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Abstract

In e-commerce applications, buyers are overwhelmed by the number of products due to
the high depth of assortments. They may be interested in receiving recommendations
to assist with their purchasing decisions. However, many recommendation engines
perform poorly in the absence of community data and contextual data. This thesis
examines a hybrid matrix factorisation model, LightFM, representing users and items
as linear combinations of their content features’ latent factors. The model embedding
item features displays superior user and item cold-start performance. The results
demonstrate the importance of selectively embedding contextual data in the presence
of cold-start.

Keywords: Recommendation systems, Cold-start, Matrix factorisation, Implicit feed-
back
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1

Introduction

1.1 Paradox of Choice

It is a common understanding within the current modern society and economy that the
more choices available, the better and the human desire for choice is infinite. The idea is
that more options should increase the chance of a successful search. In many cases, this
association is the primary driver of organizations competing to offer their customers
the most diversity of products and services. However, there is an increasing amount of
evidence and research that suggest that people can have difficulties managing complex
decisions. Research has shown that facing many alternatives could result in postponed
decisions, searching for new alternatives, or opt not to choose [2].

Furthermore, recent research in cognitive psychology has disclosed the impact of
choice overload and the paradox of choice. If choices are important and success is
personally critical, it will lead to impaired decision-making and degraded satisfaction
[3]. For instance, the research found that passersby are more likely to buy jams on
display and more satisfied as customers when there are six jams to choose from than
twenty-four [4].

These decision-making issues caused by choice overload gain significant importance
in retail and e-commerce industries due to the increased product depth that these
organizations provide for their customers, which is a consequence of the low costs
of inventory like online retailing. It grants online retailers an advantage: to offer
their customers an enormous product assortment, explained by [5] as the availability
of various shapes of products offered by marketers to be owned or consumed by
consumers. Therefore, the movement toward e-commerce has enabled these sites to
provide their customers with a broad range of products. Competing as an online
retailer in today’s highly competitive retail industry has become necessary. Moreover,
geography does not constrain customers’ expectations and desires concerning product
depth and quality. Amanah and Harahap investigated the impact of product assortment
on online purchases decision among university students in Indonesia. They found
that product assortment was a vital and influential factor in students’ online purchase
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CHAPTER 1. INTRODUCTION

decision-making [6]. However, in expanding to this new level of increased alternatives,
businesses escalate the information customers must process before selecting items that
meet their needs. Many researchers suggest that the vast number of substitutes leads
consumers the experience information overload. It is a negative affective effect caused
by the surplus of information and the consumer’s processing capacity [7]. Moreover,
from the customers’ perspective, selecting from among a large number of options tend
to shoot the decision-making difficulty and thus leads consumers to rely more on
easy-to-obtain justification in purchasing an item [8]. This choice overload problem
is an issue that online e-commerce platforms have been attempting to address since
the nineties [9] by aiding customers to discover exciting and related products in the
retailer’s assortment.

The choice overload has been partly addressed by creating capable search engines
which are increasingly optimized during the last decades. Nevertheless, search engines
are only helpful when the customers are aware of the specific name of the product
they are looking for and are specifically aware of their wants and needs. There are
instances in which customers are unaware of their needs, nor have they thought of
their need for a specific item. As a result, E-commerce sites use Recommender Systems
to suggest products to their customers. As search engines actually require user input
in order to work, how Recommender Engines help users to find the appropriate item
for their needs work differently. Generally, the products can be recommended based
on their popularity and sales volume, the customer’s demographics, or an analysis of
the past buying behaviour of the customer as a prediction for future buying behaviour
[10]. Recommender Engines use different methodologies such as similarrity metrics
to produce item suggestions that might interest users and utilize the user’s behaviour
and meta data [11].

1.2 Recommender Systems

Generally, a recommender engine or a recommender system is a computation that
recommends user-specific items [12]. In this case, the term item represents tangible or
intangible products, and a user is a person who obtains the recommendation based on
the assumed preferences. Since the early nineties, recommendation technologies have
improved tremendously. Karlgren introduced Recommender Systems in his paper:
An Algebra for Recommendations as an intelligent bookshelf [13]. The intelligent
system was intended to enable readers to obtain a collection of books tailored to
them. Despite the advanced idea, Karlgren’s paper was rejected by reviewers of the
INTERACT committee in 1990 because such a system would interfere with the privacy
and integrity of the users. As of now, 30 years after the publication of the first paper
on this topic, it is hard to imagine our everyday life without them. The usage of
such intelligent systems is across all online sites from social media to e-commerce and
streaming platforms such as YouTube, Amazon and Netflix [14–16]. Amazon utilizes at

2



1.2. RECOMMENDER SYSTEMS

least seven different recommendation systems simultaneously [17]. In 2006, Amazon
CEO Jeff Bezos stated, "If I have 3 million customers on the Web, I should have 3 million
stores on the Web", suggesting that every single customer on Amazon should have a
unique experience and Amazon should adjust itself towards their personalized needs
and preferences [18]. In the same year, Amazon stated that 35% of its sales originate
from recommendations made to the customer. However, Amazon is one of many sites to
utilize this powerful weapon to maximize customer satisfaction and revenue. YouTube
has a Recommender System for personalized video recommendations. Spotify uses
a Recommender System to predict the potential songs the user might favour. Lastly,
social media sites such as Facebook and LinkedIn use it for recommending social, and
professional connections [12, 19].

Ricci et al. mention five merits of such an intelligent system [12]. A recommender
system could increase the number of sales and, thereby, the revenue. It also improves
the diversity of the items sold since suggestions made by the system could embrace
unwanted items that are not easily found. Additionally, a recommendation system is
beneficial for e-commerce sites, and customers are generally pleases with the presence
of a recommender system. Consequently, this delight could lead to customer loyalty
towards the retailer. Finally, the retailers can gain insight into the needs and preferences
of the customer. In addition to Ricci et al. advantages, recommender systems could
assist excellent products in exposing themselves to the potential consumer, which leads
to disproportionately reduced search costs for niche products. According to Anderson,
these systems tend to deflect the demand from blockbusters away toward niches movies
that better meet consumer preferences [20]. Due to the many merits of these systems,
retailers are creating specified user profiles for better conceiving customer behaviour
and habits to provide their customers with more great user-specific recommendations.
Numerous marketing studies suggested that penalization enhances revenue and that
customer satisfaction [21–23]. Moreover, as of now, customers progressively expect
retailers to have an accurate and user-tailored recommendation [24].

1.2.1 Small Online Retailers and Recommender Systems

Kaminskas et al. found that usually, it is challenging to implement the currently
available recommendation systems to smaller-scale online retailers due to the small
amount of data they possess [25]. In contrast to more prominent retailers, such as
Amazon, they have fewer user-item interactions such as purchases, added to basket
or explicit rating data, which constrains how an accurate recommender system can be
constructed [25]. There are especially a few recommender systems that need more
sizable amounts of data and thereby need help to recommend appropriate items to
consumers. The absence of data and user-item interaction is also known as data sparsity.
A sparsity problem arises due to user interactions with a minor portion of items in the
particular domain, such as when users generally rate or purchase only a limited number
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CHAPTER 1. INTRODUCTION

of items. In addition to sparsity, the cold start problem is another major obstacle to
overcome for specific recommender techniques. According to Guo, cold start "refers
to the difficulty in bootstrapping the RSs for new users, or new items" [26]. The lack
of rating and user-item interaction is generally due to users’ need for awareness or
incentives to rate items. Although many techniques have been proposed to prevent
these issues, an established solution has yet to be presented [26].

1.3 Objectives and Practical Relevance

The primary purpose of the thesis is to implement a recommender system for an e-
commerce application capable of providing suggestions of products to a user based
on similarities concerning the behaviour of other users. The similarity is computed by
considering user interactions (i.e. the number of views and transactions) on a particular
product. Then, exploiting this similarity creates a list of recommended products.
Moreover, we want to investigate the quality of the recommendation by introducing
hybridizing the model and including item data and user data (metadata). Due to the
high inflow of new users (new customers) and items (new supplier products), we want
to test the model in user and item cold-start problems. To attain this objective, the
subsequent research questions were developed:

1. Research Q1: Could a mixture of implicit data on users and contextual data on
items increase the performance beyond the performance achieved with a pure
collaborative filtering model?

2. Research Q2: Does a hybridized model with a mixture of implicit data on users
and contextual on items aid the recommender system to increase the accuracy in
case of user- and item cold-start problem?

1.4 Structure of Thesis

This thesis is constructed as the following. First, the following Chapter will explore
the theoretical background of some of the fundamental techniques in the field of
recommendation systems which allows us to get a general technical understanding of
it. Subsequently, Chapter 3 introduces how the data is fetched, retrieved and used to
build a recommender system. Hence, the outcome of the experiment is presented in
Chapter 4. Chapter 5 discusses the outcome and responds to the research questions
made, and finally, the future work discusses potential further improvements that can
be made yet restricted to Magaloops circumstances. Lastly, Chapter 6 concludes all
previous chapters.
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2

Background

This chapter introduces the basic concepts of different Recommender Systems. It
discusses the dominant challenges and issues for individual Recommender Systems,
which form the foundation argument for designing the new hybrid method discussed
in this work.

2.1 Definition of Recommender System

The Recommender problem consists of the inputs of sets 𝑈 and 𝐼, where 𝑈 represents
the set of all users, and 𝐼 represents the set of all items. Each of the users in 𝑈 specifies
ratings from a set S of possibilities for the items 𝐼 present in the system (e.g., 𝑆 = [1,5] or
𝑆 = like, dislike). The resulting rating matrix 𝑅 is composed of 𝑅 = 𝑈 · 𝐼 which shows
that entries in 𝑅 indicate the rating of user𝑈 to the item 𝐼 [27]. To describe the subset of
users interacting with an item 𝐼, we use the notation 𝑈𝑖 while 𝐼𝑢 represents the subset
of items rated by a user 𝑈 . Moreover, recommender systems are often classified into
the following groups:

• Content-based recommendations: user receives items suggestions similar to the
ones the user has interacted with or liked in the past.

• Collaborative recommendations: user receives items suggestions that the user
with similar tastes preferred in the past.

• Hybrid methods: Usually a combination of at least two recommendation tech-
niques, such as content-based and collaborative filtering.

