04/2013–04/2019) 1.5.5.1–3.0.3.2 200698 945
phpBB Forum/bulletin board 50 (04/2012–01/2018) 2.0.0–3.2.2 283872 864
phpPgAdmin Database administration 29 (02/2002–09/2019) 0.1.0–7.12.0 34661 31
MediaWiki Wiki 138 (12/2003–10/2019) 1.1.0–1.33.1 495554 1597
PrestaShop Shopping cart 74 (06/2011–08/2019) 1.5.0.0–1.7.6.1 428513 2074
Vanilla Forum/bulletin board 63 (06/2010–10/2019) 2.0–3.3 193422 533
Dolibarr ERP/CRM 83 (02/2006–12/2019) 2.0.1–10.0.5 766533 625
Roundcube Email Client 31 (04/2014–11/2019) 1.0.0–1.4.1 77918 184
OpenEMR Medical Records 33 (06/2005–10/2019) 2.7.2–5.0.2.1 792412 1725
Kanboard Project management 65 (02/2014–12/2019) 1.0.0–1.2.13 88731 450

aOn last release.
Table 2
Characterization of the target code smells — original CS names used by PHPMD. The added (Exc.) means excessive, denoting that is
a CS and not a metric.
Code smell Description Threshold

(Exc.)CyclomaticComplexity Excess-method number decision points plus one 10
(Exc.)NPathComplexity Excess-method number acyclic execution paths 200
ExcessiveMethodLength (Long method) method is doing too much 100
ExcessiveClassLength (Long Class) class does too much 1000
ExcessiveParameterList Method with too many parameters 10
ExcessivePublicCount Excess public methods/attributes class 45
TooManyFields Class with too many fields 15
TooManyMethods Class with too many methods 25
TooManyPublicMethods Class with too many public methods 10
ExcessiveClassComplexity Excess-sum complexities all methods in class 50
(Exc.)NumberOfChildren Class with an excessive number of children 15
(Exc.)DepthOfInheritance Class with too many parents 6
(Exc.)CouplingBetweenObjects Class with too many dependencies 13
DevelopmentCodeFragment Development Code:var_dump(),print_r() 1
UnusedPrivateField Unused private field 1
UnusedLocalVariable Unused local variable 1
UnusedPrivateMethod Unused private method 1
UnusedFormalParameter Unused parameters in methods 1
references in the literature (Bieman and Kang, 1995; Lanza and
Marinescu, 2007; Mccabe, 1976). These thresholds should be
considered baselines and could be optimized using an approach
like the one proposed in Herbold et al. (2011). The latter con-
cludes that metric thresholds often depend on the properties
of the project environment, so the best results are achieved
with thresholds tailored to the specific environment. In our case,
where we have 12 web apps, each developed by a different team,
such optimization would lead to specific thresholds for each app,
adding confounding effects to the comparability between apps we
want to carry out in this study.

3.4. Data collection and preparation workflow

The workflow of our study (see Fig. 1) included a data col-
ection and preparation phase before the data analysis phase
nd was fully automated using several tools. We performed the
ollowing steps in the data collection and preparation phase:

1. We downloaded the source code of all releases of the
selected web apps, in ZIP format, from GitHub, SourceForge,
or private repositories, except the alpha, beta, release can-
didates, and corrections for old releases, i.e., everything
out of the main branch. We considered only the stable
branch when we had two branches in parallel. We used
only the higher one when we had two releases on the same
day. During this step, we created a database table with
the application releases, which were later exported to a
CSV file containing the timestamps for each downloaded
5

release. Next, we extracted the ZIP files (one per each
release of each app) to flat files on the file system of our
local computer (one folder per each release of each app).

2. Using phpMyAdmin, we imported the CSV file with the
releases’ timestamps created in the first step to the CS
database, a MySQL database.

3. Using PHPMD, we obtained the CS and respective attributes
from all releases and stored them in XML file format (one
file per application release). We excluded some directories
not part of the applications (vendor libraries, third-party
code). The zips from GitHub and other locations had these
folders to make the application run without additional
downloads.

4. We used the CodeSmells2DB PHP script, developed by the
first author, to read the previous XML files and, after some
format manipulation, store the corresponding information
in the CS MySQL database. The data records at this point
are divided by release/smell.

5. With the script CSLong2CSSurv, developed by the first au-
thor, we transformed the code smells information stored
in the MySQL database into a format suitable for survival
analysis by statistics tools. That includes the date when
each unique code smell was first detected and when it
disappeared if that was the case. The script stores the
results of this transformation back in the database in other
tables. Then, the script performed a data completion step,
where it also calculates the censoring (removal=1 or not
removal=0) and survival periods. Later, we exported the
results to CSV format (one file per app) in preparation for
the data analysis phase.

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644
Fig. 1. Workflow of the data preparation and analysis phases.
6. We used PHPLOC to extract several code metrics from the
source code of each release of each app, storing them in
the same database and later exporting them to a CSV file
per app. We excluded the folders from third-party code and
libraries (different folders for each application).

7. Finally, we cloned all the git repositories of the applications
and retrieved developers and commits data that we aggre-
gated by app release, using a conjunction of command line,
git, and SQL commands. This data was stored in a second
database and later exported to CSV files (one per app),
concluding this data preparation phase.

The censoring activity mentioned earlier encompassed trans-
forming the collection of detected CS instances for each release of
each web app to a table with the life of each instance, including
the date of its first appearance, removal date (if occurred), and a
censoring value meaning the following:
6

• Censored=1, the smell disappeared, usually due to a refac-
toring event;

• Censored=0, the code smell is still present at the end of the
observation period.

For the anomalies study (in RQ5), we already had all the
necessary data, the CS by release, and the logical (Effective) lines
of code.

For replication purposes, the collected dataset is made avail-
able to the community in CSV format.8

3.5. Statistics used

We used the R statistics tool with several packages for all
the analysis studies to perform the evaluation, correlations, and

8 https://github.com/studydatacs/servercs

https://github.com/studydatacs/servercs

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

o
R

w

i

utput of the graphics. For the correlations, we used the standard
cor function (p-values given by cor.test).
We used survival analysis in RQ2 to RQ4. Survival analysis

encompasses a set of statistical approaches that investigate the
time for an event to occur (Clark et al., 2003). The questions of
interest can be the average survival time (the one that interests us
the most) and the probability of survival at a certain point, usually
estimated by the Kaplan–Meier method. In addition, the log-rank
test can be used to test for differences between survival curves
for groups. Also, we can calculate the hazard function, i.e., the
likelihood of the event occurring (not used in the present study).

The survival probability S(ti) at time ti is given by:

S(ti) = S(ti−1)(1 −
di
ni
) (1)

here, S(ti−1) is the probability of being alive at ti−1, ni is the
number of cases alive just before ti, di is the number of events at
ti and the initial conditions are t0 = 0 and S(0) = 1.

We used the R packages survival9 and survminer.10 Regard-
ing survival time, the two average measures are the median (50%
probability of end of the life of the subject to occur) or the
restricted mean (‘‘rmean’’), .i.e., the mean taking into account the
end of the life of the subject (in our case the removal of the code
smell). Because the median survival time is insensitive to outliers,
it better describes the mean lifespan of the CS. However, in some
cases, the median cannot be calculated (it requires that the sur-
vival curve goes under 50%), and the restricted mean (‘‘rmean’’)
can typically be calculated. Kaplan–Meier survival curve is a plot
of Kaplan and Meier (1958) survival probability against time and
provides a valuable summary of the data that can be used to
estimate measures such as median survival time.11

In question 3 and 4 we used the log-rank test (Schuette, 2021)
and the two different co-variables (type/scope and time). The log-
rank test is used to compare survival curves of two groups, in our
case, two types of CS. It tests the null hypothesis that survival
curves of two populations do not differ by computing a p-value.
If the p-value is less than 0.05, the survival curves are different.

3.6. Methodology for each RQ

3.6.1. RQ1 — How to characterize the evolution of CS?
We study the evolution of CS in all 12 apps, both in CS

absolute number and in CS density (code smells by kLLOC12)
both qualitatively and qualitatively. For every consecutive public
release, we have detected the absolute values of each CS and the
corresponding CS density (absolute number by the size of the ap-
plication). The CS density is obtained by dividing the CS absolute
number by the size of the app. The size of the app (in Logical
lines of code, or LLOC that measures only the PHP statements) is
measured with phpLOC, excluding the same folders excluded in
CS detection. We used LLOC (only PHP statement lines) because
PHP files can contain HTML, CSS, and JavaScript, and the usual
tools do not remove these extra lines when counting. LLOC is the
Logical (or effective) Lines of Code, and it is the unbiased method
to compare application sizes among projects, avoiding different
programming styles.13 But the main reason for using LLOC is that
it avoids counting non-PHP code in PHP files because phpLOC

9 https://cran.r-project.org/web/packages/survival/
10 https://cran.r-project.org/web/packages/survminer/
11 http://www.sthda.com/english/wiki/survival-analysis-basics
12 Thousand’s logical lines of code.
13 https://mattstauffer.com/blog/how-to-count-the-number-of-lines-of-code-
n-a-php-project
7

counts the lines outside PHP tags for the LOC (for example, HTML,
CSS or JavaScript).

CSdensity =
CSabsolutenumber

kLLOC
(2)

where kLLOC is the logical or effective lines of code or statements
only, not counting third-party folders code.

We present this evolution quantitatively (graphically, with bar
charts) and qualitatively, in a table, within three columns, the
evolution of the absolute number of CS, the evolution of effective
(logical) lines of code, and the evolution of code smell density. All
quantitative information is available on the replication package.

Probable causes: Instead of just presenting the CS evolution,
we try to find probable causes for this evolution. We suspect that
the main common reasons for the behavior in the evolution of
CS smells are the evolution of the size of the application and
the evolution of the team size. Therefore, we will investigate
these probable causes. To quantify this association, we employ
the standard R correlation. We also graphically show the highest
relations, with each application’s correlation number.

We measure the team size using the following method: using
git, we clone all the apps from GitHub, and we count the num-
ber of different users between 2 consecutive releases with the
following operation:

g i t short log −sne HEAD
−−a f t e r =<date_release_n >
−−before=<date_release_n_plus_1 >

This command makes the data aggregated by app public re-
lease to be able to compare/correlate it with the CS evolution,
which has the same date intervals.

Apart from the app and team size metrics, we want to as-
sess if other metrics of the team and commits would affect the
density of the smells. Therefore, apart from the team size, we
also measured the number of commits, and calculated the commits
per dev, commits per day, and new devs that make commits in
a given release as the first commit. The reason to measure the
value ‘‘new devs’’ is the possibility that when you have a peak
in the number of new developers, without knowing the rules of
development in the specific app and of CS in general, the number
of CS can increase. We also want to understand if a rise in the
number of ‘‘commits per dev’’ (if one dev is working too much
and thus making code with excess CS) and ‘‘commits per day’’
(if one application is going through a peak in development that
could lead to bad code) influence the CS evolution.

We took the commits and stored them in a database to count
the other variables, for example, the ‘‘new devs’’ (we used the
dev email first appearance in the git issues). Later we export
them in time series (to CSV) to further analysis, with all of the
values aggregated by public release, to make their time series
comparable with the CS time series.

