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Abstract: The Green Fluorescent Protein (GFP) and its analogues have been widely used as fluorescent
biomarkers in cell biology. Yet, the chromophore responsible for the fluorescence of the GFP is not
emissive when isolated in solution, outside the protein environment. The most accepted explanation
is that the quenching of the fluorescence results from the rotation of the aryl–alkene bond and from
the Z/E isomerization. Over the years, many efforts have been performed to block these torsional
rotations, mimicking the environment inside the protein β-barrel, to restore the emission intensity.
Molecule rigidification through chemical modifications or complexation, or through crystallization,
is one of the strategies used. This review presents an overview of the strategies developed to achieve
highly emissive GFP chromophore by hindering the torsional rotations.

Keywords: fluorescence; green fluorescent protein; Z/E isomerization; aggregation-induced emission
enhancement; difluoroborate

1. Introduction

Luminescence is described as the spontaneous emission of light from an electronic
excited state to the ground state [1]. During the luminescence phenomenon, there are a
series of transitions that are described in the Jablonski diagram [2]. In short, after energy
absorption, the fluorophore goes from the ground state to an excited state, and when the
molecule returns to the ground state, it can emit a photon in the form of fluorescence.
The presence of electron-donating and electron-withdrawing groups around a conjugated
core can promote a shift in the absorption and emission spectra. When a dye has a highly
conjugated π system with a planar structure, the molecules tend to aggregate and establish
π–π stacking interactions, which will quench their emission in a phenomenon called
aggregation-caused quenching (ACQ) [3]. In contrast, some dyes that are not emissive in
solution, or poorly emissive, can become highly emissive when in the solid state, due to the
restriction of intramolecular rotations and torsional vibrations [4], in a phenomenon known
as aggregation-induced emission (AIE) or aggregation-induced emission enhancement
(AIEE) [3].

The Green Fluorescent Protein (GFP) is a light-producing protein from the jellyfish
Aequora Victoria [5] with a bright green, fluorescent emission. In 2008, the Nobel Prize
in chemistry was attributed to Osamu Shimomura, Martin Chalfie and Roger Tsien for
the work developed on the discovery and isolation of the GFP [6]. One advantage is that
the GFP can easily be linked to a protein, via genetic modification of an organism. This is
particularly useful to monitor the level of expression of a protein of interest, or its localiza-
tion, via fluorescence measurements. The chromophore responsible for its luminescence
is p-hydroxybenzylidene-imidazolidinone (p-HBDI) (Figure 1) and is formed inside the
β-barrel structure during the protein folding, due to the chemical transformation of serine,
tyrosine and glycine residues from where the chromophore is formed [7]. However, besides
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being responsible for GFP emission, the p-HBDI by itself is not emissive when isolated in
solution. The loss of fluorescence emission of this chromophore is usually attributed to
non-radiative decay due to the internal rotations of the molecule, such as the rotation of
the aryl–alkene bond (Figure 1, blue arrow) caused by heat [8]. The photoisomerization
of the benzylidene double bond (Figure 1, red arrow) can also be responsible for the emis-
sion quenching, changing the fluorophore from an emissive conformation (Z isomer) to a
non-emissive conformation (E isomer) [9].
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also been performed in an attempt to tune its emission color.  
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Figure 1. p-hydroxybenzylidene-imidazolidinone chromophore responsible for the emission of
the GFP.

The localization of the chromophore inside theβ-barrel of the protein blocks its internal
rotations and the Z/E isomerization of the carbon–carbon double bond by a hydrogen-bond
network [10]. This blocking suppresses the non-radiative decay and promotes the radiative
pathway, enhancing the fluorescence emission. Some strategies have been employed to en-
hance the emission intensity of the GFP chromophore (GFPc), involving different processes
and methods, which include crystallization [11], encapsulation in a macrocycle [12], com-
plexation with metals [13] or with boron [9], or chemical modifications [10]. Additionally,
modifications of the structure of GFPc have also been performed in an attempt to tune its
emission color.