2.1.1 Explicit and Implicit Feedback

Generally, the data used for a specific model are based on explicit or implicit data
where an explicit data is created by a user, while an implicit data is created from
user-specific actions. Alternatively stated, explicit feedback illustrates the preference
of a user head-on, while implicit feedback displays the preference of a user indirectly

5



CHAPTER 2. BACKGROUND

Explicit feedback Implicit Feedback
Accuracy High Low
Abundance Low High
Expressivity of a user preference Positive and negative Positive
Measurement reference Absolute Relative

Table 2.1: Explicit and Implicit feedback summarized

[28]. However, despite tremendous investments in projects that help the company
extract as much explicit customer feedback, in an imperfect world, explicit feedback
is only sometimes obtainable. According to Jannach et al., "the main problems with
explicit ratings are that such ratings require additional efforts from the users of the
recommender system and users might not be willing to provide such ratings as long as
the value cannot be easily seen [29]. Thus, the number of available ratings could be too
small, resulting in poor recommendation quality." For example, a Netflix user might be
reluctant to give out a personal rating of the movie right after watching it or even later
on. As a consequence, an alternative solution to a user’s willingness to rate products
and services is together user preference intelligence through implicit feedback [30]. For
instance, a user watching Sci-Fi movies several times could show their inclination for
that specific genre. Furthermore, in the domain of the smaller-scale e-retailers, explicit
feedback is rarely available [25] while implicit feedback is almost always available [31].
Implicit ratings are usually generated by the webshop into which the recommendation
engine is integrated. For instance, one could interpret the purchase of an item as a
positive rating, while a return of an item could indicate that the user did not have a
pleasant experience with the item purchased. Moreover, data could also be generated
by monitoring the user’s browsing behaviour. Suppose the user lands a page with
detailed item description and stays on this page for a long duration, for example. In
that case, a recommender could define the time spent on a specific item description
as a preferable inclination towards that item. On the contrary, despite the rich supply
of implicit ratings, one needs to be more confident whether the customer behaviour is
accurately translated. For instance, a user might purchase an item for a friend, which
could not necessarily be interpreted as a positive sign toward the item. In addition,
implicit ratings do not capture the user’s experience with the item; it only captures
the user’s interest towards the item prior to consuming the item. As a result, a high
number of implicit ratings are necessary to neutralize its ambiguity. The explicit and
implicit feedback features are summarized in Table 2.1.
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2.2. COLLABORATIVE FILTERING

2.2 Collaborative Filtering

The name of collaborative filtering originates from the notion that "people collaborate
to help one another perform filtering by recording their reactions to documents they
read" or any other item feedback [32]. Most collaborative filtering methods leverage
item-to-item correlations or user-to-user correlations for the recommendation process.
At the same time, a few models utilise both types of interrelationship [33]. In the
field of Collaborative Filtering, two sort of techniques are usually utilized, which
are introduced as memory-based and model-based mechanism. On the one hand,
memory-based models are also known as neighbourhood-based collaborative filtering
techniques. According to Aggarwal, "these were among the earliest collaborative
filtering algorithms, in which the ratings of user-item combinations are predicted based
on their neighbourhoods," consisting of User-based Filtering and Item-based Filtering.
On the otherhand, model-basedmethods apply data mining as well as machine learning
methods such as decision trees, rule-based models, Bayesian methods and latent factor
models. Model-based methods have numerous advantages over neighbourhood-based
methods. Firstly, the size of the model-based models is in fact significantly smaller than
the original matrix ratings. Secondly, the model-based methods are much faster and
more efficient in the preprocessing process of constructing the trained model relative
to neighbourhood-based models. Lastly, one of the main issues with sparse matrices
is the small set of ratings that could lead to overfitting. In this case, model-based
methods could address this problem by using regularization. Regularization decreases
the inclination of the mechanism to overfit by integrating a bias into the mechanism
[33].

2.2.1 User-based Fitlering

User-based Collaborative Filtering aims to prioritize the search for similar users, also
known as neighbours. Similar to Item-based Filtering, prioritization saves a substantial
number of calculations as the whole user-items matrix is not considered. As a result, a
series of items are suggested which are commonly consumed by homogeneous users
[34]. Some conventional approaches are the K-Means and the K-Nearest-Neighbor
algorithms, which identify similar users. While the former creates a finite number
of user groups, the latter defines a finite number of homogeneous users to a specific
one. Different methodologies are utilized to perform user-based filtering, such as Pear-
son’s correlation coefficient. However, methods such as Spearman’s rank correlation
coefficient and adjusted cosine similarity have been established in the field of recom-
mendation systems to calculate the similarity between users. Nevertheless, several
empirical research illustrates the superiority of the Pearson coefficient relative to other
measures, which captures the similarity between the rating vectors of two users, a and
b [35]. As a result, the Pearson correlation coefficient is defined as:
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𝑟 =

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)√
𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥̄)2
√

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̄)2
(2.1)

2.2.2 Item-based Fitlering

The power of Collaborative Filtering lies in taking each rating of each user at disposal
into consideration. Although User-based Collaborative Filtering Systems have had
success in numerous domains, some severe difficulties still need to be addressed
regarding e-commerce sites with millions of users and items. As a result, as the
number of neighbours among a significant user population increases, the more time-
consuming the search for these neighbours. The necessity to calculate many potential
neighbours makes it exceptionally difficult to produce recommendations in actual
instantaneously, which is a vital performance dimension given the current demand
of swift page loading in with current user expectations. According to Sarwar et al.,
scalability is a significant challenge of User-based collaborative filtering systems despite
their success in the past [36]. E-commerce sites with a large number of users and
items often implement an item-based recommendation, which could speed up the
recommendations shown to the user through offline preprocessing and thus allows
for the computation of recommendations in real-time, even for an extensive rating
matrix. Moreover, the authors explain that the intuition behind Item-based Filtering is
that "a user would be interested in purchasing items that are similar to the items user
liked earlier and would avoid items that are similar to the items the user did not like
earlier". The objective of Item-based Collaborative Filtering is to identify appropriate
items based on other items’ consumption information, which prevents the problem by
prioritizing the relationship among items first rather than the relationships between
users. The primary objective of item-based algorithms is to make recommendations
utilizing the similarity among items [36].

A similarity measure must be defined to discover similarity among items in the
database. According to Jannach et al., "in item-based recommendation approaches,
cosine similarity is established as the standard metric, as it has been shown to produce
the most accurate results [29]. The metric measures the similarity between two n-
dimensional vectors based on the angle between them". This similarity measure is
generally utilized in text mining to compare two text documents [33]. The proximity
between item a and b – regarded as the corresponding rating vectors 𝑎 and 𝑏 – is
formulated:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝛼) = 𝑎 · 𝑏
| |𝑎 | |2 | |𝑏 | |2

=

𝑛∑
𝑖=1

(𝑎𝑖𝑏𝑖)√
𝑛∑
𝑖=1

𝑎2
𝑖

√
𝑛∑
𝑖=1

𝑏2
𝑖

(2.2)
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The · symbol is the dot product of vectors. |𝑎 | is the Euclidean length of the vector [33].
The output value range is between 0 and 1 while 1 indicates a substantial similarity
between item 𝑎 and 𝑏. Besides cosine-based similarity, there are other techniques,
such as correlation-based similarity and adjusted cosine similarity which could also
be utilized to compute item similarity. Sarwar et al. compared adjusted cosine, basic
cosine and correlation in an experiment and found that adjusted cosine similarity has
a clear advantage due to its lower mean absolute error or MAE that was used as the
evaluation metric [36].

2.2.3 Principal Component Analysis

Goldberg et al. proposed a unique approach to dimensionality reduction, Principal
Component Anaylsis, which intends to extract the predominant information of the
data that concludes for the majority of the variations [32]. The amount of variance
is obtained by the first component is more considerable than the amount of variance
on the second component which enables the dimensionality reduction of the data by
neglecting the components with a marginal contribution to the variance. Consequently,
the users are grouped into clusters of neighbours.

2.2.4 Matrix Factorization

In the Netflix Prize competition, which was held in 2009, sophisticated model-based fil-
tering algorithms such as matrix factorization methods displayed a superior predictive
accuracy. Matrix factorization methods generate a set of hidden factors known as latent
factors from users and items. For example, in the movie domain, this could translate
into different features of a movie, such as a genre or the actors and the producers
involved. As a result, a recommendation is made whenever a high correspondence
exists between the item and user factors [37]. Moreover, the authors illustrate one of
the merits of choosing such a recommender system: "it allows incorporation of addi-
tional information" in the absence of explicit feedback. Thereby, the system can utilize
implicit feedback, reflecting the user’s behaviour implicitly. To reduce the problem of
sparsity in the datasets, matrix factorization is one of the optimal approaches, primarily
utilized for its ability to process large databases and provide scalable approaches [37].
Furthermore, to recommend 𝑁 items with 𝑓 latent factors to 𝑀 customers, the memory
cost of matrix factorization recommendation is 𝑓 ∗ 𝑀 + 𝑓 ∗ 𝑁 , but the similarity-based
recommender method has the memory cost of 𝑀2/2. Let 𝐴 be the matrix of users 𝑀

and items 𝑁 , which contains all the ratings that the users have allocated to the individ-
ual items. The objective of matrix factorization is to decompose the original item-user
matrix 𝐴 into two new matrices that is able to make predictions which by multiplying
the two decomposed matrices. Consequently, this produces a sparse matrix where
each row and column represents users and items, respectively.

9



CHAPTER 2. BACKGROUND

Figure 2.1: Concept of Matrix Factorization

As shown in 2.1, the 𝑀 ·𝑁 rating matrix 𝐴 𝐼 decomposed into the user latent factor
matrix 𝑋 and the item latent factor matrix 𝑌. The attributes of items such as movie
category or music genre are embedded in factor vectors. As an example, if a customer
has a high factor score, it hints at customer preference for that attribute (e.g. music
genre). Matrix factorization aims to find the mapping between users and items in factor
vectors. To determine the factors 𝑥𝑢 and 𝑦𝑖 , the value in matrix A is decomposed into
𝑥𝑇𝑢 𝑦𝑖 with the objective of minimizing the following cost function:

𝑚𝑖𝑛𝑥,𝑦

∑
(𝑟𝑢,𝑖 − 𝑥𝑇𝑢 𝑦𝑖)2 + 𝜆(| |𝑥𝑢 | |2 + ||𝑦𝑖 | |2) (2.3)

2.2.5 Alternating Least Square

Hu et al. altered the cost function of matrix factorization for implicit data since the value
of implicit feedback cannot be directly mapped to users’ preferences by changing the
initial rating 𝑟𝑢𝑖 in the cost function (2.3) with the binary value 𝑝𝑢𝑖 and the confidence
weighting 𝑐𝑢𝑖 as follows [38]:

𝑚𝑖𝑛𝑥,𝑦

∑
𝑐𝑢𝑖(𝑝𝑢,𝑖 − 𝑥𝑇𝑢 𝑦𝑖)2 + 𝜆(| |𝑥𝑢 | |2 + ||𝑦𝑖 | |2) (2.4)

where 𝑐𝑢𝑖 = (1 + 𝛼𝑟𝑢𝑖) and 𝛼 is the rate of increase in confidence 𝑟𝑢𝑖 ; 𝑝𝑢𝑖 is derived by
binarizing 𝑟𝑢𝑖 which indicates the user’s inclination on the rating item. The values of
𝑝𝑢𝑖 are:

𝑋 =


0, 𝑟𝑢𝑖 > 0

1, 𝑟𝑢𝑖 = 0
(2.5)

2.2.6 Challenges of Collaborative Filtering

Despite many innovations and novel techniques that minimize the weaknesses of
Collaborative Filtering, there are a few inevitable challenges. A significant difficulty
when using collaborative filtering techniques is the sparsity of the matrices that include
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the ratings. Alternatively stated, the amount of ratings acquired is generally quite
insignificant relative to the extent of ratings required to make a suggestion [9]. For
example, the users on an e-commerce platform usually interact with a small portion of
the items available from all of the products; therefore, most item ratings are unknown.
Thereby, the resulting sparsity of the user-item matrices lessens the performance and
accuracy of a recommender system [39]. Furthermore, the number of users and items
directly affects the required computing power. CPUs and other hardware resources
could be crucial to prevent service collapses. As discussed before, the larger the number
of users within the dataset, the longer it takes to make a recommendation due to limited
computing power. The current solution for such an issue is to perform a preprocessing
offline and thereby update the model in an interval. Lastly, from the perspective of
the user, collaborative filtering operates similarly to a black box because the resulting
recommendations are hard to explain. Consequently, it could lead to user confusion and
frustration. Herlocker et al. explain four central merits in transparency when showing
the resulting recommendations [35]: (1) explanation of suggestions, (2) increased user
engagement, (3) understanding of the user regarding the limitations of the engine (4)
easier user adoption and apprival. However, despite the many benefits of transparency,
it is challenging to explain sophisticated mathematical models to a regular user.

2.3 Content-based Filtering

The collaborative filtering methodologies examined in the last section use correlations
in user rating patterns to recommend items. Such a method disregards item attributes
for computing prediction [33]. For example, if a user is interested in a specific music
genre, then there is a high probability that the user might like other songs from the
same genre. In these instances, the input of other users may not be necessary to make
valuable user-specific suggestion. Instead, its ratings might be sufficient, especially
when there is a lack of rating for a specific item due to its novelty, also known as the
item sparsity. The sparsity problem frequently manifests in e-retail, where customers
purchase only a handful of items despite a large number of items available. Solutions
concerning this issue will be discussed later in this thesis. Content-based systems,
in contrast to collaborative systems, utilize the target user’s ratings and preferences
by the user as well as the corresponding attributes to make new recommendations
which could be advantageous based on the data that is available [33]. The general
principle of content-based recommender systems is to classify the standard features
of items that have received a rating from user 𝑈 and then recommend items with
similar characteristics to user 𝑈 [27]. In other words, content-based recommender
systems attempt to match users 𝑈 to items 𝐼 similar to their preferred items previously
based on attributes of the objects liked by the user. The most popular Content-based
recommender techniques are Artificial Neural Networks (ANNs), Bayesian Classifiers,
Clustering, Decision Trees, and TF-IDF for information retrieval [9]. In the general
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constellation, content-based systems require two sources of data:

1. A description of item-attributes

2. A user profile produced from user ratings about different items, which is either
defined as implicit or explicit, whereas implicit feedback is associated with total
user actions (e.g. click, purchase, cancellation) and explicit feedback could be
formulated as a simple rating (e.g. 1-5).

User profiles are generated through a process known as "profile learning" [40]. Es-
sentially, it creates a representative profile of the customer by consolidating profiles of
items with which the user has interacted. Content-based systems are utilized when
a significant amount of item-specific attribution data is available. As a majority of
these data are in the form of text, content-based systems are well suited to give recom-
mendations in text-rich and unstructured domains, which can be stored in a relational
database along with relational attributes such as genre, and price [33]. A simple
method to structure item descriptions and attributes is to use Term Frequency-Inverse
Document Frequency (TF-IDF) analyses [40]. Blei et al. introduced a more advanced
technique, Latent Dirichlet Allocation (LDA); meanwhile, Musto et al. utilized Neural
Network-based techniques such as Word2Vec [41] [42]. Since content-based mod-
els function based on textual and description features, their recommended items are
highly interpretable insights. For instance, a movie recommendation system could
demonstrate the reason behind its suggestion to the user, such as movie genre, actors,
director, producer and more. Meanwhile, collaborative filtering-based recommender
systems cannot demonstrate the reasoning behind their suggestions due to the nature
of the utilized data. Lastly, it is essential to implement feature selection to be selective
which words are worth keeping which excludes the noisy words from the dataset that
cause overfitting of user-profiles [33].

2.3.1 Nearst Neighbour Classification

One of the most popular and classification techniques is the nearest neighbour classifier
which can be applied relatively effortlessly. Such a technique is based on a similarity
function for instance the cosine function which is employed quite frequently and is
most common. Cosine similarity is an estimate of similarity that can be applied to
compare documents. In this case, the cosine measure is defined as follows:

𝑠𝑖𝑚(𝑥, 𝑦) = 𝑐𝑜𝑠𝜃 =
𝑥 · 𝑦

| |𝑥 | |𝑦 | | (2.6)

where | |𝑥 | | is the Euclidean norm of vector 𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , . . . ) and |𝑦 | is the Euclidean
norm of vector 𝑦. When the value of cosine is zero, it indicates that the two vectors
are orthogonal to each other and have no correspondence. On the contrary, the
closer the value to one, the the greater the correspondence between the two vectors.
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Such a function is regularly utilized in the text domain due to its capacity to adapt
to different lengths documents. In contrast, structured data are handled through
Euclidean distance and Manhattan distance. For each item, its k-nearest neighbours
utilize the cosine similarity and the average rating for k neighbours of each item is
calculated. The items are positioned based on the predicted rating, and the items
position at the top of the list are suggested to the user. However, to calculate the k
nearest neighbours, the nearest neighbour of each item in the dataset requires to be
determined. Consequently, the amount of time needed proportional to the magnitude
of the dataset. One way to minimize the computational complexity of this approach is
to utilize clustering to decrease the number of training items. Usually, a centroid-based
clustering technique such as the k-means is utilised to construct each group of clusters
[33].

2.3.2 Challenges for Content-based Filtering

It is important to notice that community data is not used as input for the content-based
recommendation algorithms. Depending on the scenario, such an approach is both an
advantage and a disadvantage. When facing a cold-start situation which is described as
lack of information or ratings regarding the user or time, such an approach is effective
as long as abundant data about the user’s preference exists. However, discarding other
users from our model induces over-specialization of users’ preference portfolios. As a
result, the suggestion made to the user is limited to similar items that the user already
rated. Additionally, this issue can be further aggravated because the user finds it hard
to go beyond their preferences which origins from the accumulation of data regarding
its own preference [9]. Moreover, there is a limit to the number and types of features
associated with items. Consequently, more than the attributes available for an item
may be required to discriminate items that a user likes from those he dislikes [40].
According to Adomavicius and Tuzhilin, "if two different items are represented by
the same set of features, they are indistinguishable" [9]. Furthermore, the authors
also point out the new user problem of the content-based system. They argue that
"the user has to rate a sufficient number of items before a content-based recommender
system can really understand the user’s preferences and present the user with reliable
recommendations. Therefore, a new user, having very few ratings, would not be able to
get accurate recommendations". Lastly, content-based methods need well-structured
data from an unstructured dataset and the importance of the preprocessing steps
needed to convert unstructured data into structured data, which a model can benefit
from.
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Figure 2.2: Three different types of hybrid recommender systems

2.4 Hybridization

As discussed before, collaborative and content-based methods utilize a different types
of feedback to make recommendations. As such, these methods also possess their
unique strengths and weaknesses in isolation, and each technique requires a specific
type of data to make recommendations. In general, it would make sense to take advan-
tage of all available feedback to obtain better recommendations. As a result, hybrid
recommender systems have been researched and designed to overcome some of the
aforementioned shortcomings and issues. Although numerous e-commerce applica-
tions use hybrid recommender systems, more research is required hybrid algorithms
and situations that one can expect a benefit from hybrid models.

The researchsuggests thathybridmethods have outperformedcollaborative filtering
models in isolation [43] [44] [33]. Three primary types of hybrid recommender systems
are shown in figure 2.2. That are the monolithic design, the ensemble design, and lastly,
the mixed design.

2.4.1 Monolithic Design

A monolithic recommendation system uses mixed components of different recom-
menders to improve the overall performance of the suggestions. Essentially, it includes
parts of different types of recommendation algorithms and combines components from
different recommendation engines to improve the overall performance of the recom-
mendations. For instance, the resulting output of a content-based approach that finds
similar items could be used as input for collaborative filtering incorporating community
data.
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2.4.2 Ensemble Design

An ensemble is a group of things or people acting or taking together as a whole. There-
fore, in this case, it defines a combination of predictions from different recommenders
into one recommendation. For instance, one could mix the recommendations made
from a collaborative as well as content-based recommender one into a individual re-
sults. Figure 3 illustrates an example of how an ensemble hybrid model might function.
In this design, there are two primary models, namely, the switched and weighted
ensembles.
The switching hybrid mechanism chooses the most suitable recommender given the
context of the request. In the absence of community data for a specific customer, the
ensemble model might use the content-based recommender instead of the collaborative
recommender. In other terms, the system switches between recommendation systems
depending on that specific situation. According to Burke switching hybrid mechanisms
introduce additional complexity into the preprocessing process since the switching
criteria must be determined [45]. Furthermore, switching models are often utilized
to manage the cold-start problem [33]. As an example, in a case study on how user
feedback can be used for personalization in e-Commerce scenarios, a combination of
knowledge-based and collaborative systems has been experimented with. While the
knowledge-based system suggests relatively better recommendations in the presence of
sparsity and cold-start, the collaborative mechanism produces better recommendations
when sufficient community data is collected. Therefore, knowledge-based systems are
generally utilized to manage the cold-start problem.
The weighted hybrid mechanism combines scores of multiple recommender systems
into a single score by computing the weighted aggregates of the scores from individual
systems.