We perform the correlations between the CS density time
series and each of the referred metrics, both numerically (with
the standard R correlation) and graphically with the correlation
value (in this case, after smoothing the line 10 times). In the
standard R correlation cor we used the parametric test ‘‘Pearson’’
correlation and to get the p-values we used cor.test.

3.6.2. RQ2 — What is the distribution and survival/lifespan of CS?
The variables of interest in the study are CS survival time

(timespan) - in days, and CS absolute and relative distribution
(both by code smell and app). We also want to know the per-
centage of removal of CS. To get the CS survival time, we calculate
the median of the survival time. However, if the CS removal does
not reach 50%, we cannot calculate the median, and we show

the restricted mean only for comparison. The median is a more

https://cran.r-project.org/web/packages/survival/
https://cran.r-project.org/web/packages/survminer/
http://www.sthda.com/english/wiki/survival-analysis-basics
https://mattstauffer.com/blog/how-to-count-the-number-of-lines-of-code-in-a-php-project
https://mattstauffer.com/blog/how-to-count-the-number-of-lines-of-code-in-a-php-project

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

t
d
t
s
w
d
i
(
p
w
r
t

t
m
a
s
t
p
p
C
v
t
t
a
d
s

r
t
b
s
g
m
t
p

u
a
i
b
t
s
t
t
g

Fig. 2. Survival curves example. Left: 6 CS in survival format; Right: the same 6 smells in survival curves/Kaplan–Meier plots, with ordered CS. The median divides
the ordered CS in half and the value represents also the probability of 50% survival (Y axis). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
s

f
n
d

t
q
b

descriptive value because it is not affected by outliers and is used
in other areas, like medical and financial.

First, we used the application developed by the first author
o transform the CS in unique instances with an initial and final
ate, as described in the data preparation phase. This applica-
ion transforms the CS by release into a CS evolution format
uitable for survival analysis, where each line represents a CS,
ith the date and release number that is introduced and the
ate and release that is removed (if removed), along with other
nfo (for example, file, type). We show these lines graphically
two selected applications in the study, all apps in the replication
ackage), where each line represents a CS. As described before,
e censored data values at the end of the study, ‘‘1’’ if the CS was
emoved (the death of the CS) and ‘‘0’’ if the code smell continues
o exist.14 For this RQ, we combined the CS in a CSV file with all
the CS to use survival analysis per attribute (i.e., per CS or app).

Next, we performed survival analysis by code smell. We use
he non-parametric method Kaplan–Meier survival time esti-
ate (Kaplan and Meier, 1958) to achieve this. Next, we calculate
nd present various averages per code smell (distribution, inten-
ity by kLLOC), median, restricted mean (not used, just shown
o compare with other values when there is no median), and
ercentage of CS removal. Finally, we show the survival curves
lot, the values per CS in a table, and averages in violin plots.
ontinuing, we calculate each app’s CS survival time (lifespan)
alues and all apps. We also show the plots of survival curves for
he apps and the tables with values per app. Finally, we calculated
he median with all code smells and the average lifespan in all
pps, in which we calculated weighted averages (because of the
ifferent size and longevity of apps) and compared it with the
imple average (to avoid larger applications skewing).
To perform the survival analysis, we use the Surv function to

eturn a surv_object (with computed CS lifespan and censoring),
hen we used the survfit function on the surv_object, by app,
y CS, and including all CS. To get the values, we extracted the
ummary table for each fit (summary(fit)$table). This summary
ives the CS found and removed and the median and restricted
ean survival life, among other values. To make the plots, we used
he function gsurvplot with the option pval=true. To extract the
-values numerically, we used the function surv_pvalue.
Fig. 2 shows how to calculate the probabilities and median

sing survival curves (also called Kaplan–Meier plots). On the left
re 6 example lines representing CS with various timespans and
nitial dates (in days). On the right are the same lines ordered
y timespan. This way, the Y -axis is the survival probability, and
he X-axis remains the days, beginning with 0. The blue line is the
urvival curve. The median divides the smells into halves and is
he value when the probability of survival is 0.5 (or 50%). Getting
he value of the curve in the X-axis when the probability is 0.5
ives the median survival of the CS in days.

14 https://www.rdocumentation.org/packages/survival/topics/Surv
8

3.6.3. RQ3 — Is the survival of localized CS the same as scattered CS?
We wanted to analyze if the survival of localized smells (in the

same file, class, or method) is the same as scattered smells (also
called design smells, i.e., smells comprehending multiple classes
or files). To answer this question, we formulate the following null
hypothesis:
H01: Survival does not depend on the code smells scope

Earlier, we defined the two scopes of CS that we want to
investigate, localized and scattered CS. PHPMD15 collects three
scattered CS, so we chose the same number of localized ones,
using a subset of 6 code smells. The first 3 types16 are localized
ones, i.e., they lie inside a class or file, and the last three17 are
cattered ones, because they spread across several classes.
We fit and plotted the Kaplan–Meier survival curves and per-

ormed the log-rank test to compute the p-value (statistical sig-
ificance). A p-value less than 0.05 means that the survival curves
iffer between CS types with a 95% confidence level.
Next, we compute the CS survival time to get the higher of

he two scopes, using the same methods and functions as the
uestion before (Kaplan–Meier analysis), but making the survfit
y the scope of CS (survfit(surv_object scope, data = dat). The

variables of interest for the survival time (time in days a CS
survives) are the median (and the restricted mean — not used).
Also to consider are the number of CS found, CS removed number,
and the percentage of CS removal for the two scopes (all but the
percentage are given by the summary statistics of the function).

3.6.4. RQ4 — Does the survival of CS vary over time?
We divide each application into two consecutive equal time

frames to assess if CS survival time is the same across these time
frames. We now pose the following null hypothesis:

H02: Survival of a given code smell does not change over time
If the survival curves are not different, their survival should be

the same around the application’s life (no change); if they are dif-
ferent, we will measure the survival variables of interest (survival
time median, restricted mean, and the number of introduced and
removed CS in both periods).

To test the hypothesis, we also used the log-rank test and
created a co-variate timeframe, with two values ‘1’ and ‘2’, ‘1’ for
the first half of the collection period, and ‘2’ for the second half.
In other words, the variable time frame will have the value ‘1’
in the CS introduced in the first half and the value ‘2’ in the CS
introduced in the second half. For the first period, we truncated
the study’s variables as if they were in a sub-study ending in this
period. Therefore, at the end of the first period, we filled the value

15 https://phpmd.org
16 ExcessiveMethodLength (aka Long method), ExcessiveClassLength (aka God
Class), ExcessiveParameterList (aka Long Parameter List).
17 DepthOfInheritance, CouplingBetweenObjects, NumberOfChildren.

https://www.rdocumentation.org/packages/survival/topics/Surv
https://phpmd.org

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

t
r

3

l
o
p
c
O
f
w

d
r
w
‘
H
t
a
a
J
s
p

Fig. 3. Evolution of the absolute number and density of 18 code smells, for 2 applications.
e
l
(

(
C

∆

d
C

a
s
n
C
t
l
(
w

4

4

n

i

of the censored column (with values described in the ‘‘statistics
used’’ section). By doing this, we created two independent time
frames for each application to analyze the code smells survival. If
the p-value is less than 0.05, the CS survival differs between the
two time frames.

After, we perform the Kaplan–Meier analyses to measure the
median and calculate the CS introduced and removed during the
periods. We used the survfit by time (the two timeframes) of CS
(survfit(surv_object time, data = dat)). The values are given by
he summary statistics table of this function survfit (CS found and
emoved, median and restricted mean survival life).

.6.5. RQ5 — How to detect anomalous situations in CS evolution?
When we performed the first part of the study (the CS evo-

ution), we observed releases in which there was a refactoring
n file names and location in folders (see Fig. 6), but the smells
revailed, as shown by the histograms (see Fig. 3). Our algorithm
onsidered them new because they are in a different file/folder.
ur investigation question is: how do we check those releases
or anomalies in the number of CS and quantify them? In other
ords, how to check for peaks in the evolution of CS?
The anomalies occur when there is a significant increase (or

ecrease) in the number of CS, and the size does not grow (or
educe) accordingly. We can divide the #CS by the size for a direct
ay to spot anomalies. For the size measure, we can use the

‘Lines of Code’’ or ‘‘Number of Classes’’ (Henderson-Sellers, 1995).
owever, if we use the number of classes, we could misrepresent
he size of the programs with big classes (a CS itself). So a more
ccurate measure of the size is the number of lines. However, in
PHP file, it is possible to have other code than PHP (HTML. CSS,

avaScript), and the PHP code is enclosed in tags (<?php and ?>),
o the PHP interpreter processes it on the web server. However,

rograms like PHPLOC or similar count all the lines on those files, b

9

ven outside the PHP tags. Consequently, a better indicator of
ines of code would be the LLOC, logical (effective) lines of code
the statement lines).

Therefore, we use CS density or ρcs= number of CS/LLOC
logical lines of code). We can calculate the rate of change of the
S density:

ρcs =
ρcsi − ρcsi−1

ρcsi−1
=

ρcsi
ρcsi−1

− 1 (3)

where ∆ρcs is the rate of change of density of CS, ρ csi is the
ensity of CS in the current release and ρ csi−1 is the density of
S in the previous release.
The anomalies in the evolution of CS can also be defined

s sudden variations in CS density. We made automatisms via
cripts to detect these outliers or anomalies in the CS evolution
umerically. However, we also present the graphical evolution of
S density for each application, which makes it easy to pinpoint
he anomalies or outliers that we show with a label with the re-
ease number for easier visualization. By inspecting each anomaly
peak) in the evolution of the application code and CS, we explain
hat happened in that release.

. Results and data analysis

.1. RQ1 — Evolution of code smells

We analyzed the evolution of CS in all 12 apps, both in absolute
umber and in CS density (code smells by kLLOC).
Fig. 3 shows the stack bar charts for 2 of the applications stud-

ed, with the 18 CS stacked in the bars, each release represented
y a vertical bar. The complete charts for all the applications

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

a
a

i
s
t
i
r
f

o
t
r
k

c

Table 3
Qualitative evolution trends of absolute CS (CS number), size (LLOC), CS density (CS/LLOC).
App Absolute CS Size (LLOC) CS density (CS/LLOC)

phpMyAdmin inc/dec/inc/dec inc/sharp dec/inc/dec inc/stable
DokuWiki increases/decreases increases/decreases decreases
OpenCart increases increases stable
phpBB stable(short dur)/inc dec(short duration)/inc inc/stable/dec
phpPgAdmin increases increases dec/stable
MediaWiki increases increases mainly stable
PrestaShop dec/inc(alm. stable) dec/inc(alm. stable) almost stable(inc/dec)
Vanilla increases increases almost stable/dec in the end
Dolibarr increases increases almost stable(small inc)
Roundcube stable(low inc) stable stable
OpenEMR inc(jump in the end) dec(alm. stable)/increases small inc/small dec/small inc
Kanboard increases increases decr/inc - U shape
Fig. 4. Evolution and correlation of CS and app size (LLOC), for 2 applications.
re in the replication package.18 In addition, we analyzed the
bsolute evolution of CS and the density for all the applications.
For the first application in Fig. 3, phpMyAdmin, CS density

ncreases in a first period up to a peak, and after is more or less
table, showing some reductions along the way. As we see later,
his peak, in the beginning, is probably related to an increase
n the team size. The absolute number of CS for this application
anges from 500 to 1500 (remembering we excluded third-party
olders). The density varies from 5 to almost 30 CS per kLLOC.