Concerning the synthesis of GFPc analogues, two main strategies have been ex-
tensively used: the Erlenmeyer azlactone synthesis and a Knoevenagel condensation.
Erlenmeyer–Plöchl azlactone synthesis consists in the condensation of aromatic aldehydes
with hippuric acid in acetic anhydride to produce an azlactone [14], then a subsequent
reaction with a primary amine leads to the GFPc analogue (Scheme 1) [15].
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Concerning the Knoevenagel condensation applied to the synthesis of GFPc ana-
logues, it involves the formation of the imidazolidine core, followed by a Knoevenagel
condensation (Scheme 2) [9].
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This review provides an overview of the GFP-inspired fluorophores reported in the
past few years, focusing on the different strategies implemented to enhance their emission
intensity: crystallization or aggregation, interaction with macromolecules, complexation
with boron or metallic cations, chemical modifications, all of them aiming at restricting the
torsional vibrations and locking the alkene bond isomerization.
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2. Fluorescence Enhancement without Structural Modifications
2.1. Crystallization and Aggregation-Induced Emission Enhancement (AIEE)

The internal rotations of a chromophore can be blocked when it is in the solid state, as
a crystal or an amorphous aggregate, which can lead to the enhancement or induction of
the emission, in chromophores that are poorly- or non-fluorescent in solution.

A family of GFPc analogues has been synthesized using Erlenmeyer azlactone synthe-
sis, followed by a reaction of the obtained oxazolones with p-anisidine to give origin to the
benzamides ring opening with a final cyclization (chromophores 1a-c, Figure 2) [15]. The
strategy is based on the introduction of rotational aromatic groups around the imidazo-
lidinone core to increase the AIEE phenomena. In solution, the synthesized chromophores
present weak emission, due to the relaxation through the Z/E isomerization and torsional
vibration of the aromatic rings. This isomerization could be blocked in the aggregate or
crystalline state, from where the emission was increased, as expected, and only the presence
of the Z isomer was confirmed through the crystal structures [15].
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Figure 2. GFPc analogues with multiple phenyl substituents [15].

The crystal packing of a chromophore is considered an important factor to achieve an
enhanced emission. The length of the chain attached to the phenolic oxygen influences the
crystal packing and the emission properties of the four GFPc derivatives 2 (Figure 3) [11].
Crystals of chromophores 2b, 2c and 2d present AIEE properties. The emission of these
chromophores increases along with the alkyl chain length, due to the reduction in the
interaction strength between the molecules. The chromophore 2a did not show fluorescence
emission even in the solid state, probably due to the intermolecular hydrogen bonds
between the hydroxyl and carbonyl groups [11].
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The presence of an alkyl chain on the position 2 of the imidazolinone ring (chro-
mophores 3a-d, Figure 3), demonstrates an effect similar to that described above. Re-
gardless of the length of the alkyl chain, all derivatives are weakly emissive when in
solution, but their emission intensity increases when they are in the solid state [10]. Ad-
ditionally, the solid-state quantum yields increase with the extension of the alkyl chain.
This phenomenon could be explained by the changes in the intermolecular arrangements
and interactions, which results in weakened intermolecular π–π interactions between the
benzylidene–imidazolinone moieties [10].

A family of GFPc containing a 2-phenylbenzoxazole group, and different alkyl chains
on the nitrogen in position 3 of the imidazole ring (chromophores 4a-f, Figure 4) were
described as weakly fluorescent in solution, with quantum yields around 0.02, with the
exception of 4e and 4f which exhibit quantum yields of 0.20 and 0.24, respectively [16,17].
The quantum yield of 4a does not increase in the crystalline state, while all the other show
an AIEE effect with quantum yield of 0.16–0.26 for 4b-d in the solid state. Derivatives 4e-f
demonstrate a bright fluorescence when adsorbed on a solid support, such as nylon or
paper, with a red-shifted wavelength relatively to the DMSO solution, mainly due to the
stiffening of the molecules by the adsorption on the solid material [17].
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The different behaviors can be rationalized considering the crystal packing of the dyes.
The crystal structure of 4a reveals that it arranges into head-to-tail dimeric structures, with
a strong overlap of the benzoxazole of one molecule with the imidazole ring of the other
molecule, probably quenching the emission. This overlap is much weaker for the remaining
derivatives, preventing the quenching and allowing the increase in their fluorescence
through the AIEE effect [16,17]. Additionally, the long alkyl chains, in the case of 4e-f,
seem to increase the fluorescence intensity by separating the molecules [17], which is in
agreement with the other results [10].