2.4.3 Mixed Design

Lastly, there are hybrid models based on mixed design. Burke argues that "it may
be possible to use a ’mixed hybrid’, where recommendations from more than one
technique are presented together" [45]. Put recommendations from numerous engines
are presented to the user simultaneously. According to Aggarwal, mixed recommenders
cannot be categorized as monolithic nor ensemble-based techniques as they do not
combine the predicted ratings of the same item from different recommenders [33]. As
a result, mixed recommender systems are classified into a unique category of their own.
The author states that "the main distinguishing characteristic of such systems is the
combination of presentation rather than the combination of predicted scores". In terms
of unique properties, Burke argues that "this technique has the desirable ’niche-finding’
property in that it can bring in new items that a strict focus on content would eliminate"
[45].
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3

Methods

This chapter describes and introduces the data used for this work. In particular, it
illustrates how the data for the Recommender System has been fetched and retrieved.
Subsequently, the next step is to build an appropriate recommender system which fits
the needs based on the generated data and goals set in first chapter. Moreover, a brief
statistical analysis is demonstrated, which better represents the dataset.

Figure 3.1: Google Analytics and BigQuery

3.1 Data

3.1.1 Google Analytics and BigQuery

Web analytics involves gathering, measuring, analyzing, and reporting web usage
data to understand users’ behaviour. Many organizations utilize analytics to optimize
websites to enhance customer satisfaction and loyalty [46]. In this case, Google
Analytics is used to track user behaviour. Google Analytics is a web analytics service
offered by Google to collect, measure, and report user behaviour.
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Google Analytics offers information on the geographic origin of users and the type
of device with which the user operates. Furthermore information can be derived by
breaking down the URL. For instance, the Urchin Tracking Module (UTM) is specifically
designed to provide the most accurate measurements of unique website visitors and
attributes the users’ visit to a specific traffic source. Despite many details derived from
Google Analytics, the goal is to track customer app usage to gather information about
users’ interaction with product items. This information can be fetched and stored in a
database with all Magaloop users and items using Google BigQuery [47].

BigQuery is a developers tool that runs in the Cloud, SQL-like queries against
large datasets and provides real-time insights about the data. In BigQuery, scheduling
standard SQL-written queries to run regularly is possible. A table with numerous
fields is imported each day of export. During the day, intraday data are imported every
60 minutes from 04:55 to 20:55 UTC (Universal Time Coordinated) when the daily
import is completed. Table 3.2 demonstrates several important columns we import
from Google Analytics.

Field name Data type Description

User

user_id STRING The user ID set via the setUserId API

Geo

geo.region STRING The region from which events were reported, based on IP address

geo.city STRING The city from which events were reported, based on IP address

Event

Event_date STRING The date on which the event was logged (YYYYMMDD format)

Event_timestamp INTEGER The time (in microseconds, UTC) at which the event was logged

event_name STRING The name of the event

Event_params RECORD A repeated record of the parameters associated with this event

Event_params.key STRING The name of the user property

Event_params.value RECORD A record for the user property value

Table 3.1: Format and schema of the Google Analytics 4 property data and the Google
Analytics for Firebase data that is exported to BigQuery

To build our data model, we require the following information:

• User Id: Identify the unique user among Magaloop customers.

• Date: Associated with when an event has occurred.

• Event: Identifies the type of user action (e.g. Clicks, Views).

• Event Frequency: How often an action has occurred during a specific time.

• Purchases: The purchase of an item from a customer.
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• Purchase Quantity: The quantity of an item purchased within an order.

• Item Id: Associated with the specific item the customer interacts with.

• Product Title: The product name is linked to the Id of the item.

Although the purchase data are not retrievable from the Google Analytics data,
we can use the purchase history data in another table to get the user-item purchases
and the quantities. We can concatenate these two generated outputs into a single
set of results by making purchases as part of the events. Therefore, instead of events
(clicks, views) and purchases (order), we combine both into one single column event.
Accordingly, the field name quantity will count the number of orders for a purchase event
and count the number of Clicks and Views for Google Analytics events.

User id Date Item id Item description Event name Quantity

1 2022-06-07 13 Coca Cola 12x0,5l Pet Einweg purchase 4

2 2022-06-07 37 Tragetasche Blau extra stark 1x100Stück orderapp_scan_perform 10

3 2022-05-13 72 BRLO Happy Pils 24x0,33l Glas orderapp_add-to-cart_scan 8

4 2022-04-02 52 Fanta Orange 12x0,5l Pet Einweg stock-item_add-to-cart 5

5 2022-03-28 55 Original 5.0 Pils 24x0,5l Dose Einweg orderapp_page-view_pdp 3

· · · · · · · · · · · · · · · · · ·

Table 3.2: Example of a CSV Export

The resulting output returns a row for each user with at least one interaction or
purchase within a time interval of a day. Each row is grouped by User id, Date, Item
id, Item description and lastly, Event name while the Quantity is aggregated. In the case
of Google Analytics, we count the frequency of an event occurrence, and in the case of
Purchase Data, the Quantity is summed.

3.2 Calculating Ratings

3.2.1 Setting Weights

We can define a rating function 𝑅𝑖 ,𝑢 that outputs a number that demonstrates how
much user 𝑢 is willing to buy an item 𝑖. In this case, we are interested in understanding
how close the user 𝑢 is to purchasing item 𝑖. Therefore, we consider the following
rating of item 𝑖 for user 𝑢:

𝑅𝑖 ,𝑢 = (𝑤1 × #𝑒𝑣𝑒𝑛𝑡1) + (𝑤2 × #𝑒𝑣𝑒𝑛𝑡2) + · · · + (𝑤𝑛 × #𝑒𝑣𝑒𝑛𝑡𝑛) (3.1)

Where

• 𝑅𝑖 ,𝑢 is the rating.

• #𝑒𝑣𝑒𝑛𝑡𝑛 is occurrence frequency of 𝑒𝑣𝑒𝑛𝑡𝑛 (or just Quantity)
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• 𝑤1 · · ·𝑤𝑛 are weights based on the strength of the event signal.

By setting specific weights for each event based on their significance, we can produce
numeric ratings which replace the missing explicit ratings. Before calculating the
weights, we first define and list all the events. Furthermore, each event will be explained
in detail:

• 𝐸𝑣𝑒𝑛𝑡1 = purchase: Item purchase.

• 𝐸𝑣𝑒𝑛𝑡2 = orderapp_scan_perform: When a customer scans the item to find that
specific item in the Magaloop App.

• 𝐸𝑣𝑒𝑛𝑡3 = orderapp_add-to-cart_scan: When a customer scans an item and
immediately adds the item into the basket

• 𝐸𝑣𝑒𝑛𝑡4 = stock-item_add-to-cart: When a customer adds an item into basket

• 𝐸𝑣𝑒𝑛𝑡5 = orderapp_addpage-view_addpdp: When a customer has a look at the
offer page, where a product is offered at a discount.

To set specific weights for each event, we start from a range of weights = [1, 100]
where 100 has the highest indication that a customer favours an item and 1 the lowest
indication that an item is preferred. From all the events, a transactional event, an actual
purchase of an item, is the most significant indicator of a customer’s preference for an
item. Moreover, scanning an item with subsequently adding it to the basket is also a
significant indicator as the customer needs to physically go to the item, grab it, find the
bar code, scan it and put it into a basket. Furthermore, a user also has the option to add
items to the basket, similar to other e-commerce applications, which is also an indicator
that a user is interested in purchasing the item. Additionally, Google Analytics lets
us track whether a user has removed an item from their baskets. As a result, we can
calculate the net amount in the customer’s basket and reject the assumption that an
add-to-basket event includes an unintentional click. Similar to scans with add-to-basket,
a customer can scan the product and not put it into the basket. Lastly, there are offer
pages where customers can find products at a discount price. Although glancing at
product discounts is not a poor indication of interest and, therefore, should be not be
highly weighted. Table 3.3 shows the assumptions that can be translated into weights.

3.2.2 Constraints and Time-decay

The current rating increases the more the customer interacts with a certain item during
one day. However, at a certain point, more interaction does not necessarily translate to
more customer preference or information about that user-item interaction. Therefore, it
could be useful to use cut-offs to set a maximal relevance for the interactions. The formula
returns the number of times an event occurs unless its value is higher than maximal
relevant. Such addition to our rating model decreases the exposure to interaction outliers
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Event Interpretation Weight

Purchase Top rating 100

Performs scan and adds an item into basket Very positive 80

Adds item into cart Very positive 75

Performs scan Positive 65

View item discounts Indecisive 50

Table 3.3: Weights on events

and, therefore, should decrease the distance between the minimum- and maximum
ratings and the rating mean. In our model, we used three interactions as the maximal
relevant (mr) value for all event types. As a result, the equation 3.1 is replaced by the
following equation:

𝑅𝑖 ,𝑢 = 𝑚𝑎𝑥((𝑤1 × #𝑒𝑣𝑒𝑛𝑡1), 𝑚𝑟) + 𝑚𝑎𝑥((𝑤2 × #𝑒𝑣𝑒𝑛𝑡2), 𝑚𝑟)
+ · · · + 𝑚𝑎𝑥((𝑤𝑛 × #𝑒𝑣𝑒𝑛𝑡𝑛), 𝑚𝑟)

(3.2)

For each event on Google Analytics or purchase on the application, the timestamp
of each action is captured and stored. Such a feature can be utilized to include recency
into our current model and thereby consider recent ratings more significant than older
ratings. The window-based and decay-based methods are the solution to emphasize the
significant of recency [33, 48]. The window-based method is a binary decay function
which simply ignores user information that is past a certain amount of time. Given a
window size parameter W, the function 𝑓𝑊 (𝑎) = 1 for 𝑎 < 𝑊 and 𝑓𝑊 (𝑎) = 0 for 𝑎 ≥ 𝑊

includes items whose age are less than W [48]. However, in [48], authors propose an
exponential form for the time-decay function 𝑓 (𝑎) = 𝑒−𝜆𝑎 for 𝜆 > 0 for recommender
systems which are widely used in many applications. The function of exponential
decay is as follows:

𝑓 (𝑡) = 𝑒−𝜆𝑡 (3.3)

where

• 𝑇0 is the half-life parameter in days

• 𝜆 = ln(2)/𝑇0 is the decay rate

• 𝑡 is the age of the event in days

The decay rate 𝜆 is a parameter defined by the user, which controls the significance of
the role of time when calculating ratings. The larger the value of 𝜆, the less significant,
the older ratings. In a case where time dramatically affects the recommendation success,
such as new articles, the half-life 𝑇0 should be much smaller. However, in our case, a
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purchase made a month ago is still relevant for the customer. As a result, 30 days as
a half-time parameter is chosen. Last but not least, each event quantity is computed
on the user, date as well as the item level and followed by ratings. Consequently, the
equation 3.2 is replaced by the following equation:

𝑅𝑖 ,𝑢,𝑡 = [𝑚𝑎𝑥((𝑤1 × #𝑒𝑣𝑒𝑛𝑡1), 𝑚𝑟) + 𝑚𝑎𝑥((𝑤2 × #𝑒𝑣𝑒𝑛𝑡2), 𝑚𝑟)
+ · · · + 𝑚𝑎𝑥((𝑤𝑛 × #𝑒𝑣𝑒𝑛𝑡𝑛), 𝑚𝑟)] × 𝑡𝑖𝑚𝑒𝑑𝑒𝑐𝑎𝑦𝑡

(3.4)

3.3 Pre-Processing and Dataframe Description

The rating calculation with the inclusion of the maximum relevance cut-off as well as
time-decay function is made in Bigquery to speed up the process by letting BigQuery
take over some of the pre-processing steps.