The second example is an application in which the evolution
f the density of CS is stable (related to application size), and in
he end period, this density even decreases. The CS absolute value
anges from 500 to around 1700 CS, and the CS density (CS per
LLOC) ranges from 40 to 35 (decreases).
Table 3 shows the qualitative evolution of CS, for all the appli-

ations. inc and dec are abbreviations to increases and decreases,
while alm. stable is an abbreviation for almost stable. Short dur
is an abbreviation to short duration. The most common trend in
the evolution of the total absolute number of CS is the steady
increase of the code smells (denoted by the word ‘‘increases/inc’’
in the Table 3). This trend is very similar to the evolution of the
application size (second column).

A significant exception in the evolution of lines of Code is the
phpMyAdmin application because, at some point (release 3.4.0),
the developers stopped using PHP files for the different transla-
tions and moved to a mechanism similar to UNIX (LC_messages).
After this release, the Lines of Code decreases.

To understand the absolute CS numbers evolution, we must
observe the increase or decrease of the application size (shown in
column LLOC). Thus, the most significant evolution is the density
of the CS by size (the number of smells divided by size/LLOC),
shown in column CS density.

18 https://github.com/studydatacs/servercs
10
The most common trend behavior in CS density is the stability
(with some oscillations) through the evolution of the application,
having some applications as exceptions.

The absolute number of code smells increases according
to the application size. In web apps, the evolution trend
of server-side code smell density is mainly stable (with
oscillations).

4.1.1. Probable causes for the CS evolution
This section shows the correlation with metrics time series

that can cause CS evolution trends. Fig. 4 shows the evolution in
a graphical way for the two example apps allowing us to inspect
the correlation between CS number and app size. We have the
remaining graphics in the replication package for the rest of the
applications.

We made the correlations after smoothing the lines ten times
to avoid oscillations in the lines. As we have seen before, the left
application has a jump in the application size evolution (release
3.4). As a result, the correlation between the CS number and size
is weak (0.23) but exists. On the other hand, the typical behavior
is shown by an application on the right that exhibits a very strong
correlation (0.99) between CS and size (kLLOC).

Table 4 shows the average values of the developers’ team
metrics and code metrics for each app: CS density is the average
density of code smells (by kLLOC); releases is the number of
releases in total per app; release age is the average time in days
between releases (also called the release frequency); num commits
is the average number of commits between releases; num devs is
the average number of users between releases; commits per dev is
the average commits per developer between releases and commits
per day is the average commits by day between release — we used
the number of measured days between releases which varies a
lot; finally, new devs is the average number of new devs between
release, i.e., the number of devs that did not commit to the app

before.

https://github.com/studydatacs/servercs

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

p
a

t
b
E
c

Table 4
Average metrics by app.
App CS

density
Releases Release

age
Num
commits

Num
devs

Commits
per dev

Commits
per day

New devs

phpMyAdmin 22.4 179 22.8 597.0 28.0 20.5 31.7 9.0
DokuWiki 21.1 40 135.5 250.3 40.6 5.1 2.1 20.3
OpenCart 29.0 26 98.5 321.2 23.5 10.2 5.5 12.2
phpBB 33.7 50 120.1 586.2 16.4 35.2 3.8 5.5
phpPgAdmin 35.0 29 224.5 78.0 5.7 16.8 0.7 2.0
MediaWiki 42.2 138 42.4 673.3 39.6 16.6 15.1 5.1
PrestaShop 37.3 74 41.4 778.1 36.8 22.0 19.1 11.2
Vanilla 40.1 63 54.6 433.8 12.0 27.2 9.0 2.6
Dolibarr 23.6 83 61.0 866.9 24.8 59.5 17.6 5.0
Roundcube 51.0 31 67.6 138.9 9.5 15.0 2.4 4.7
OpenEMR 31.3 33 165.0 233.6 18.5 18.6 1.6 6.8
Kanboard 7.6 65 34.6 61.9 10.8 6.3 2.4 5.4
Table 5
Correlations between code smells density and the column metric — in bold if greater than 0.3.
App Numdevs Numcommits Commitsper dev Commitsper day Newdevs

phpMyAdmin 0.59 −0.10 −0.42 −0.077 0.29
DokuWiki 0.60 0.59 0.64 0.022 0.44
OpenCart 0.50 0.67 −0.36 0.83 0.59
phpBB 0.79 0.78 0.20 0.77 0.77
phpPgAdmin −0.34 0.75 0.75 0.84 −0.38
MediaWiki −0.35 −0.17 0.26 −0.36 −0.40
PrestaShop 0.48 0.06 −0.28 0.0027 0.30
Vanilla −0.51 −0.38 −0.15 −0.85 0.36
Dolibarr 0.94 −0.56 −0.95 0.81 0.87
Roundcube 0.68 0.89 0.72 0.89 0.14
OpenEMR 0.74 −0.85 −0.92 −0.11 0.24
Kanboard −0.22 0.33 0.62 −0.06 0.037
Fig. 5. Correlation and evolution of CS density (CS/kLLOC) and team size, for 2 applications.
The table with average metrics is shown to compare and check
if there are outliers in the average values. The complete time
series of the metrics in the Table 4 for the 12 web apps are
in the replication package. The CS density varies from 20 to 50
CS/kLLOC, except for Kanboard, which has a minimal CS density.
The two outliers in the average number of commits between
releases are Kanboard and phpPgAdmin with very low commits
er release. The same two applications have the lowest team size
nd the new dev numbers. The number of devs ranges from 10 to

40, being phpPgAdmin clearly an outlier with just 5.7 in average.
The average number of new devs ranges from 5 to 20, if not
counting the outlier. An important metric is the average commits
per dev between releases, which ranges from 5 to 60.

We measure the correlations between the code smells density
ime series and the time series for each of the variables referred
efore for each application. Table 5 shows the correlation values.
ach column represents the correlation with the metric of the

olumn’s name. The positive time series correlations greater than

11
0.3 and with a p-value of less than or equal to 0.05 are in bold.
We can observe that the density of code smells correlates with
the developers (column num devs) in a given release, except for
four apps — ranging from 0.47 to 0.94). This correlation is also
strong with the ‘‘new devs’’, except for two apps with negative
correlation and one with almost no correlation. We observe that
two of the apps (phpPgAdmin and Kanboard) are much smaller
than the others, and also small is the number of developers in
those apps (Table 4).

Fig. 5 presents the evolution and correlation between CS den-
sity, team size, and CS density in a graphical way for the two
selected apps. We can find the graphics for the rest of the appli-
cations in the replication package. For the application on the left,
phpMyAdmin, the correlation between CS density and ‘‘num devs’’
is 0.59, while the correlation between CS density and ‘‘new devs’’
is 0.29. For the application on the right, Vanilla, the correlation
between CS density and ‘‘num devs’’ is 0.51, while the correlation

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

b
h

(
o

4

h
l

Fig. 6. Life of unique CS in 2 of the apps.
Fig. 7. Survival curves for 18 code smells. Dashed lines denote the median.
etween CS density and ‘‘newdevs’’ is 0.36. Those are not the
ighest correlations, as we can see in the Table 5.

The evolution of the absolute number of code smells
correlated to the LLOC or LOC. Likewise, the evolution of
the density of code smells correlated to number of devs
and number of new devs in the release.

4.2. RQ2 — PHP code smells distribution and lifespan

This section shows the results of the code smells’ survival time
lifespan) graphically and numerically. We also show the results
f other variables of interest, like CS distribution and intensity.

.2.1. CS lifespan
Fig. 6 shows the unique CS for two selected applications. The

orizontal lines represent the lifespan of the code smells. Each
ine represents one CS from its appearance on the application
12
code until its removal. The colors represent the different CS
(keyed in the legend), but this graph is more useful to observe
if we look for the overall status of the CS evolution. In the
application on the left, we can see a large removal of code smells,
denoted when a large number of lines end at the same time
(2011, 2016, 2017, 2018), while in the application on the right,
this removal happens to a much lesser degree (but still happens
in 2015 and 2018).

4.2.2. Values by CS
Fig. 7 shows the survival curves or Kaplan–Meier plots for the

18 CS. With the curves, it is possible to calculate the survival
probability at various times by crossing the X-axis with the Y -
axis in the line. The medians (probability of survival = 0.5) for
each code smell are shown in dashed lines. Next, we show the
values in a table.

Table 6 represents several indicators: CS Distribution is the
distribution of code smells averaged by CS averaged by app; CS

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

v
w
—
t
a
m
p
t

o
s
s
a
b

s
2
o
1
9
o
T
t
T
s
g
a

o
t
a
t
a
1
a
v
f
v
C
a

s
P
s

Table 6
Average distribution, density, survival time (median and restricted mean) and % removal of Code Smells (by CS).
Code smell CS

distribution
CS
density
(by kLLOC)

CS
survival time
median (days)

CS
survival time
rmean (days)

%CS
removal

(Exc.)CyclomaticComplexity 26.14% 8.17 1292 1967 53.52%
(Exc.)NPathComplexity 16.90% 5.30 1359 1961 51.11%
UnusedLocalVariable 16.88% 6.43 1269 1564 70.57%
UnusedFormalParameter 12.46% 3.54 1735 1941 57.55%
ExcessiveMethodLength 9.60% 2.96 1513 2053 51.08%
ExcessiveClassComplexity 5.22% 1.47 1418 1793 55.66%
TooManyPublicMethods 4.45% 1.09 1431 1823 57.62%
(Exc.)CouplingBetweenObjects 1.22% 0.24 1143 2473 30.99%
ExcessiveClassLength 1.10% 0.34 1300 1873 56.06%
ExcessiveParameterList 1.08% 0.29 1433 2087 52.48%
DevelopmentCodeFragment 0.95% 0.26 1746 1999 59.65%
(Exc.)NumberOfChildren 0.93% 0.09 1128 2317 40.52%
TooManyFields 0.88% 0.27 1178 1978 53.97%
TooManyMethods 0.87% 0.27 1361 1757 59.15%
ExcessivePublicCount 0.72% 0.22 1400 1860 50.30%
UnusedPrivateMethod 0.44% 0.12 500 1185 69.82%
UnusedPrivateField 0.16% 0.05 599 1670 62.40%
(Exc.)DepthOfInheritance 0.01% 0.02 918 882 85.00%
U

s
b
m
C
b
t
t
W
t
r

I
s

a
a

p

f

Density is the CS intensity (by kLLOC) by CS averaged by app; Sur-
ival Time Median (days) is the median averaged by application;
e also show the restricted mean by CS/averaged by application
only for comparison. For the three last columns, we measured

he values for all applications separately and then calculated the
verage to account for the problem of bigger applications with
ore code smells, which could skew the distribution. Next, we
lot the table’s top values and present the analysis for both the
able and the graphics.