In another article, the polymorphism of 4a was studied, and the different polymorphs
demonstrated to have different photophysical properties [18]. Some polymorphs are non-
emissive, but two of them, one containing the pure dye and one solvate, exhibit a strong
emission at 502 nm (ϕ = 0.22) and 582 nm (ϕ = 0.11), respectively. Molecular motions are
restricted in all polymorphs; therefore, all should present AIEE properties, but in some of
them, the strong overlap of aromatic rings probably counteracts the AIEE effect with an
ACQ effect, quenching the emission [18].

The emission of the GFPc 5 (Figure 5) was not detected in solution. In the crystalline
state, 5 can organize in five different polymorphs, all of them presenting AIEE properties
with quantum yields of 0.02-0.05, due to the restriction of molecular motions. The emission
wavelength is different between the polymorphs, varying from a blue emission around
450 nm to a yellow emission around 550nm, as a result of the strength of the π–π interactions
between the donor and the acceptor units in the polymorphs [19].
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In an attempt to rigidify the backbone of the dyes, large aromatic substituents were
introduced in replacement of the p-hydroxyphenyl ring on the GFPc 6a-e (Figure 6) [20].
Unfortunately, this did not restrict the intramolecular motions in solution and, consequently,
did not increase the emission intensity. However, these modifications induced a red shift
of the emission wavelength due to extra π conjugation, and solvent polarity dependence.
This shift was also observed in the solid state, but GFPc 6a, 6c and 6d do not present AIEE
properties, being only faintly emissive. On the contrary, 6b crystallized in two polymorphic
forms, one of them strongly emissive [20].
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The introduction of a diphenylmethylene group in GFPc 7a,b (Figure 7) was expected
to enhance their emission intensity in solution, because it would suppress the possibility
of Z/E isomerization (the virtual Z and E isomers are the same molecule). However, they
are only faintly emissive in solution. Nevertheless, GFPc 7 presents AIEE properties in the
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solid state and in frozen solution, due to the restrictions of molecular motions. The crystal
packing of GFPc 7a revealed intermolecular π–π interactions, responsible for the quenched
fluorescence [21].
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Looking at these examples, we can conclude that many GFPc analogues present AIEE
properties and are brightly emissive in the solid state. However, many others are not, and
it is difficult to predict the photophysical properties of a GFPc analogue in the solid state.
Nevertheless, this approach is limited to the use of the luminescent dyes in the solid state,
and many applications require the dyes to be luminescent in solution.

2.2. Supramolecular Hosts

In the GFP, the GFPc is surrounded by the β-barrel, which restricts its torsional
vibrations and hinders the isomerization of the phenylene double bond, therefore producing
the same effect as aggregation, but preventing ACQ as the dye is isolated. Following a
biomimetic approach, supramolecular hosts have been used to encapsulate some GFPc
analogues, in an attempt to enhance their emission intensity.

It has been demonstrated that some GFPc analogues (chromophores 8, Figure 8) could
serve as guests inside a deep cavity cavitand (called “octaacid”). These dyes are poorly
emissive in solution, but their emission intensity increased dramatically when they enter
the cavity of “octaacid”. The GFPc 8k, bearing the longest alkyl substituent, was the one
that demonstrated the greater increase in emission quantum yield, from 1.47% in benzene
to 10% in the presence of “octaacid” [22].
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The fluorescence of a series of GFPc derivatives have been studied in the presence
of different biomacromolecules, and these dyes demonstrated that these could be used as
small molecular probes (chromophores 9a,b, Figure 9). The presence of an alkyloxy group
in the para position of the phenyl ring induced a turn-on fluorescence when in the presence
of ribonucleic acid (RNA), while the diethylamino group in the same position induced a
selective fluorescence increase in the presence of human serum albumin (HSA). It is likely
that the interaction of the dyes with the biomacromolecules stiffen their backbone, thus
restricting molecular motions and isomerization [23].
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packing in the aggregate cavity, and an additional hydrophobicity, respectively, which 
results in the emission enhancement of the chromophore [25]. 
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host upon inclusion of a GFPc inside its cavity. The fluorescence intensity of a GFPc ana-
logue (Figure 12) was clearly enhanced when it changed from the isolated chromophore 
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Figure 9. GFPc analogues used as selective fluorescence turn-on molecular probes for RNA and
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Moreover, all GFPc 10 (Figure 10) demonstrated that their fluorescence intensity
increases when bonded to HAS; the longer the alkyl chain of R2, the more dramatic the
enhancement, with chromophore 10k being the one that showed the best results [24].
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Figure 10. GFPc analogues with enhanced emission intensity in the presence of HSA [24].