Subsequently, the generated ratings can be imported into a Python file with
pandas-gbq module1. The pandas-gbq module is a wrapper for Google’s Bigquery
analytics web service for getting data from BigQuery tables using SQL queries. The
results loaded are then parsed into a pandas.Dataframe.

User id Date Item id Item description rating

1 2022-06-07 13 Coca Cola 12x0,5l Pet Einweg 895

2 2022-06-07 37 Tragetasche Blau extra stark 1x100Stück 830

3 2022-05-13 72 BRLO Happy Pils 24x0,33l Glas 620

4 2022-04-02 52 Fanta Orange 12x0,5l Pet Einweg 550

5 2022-03-28 55 Original 5.0 Pils 24x0,5l Dose Einweg 530

· · · · · · · · · · · · · · ·

Table 3.4: Example of a Bigquery Import into Python

In the next phase, the data pre-processing step is performed, which begins with data
cleaning and rating normalization. Normalization or rescaling is a common technique
used in prediction and forecasting models. Among the many normalization techniques,
the common methods are Min-Max normalization, Z-score normalization, Log scaling
and Decimal scaling normalization. In this situation, we choose the Min-Max due to its
popularity and simplicity. The outcomes are depicted in 3.2 and ?? for Min-Max and
Log scaling, respectively.
The general equation for Min-Max normalization of [0, 1] is given as:

𝑥′ =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) (3.5)

1https://pandas-gbq.readthedocs.io/en/latest/
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To scale the numbers from [0, 10], we multiple 𝑥′ by 10. Figure 3.2 shows the right
tailed distribution of the normalized ratings is depicted in figure 3.2.
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Figure 3.2: Min-Max Normalization: Rating distribution

The final dataframe subsequent to rating normalization consists of four columns,
namely, user id, item id, item description and lastly rating. The dataframe has 466170 rows
and does not have a missing value. In total, there are 4604 and 43396 distinct users and
item, respectively. The maximum amount of interactions a user has with one single
item is 2003 and the minimum amount is 1 which is minimum required interaction a
user needs to have with any item to be in the dataset.

3.3.1 User Features and Item Features

The metadata for user features allows the recommender system to generate more
information regarding the user by using content-based data. In the absence of sufficient
user interactions (>5 interactions), such information could be vital to make appropriate
suggestions despite the need for more information regarding the user’s preferences.
Magaloop does not collect important data regarding the demographics of its users. The
only data available are region and customer type. The region is the state where the user
has his or her shop located. If the retailer has a shop in Berlin, the abbreviation ber
will be used to describe its location. Moreover, there are two types of the user utilizing
the Magaloop platform. On the one hand, Magaloop has retailers, such as late-night
corner shops, called trader. On the other hand, there are also other customers, such as,
restaurants which are called hybrid.
The item features consist of five distinct metadata for each item, such as category 1,
category 2, supplier name, brand, manufacturer. The first category, category 1, describes the
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item from a high level while the second category, category 2 describes the item from a
lower level. For instance, a drink can be a beer or a non-alcoholic drink or an energy
drink. While an energy drink is a non-alcoholic beverage, the energy drink category
makes up a large portion of the assortment, and that justifies its individual dedicated
category.
Moreover, the designated supplier name for the respective item id is described as well as
the brand name of the item and the manufacturer. In 3.5, a snippet of the item feature
dataframe is illustrated.

item id category 1 category 2 category 3 supplier name brand manufacturer

1 Getränke Bier Bier BRLO BRLO BRLO

2 Tabakwaren E-Zigarette Sonstiges Inter Tabak IQOS Philip Morris GmbH

3 Getränke Spirituosen und Barmixgetränke Vodka Inter Tabak Landwirth’s Berentzen-Gruppe AG

4 Getränke Alkoholfreie Getränke Erfrischungsgetränke B.E.S.T. Bionade Hassia Mineralquellen

5 Süßwaren Sonstige Snacks Sonstiges izi 36 Bifi BiFi Snacks LSI

· · · · · · · · · · · · · · · · · · · · ·

Table 3.5: Dataframe Item Features

3.4 Model

3.4.1 LightFM

There are a few factors that conspire to make recommendations challenging in the case
of e-commerce, specially Magaloop. Firstly, our data includes a significant number of
products which translates to very sparse data. Second, as Magaloop is still a very young
start-up which has its focuses on expansion, market share increases geographically,
which translates to a high rate of customer and supplier acquisition. Therefore, we have
a high number of new users as well as new items in our data, which further underlines
the sparsity in our data. Nevertheless, despite all of these challenges, we would
like to present our user’s compelling recommendations despite the limited amount
of information available. Given the challenges facing, we consider a hybrid content-
collaborative model, called LightFM due to its similarity to factorization machines [49],
which are a new model class that combines the advantages of Support Vector Machines
(SVM) with factorization models [50]. In [49], Kula outlines the advantages of the
model and presents the empirical results on two datasets, showing that:

1. LightFM achieves at least the same amount of accuracy as a pure content-based
model.

2. It outperforms pure content-based models by including community data (collab-
orative) or customer information (user features).
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3. In absence of a cold-start problem, LightFM performs at least as well as the
Matrix Factorisation Model. In addition, the author has released a Python
implementation of LightFM2 and made the source code available on Github3.

LightFM incorporates matrix factorization, where users and items are represented
as latent vectors (embeddings). However, just as in a collaborative model, these are
entirely explained by functions (linear combinations) of embedding the content features
that outlines each item or user. Each user 𝑢 is defined by its features 𝑓𝑢 . Similarly, each
item 𝑖 is defined by its features 𝑓𝑖 . The latent representation of user 𝑢 is given by the
sum of its latent vectors of features:

𝑞𝑢 =
∑

𝑒𝑈𝑗 (3.6)

Which is the same for item 𝑖:
𝑞𝑖 =

∑
𝑒 𝐼𝑗 (3.7)

Additionally, the bias term for user 𝑢 and item 𝑖 is given by the sum of the biases of the
features:

𝑏𝑢 =
∑

𝑏𝑈𝑗 (3.8)

𝑏𝑖 =
∑

𝑏𝐼𝑗 , (3.9)

As a result, the prediction for user 𝑢 and item 𝑖 is the dot product of 𝑞𝑢 and 𝑞𝑖

adjusted by their feature biases 𝑏𝑢 and 𝑏𝑖 :

𝑟𝑢𝑖 = 𝑓 (𝑞𝑢 · 𝑞𝑖 + 𝑏𝑢 · 𝑏𝑖) (3.10)

LightFM allows us to use different ranking methods (loss functions) such as BRP
(Bayesian Personalized Ranking), WARP (Weighted Approximate-Rank Pairwise Loss),
and k-OS WARP. BRP is a pairwise ranking approach which samples the unfavourable
rating for every favourable rating. For instance, for each user interaction, it samples
an item with which the user has no interaction. The assumption here is that the user
favours the item with which he or she has an interaction rather than the one without
any interaction. [51] show theoretically and empirically that the BRP optimization
method is vital for personalized ranking. Furthermore, two variances of stochastic
gradient descent can be utilized in LightFM; namely, Adagrad [52] and Adadelta [53].
To utilize the LightFM model, we are required to build the user-item, item-feature, and,
lastly, user-feature matrix.

2https://github.com/lyst/lightfm/
3https://github.com/lyst/lightfm-paper/
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4

Experiments and Results

This section describes the results and the evaluation of the model. First, the experimen-
tal setup is described, and thereafter the results are delivered.

4.1 Experiments and Goals

LightFM is tested under distinct circumstances and the goal of each examination is
explained.

• Experiment 1 (dataset split experiment):
The dataset is randomly split into training and test dataset, which is a common
practice in machine learning settings. More specifically, we would like to un-
derstand how LightFM performs with and without different metadata attributes
(item and user metadata). In this case, we begin by using no item or user metadata
and continue to add more metadata attributes to the model incrementally:

– LightFM (1): LightFM without any metadata as our baseline model.

– LightFM (2): Baseline model item features.

– LightFM (3): Baseline model user features.

– LightFM (4): Baseline model with both item features and user features.

• Experiment 2 (cold start experiment):
Following the training set and test set in Experiment 1 (experiment with dataset
randomly split). We do not make any changes to the test set while keeping at most 𝑖
item interaction per user in the training set, 𝑖 = [1, 5, 10, 20, 38, 100, 200, 500, 2003].
Recall that the median, mean and max of this number is 38, 99.9 and 2003, respec-
tively, from the examination of our dataset. Correspondingly, we keep the test
set unchanged while keeping at most 𝑢 user interaction per item in the training
set, 𝑢 = [1, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 653].
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4.2 Evaluation Metrics

As for the evaluation metric, there are totally four metrics in LightFM modules con-
taining evaluation functions appropriate for estimating the performance of a fitted
LightFM model. The following elaborates on each evaluation metric in detail.

• lightfm.evaluation.auc_score: estimates the probability that a randomly cho-
sen positive example has a higher score than a randomly chosen negative example.
A perfect score is 1.0.

• lightfm.evaluation.precision_at_k: estimate the fraction of known positives
in the first k positions of the ranked list of results. A perfect score is 1.0.

• lightfm.evaluation.recall_at_k: the number of positive items in the first k
positions of the ranked list of results divided by the number of positive items in
the test period. A perfect score is 1.0.

• lightfm.evaluation.reciprocal_rank: measures the reciprocal rank metric
for a model, which is calculated as 1 / the rank of the highest ranked positive
example. A perfect score is 1.0.

Although all evaluation metrics are accurate indicators of a worthy recommender
system, for most recommendation scenarios, users are less likely to quit the platform
just because they observe an item they are not interested in and are more likely to keep
browsing until they find something interesting. Therefore, a recommender system in
this specific scenario should focus more on recommending an exciting item to the user
instead of paying too much attention to avoid making a few harmful recommendations.

4.3 Hyperparameter Selection

/ For each model selected from BRP, WARP and k-OS WARP loss functions, we select
hyperparameters by using a grid-search on a validation set, with the number of k
ranging from k1 to k2 and a learning schedule chosen between Adagrad and Adadelta.
Finally, the iterations epochs is set to 100 for all blends.