Fig. 8(a) shows the distribution mean, quartiles, and variance
f the most seen code smells. Fig. 8(b) represents the same
tatistics for the density of the most seen code smells. Fig. 8(c)
hows the mean, quartiles, and variance for the CS survival time,
nd Fig. 8(d) shows the same statistics for the removal percentage
y app for the most seen smells.
CS distribution: The most prevalent server-side CS in the

tudied web apps are by (Excessive)CyclomaticComplexity with
6.14%, followed by (Excessive)NPathComplexity with 16.90%. The
ther CS that appear more in the code are: UnusedLocalVariable:
6.88%; UnusedFormalParameter: 12.46%; ExcessiveMethodLength:
.60%; ExcessiveClassComplexity: 5.22% and TooManyPublicMeth-
ds with 4.45%. The others are less than 2%, as shown in the
able 6. The variance is not the same in the those CS, being
he UnusedLocalVariable the one with most variance (Fig. 8(a)).
he ExcessiveClassComplexity and TooManyPublicMethods have a
mall variance, but the last one has a huge outlier in one app that
oes to 20% - remembering that these values are averaged per
pp.
CS density (CS/kLLOC) - We also calculate the average density

f the smells per kLLOC. This value is calculated first per app and
hen averaged. We can have these values as a reference when
nalyzing a new app. The CS that are more intense by average are
he same as before, but the order is slightly different. The values
re for the same top 7 in Fig. 8(b): 8.17; 5.30; 6.43; 3.54; 2.96;
.47 and 1.09. The first tree CS have long tails (greater variance),
nd the following four are more concentrated in the medium
alue. It does not make statistical sense to calculate the average
or these values, but if we sum all the smells together, the average
alue in all apps for the density of the code smells is around 31
S per 1000 logical lines of code (considering the 18 code smells
nd the 12 web apps studied).
Survival time median:We want to know the median of the

urvival time of the CS. This value ranges from 500 days (Unused
rivate Method) to 1609 (Unused Formal Parameter). The code
mells with longevity greater than 1400 days on average are
13
nused Formal Parameter, Excessive Method Length, Excessive Class
Complexity, Too Many Public Methods. The code smells with the
longevity of fewer than 1000 days on average are Unused Private
Method, Unused Private Field, (Excessive)Depth Of Inheritance. The
tails are long for both sides in the same top 7 CS (Fig. 8(c)), except
for Excessive Class Complexity, which has a strange distribution on
the top caused by outlier apps.

We also calculated the restricted mean (as described earlier).
As expected, the restricted mean typically has values higher than
the median, but the opposite happens for the CS DepthofInheri-
tance.

Percentage of CS removal: The values range from 40% to
70% with two outliers, one in the left (CouplingBetweenObjects)
at 30% and other on the right (DepthOfInheritance) at 85%. The
variances for the removal of the CS between apps are quite
normal (Fig. 8(d)), as the tails are not too short nor too long.

4.2.3. Values by application
Fig. 9 shows the survival curves or Kaplan–Meier plots for the

12 apps. The medians (probability of survival = 0.5) for each code
smell are shown in dashed lines.

Table 7 shows the survival variables of interest by applications
and their average. #CS is the number of unique CS in the file
of the application, #removed is the number of removed unique
CS, %removed is the percentage of unique CS removed. The CS
urvival time median (days) is the same as for the other Table 6
y code smell, but here by application. We show the restricted
ean column for comparing when there is no median (column
S survival time *rmean (days)), i.e., the average survival counting
oth the removed smells and the not removed ones, from when
he CS first appeared until the end of the study. Because of
he high rate of not removed smells, this value is much higher.
e show this column because, for one app, it is not possible

o calculate the median with the function survfit (not sufficient
emoved smells).

We analyzed in total 67635 unique CS in all the applications.
n Table 7, the line ‘‘all apps’’ represents the averages for the apps
tudied, where only 61% of smells are removed.
Percentage of CS removed: the columns #CS and CS removed

re represented in the table to understand the quantities by
bsolute and density value. The removal density percentage of CS

removed explains best what happens. The values of the removal
of CS vary to a great extent, from 33% in Roundcube to 80% in
hpMyAdmin.
Survival life median: the median is the most useful measure

or the CS survival time because it does not count the outliers.

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

T
(
v
j
g

Fig. 8. Average plot for top 7 CS: Distribution, Density, Survival Time and removal percentage.
he median varies between 231 days (Kanboard) and 2699 days
phpPgAdmin). All the applications exhibit different CS survival
alues. We could consider the younger applications outliers (we
ust remove one application, the other has no median and it
ives a median of 4 years) or the average of the median divided
14
by 2 sizes: bigger apps 3.7 years, smaller apps 4 years — not a
significant difference by size or age.

We calculated the median of all 67635 CS, which is 1266 days
(around 3.5 years); however, if an application contains a high
CS density, this will skew this ‘‘all apps median’’ value entirely.

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644
Fig. 9. Survival curves for 12 apps. Dashed lines denote the median.
Table 7
Values of survivability of code smells, by app and all applications.
App #CS CS removed % CS removed CS

survival time
median (days)

CS
survival time
*rmean (days)

phpMyAdmin 5630 4622 82.10% 746 850
DokuWiki 1811 1138 62.84% 1832 2874
OpenCart 9968 6672 66.93% 1042 1748
phpBB 4079 2390 58.59% 2512 2458
phpPgAdmin 740 378 51.08% 2699 3577
MediaWiki 9968 6672 66.93% 1042 1748
PrestaShop 6648 4529 68.13% 456 2031
Vanilla 2902 1437 49.52% 1750 2458
Dolibarr 11939 5710 47.83% 1659 2987
Roundcube 1387 470 33.89% NA 4138
OpenEMR 12231 7057 57.70% 1277 2113
Kanboard 332 208 62.65% 231 2235
all apps 67635 41283 61.04% 1386 2435
We calculated average values for the apps median; the average
survival time is 1386 days/3.8 years (simple average) or 1323
days/3.65 years (weighted average with size and app total age).
Depending on how we calculate, the survival value for all apps
and code smells in our study is between 3.5 and 3.8 years.

We calculated the median weighted by the size and age by
normalizing the weights for size and age separately, multiplying
the weights and then normalizing to 100%, and then multiplying
the final weight to the medians of the apps. We concluded that
app age does not influence the weighted average; the size of the
app does but not by much; however, the value is close enough to
the simple average of the median of all apps, allowing to use the
latter as approximation.

Restricted mean: the last column represents the restricted
mean, explained before, and considers the CS not removed. We
do not use the value, but the column is shown to serve as
comparison, when it is not possible to calculate the median.

We also compared the CS lifespan median to the application’s
studied lifespan, and this value is around 37%. The percentage
15
value gives more information for generalization than the absolute
value.

CS live in average about 37% of the life of the applications.
Depending how we calculate the survival time of all CS
in all apps is between 3.5 years and 3.8 years in our
study. The CS that live more days in the apps stud-
ied are: UnusedFormalParameter, ExcessiveMethodLength,
ExcessiveClassComplexity, TooManyPublicMethods. On av-
erage, only 61% of the server code smells in web apps
are removed.

4.3. RQ3 — Survival curves for different scopes of CS: localized vs.
scattered

In this section, we present the CS survival study results for
two scopes of CS: Localized vs. Scattered, with 3 code smells in
each scope (group), as defined in the study design section.

Table 8 presents the Log-Rank test significance for all the apps.
A p-value less than 0.05 means that the survival curves differ
between CS types with a 95% confidence level. For half of the web

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

a
R
t
s

i
o

Fig. 10. Survival curves for localized and scattered code smells, for 2 applications. Dashed lines denote the median.
Table 8
Log-rank significance test — comparison of scattered and localized smells : a
p-value less than 0.05 means different survival curves.
App p(significance) App p(significance)

phpMyAdmin 0.033 PrestaShop 0.043
DokuWiki 0.169 Vanilla 0.947
OpenCart 0.023 Dolibarr 0.589
phpBB 0.098 Roundcube 0.89
phpPgAdmin 0.0002 OpenEMR <0.0001
MediaWiki <0.0001 Kanboard 0.73

apps(phpMyadmin, OpenCart, phpPgAdmin, MediaWiki, PrestaShop,
OpenEMR), the significance is less than 0.05 (in bold), meaning the
survival life of the scattered smells differs from the survival life
of the local smells. However, this analysis will not suffice because
of the low removal rate of code smells, as shown next.

Regarding the non-significant comparisons: in DokuWiki, there
are four scattered smells, and none is removed (no compar-
ison possible); in phpBB, from 20 Scattered CS, only two are
removed(10%); in Dolibarr and Roundcube, also not enough CS
are removed; in Vanilla, the removal rate of the scattered CS
is half of the localized, but the median of survival is the same,
probably by coincidence. Finally, in Kanboard, the removal rates
nd survival median are similar, but it is a small application (like
oundcube). Summing up, this test is probably inconclusive for
he applications with a low removal rate of the CS, both local and
cattered.
For the applications with significant values (p < 0.05), mean-

ng the survival of CS is different, there is just one inconclusive
r false positive, which is OpenCart: very few scattered smells (4),

but none is removed.
Table 9 presents the numbers and percentages for the CS

survival time and CS introduced and removed, separated by scope
(localized vs. scattered), given by the column CS scope. The col-
umn CS found and CS removed are the code smells found and
removed, while the % removed is the percentage of the CS re-
moved. The CS survival time median is the value in days at which
the survival probability is 0.5, and when the removal is small, it
is impossible to calculate. Therefore, we also show the CS survival
time restricted mean, that is, the mean including smells that are
not removed at the end of the study and censored with 1 or 0 (for
those smells, the ending time is the end of the study).

We can observe that, during the life of the applications, all
the applications remove localized code smells, while some do not
remove scattered CS (or remove them to a lesser degree). The
16
removal percentage of the localized smells individually per app
is normally higher than the removal percentage for the scattered
smells. However, for phpPgAdmin, and Kanboard, small apps com-
pared to the others, the opposite happens. We cannot draw the
same conclusion in the application OpenEMR because the removal
percentages are very close.

The statistics tool R cannot calculate all the medians for the
applications (NA in the table) due to some of them having low re-
moval rates, but the average median for this subset of CS (six CS)
is around 3.5 years for the three local smells of the question and
about 3.2 years for the scattered smells. However, the removal
rate of the localized smells is higher 52% against 37% for the
scattered ones, as noticed in the previous paragraph. Therefore,
survival time values are slightly less for the six CS collections used
in this question than for the 18 CS collections of RQ2.

Analyzing the Table 9 numerically for the survival time median
and for the apps that have the survival time median for both
scopes, we find: MediaWiki and PrestaShop have shorter survival
times for the localized CS, and on the contrary, phpMyadmin
and OpemEMR have shorter survival times for the scattered CS.
Tables 8 and 9 need a complementary graphical analysis, because
of the CS’s low removal rate, especially for the scattered CS.

Fig. 10 presents the curves of the probability of survival of
the two scopes of code smells, localized and scattered, for two
selected apps. The graph shows the probability of survival(y-
axis) vs. time (x-axis - in days). For the left app (phpMyAdmin),
the median of the scattered CS (556 days) differs clearly from
one of the localized CS (746 days), as the p-value of 0.033 also
shows. However, for the second application (Vanilla), the median
is coincident (1469 days in both cases), as also observed by the
p-value of 0.95.

Analyzing the extended plot of graphical curves by scope, on
the replication kit, folder RQ3, witch has 12 applications instead
of 2 applications (Fig. 10) we find: DokuWiki, OpenCart, phpBB,
phpPgAdmin,MediaWiki, PrestaShop all have shorter survival times
for the localized CS; phpMyAdmin, phpPgAdmin and Openemr have
shorter survival times for the scattered CS. For Vanilla, Kanboard,
Dolibarr and Roundcube the study remains inconclusive because
even graphically, the survival curves are very similar.

Combining the numerical with graphical analyses, we find:
that for five applications(DokuWiki, OpenCart, phpBB, MediaWiki
and PrestaShop), localized CS live less than the scattered; for
three applications (phpMyAdmin, phpPgAdmin and OpenRMR, the
contrary happens, and for four applications (Vanilla, Dolibarr,
Roundcube and Kanboard), there is no difference between the two

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

f
t
n

F
t
(

i
m
o
t

Table 9
Code smells found, removed and survival time in days, by scope.
App CS scope CS found CS removed % removed CS

survival time
median (days)

CS
survival time
*rmean (days)

phpMyAdmin Localized 1095 874 80% 746 869
Scattered 34 23 68% 556 629

DokuWiki Localized 156 107 69% 1596 2273
Scattered 4 0 0% NA 4937

OpenCart Localized 798 395 49% 1189 1275
Scattered 12 0 0% NA 2172

phpBB Localized 747 395 53% 2512 2257
Scattered 20 2 10% NA 2681

phpPgAdmin Localized 110 32 29% NA 4634
Scattered 10 7 70% 1589 1905

MediaWiki Localized 1004 595 59% 1407 2004
Scattered 228 69 30% 2877 2877

PrestaShop Localized 761 470 62% 803 1302
Scattered 262 124 47% 943 1453

Vanilla Localized 249 123 49% 1469 1601
Scattered 67 18 27% 1469 1539

Dolibarr Localized 1381 539 39% NA 3000
Scattered 22 9 41% NA 2839

Roundcube Localized 158 52 33% NA 1511
Scattered 10 3 30% NA 1474

OpenEMR Localized 1210 677 56% 1277 1977
Scattered 251 150 60% 514 766

Kanboard Localized 20 10 50% 584 1004
Scattered 30 18 60% 256 907
t
w
m
a
T
n

s
o
m
a
a
m
t
a
T
r

t
s
(
t
n
a

w
t
f

Table 10
Log-rank test significance — comparison of code smells in two timeframes.
App p(significance) App p(significance)

phpMyAdmin <0.0001 PrestaShop <0.0001
DokuWiki 0.165053 Vanilla <0.0001
OpenCart <0.0001 Dolibarr <0.0001
phpBB <0.0001 Roundcube 0.852129
phpPgAdmin <0.0001 OpenEMR 0
MediaWiki <0.0001 Kanboard <0.0001

scopes. Half of the applications remove 30% or less scattered CS (
Table 9).

For 2/3 of the applications, localized and scattered CS
survival is different. For five applications, localized CS
live less than the scattered CS; for three applications, the
contrary happens. Four applications have no difference
in CS survival by scope. All applications remove localized
CS, while half of the applications remove 30% or less
scattered CS.

4.4. RQ4 — Survival curves for different time frames

In this section, we present the CS survival study comparison
or two time-frames representing two halves of each app’s evolu-
ion, as defined in the study design section. The analysis is made
umerically with the median and after graphically.
Table 10 shows the Log-rank test significance for all the apps.

or almost all the applications, except DokuWiki and Roundcube,
he CS survival is different in the first half and second half
p-value less than 0.05).

Table 11 contains the values found (CS found and removed
ncluding percentage, and survival life median and restricted
ean) from the function survfit grouped by timeframe. The median
f the survival life in days is shorter in the second half for
he apps Dukuwiki and phpBB (CS with a shorter lifespan on
timeframe 2); however, for the former, we cannot conclude that
17
survival life is different (p-value on Table 10). For MediaWiki,
and phpMyAdmin, the median in the first half is lower than in
the second half (CS in code live fewer days in the first half),
although for the second apps, just by a small margin (23 days).
For the other applications, we cannot calculate the median in
he second timeframe because of the low removal rate of the CS,
hich we show and analyze later. We could use the ‘‘restricted
ean’’, but this value includes the censored and the outlier values
nd gives different values from the survival time (usually higher).
herefore, we will perform the graphical analysis to complete this
umerical analysis.
All the applications except one (OpenEMR) introduce more

mells in the first half of their life. This result is coherent with
ther studies (Chatzigeorgiou and Manakos, 2014) that found that
ore smells are introduced in creating the files/classes. Likewise,
ll the applications except one (the same) remove more smells in
bsolute number and in percentage (the percentage gives a better
easure of density) in the first half of their life. We remember

hat we treat the time frames as independent (the censoring is
lso made at the end of the first timeframe). From the values on
able 11, in the first half of the life of the applications 64% CS are
emoved on average, and in the second half, only 26%.

Fig. 11 shows the survival curves for the two timeframes of
wo selected applications. The graphical representation of the
urvival curves for all the web apps is in the replication package
in folder RQ4). Analyzing the complete set of the graphs, for 10 of
he 12 apps, the survival curves of the first timeframe differ sig-
ificantly from the second one, being the exception RoundCube
nd DokuWiki, as seen in the Table 10.
We performed the graphical analyses for the ten applications

ith different survival curves. For OpenEMR, the survival curve of
imeframe 2 is different and descends much quicker than the one
rom timeframe 1. The graphical analysis of phpBB agrees with the
numerical analysis from the Table 11, so for these two apps, the
CS survival time is shorter in the second timeframe (we observe
a reduction in the CS survival life in the long term). However, for

the remaining 8 of the ten apps, the survival curves are different,

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

a
l
f

e
i

Table 11
Code smells found, removed and survival time in days by timeframe.
Web App Timeframe CS found CS removed % removed CS

survival time
median (days)

CS
survival time
*rmean (days)

phpMyAdmin 1 (<2014-03-26) 3132 2795 89% 723 877
2 (>= 2014-03-26) 2498 1490 60% 746 646

DokuWiki 1 (<2012-04-03) 1205 667 55% 2139 1670
2 (>= 2012-04-03) 606 315 52% 1596 1754

OpenCart 1 (<2016-04-18) 2504 1464 58% 882 765
2 (>= 2016-04-18) 1632 136 8% NA 1027

phpBB 1 (<2010-02-19) 2096 1651 79% 2512 2362
2 (>= 2010-02-19) 1983 478 24% 1703 1474

phpPgAdmin 1 (<2010-12-05) 689 371 54% 2665 1965
2 (>= 2010-12-05) 51 3 6% NA 3070

MediaWiki 1 (<2011-11-07) 5305 4442 84% 694 1127
2 (>= 2011-11-07) 4663 1993 43% 1674 1993

PrestaShop 1 (<2015-07-31) 5683 3868 68% 170 666
2 (>= 2015-07-31) 965 200 21% NA 1178

Vanilla 1 (<2015-03-10) 1563 851 54% 1469 1223
2 (>= 2015-03-10) 1339 209 16% NA 1452

Dolibarr 1 (<2013-01-24) 6179 4376 71% 1008 1287
2 (>= 2013-01-24) 5760 1251 22% NA 1972

Roundcube 1 (<2017-01-27) 1176 338 29% NA 827
2 (>= 2017-01-27) 211 16 8% NA 927

OpenEMR 1 (<2012-08-05) 2577 587 23% NA 2338
2 (>= 2012-08-05) 9654 4917 51% 786 1048

Kanboard 1 (<2017-01-16) 254 206 81% 146 333
2 (>= 2017-01-16) 78 2 3% NA 1034
Fig. 11. Survival curves for code smells in the two timeframes, for 2 applications. Dashed lines denote the median.
nd the timeframe 1 survival curve descends much quicker to the
ower probability values, indicating that CS’s survival time in the
irst timeframe is shorter.

For almost all the applications, except two, the CS survival
is different in the first and second half. For 8 of the ten
apps with different CS survival times, the survival time of
CS is shorter in the first half of the apps’ life, while for
two apps, the survival of CS is shorter in the second half.
All the applications, excluding one, introduce more CS and
remove more CS in absolute number and percentage in the
first half of their lives.

4.5. RQ5 — Anomalies in code smells evolution

In this section, we present the anomalies in the code smells
volution study, which occur when there are sudden variations
n the CS density.
18
Fig. 12 represents the relative change of CS number from
the previous release and the relative change, in kLLOC, from the
previous release. However, as shown in the study design, these
absolute values are not enough to spot these anomalies because
there can be sudden variations in the number of CS accompanied
by the same variation in the size of the app, making no change in
density.

Fig. 13 shows the CS density evolution for two select apps,
the first with anomalies and the second without anomalies. In
the figure, we use lines representing thresholds, signaling an
increase of 50% and 100% and a reduction of 50% in the CS density
change rate. However, the values of the proposed thresholds can
be changed according to application, team, quality, and company,
if applicable. The managers or leading developers should choose
this.

Table 12 shows the CS density anomalies found, the variance
from the previous release to the current release for CS by kLLOC,
and Cyclomatic Complexity by LLOC (aka Cyclomatic Complexity

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

F
w
i
r

I
t
i
t
L

Fig. 12. Changes of cs and kLLOC.
Fig. 13. Anomaly detection in number of code smells: changes in CS density (CS per LLOC.
Table 12
Code smells sudden increases.
App Release Date var CS/LLOC var CC/LLOC

phpMyAdmin 3.3.0 07/03/2010 55% 36%
phpMyAdmin 3.4.0 11/05/2011 203% 208%
phpBB 2.0.7 13/03/2004 488% 495%
phpBB 3.0.0 12/12/2007 191% 27%
MediaWiki 1.10.0 09/05/2007 95% 1%
OpenEMR 3.2.0 16/02/2010 113% 110%
Kanboard 1.0.4 04/05/2014 78% 0%

Density), a long-used objective metric for maintainability pre-
diction (Gill and Kemerer, 1991). We find those anomalies in 5
applications, but here we represent only the sudden increases.
or example, phpMyAdmin has two anomalies, where the CS rise
ithout the corresponding app size rise. This sudden change can

ndicate that the code has some problems or big changes in those
eleases.

We investigated the table’s most prominent CS density peaks:
n phpMyAdmin, release 3.3.0, code increased about 30%, and
he number of total code smells doubled, which explains the
ncrease. In this release, there was a refactoring to more classes,
he number of classes tripled, but the number of CS follows the
LOC more closely. The peak in release 3.4.0 in phpMyAdmin is
due to 2 factors: the addition of much new code (49 new classes)
with the respective increase of the new smells, and the removal
of the ‘‘.php’’ files that had the translations (these files had no CS,
they only count for the Logical lines of code).

The peak in release 2.0.7 of phpBB is due to the removal of the
‘‘.php’’ translation language files from the release. This removal

makes the denominator (LLOC) decrease and thus provokes an

19
increase in the CS density. The number of classes and number
of smells stayed constant. In release 3.0.0 of phpBB the peak is
because a lot of new code (new functionalities) was introduced.
The code size almost tripled, and this release has a lot of new
classes (around 160). All these modifications increased the num-
ber of code smells eightfold, resulting in that peak that appears
in the table.

In the peak in MediaWiki 1.10.0, the classes went up 7% and
LLOC 5%, but CS doubled in number. This peak was due to refac-
toring and significant updates, the kind of peak the developers
and managers should investigate.

In OpenEMR 3.2.0, LLOC went down almost 50%, number of
classes went up 10%, and CS all most the same — decreased 1%.
This peak was due to refactoring and removing code (for example,
in the ‘‘interface’’ folder). In release 5.0.0, the removal of code
happens again, but it is not enough to make a peak (a more
common behavior, as it is a completely new release, ‘‘5.0.0’’).