One of the first insightful experiments concerning hyperparameter tuning compares
the accuracy between the WARP (Weighted Approximate-Rank Pairwise) and BPR
(Bayesian Personalised Ranking) losses. According to LightFM documentation, the
WARP loss for implicit feedback illustrates a superior performance than popularized

28



4.4. EXPERIMENTAL RESULTS AND ANALYSIS

BRP loss by a significant margin. To compare the loss function available, both models
are performed with equivalent hyperparameters, and their accuracy across epochs is
tested.

Epochs Train AUC Val. AUC Train Prec.@10 Val. Prec.@10 Train Rec.@10 Val. Rec.@10 Train Recip. Val. Recip.

1 0.946 0.951 0.217 0.061 0.048 0.047 0.359 0.162

5 0.969 0.971 0.251 0.070 0.058 0.057 0.385 0.182

10 0.976 0.976 0.272 0.076 0.061 0.062 0.415 0.190

15 0.980 0.979 0.284 0.079 0.069 0.066 0.446 0.203

20 0.982 0.981 0.299 0.082 0.073 0.070 0.456 0.208

25 0.983 0.982 0.302 0.081 0.075 0.068 0.472 0.211

30 0.984 0.982 0.310 0.085 0.077 0.073 0.476 0.213

35 0.985 0.983 0.319 0.089 0.079 0.077 0.477 0.218

40 0.986 0.984 0.321 0.087 0.081 0.076 0.490 0.218

45 0.986 0.984 0.321 0.088 0.080 0.076 0.492 0.221

50 0.987 0.985 0.332 0.090 0.083 0.080 0.504 0.219

55 0.987 0.985 0.331 0.091 0.086 0.080 0.504 0.229

60 0.988 0.986 0.327 0.089 0.084 0.077 0.498 0.229

65 0.988 0.986 0.335 0.091 0.087 0.081 0.511 0.232

70 0.988 0.986 0.333 0.090 0.088 0.082 0.505 0.225

Table 4.1: Evaluation metrics over epochs

4.4 Experimental Results and Analysis

4.4.1 Results of experiment 1

To recall, experiment 1 examines the performance of LightFM with and without metadata
attributes (item and user metadata). 4.2 illustrates the performance of the baseline
model (Pure CF) relative to the other models with metadata.

• We can see that the item model outperforms other models in all evaluation metrics
except in Recall@10, where the base model turns out to be the best model.

• The user model shows inferior results relative to other models in every evaluation
metric, which suggests that proposing more metadata does not automatically
enhance the accuracy of the suggestion. However, the introduction of item
features shows a significant performance improvement relative to our base model.
As the user features consist of Region and Customer type, we can conclude that
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Figure 4.1: Accuracy of BRP and WARP function losses
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Figure 4.2: Duration for BRP and WARP in seconds
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Figure 4.3: Duration for WARP after setting parameter
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Figure 4.5: Accuracy Learning Rates: Adagrad and Adadelta

these features worsen the recommendations considerably and are not important
indicators of user preference.

• As a consequence, the user features also prevent the hybrid model from better
performance. We can conclude this statement by the fact that the base model
performs better than the hybrid model in every single evaluation metric.

From the outcome, we are able to conclude that adding contextual data improves the
recommendations made by the model. On the other hand, the wrong type of context
could also easily prevent the hybrid model from performing inferior to the simple base
model. Furthermore, this experiment demonstrates that by hybridizing our base model
with item features, the value of AUC increases by 0.13%, the value of Precision@10
increases by 5.9%, the value of Reciprocal ranking increases by 1.3% yet the value of
Recall@10 decreases by 3.1%. In figure 4.6, 4.7, 4.8 and 4.9 the test and validation results
of every model is depicted as a bar chart.

4.4.2 Results of experiment 2: User cold-start

In our second experiment, we examine the outcome of the cold-start experiment in the
case of a new user as well as in the case of a new item. Firstly, given that the most user
interaction with an item is in 2003, we test a new user from 1 to 2003 interactions and
observe the ’robustness’ of the model in these situations. Secondly, given that the most
item interaction with a user is 653, we test a new item from 1 to 653 interactions and
observe the ’robustness’ of the model in the presence of an item cold-start problem.
Additionally, we observed that the item model performs much better than the base
model in all evaluation metrics except Recall@10. Therefore, the item model will
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Method Evaluation Metrics Train Validation

Hybrid AUC 0.981535 0.981202

Item model AUC 0.986945 0.982649

Base model AUC 0.984429 0.981283

User features AUC 0.977270 0.970414

Hybrid model Precision@10 0.320318 0.083189

Item model Precision@10 0.380892 0.097101

Base model Precision@10 0.386425 0.091684

User model Precision@10 0.277218 0.071414

Hybrid model Recall@10 0.076828 0.071767

Item model Recall@10 0.113357 0.093350

Base model Recall@10 0.112305 0.096354

User model Recall@10 0.068693 0.059268

Hybrid model Reciprocal ranking 0.477369 0.213976

Item model Reciprocal ranking 0.577147 0.240445

Base model Reciprocal ranking 0.572265 0.237265

User model Reciprocal ranking 0.444769 0.189037

Table 4.2: All model compared
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Figure 4.6: Accuracy of all models compared
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Figure 4.7: Precision@10 of all models compared
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Figure 4.8: Recall@10 of all models compared
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Figure 4.9: Reciprocal ranking of all models compared
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be tested against the item and user cold-start problem and compared its ’robustness’
against the base model.
In figure 4.10, we observe the AUC performance of the base model and the item model.
The results show that the AUC of both models scales up relatively quickly after only
a handful of interactions which implies that the LightFM model can make superior
suggestions subsequent to a few interactions. Interestingly, the base model starts (1
interaction) of with a 0.62 AUC compared to 0.66 for the item model. The 6% increase
shows that the item model handles the item cold-start problem better than the base
model.
Similar to the AUC performance, in figure 4.11, we observe a swift scale-up for Preci-
sion@10 for the base model as well as the item model. In case of one interaction and five
interactions, we discover a Precision@10 of 0.016 and 0.087, respectively. An important
fact to notice is the diminishing score after the 100th interaction.
In regards to Recall@10 in figure 4.12, both models face a diminishing Recall after a
few interactions. However, the item model prevents a drastic loss in Recall where the
base model drops significantly relative to the item model. Interestingly, the base model
outperforms the item model as the maximum number of user interactions reaches the
end.
Lastly, in figure 4.13, in terms of Reciprocal Ranking, the base model and item model
perform similarly, with the item model outperforming the base model by a small mar-
gin.
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Figure 4.10: User Cold Start - AUC
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Figure 4.11: User Cold Start - Precision@10
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Figure 4.12: User Cold Start - Recall@10
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Figure 4.13: User Cold Start - Reciprocal Ranking

4.4.3 Results of experiment 2: Item cold-start

In the case of a user cold-start problem, the maximum interactions per item are limited
to test the performance of the LightFM model in a case of a new item.
In this case, the most user per item in the training set were set to [1, 5, 10, 20, 30, 40,
50, 75, 100, 150, 200, 500, 653]. In figure 4.14, the AUC performance of the base model
is similar to the item model. Yet, the item model clearly outperforms the base model
with only 5 interactions per item, where the baseline model has an AUC of 0.57 and
0.95 for the first and fifth interactions. In contrast, the item model has an AUC of 0.63
and 0.97 for the same number of interactions. The AUC of both models increasingly
becomes indistinguishable as the number of maximum item interactions increases.
Moreover, the item model shows further superiority in the case of the limited number
of item interactions (cold-start) which implies that the incorporation of item features
and, thereby, utilizing metadata shows an improvement of the model in the presence
of a cold-start problem.

4.5 Discussion

Despite the relative low accuracy achieved for Recall@10 and Precision@10„ the results
for test dataset which ranges from 0.0717 up to 0.0971 seem promising compared with
well-accepted and popular industry benchmark such as MovieLens 100K thoughtfully
organized by a recommender system research lab at the University of Minnesota.
For instance, Kula reported a precision@5 of 0.04 on the MovieLens 100k [49]. In
another case, Heitman and Hayes reported precision at 5 between 0.03 and 0.09 on the
MovieLens 100k dataset. In the section 4.3, the importance of choosing the right values
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Figure 4.15: Item Cold Start Problem - Precision@10
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Figure 4.16: Item Cold Start Problem - Recall@10
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Figure 4.17: Item Cold Start Problem - Reciprocal Ranking
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for constants and extent of regularization was shown. In presence of substandard
values for hyperparamters, the models are expected to performance worse in regards
to computation duration as well as accuracy. Whenever the user features, namely,
Region and Customer type, were introduced to the model, as was the case for user
model and hybrid model, the model achieved a worse accuracy than without user
features which is contrary to the results from the original paper of Kula where the
model accuracy benefited from introduction of user and item metadata [49]. The
decrease in performance by introducing item features into the model could indicate
to the low predictive power of the features selected. In our case, firstly, the region
of the user seem to not be significant in terms of predicting users inclination and
preferences and secondly, the customer type of the customer also does not reflect the
preference of the customer. As a results, one could argue that the increased benefits of
introducing contextual data depends on the case at hand and more importantly on the
features themselves. In this setting, including item features increased the performance
while including user features lowered the performance which suggests that the quality
of description of an item or user is vital to make superior suggestions than the base
model. In existence of a cold-start problem, introducing relevant metadata, such as item
features in our case, enhances the model compared than without metadata. Despite the
fact that by introducing the user and item metadata in conjunction the hybrid model
performs worst than the base model, it might better for Magaloop to still choose to go
with a hybrid model as it customer base still includes fresh acquired users coming to
the platform. The small better performance could lead to higher new users retention
and might be worth of the trade-off.

Alternatively, Magaloop could use customer profiling based on the days since reg-
istration of the user to utilize different recommendation model for different customers.
An existing customer could benefit from the pure collaborative filtering due to existence
of a warm setting and sufficient data while a new user could benefit from a hybrid
model as it has shown to perform better in cold-start settings than the pure collaborative
filtering model.
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5

Conclusions and Future Work

This chapter concludes the thesis by going back to the research questions asked in the
very first chapter and discussing possible future work that Magaloop can initiate to
further improve the model built.

The main intention of this thesis was to research yet also discover the an encour-
aging technique to build a recommendation engine for Magaloop users. In context,
Magaloop is a young organisation that finds itself still in a growth phase where new
users are acquired and are onboarded to the platform. Therefore, recommender system
is required to be able to handle a large set of freshly acquired user. The data gener-
ated by Magaloop consists of item purchases, i.e., user-item interactions which are
distinguished into separate set of events as implicit feedback, i.e., putting an item to
your basket or viewing a product in detail, and additional metadata on the users and
the item. To achieve this objective, the LightFM model was chosen due to its ability
to handle large dataset, addition of user and item meta data and promising accuracy
in presence of cold-start problem. Therefore the following research questions were
formulated:

1. Research Q1: Could a mixture of implicit data on users and contextual data on
items increase the performance beyond the performance achieved with a pure
collaborative filtering model?