Lastly, in Kanboard 1.0.4, we also detect a peak. The LLOC went
up 35%; classes went up 16%; CS rose 141% because of new code
with more CS, which makes up for the peak. This peak resulted
from adding some code, classes, and translations.

We present a method to detect anomalies in CS evolution.
Before publishing the release live, this detection method
can be put to work in a test automation server. We
detected 7 anomalies/sudden changes in the density of
CS, in five of the studied applications.

5. Threats to validity

There are four types of threats that can affect the validity of
our experiments, and we will see them in detail.

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

b
s
P
P
a
P
e
t
t

t
r
w
t
C
t
P

w
b
m
w

n
u
t
v
T
a

t
p
t
s
w
I
t
t
m
t
f

r
n
H
s
a
a
b
H
t
e
l
h

6

6

s
L
T

F
i
P
v
o
a
u

e
R
1
t
s

6

o
p
s
t
t
t
t
w

Threats to construct validity concern the statistical relation
etween the theory and the observation, in our case, the mea-
urements and treatment of the data. We detected the CS using
HPMD, and one can question this tool for its accuracy. However,
HPMD is used in most of the other tools now (PHPStorm, Codacy
nd others), or when they first started (sonarqube). Also, because
HPMD runs in the command line, our workflow could use it
asily. One way to evaluate accuracy is to use 2 or 3 different
hreshold sets, but we used the default ones because we wanted
o compare different applications.

We used only CS related to OOP and only apps with OOP in
he app’s core (OOP was introduced in PHP4 around 2000). This
equirement made our sample construction very difficult because
e had to analyze several applications and remove them from
he sample. The exclusion of code by external developers both in
S detection and in Lines of code count (we used LLOC to avoid
he problem of counting HTML in PHP files – outside the tags –
HPLOC does this) was also a difficult task and prone to errors.

We had to analyze several app releases to account for errors in
folders left out.

The passage of data format from time-series to survival format,
ith an initial and removal date, is done by a program developed
y us. We tested this program for random CS and releases with
any CS removed. While we found no errors in the tests, it is
orth mentioning.
Threats to internal validity concern external factors we did

ot consider that could affect the variables and the relations
nder investigation. Under this concern, PHPMD allows changing
he CS detection thresholds, but we worked with the default
alues. We can question these values for different applications.
he correlations between CS evolution and the team prove they
re related but do not prove causality.
Threats to conclusion validity concern the relation between

he treatment and the outcome. In RQ3 and RQ4, we pose two hy-
otheses in the survival studies, checking for differences between
he two groups and answering them with statistical support and
ignificance. In RQ3 not all CS are represented, however because
e had 3 scattered CS, we used the same number of localized CS.

n RQ4, we divided all the applications into two halves regarding
he factor time, giving us different time frames for each applica-
ion. However, this is the intended design because we wanted to
easure survival at the beginning of development history and in

he recent history half. Therefore, the tests used would not allow
or conclusions with different-sized time-frames.

Threats to external validity concern the generalization of the
esults found. We chose PHP applications with support for classes
ot used to build other applications, like frameworks or libraries.
aving 12 typical web applications makes the need to have more
tudies. In the average CS lifespan for all applications, we have
pps of different sizes and ages. To tackle this, we also calculated
weighted average lifespan regarding size and age. It would be
etter to use even more applications for the best generalization.
owever, because we had to study every release and transform
hem into unique smells, CS processing and collection require
ven more computational power. Most evolution studies in the
iterature (see related work) use a reduced sample because of the
igh number of releases/versions in each app.

. Discussion

.1. RQ1 — CS evolution

For most applications, the absolute number of code smells
hows the same tendency as the app size (lines of PHP code, or
LOC as we measured), and the common trend is to increase.
he trend for the density of code smells in most applications
20
is stable. For applications that do not have this tendency across
part or all story of the application, the CS density correlates
highly with the number of devs and the number of new devs
(even more). Therefore, when the size of the PHP web application
cannot explain the evolution of CS, we can look into the size of the
team and the number of new developers (developers that never
contributed in past releases). Possible reasons for this behavior:
bigger teams will make more mistakes as it is more challenging to
manage them. As for the ‘‘new devs’’, they are probably not aware
of the programming practices of the app and do not enforce code
smell avoidance.

If we compare this study to evolution studies in Java, Digkas
et al. (2017) studied TD (Technical Debt), which is not the same
but includes CS, increases for most observed systems, while TD
normalized to the size of the system decreases over time in most
systems. However, this is not the behavior in the CS in web apps,
as most of the CS density is stable over time (with fluctuations).

6.2. RQ2 — CS survivability and distribution

Almost all the code smells are present in all the applications,
except for DepthOfInheritance in only three apps. The CS that ap-
pear the most are related to complexity, unused code, long methods,
and too many public methods.

On average, the median CS survival life is almost four years
(3.8 years, or if weighed by size and age, 3.65 years. We also
calculate the median of survival of all CS (3.5 years), but this
value can be biased by apps with high density of CS (longer or
shorter than the rest). The average of the apps median gives a
more informative value.

The PHP web apps in the study remove around 61% of the
CS inserted. However, in Java, according to Tufano et al. (2017),
the removal rate is 80%. This value is probably because Java is
the most studied language regarding CS and has more tools to
detect and automatically refactor some CS. Another result, in Java
applications, from Peters and Zaidman (2012) is that CS lifespan
is close to 50% of the lifespan of the systems. Nevertheless, in our
findings, PHP web apps’ CS survival time median is around 37%
of the life of the systems.

The smells that survive more days in the code are Unused-
ormalParameter, ExcessiveMethodLength, ExcessiveClassComplex-
ty, TooManyPublicMethods. The long life of the ‘‘UnusedFormal-
arameter’’ can be related to the way that PHP handles default
alues in methods (parameter = ‘‘default value’’) and can be
mitted in the call to the method. The CS that lives the least
re the Unused Private method and Unused Private Field, which is
nderstandable because the removal is relatively straightforward.
The values of removal per app vary to a great extent. For

xample, phpMyAdmin has a removal rate higher than 80% while
oundcube only shows 33%. Looking at the results in question
, we can relate these values to the release average, which in
he case of phpMyAdmin, is 23 days, the shortest in all the apps
tudied.

.3. RQ3 — CS survivability by scope

CS occurrences may be removed by explicit refactoring actions
r, much less frequently, due to code dropout. Therefore, PHP
roject managers need to have an evolutionary perspective on the
urvival of CS to decide on the allocation of resources to mitigate
heir technical debt effects. Furthermore, since CS are of different
ypes regarding their scope, project managers must be aware of
heir evolution, with a particular concern for scattered CS since
heir spreads may cause more harm and may be harder to refactor
ithout appropriate tooling.

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

i
A
s

t
m
c
c

6

a
d
t
C
d
t
m
t
w

d
f
t
c
a

t
n
a
t
p
u

6

e
–
i

i
p
l
t
w
r
T
a

u
a
t
h
c
r
a
y
i
a
m

a
w

l
n
T
t
m
h
p
c

m
i
d
s
r
i
p
o
f
t
t
r

6

w
a
t
n
t
—
‘

t
d
s
s
p
f

t
d
w
w
t
p
2

o
c
p

t
f

c
s
c

i

6

i

For most applications, localized and scattered CS survival time
s different, and scattered CS tend to live longer in the code.
ll applications remove localized CS, but the rate of removal for
cattered CS is much lower.
It is worth noticing that localized CS are much more frequent

argets for change than scattered CS for most apps. This behavior
ay be due to the lack of refactoring tools for PHP scattered
ode smells, and manually removing scattered CS is much more
omplex than removing localized ones.

.4. RQ4 — CS survivability by timeframe

Since the topic of CS has been addressed by researchers, taught
t universities, and discussed by practitioners over the last two
ecades, we want to investigate whether this impacted CS evolu-
ion and survival time in web apps. We expected that increased
S awareness had caused a more proactive attitude towards CS
etection and removal (through refactoring actions), thus leading
o shorter survival rates through the app life. However, there are
ore factors to consider, for example, the team’s knowledge of

he code and smells in the first years of the app’s life (of which
e do not have metrics).
For most apps, the survival curves of the two timeframes

iffer; for most, the CS survival time is shorter in the first time-
rame. Studies in Java language (Peters and Zaidman, 2012), found
hat smells at the beginning of the systems life are prone to be
orrected quickly. For the majority of the web apps, our study
grees with these findings.
The findings mean more work is to be done in PHP web apps

o increase knowledge and awareness of code smells and the
ecessity of refactoring towards its reduction. However, PHP web
pplications will always be more challenging to control regarding
he existence of CS due to the heterogeneity of the languages and
latforms than Java desktop apps, which are the most studied
ntil now.

.5. RQ5 — Anomalies in code smells evolution

As we demonstrated, detecting the anomalies in code smell
volution is possible. This relatively simple method to implement
measuring ∆ρ cs – can detect the anomalies/sudden variations

n the CS density.
Almost half (five) of the applications exhibit sudden increases

n the density of the CS. These sudden increases indicate various
roblems in the maintenance capability of the code and can even
ead to issues or bugs in the code. It can also show variations in
he codebase and the addition or removal of external libraries. If
e check instead for sudden decreases, this can usually indicate
efactoring or, for example, adding code with no code smells.
herefore, it is essential to remove the external libraries from the
nalysis.
When is the CS number/density change too high? In factories

sing control charts, to control a measurement attribute that goes
round a value, there are limits equal to 3 times the variance. In
his case, we do not have variances around a value/metric, so we
ave to define thresholds that development teams or managers
an tailor. We believe that a threshold of 50% will be sufficient to
aise maintainability alerts. Knowing that we can never remove
ll the CS from an application, a 50% increase would raise a
ellow flag, and a 100% increase would raise a red flag (stop
mmediately). Looking at Table 12 we can see that peaks also
ffect the cyclomatic complexity per LLOC, which in turn affects
aintainability (Gill and Kemerer, 1991).
We also tried other methods to measure the CS variations, and

mong them, to apply SPC (Statistical Process Control) techniques

ith 2 or 3 standard deviations as limits, but we could not get r

21
imits due to the nature of the evolution (for long periods, the
umber of CS was the same, then this value sudden increases).
he main problem was that the standard deviation was 0 or close
o 0. Moreover, with methods that use the average, for example, a
etrics study (Digkas et al., 2020), one must know all the project
istory, while in the method shown here, the computation at each
oint in time is based on data collected from the previous and
urrent release.
Ideally, the removal of CS can be done in a ‘‘Total Quality’’

anner, where the developer is responsible for avoiding the
ntroduction of CS in the code, but often this is not possible. CS
ensity thresholds detection can be integrated into an automation
erver tool such as Jenkins, that runs a battery of tests before a
elease — comparing it with the previous release. If a threshold
s reached, the release could be held for some refactoring to be
erformed. This mechanism would act as a safeguard with the
ther tests in the test battery. Since Jenkins already has support
or PHPMD in PHP projects, it is feasible to add our approach to
he pipeline. Each development team should decide the value of
he threshold, depending on the development circumstances and
equirements.

.6. Implications for researchers

There is a need for more studies on the evolution of web apps
ith code smells to approach the level of knowledge in desktop
pps, particularly in the Java language. While some findings in
his study are similar to the desktop world (differing in the
umbers), others reveal that there is more work to be done on
he web area (for example, the density of CS has a stable trend
indicating few CS removal, while in desktop apps the trend is

‘decrease’’).
A substantial part of the evolution of CS can be explained by

he size of the application, team size, and the number of ‘‘new
evs’’. However, in this study, the number of commits does not
eem to relate to the evolution of CS. Additionally, there can be
udden changes in the evolution of CS that can be caused by a
eak in the referred variables (code size and team) or even other
actors that are worth investigating.

When making evolutionary studies, investigators must inspect
he software being analyzed to avoid the folders from other ven-
ors when collecting the sample. For example, in phpMyAdmin, if
e remove the folders from different vendors from the analysis,
e have only 50% of the original code in the zip release. If
his step is missed, part of the analyzed code comes from other
rograms. We perform this step since (Rio and Brito e Abreu,
019).
When measuring size/lines in PHP, not all programs will count

nly PHP code lines inside PHP files. For example, phpLOC will
ount HTML lines in PHP files as PHP code. One way to avoid this
roblem is to use LLOC (logical lines of code).
We provide the data used in this study (replication package)

hat complies with the last two paragraphs and can be used in
urther studies.

PHP web apps should have more tools to detect and refactor
ode smells. While there are some tools to refactor localized code
mells, there is a need to build tools to refactor scattered (design)
ode smells in this language.
Lastly, more code smells and quality topics should be taught

n the disciplines of Software Engineering in the Academia.

.7. Implications for practitioners

Removing code smells in a web app without spending time is
mpossible. Therefore, there will always be a trade-off between

eleasing quickly and more quality in the code. However, this

https://www.jenkins.io/
https://www.jenkins.io/zh/solutions/php/

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

a
p

i
s
r
o
w

m
w
t

p
a
i

u
t
c
c

s
a
m

d
l
m
p

a
C
i
d
r
e

w
c
t
i

i
t
p
a
d
I
o
a

n
w
d

nd other studies suggest several effective ways to mitigate the
roblem.
Reduce CS density: (From RQ1) The density of code smells

s not going down in the evolution of the projects (primarily
table trend), as with languages with more tools for detecting and
efactoring CS, like Java. Therefore, team leaders should alert the
ther developers of the existence of CS in the applications built
ith PHP.
Divide big development teams into groups that are easier to

anage. CS density correlates with team size, and bigger teams
ill make more mistakes as it is more challenging to manage
hem.

As for the ‘‘new devs’’, they are probably not aware of the
rogramming practices of the app and do not enforce code smell
voidance. Ensure that there is a style manual referring to avoid-
ng CS.

Prioritize CS to remove: (From RQ2) Detect and remove un-
sed variables and parameters. Try to reduce the complexity of
he methods and classes. Try to shorten long methods and long
lasses by dividing them into specialized methods and specialized
lasses.
Scattered/design CS are less removed than localized CS and

hould be addressed in the code as soon as possible, as they
ffect more classes/files and cause more damage. They will affect
aintainability later.
From RQ4, we can report that there was no significant re-

uction in CS survival time in the second half of the application
ife for all applications. Therefore, team leaders and managers
ust increase developers’ awareness of CS and maintainability
roblems.
Avoid peaks in code smells, especially sudden increases, before

release. These peaks in the density of CS usually increase the
yclomatic Complexity density, which is a proxy for maintainabil-
ty. We provided a simple way to perform this sudden increase
etection. However, we detected some peaks that were legit
emoval of code (a different implementation of translations, for
xample), which is sometimes unavoidable.
Finally, as a general development recommendation, in projects

ith legacy code, whenever possible, move the code from in-
ludes (from other teams) to a vendor folder (the standard for
he tool composer) or a different folder of choice. Even if the app
s not using composer, the external code will be more up-gradable
(and ease taking metrics).

7. Conclusions and future work

The literature is still scarce on what concerns PHP CS evolution
studies, the main topic of this paper. PHP, a language that fully
supports object-oriented paradigm (among others), is by far the
most used on the server-side for web apps, and a vast code-
base exists (e.g., almost a million and a half PHP repositories on
GitHub.19) Other researchers have confirmed the existence of CS
n PHP, and the Software Engineering community has long agreed
hat, since they are symptoms of poor design, leading to future
roblems such as reduced maintainability, we should aim at
voiding them. While the best option would be not to insert them
uring development using detection mechanisms embedded in
DEs, we found evidence of 18 CS in 12 widely used PHP web apps
ver many years. Therefore, we studied their evolution, survival,
nd anomalies in the CS evolution.
The trends in most applications are the increase of the total

umber of CS, similar to LLOC trends, and stability in CS density,
ith some exceptions. There is a strong correlation between the
ensity of CS with the developers metrics. The CS that appear

19 https://github.com/search?q=language%3Aphp&type=repositories
22
the most are related to complexity, unused code, long methods,
and too many public methods. The average CS survival life in
the applications is between 3.5 and 3.8 years depending how we
calculate. A more important value is that CS tend to stay a long
time in code, close to 37% of the app life. Around 61% of the CS
are removed from the code. We found that most of the survival
of localized code smells differs from the localized ones and from
application to application. All applications remove localized CS,
but the rate of removal for scattered CS is much lower. For most
apps, the survival curves of the app history first half and second
half differ, and for most of those, the CS survival time is shorter
in the first timeframe.

Last but not least, we described a normalized technique for
detecting anomalies in specific releases during the evolution of
web apps, allowing us to unveil the CS history of a development
project and make managers aware of the need for enforcing
regular refactoring practices. Furthermore, this technique can also
be helpful in an automation test server, quality test, or release
certification, to avoid the excessive CS density before a public
release.

In summary, CS stay a long time in code. The removal rate is
low and did not change substantially in recent years. An effort
should be made to avoid this bad behavior and change the CS
density trend to decrease.

Getting rid of all CS is probably an unjustifiable quest since
some occurrences may make sense, depending on the technical
context. Therefore, if this number is controlled, the web apps
and developers will live with a CS number different from zero.
We also hope the number of studies on code smells in web
apps increases, augmenting the developers’ awareness of this bad
behavior in the code.

Regarding future work, we would like to increase the number
of applications and the number of CS studied, provided more
computing power is available since collecting CS across many
continuous releases is a computationally heavy task. We collected
CS on a million units for each app during our long observation
periods. It is also worth researching if longitudinal studies on CS
depend on the programming language.

CRediT authorship contribution statement

Américo Rio: Conceptualization, Methodology, Software, Data
curation, Statistical analysis, Results, Writing – original draft,
Writing – review & editing. Fernando Brito e Abreu: Supervision,
Conceptualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

For replication purposes, we provide the collected dataset,
available at https://github.com/studydatacs/servercs and https://
doi.org/10.5281/zenodo.7626150.

Acknowledgments

This work was partially supported by the Portuguese Founda-
tion for Science and Technology (FCT) projects UIDB/04466/2020

and UIDP/04466/2020.

https://github.com/search?q=language%3Aphp&type=repositories
https://github.com/studydatacs/servercs
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150
https://doi.org/10.5281/zenodo.7626150

A. Rio and F. Brito e Abreu The Journal of Systems & Software 200 (2023) 111644

R

A

A

B

B

B

C

C

C

C

D

D

F

F

F

G

H

H

H

J

K

K

eferences

manatidis, T., Chatzigeorgiou, A., 2016. Studying the evolution of PHP web
applications. Inf. Softw. Technol. 72 (April), 48–67. http://dx.doi.org/10.1016/
j.infsof.2015.11.009.

manatidis, T., Chatzigeorgiou, A., Ampatzoglou, A., 2017. The relation between
technical debt and corrective maintenance in PHP web applications. Inf.
Softw. Technol. 90, 70–74. http://dx.doi.org/10.1016/j.infsof.2017.05.004.

essghaier, N., Ouni, A., Mkaouer, M.W., 2020. On the diffusion and impact of
code smells in web applications. In: International Conference on Services
Computing (SCC’2020). Vol. 12409 LNCS, Springer, pp. 67–84. http://dx.doi.
org/10.1007/978-3-030-59592-0_5.

ieman, J.M., Kang, B.-K., 1995. Cohesion and reuse in an object-oriented
system. SIGSOFT Softw. Eng. Notes 20 (SI), 259–262. http://dx.doi.org/10.
1145/223427.211856.

ryton, S., Brito e Abreu, F., Monteiro, M., 2010. Reducing subjectivity in code
smells detection: Experimenting with the long method. In: 7th International
Conference on the Quality of Information and Communications Technology
(QUATIC’2010). IEEE, pp. 337–342. http://dx.doi.org/10.1109/QUATIC.2010.60.

hatzigeorgiou, A., Manakos, A., 2010. Investigating the evolution of bad smells
in object-oriented code. In: 7th International Conference on the Quality of
Information and Communications Technology (QUATIC’2010). pp. 106–115.
http://dx.doi.org/10.1109/QUATIC.2010.16.

hatzigeorgiou, A., Manakos, A., 2014. Investigating the evolution of code smells
in object-oriented systems. Innov. Syst. Softw. Eng. 10 (1), 3–18. http:
//dx.doi.org/10.1007/s11334-013-0205-z.

lark, T.G., Bradburn, M.J., Love, S.B., Altman, D.G., 2003. Survival analysis part
I: basic concepts and first analyses. Br. J. Cancer 89 (2), 232. http://dx.doi.
org/10.1038/sj.bjc.6601118.

unningham, W., 1992. The WyCash portfolio management system. SIGPLAN
OOPS Messenger 4 (2), 29–30. http://dx.doi.org/10.1145/157709.157715.

igkas, G., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2020. On the
temporality of introducing code technical debt. In: 13th International Con-
ference on the Quality of Information and Communications Technology
(QUATIC’2020). Vol. 1266 CCIS, Springer, pp. 68–82. http://dx.doi.org/10.
1007/978-3-030-58793-2_6.

igkas, G., Lungu, M., Chatzigeorgiou, A., Avgeriou, P., 2017. The evolution
of technical debt in the apache ecosystem. In: European Conference on
Software Architecture (ECSA’2017). Vol. 10475 LNCS, Springer, pp. 51–66.
http://dx.doi.org/10.1007/978-3-319-65831-5_4.

ernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E., 2016. A review-based
comparative study of bad smell detection tools. In: 20th International Con-
ference on Evaluation and Assessment in Software Engineering (EASE’2016).
Vol. 01-03-June, ACM, pp. 1–12. http://dx.doi.org/10.1145/2915970.2915984.

ontana, F.A., Lenarduzzi, V., Roveda, R., Taibi, D., 2019. Are architectural smells
independent from code smells? An empirical study. J. Syst. Softw. 154,
139–156. http://dx.doi.org/10.1016/j.jss.2019.04.066.

owler, M., 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, p. 464.

ill, G.K., Kemerer, C.F., 1991. Cyclomatic complexity density and software
maintenance productivity. Trans. Softw. Eng. 17 (12), 1284. http://dx.doi.org/
10.1109/32.106988.

abchi, S., Rouvoy, R., Moha, N., 2019. On the survival of android code smells in
the wild. In: 6th International Conference on Mobile Software Engineering
and Systems (MOBILESoft’2019). IEEE, pp. 87–98. http://dx.doi.org/10.1109/
MOBILESoft.2019.00022.

enderson-Sellers, B., 1995. Object-Oriented Metrics: Measures of Complexity.
Prentice-Hall.

erbold, S., Grabowski, J., Waack, S., 2011. Calculation and optimization of
thresholds for sets of software metrics. Empir. Softw. Eng. 16 (6), 812–841.
http://dx.doi.org/10.1007/s10664-011-9162-z.

ohannes, D., Khomh, F., Antoniol, G., 2019. A large-scale empirical study of
code smells in JavaScript projects. Softw. Qual. J. 27 (3), 1271–1314. http:
//dx.doi.org/10.1007/s11219-019-09442-9.

aplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete obser-
vations. J. Amer. Statist. Assoc. 53 (282), 457–481. http://dx.doi.org/10.1080/
01621459.1958.10501452.

yriakakis, P., Chatzigeorgiou, A., 2014. Maintenance patterns of large-scale PHP
web applications. In: 30th International Conference on Software Maintenance
and Evolution (ICSME’2014). IEEE, pp. 381–390. http://dx.doi.org/10.1109/
ICSME.2014.60.
23
Lanza, M., Marinescu, R., 2007. Object-Oriented Metrics in Practice. Springer.
Lehman, M.M., 1996. Laws of software evolution revisited. In: European

Workshop on Software Process Technology (EWSPT1996). Vol. LNCS 1149,
Springer, pp. 108–124. http://dx.doi.org/10.1007/BFb0017737.