2. Research Q2: Does a hybridized model with a mixture of implicit data on users
and contextual data on items aid the recommender system to increase the accuracy
in case of user- and item cold-start problem?

To explore these research questions, a literature review was written to discover the
fundamental techniques that could be a potential solution for Magaloop. Based on
the literature review as well as in a more practical approach, matrix factorization
models have been widely utilised because how effectively they can handle a sparse
user-item interaction data. Moreover, matrix factorization also is able to incorporate
latent features of items and users to make recommendations which has the potential
to be beneficial in a cold-start setting where the user-item interaction matrix is sparse.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

In this experiment, four distinct version of matrix factorization models were explored:
LightFM as pure collaborative filtering (base model), LightFM with item features,
LightFM with user features and lastly, hybrid LightFM with a combination of user and
item metadata. The results show that, in this case, the item features allow the model
to make better and more accurate recommendations while the user features function
as the opposite. In fact, the base model shows far superior accuracy than the hybrid
model, which includes only user features.

5.1 Future Work

As the data given is recent actual data, an online accuracy evaluation can be an
additional evaluation metric beside the offline accuracy evaluations given by the
LightFM model. However, an online evaluation could have been possible through an
earlier model deployment.
Moreover, although the actual transactional purchase behaviour of the user possesses
the majority of the weight in determining the numeric rating, an extensive study could
be made to discover the importance of the other included implicit data generated from
Google Analytics. In addition, the existence of a time-decay could also be examined as
well as different time-decay functions which determine how fast the significance of a
rating fades as time passes.
Lastly, the importance of each item feature and user feature could be examined in
individual cases. Instead of using item features and useful features as a whole, an
incremental addition could indicate which particular feature has the most positive or
negative impact on the accuracy and overall performance of the model.

44



Bibliography

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University
Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/
master/template.pdf (cit. on p. iii).

[2] E. Shafir, I. Simonson, and A. Tversky. “Reason-based choice”. In: Cognition 49.1
(1993), pp. 11–36. issn: 0010-0277. doi: https://doi.org/10.1016/0010-0277
(93)90034-S. url: https://www.sciencedirect.com/science/article/pii/
001002779390034S (cit. on p. 1).

[3] B. Schwartz. The Paradox of Choice: Why More is Less. Harper Perennial, 2005
(cit. on p. 1).

[4] S. S. Iyengar and M. R. Lepper. “When Choice is Demotivating: Can One desire
Too much of a Good Thing?” In: Journal of Personality and Social Psychology 79.6
(2000), pp. 995–1006 (cit. on p. 1).

[5] P. Kotler and K. L. Keller. Marketing Management. Pearson, 2016 (cit. on p. 1).

[6] D. Amanah and D. A. Harahap. “Online Purchasing Decision of College Stu-
dents in Indonesia”. In: International Journal of Latest Engineering Research and
Applications 3 (2018), pp. 05–15 (cit. on p. 2).

[7] J. Jacoby, D. E. Speller, and C. K. Berning. “Brand Choice Behavior as a Function
of Information Load: Replication and Extension”. In: Journal of Consumer Research
1.1 (1974), pp. 33–42 (cit. on p. 2).

[8] A. Sela, J. Berger, and W. Liu. “Variety, Vice, and Virtue: How Assortment Size
Influences Option Choice”. In: Journal of Consumer Research 35.6 (2009), pp. 941–
951 (cit. on p. 2).

[9] G. Adomavicius and A. Tuzhilin. “Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions”. In: IEEE
Transactions on Knowledge and Data Engineering 17.6 (2005), pp. 734–749. doi:
10.1109/TKDE.2005.99 (cit. on pp. 2, 11, 13).

45

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/https://doi.org/10.1016/0010-0277(93)90034-S
https://doi.org/https://doi.org/10.1016/0010-0277(93)90034-S
https://www.sciencedirect.com/science/article/pii/001002779390034S
https://www.sciencedirect.com/science/article/pii/001002779390034S
https://doi.org/10.1109/TKDE.2005.99


BIBLIOGRAPHY

[10] J. B. Schafer, J. A. Konstan, and J. Riedl. “Recommender systems in e-commerce”.
In: Association for Computing Machinery (1999), pp. 158–166. doi: 10.1145/33699
2.337035 (cit. on p. 2).

[11] A. Ansari, S. Essegaier, and R. Kohli. “Internet recommendation systems”. In:
Journal of Marketing Research 37.3 (2000), pp. 363–375 (cit. on p. 2).

[12] F. Ricci, L. Rokach, and B. Shapira. Recommender Systems Handbook, chapter
Recommender Systems: Introduction and Challenges. Springer New York, NY, 2015,
pp. 1–34 (cit. on pp. 2, 3).

[13] J. Karlgren. “An Algebra for Recommendations”. In: Department of Computer and
Systems Sciences The Royal Institute of Technology and Stockholm University Electrum
179 (1990) (cit. on p. 2).

[14] G. Linden, B. Smith, and J. York. “Amazon.com recommendations: item-to-item
collaborative filtering”. In: IEEE Internet Computing 7.1 (2003), pp. 76–80. doi:
10.1109/MIC.2003.1167344 (cit. on p. 2).

[15] J. Davidson et al. “The YouTube Video Recommendation System”. In: Proceedings
of the FourthACM Conference on RecommenderSystems. RecSys ’10. Barcelona, Spain:
Association for Computing Machinery, 2010, 293–296. isbn: 9781605589060. doi:
10.1145/1864708.1864770. url: https://doi.org/10.1145/1864708.186477
0 (cit. on p. 2).

[16] C. A. Gomez-Uribe and N. Hunt. “The Netflix RecommenderSystem: Algorithms,
Business Value, and Innovation”. In: ACM Trans. Manage. Inf. Syst. 6.4 (2016).
issn: 2158-656X. doi: 10.1145/2843948. url: https://doi.org/10.1145/284
3948 (cit. on p. 2).

[17] E. Brynjolfsson, Y. J. Hu, and M. D. Smith. “Brynjolfsson, Erik and Hu, Yu Jeffrey
and Smith, Michael D., Consumer Surplus in the Digital Economy: Estimating
the Value of Increased Product Variety at Online Booksellers”. In: Association for
Computing Machinery 49.11 (2003), 1580–1596. doi: http://dx.doi.org/10.213
9/ssrn.400940 (cit. on p. 3).

[18] N. Barbieri, G. Manco, and E. Ritacco. “Probabilistic Approaches to Recommen-
dations”. In: Synthesis Lectures on Data Mining and Knowledge Discovery 5.2 (2014),
pp. 1–197. doi: https://doi.org/10.1007/978-3-031-01906-7 (cit. on p. 3).

[19] C. C. Johnson. Logistic Matrix Factorization for Implicit Feedback Data. 2014 (cit. on
p. 3).

[20] C. Anderson. The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion, 2006, pp. 1–256 (cit. on p. 3).

46

https://doi.org/10.1145/336992.337035
https://doi.org/10.1145/336992.337035
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://doi.org/http://dx.doi.org/10.2139/ssrn.400940
https://doi.org/http://dx.doi.org/10.2139/ssrn.400940
https://doi.org/https://doi.org/10.1007/978-3-031-01906-7


BIBLIOGRAPHY

[21] P.-T. Chen and H.-P. Hsieh. “Personalized mobile advertising: Its key attributes,
trends, and social impact”. In: Technological Forecasting and Social Change 79.3
(2012), pp. 543–557. issn: 0040-1625. doi: https://doi.org/10.1016/j.
techfore.2011.08.011. url: https://www.sciencedirect.com/science/
article/pii/S0040162511001788 (cit. on p. 3).

[22] P. Smutkupt, D. Krairit, and V. Esichaikul. “Mobile marketing: Implications for
marketing strategies”. In: International Journal of Mobile Marketing 5 (2010-01),
pp. 126–139 (cit. on p. 3).

[23] J. Zhang and M. Wedel. “The Effectiveness of Customized Promotions in Online
and Offline Stores”. In: Journal of Marketing Research 46.2 (2009), pp. 190–206. doi:
10.1509/jmkr.46.2.190. eprint: https://doi.org/10.1509/jmkr.46.2.190.
url: https://doi.org/10.1509/jmkr.46.2.190 (cit. on p. 3).

[24] M. Reiß and M. Koser. “From Mass Customization to Mass Personalization
A New Competitive Strategy in E-Business”. In: Trendberichte zum Controlling:
Festschrift für Heinz Lothar Grob. Ed. by F. Bensberg, J. v. Brocke, and M. B. Schultz.
Heidelberg: Physica-Verlag HD, 2004, pp. 285–310. isbn: 978-3-7908-2708-8. doi:
10.1007/978-3-7908-2708-8_15. url: https://doi.org/10.1007/978-3-79
08-2708-8_15 (cit. on p. 3).

[25] M. Kaminskas et al. “Product Recommendation for Small-Scale Retailers”. In: E-
Commerce and Web Technologies. Ed. by H. Stuckenschmidt and D. Jannach. Cham:
Springer International Publishing, 2015, pp. 17–29. isbn: 978-3-319-27729-5 (cit.
on pp. 3, 6).

[26] G. Guo. “Resolving Data Sparsity and Cold Start in Recommender Systems”.
In: User Modeling, Adaptation, and Personalization. Ed. by J. Masthoff et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 361–364. isbn: 978-3-642-
31454-4 (cit. on p. 4).

[27] C. Desrosiers and G. Karypis. “A Comprehensive Survey of Neighborhood-based
Recommendation Methods”. In: Recommender Systems Handbook. Ed. by F. Ricci
et al. Boston, MA: Springer US, 2011, pp. 107–144. isbn: 978-0-387-85820-3. doi:
10.1007/978-0-387-85820-3_4. url: https://doi.org/10.1007/978-0-387-
85820-3_4 (cit. on pp. 5, 11).

[28] Y. Hu, Y. Koren, and C. Volinsky. “Collaborative Filtering for Implicit Feedback
Datasets”. In: 2008 Eighth IEEE International Conference on Data Mining. 2008,
pp. 263–272. doi: 10.1109/ICDM.2008.22 (cit. on p. 6).

[29] D. Jannach et al. Recommender Systems: An Introduction. Cambridge University
Press, 2010. doi: 10.1017/CBO9780511763113 (cit. on pp. 6, 8).

[30] D. W. Oard and J. Kim. “Implicit Feedback for Recommender Systems”. In: 1998
(cit. on p. 6).