Mccabe, T.J., 1976. A complexity measure. Trans. Softw. Eng. SE-2 (4), 308–320.
http://dx.doi.org/10.1109/TSE.1976.233837.

Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N., 2009. The evolution and
impact of code smells: A case study of two open source systems. In: 3rd
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM’2009). IEEE, pp. 390–400. http://dx.doi.org/10.1109/ESEM.2009.
5314231.

Olbrich, S.M., Cruzes, D.S., Sjoøberg, D.I., 2010. Are all code smells harmful? A
study of God Classes and Brain Classes in the evolution of three open source
systems. In: International Conference on Software Maintenance (ICSM’2010).
IEEE, http://dx.doi.org/10.1109/ICSM.2010.5609564.

Palomba, F., Bavota, G., Penta, M.D., Fasano, F., Oliveto, R., Lucia, A.D., 2018.
On the diffuseness and the impact on maintainability of code smells: a
large scale empirical investigation. Empir. Softw. Eng. 23 (3), 1188–1221.
http://dx.doi.org/10.1007/s10664-017-9535-z.

Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., 2017. Code
smells detection 2.0: Crowdsmelling and visualization. In: 2017 12th Iberian
Conference on Information Systems and Technologies. CISTI, IEEE, pp. 1–4.
http://dx.doi.org/10.23919/CISTI.2017.7975961.

Peters, R., Zaidman, A., 2012. Evaluating the lifespan of code smells using
software repository mining. In: European Conference on Software Mainte-
nance and Reengineering (CSMR’2012). IEEE, pp. 411–416. http://dx.doi.org/
10.1109/CSMR.2012.79.

Rani, A., Chhabra, J.K., 2017. Evolution of code smells over multiple versions
of softwares: An empirical investigation. In: 2nd International Conference
for Convergence in Technology (I2CT’2017). Vol. 2017-January, IEEE, pp.
1093–1098. http://dx.doi.org/10.1109/I2CT.2017.8226297.

Rasool, G., Arshad, Z., 2015. A review of code smell mining techniques. J. Softw.:
Evol. Process 27 (11), 867–895. http://dx.doi.org/10.1002/smr.1737.

Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., Anslow, C., 2021.
Code smells detection and visualization: A systematic literature review. Arch.
Comput. Methods Eng. http://dx.doi.org/10.1007/s11831-021-09566-x.

Rio, A., Brito e Abreu, F., 2019. Code smells survival analysis in web apps. In: 12th
International Conference on the Quality of Information and Communications
Technology (QUATIC’2019). Springer, pp. 263–271. http://dx.doi.org/10.1007/
978-3-030-29238-6_19.

Rio, A., Brito e Abreu, F., 2021. Detecting sudden variations in web apps
code smells’ density: A longitudinal study. In: Paiva, A.C.R., Cavalli, A.R.,
Ventura Martins, P., Pérez-Castillo, R. (Eds.), Proceedings of the International
Conference on the Quality of Information and Communications Technology
(QUATIC’2021). Springer, pp. 82–96. http://dx.doi.org/10.1007/978-3-030-
85347-1_7.

Saboury, A., Musavi, P., Khomh, F., Antoniol, G., 2017. An empirical study of code
smells in JavaScript projects. In: 24th International Conference on Software
Analysis, Evolution, and Reengineering (SANER’2017). IEEE, pp. 294–305.
http://dx.doi.org/10.1109/SANER.2017.7884630.

Schuette, D., 2021. Survival analysis in R for beginners.
Sharma, T., Singh, P., Spinellis, D., 2020. An empirical investigation on the

relationship between design and architecture smells. Empir. Softw. Eng. 25
(5), 4020–4068. http://dx.doi.org/10.1007/s10664-020-09847-2.

Singh, S., Kaur, S., 2018. A systematic literature review: Refactoring for disclosing
code smells in object oriented software. Ain Shams Eng. J. 9 (4), 2129–2151.
http://dx.doi.org/10.1016/j.asej.2017.03.002.

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A.,
Poshyvanyk, D., 2016. An empirical investigation into the nature of test
smells. In: 31st International Conference on Automated Software Engineering
(ASE’2016). IEEE, pp. 4–15. http://dx.doi.org/10.1145/2970276.2970340.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A.,
Poshyvanyk, D., 2015. When and why your code starts to smell bad. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. Vol.
1, IEEE, pp. 403–414. http://dx.doi.org/10.1109/ICSE.2015.59.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M.D., De Lucia, A.,
Poshyvanyk, D., 2017. When and why your code starts to smell bad (and
whether the smells go away). Trans. Softw. Eng. 43 (11), 1063–1088. http:
//dx.doi.org/10.1109/TSE.2017.2653105.

Zhang, M., Hall, T., Baddoo, N., 2011. Code bad smells: A review of current
knowledge. J. Softw. Maintenance Evol. 23 (3), 179–202. http://dx.doi.org/
10.1002/smr.521.

http://dx.doi.org/10.1016/j.infsof.2015.11.009
http://dx.doi.org/10.1016/j.infsof.2015.11.009
http://dx.doi.org/10.1016/j.infsof.2015.11.009
http://dx.doi.org/10.1016/j.infsof.2017.05.004
http://dx.doi.org/10.1007/978-3-030-59592-0_5
http://dx.doi.org/10.1007/978-3-030-59592-0_5
http://dx.doi.org/10.1007/978-3-030-59592-0_5
http://dx.doi.org/10.1145/223427.211856
http://dx.doi.org/10.1145/223427.211856
http://dx.doi.org/10.1145/223427.211856
http://dx.doi.org/10.1109/QUATIC.2010.60
http://dx.doi.org/10.1109/QUATIC.2010.16
http://dx.doi.org/10.1007/s11334-013-0205-z
http://dx.doi.org/10.1007/s11334-013-0205-z
http://dx.doi.org/10.1007/s11334-013-0205-z
http://dx.doi.org/10.1038/sj.bjc.6601118
http://dx.doi.org/10.1038/sj.bjc.6601118
http://dx.doi.org/10.1038/sj.bjc.6601118
http://dx.doi.org/10.1145/157709.157715
http://dx.doi.org/10.1007/978-3-030-58793-2_6
http://dx.doi.org/10.1007/978-3-030-58793-2_6
http://dx.doi.org/10.1007/978-3-030-58793-2_6
http://dx.doi.org/10.1007/978-3-319-65831-5_4
http://dx.doi.org/10.1145/2915970.2915984
http://dx.doi.org/10.1016/j.jss.2019.04.066
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb14
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb14
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb14
http://dx.doi.org/10.1109/32.106988
http://dx.doi.org/10.1109/32.106988
http://dx.doi.org/10.1109/32.106988
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb17
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb17
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb17
http://dx.doi.org/10.1007/s10664-011-9162-z
http://dx.doi.org/10.1007/s11219-019-09442-9
http://dx.doi.org/10.1007/s11219-019-09442-9
http://dx.doi.org/10.1007/s11219-019-09442-9
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1109/ICSME.2014.60
http://dx.doi.org/10.1109/ICSME.2014.60
http://dx.doi.org/10.1109/ICSME.2014.60
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb22
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://dx.doi.org/10.1109/ESEM.2009.5314231
http://dx.doi.org/10.1109/ICSM.2010.5609564
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.23919/CISTI.2017.7975961
http://dx.doi.org/10.1109/CSMR.2012.79
http://dx.doi.org/10.1109/CSMR.2012.79
http://dx.doi.org/10.1109/CSMR.2012.79
http://dx.doi.org/10.1109/I2CT.2017.8226297
http://dx.doi.org/10.1002/smr.1737
http://dx.doi.org/10.1007/s11831-021-09566-x
http://dx.doi.org/10.1007/978-3-030-29238-6_19
http://dx.doi.org/10.1007/978-3-030-29238-6_19
http://dx.doi.org/10.1007/978-3-030-29238-6_19
http://dx.doi.org/10.1007/978-3-030-85347-1_7
http://dx.doi.org/10.1007/978-3-030-85347-1_7
http://dx.doi.org/10.1007/978-3-030-85347-1_7
http://dx.doi.org/10.1109/SANER.2017.7884630
http://refhub.elsevier.com/S0164-1212(23)00039-0/sb36
http://dx.doi.org/10.1007/s10664-020-09847-2
http://dx.doi.org/10.1016/j.asej.2017.03.002
http://dx.doi.org/10.1145/2970276.2970340
http://dx.doi.org/10.1109/ICSE.2015.59
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1002/smr.521
http://dx.doi.org/10.1002/smr.521
http://dx.doi.org/10.1002/smr.521

	PHP code smells in web apps: Evolution, survival and anomalies
	Introduction and Motivation
	Related Work
	Evolution on CS
	Evolution on CS, with survival analysis
	Cross-sectional or mixed studies in web apps or web languages
	Evolution with PHP, without CS
	Studies comparing types of CS

	Methods and Study Design
	Research questions
	Applications sample
	Code smells sample
	Data collection and preparation workflow
	Statistics used
	Methodology for each RQ
	RQ1 — How to characterize the evolution of CS?
	RQ2 — What is the distribution and survival/lifespan of CS?
	RQ3 — Is the survival of localized CS the same as scattered CS?
	RQ4 — Does the survival of CS vary over time?
	RQ5 — How to detect anomalous situations in CS evolution?

	Results and data analysis
	RQ1 — Evolution of code smells
	Probable causes for the CS evolution

	RQ2 — PHP code smells distribution and lifespan
	CS lifespan
	Values by CS
	Values by application

	RQ3 — Survival curves for different scopes of CS: Localized vs. Scattered
	RQ4 — Survival curves for different time frames
	RQ5 — Anomalies in code smells evolution

	Threats to validity
	Discussion
	RQ1 — CS Evolution
	RQ2 — CS Survivability and distribution
	RQ3 — CS Survivability by scope
	RQ4 — CS Survivability by timeframe
	RQ5 — Anomalies in code smells evolution
	Implications for researchers
	Implications for practitioners

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