47

https://doi.org/https://doi.org/10.1016/j.techfore.2011.08.011
https://doi.org/https://doi.org/10.1016/j.techfore.2011.08.011
https://www.sciencedirect.com/science/article/pii/S0040162511001788
https://www.sciencedirect.com/science/article/pii/S0040162511001788
https://doi.org/10.1509/jmkr.46.2.190
https://doi.org/10.1509/jmkr.46.2.190
https://doi.org/10.1509/jmkr.46.2.190
https://doi.org/10.1007/978-3-7908-2708-8_15
https://doi.org/10.1007/978-3-7908-2708-8_15
https://doi.org/10.1007/978-3-7908-2708-8_15
https://doi.org/10.1007/978-0-387-85820-3_4
https://doi.org/10.1007/978-0-387-85820-3_4
https://doi.org/10.1007/978-0-387-85820-3_4
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1017/CBO9780511763113


BIBLIOGRAPHY

[31] D. Kelly and J. Teevan. “Implicit Feedback for Inferring User Preference: A
Bibliography”. In: SIGIR Forum 37.2 (2003), 18–28. issn: 0163-5840. doi: 10.1
145/959258.959260. url: https://doi.org/10.1145/959258.959260 (cit. on
p. 6).

[32] D. Goldberg et al. “Using Collaborative Filtering to Weave an Information
Tapestry”. In: Commun. ACM 35.12 (1992), 61–70. issn: 0001-0782. doi: 10.11
45/138859.138867. url: https://doi.org/10.1145/138859.138867 (cit. on
pp. 7, 9).

[33] C. C. Aggarwal. Recommender systems. en. 1st ed. Basel, Switzerland: Springer
International Publishing, 2016-03 (cit. on pp. 7–9, 11–15, 21).

[34] M. Chevalier et al. “Information Retrieval and Folksonomies together for Rec-
ommender Systems”. In: E-Commerce and Web Technologies. Ed. by C. Huemer
and T. Setzer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 172–183.
isbn: 978-3-642-23014-1 (cit. on p. 7).

[35] J. L. Herlocker, J. A. Konstan, and J. Riedl. “Explaining Collaborative Filtering
Recommendations”. In: Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work. CSCW ’00. Philadelphia, Pennsylvania, USA: Asso-
ciation for Computing Machinery, 2000, 241–250. isbn: 1581132220. doi: 10.1
145/358916.358995. url: https://doi.org/10.1145/358916.358995 (cit. on
pp. 7, 11).

[36] B. Sarwar et al. “Item-Based Collaborative Filtering Recommendation Algo-
rithms”. In: Proceedings of the 10th International Conference on World Wide Web.
WWW ’01. Hong Kong, Hong Kong: Association for Computing Machinery,
2001, 285–295. isbn: 1581133480. doi: 10.1145/371920.372071. url: https:
//doi.org/10.1145/371920.372071 (cit. on pp. 8, 9).

[37] Y. Koren, R. Bell, and C. Volinsky. “Matrix Factorization Techniques for Recom-
mender Systems”. In: Computer 42.8 (2009), pp. 30–37. doi: 10.1109/MC.2009.2
63 (cit. on p. 9).

[38] Y. Hu, Y. Koren, and C. Volinsky. “Collaborative Filtering for Implicit Feedback
Datasets”. In: 2008 Eighth IEEE International Conference on Data Mining. 2008,
pp. 263–272. doi: 10.1109/ICDM.2008.22 (cit. on p. 10).

[39] X. Luo et al. “An Efficient Non-Negative Matrix-Factorization-Based Approach
to Collaborative Filtering for Recommender Systems”. In: IEEE Transactions on
Industrial Informatics 10.2 (2014), pp. 1273–1284. doi: 10.1109/TII.2014.23084
33 (cit. on p. 11).

48

https://doi.org/10.1145/959258.959260
https://doi.org/10.1145/959258.959260
https://doi.org/10.1145/959258.959260
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/358916.358995
https://doi.org/10.1145/358916.358995
https://doi.org/10.1145/358916.358995
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/TII.2014.2308433
https://doi.org/10.1109/TII.2014.2308433


BIBLIOGRAPHY

[40] P. Lops, M. de Gemmis, andG. Semeraro. “Content-basedRecommenderSystems:
State of the Art and Trends”. In: Recommender Systems Handbook. Ed. by F. Ricci
et al. Boston, MA: Springer US, 2011, pp. 73–105. isbn: 978-0-387-85820-3. doi:
10.1007/978-0-387-85820-3_3. url: https://doi.org/10.1007/978-0-387-
85820-3_3 (cit. on pp. 12, 13).

[41] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet Allocation”. In: J. Mach.
Learn. Res. 3.null (2003), 993–1022. issn: 1532-4435 (cit. on p. 12).

[42] C. Musto et al. “Word Embedding Techniques for Content-based Recommender
Systems: An Empirical Evaluation”. In: RecSys Posters. 2015 (cit. on p. 12).

[43] B. Kanagal et al. “Supercharging Recommender Systems Using Taxonomies for
Learning User Purchase Behavior”. In: Proc. VLDB Endow. 5.10 (2012), 956–967.
issn: 2150-8097. doi: 10.14778/2336664.2336669. url: https://doi.org/10
.14778/2336664.2336669 (cit. on p. 14).

[44] R. Zhang et al. “Collaborative Filtering for Recommender Systems”. In: 2014
Second International Conference on Advanced Cloud and Big Data (2014), pp. 301–308
(cit. on p. 14).

[45] R. Burke. “Hybrid Recommender Systems: Survey and Experiments”. In: User
Modeling and User-Adapted Interaction 12 (2002), pp. 331–370 (cit. on p. 15).

[46] L. Hasan, A. Morris, and S. Probets. “Using Google Analytics to Evaluate the
Usability of E-Commerce Sites”. In: Human Centered Design. Ed. by M. Kurosu.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 697–706. isbn: 978-3-
642-02806-9 (cit. on p. 17).

[47] S. Fernandes and J. Bernardino. “What is BigQuery?” In: Proceedings of the
19th International Database Engineering amp; Applications Symposium. IDEAS ’15.
Yokohama, Japan: Association for Computing Machinery, 2015, 202–203. isbn:
9781450334143. doi: 10.1145/2790755.2790797. url: https://doi.org/10.1
145/2790755.2790797 (cit. on p. 18).

[48] Y. Ding and X. Li. “Time Weight Collaborative Filtering”. In: Proceedings of the 14th
ACM International Conference on Information and Knowledge Management. CIKM
’05. Bremen, Germany: Association for Computing Machinery, 2005, 485–492.
isbn: 1595931406. doi: 10.1145/1099554.1099689. url: https://doi.org/10
.1145/1099554.1099689 (cit. on p. 21).

[49] M. Kula. “Metadata Embeddings for User and Item Cold-start Recommen-
dations”. In: Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems co-located with 9th ACM Conference on Recommender Systems
(RecSys 2015), Vienna, Austria, September 16-20, 2015. Ed. by T. Bogers and M.
Koolen. Vol. 1448. CEUR Workshop Proceedings. CEUR-WS.org, 2015, pp. 14–21.
url: http://ceur-ws.org/Vol-1448/paper4.pdf (cit. on pp. 24, 38, 41).

49

https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.14778/2336664.2336669
https://doi.org/10.14778/2336664.2336669
https://doi.org/10.14778/2336664.2336669
https://doi.org/10.1145/2790755.2790797
https://doi.org/10.1145/2790755.2790797
https://doi.org/10.1145/2790755.2790797
https://doi.org/10.1145/1099554.1099689
https://doi.org/10.1145/1099554.1099689
https://doi.org/10.1145/1099554.1099689
http://ceur-ws.org/Vol-1448/paper4.pdf


BIBLIOGRAPHY

[50] S. Rendle. “Factorization Machines”. In: 2010 IEEE International Conference on
Data Mining. 2010, pp. 995–1000. doi: 10.1109/ICDM.2010.127 (cit. on p. 24).

[51] S. Rendle et al. “BPR: Bayesian Personalized Ranking from Implicit Feedback”. In:
CoRR abs/1205.2618 (2012). arXiv: 1205.2618. url: http://arxiv.org/abs/12
05.2618 (cit. on p. 25).

[52] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research
12.61 (2011), pp. 2121–2159. url: http://jmlr.org/papers/v12/duchi11
a.html (cit. on p. 25).

[53] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012. doi: https:
//doi.org/10.48550/arxiv.1212.5701. url: https://arxiv.org/abs/1212
.5701 (cit. on p. 25).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.10.10) [0]. 12cc90221730b8ba41bb3b1f8b517acd

[0] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 50).

50

https://doi.org/10.1109/ICDM.2010.127
https://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/https://doi.org/10.48550/arxiv.1212.5701
https://doi.org/https://doi.org/10.48550/arxiv.1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf






Eh
sa
n
M
ei
sa
m
iF
ar
d

U
til
iz
in
g
im
pl
ic
it
fe
ed
ba
ck
da
ta
to
bu
ild
a
hy
br
id
re
co
m
m
en
de
rs
ys
te
m

20
22


	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Paradox of Choice
	1.2 Recommender Systems
	1.2.1 Small Online Retailers and Recommender Systems

	1.3 Objectives and Practical Relevance
	1.4 Structure of Thesis

	2 Background
	2.1 Definition of Recommender System
	2.1.1 Explicit and Implicit Feedback

	2.2 Collaborative Filtering
	2.2.1 User-based Fitlering
	2.2.2 Item-based Fitlering
	2.2.3 Principal Component Analysis
	2.2.4 Matrix Factorization
	2.2.5 Alternating Least Square
	2.2.6 Challenges of Collaborative Filtering

	2.3 Content-based Filtering
	2.3.1 Nearst Neighbour Classification
	2.3.2 Challenges for Content-based Filtering

	2.4 Hybridization
	2.4.1 Monolithic Design
	2.4.2 Ensemble Design
	2.4.3 Mixed Design


	3 Methods
	3.1 Data
	3.1.1 Google Analytics and BigQuery

	3.2 Calculating Ratings
	3.2.1 Setting Weights
	3.2.2 Constraints and Time-decay

	3.3 Pre-Processing and Dataframe Description
	3.3.1 User Features and Item Features

	3.4 Model
	3.4.1 LightFM


	4 Experiments and Results
	4.1 Experiments and Goals
	4.2 Evaluation Metrics
	4.3 Hyperparameter Selection
	4.4 Experimental Results and Analysis
	4.4.1 Results of experiment 1
	4.4.2 Results of experiment 2: User cold-start
	4.4.3 Results of experiment 2: Item cold-start

	4.5 Discussion

	5 Conclusions and Future Work
	5.1 Future Work

	Bibliography
	Back Matter
	Back Cover
	Spine