Similar analogues of the GFPc (chromophores 11, Figure 11) also demonstrated an
enhanced emission intensity when encapsulated inside amphiphilic sodium cholate (NaCh),
most probably because their torsional motions are restricted in the aggregate cavity. The
emission intensity further increases alongside the concentration of NaCh. The authors of
this study also proposed that the groups o-CF3 and n-Pr promote the optimal packing in
the aggregate cavity, and an additional hydrophobicity, respectively, which results in the
emission enhancement of the chromophore [25].
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Figure 11. GFPc analogue with enhanced emission when encapsulated in NaCh vesicles [25].

A β-cyclodextrin could mimic the protein environment, and act as a supramolecular
host upon inclusion of a GFPc inside its cavity. The fluorescence intensity of a GFPc
analogue (Figure 12) was clearly enhanced when it changed from the isolated chromophore
12 to the chromophore covalently attached to a β-cyclodextrin CD-12 [12]. Here, the
molecular motions of the GFPc, and the double bond isomerization, are blocked by its
inclusion inside the cavity of the β-cyclodextrin.
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A family of self-restricted GFPc analogues (chromophores 13a-c, Figure 13) has been
designed to be self-restricting, based on previous report [26], and their emission properties
have been studied in solution, in the aggregate state and upon complexation inside a
cyclodextrin cavity. In solution, the self-restricted chromophores 13b and 13c present
higher emission when compared to chromophore 13a, due to the steric hindrance of the
methoxy group, which limits the rotation of the benzylidene ring. GFPc 13c presents
an enhanced emission compared to 13b probably due to the reduced hydrogen bonding
effect [27]. The emission of 13a and 13b is quenched in the aggregate state, but 13c presents
an enhanced emission intensity when it aggregates, which can be due to the segregation
effect of the adamantyl group. Different β-cyclodextrins derivatives were used to study
their effect on the fluorescence of these chromophores. Chromophore 13b does not seem
to interact with the β-cyclodextrins, but GFPc 13c demonstrated an enhanced emission
intensity on the presence of β-cyclodextrins, as the adamantyl group is known to readily
enter the cyclodextrin cavity. The complexation with methyl-β-cyclodextrin proved to
promote a higher emission [27].
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Figure 13. GFPc analogues used to study the supramolecular interaction with cyclodextrin [27].

In a similar approach, the inner surface of the Tobacco Mosaic Virus (TMV) has been
used to mimic the GFP β-barrel, as they are quite similar. Chromophore 14 (Figure 14)
could be easily conjugated to the glutamate residues of the TMV channel through its amino
group. After conjugation, the fluorescence intensity of TMV-14 exhibited a significant
enhancement when compared to the isolated GFPc 14, with an extra enhancement in the
presence of different organic solvents, with DMSO being the one that showed the most
dramatic results [28].
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Figure 14. GFPc analogues that can be conjugated with the TMV channel [28].

A GFPc has been modified in order to increase its affinity for β-amyloid fibrils and
lysosomes (chromophore 15, Figure 15). The phenolic hydroxyl group of the GFPc has been
replaced by a dimethylamino group, and a quinolone substituent has been introduced,
in order to improve the affinity with β-amyloid fibrils. The 3-morpholinopropyl-amino
group has been added as a lysosome-targeting group [29]. The GFPc 15 demonstrated to
accumulate in the β-amyloids, which mimic the environment of the β-barrel of the GFP,
thus turning on the fluorescence. The same effect was observed with lysosomes. Therefore,
GFPc 15 allowed the detection of Aβ fibrils and the mapping of viscosity in lysosomes,
with fluorescence emissions at 570 nm and 600 nm, respectively [29].
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2.3. Polymers

The linking of GFP-inspired chromophores to a polymer chain has been proven
effective in terms of enhancing the fluorescence emission. The polymer 16 (Figure 16) was
designed by linking a GFPc analogue to the thermo-sensitive copolymer poly(ethylene
glycol)-poly(N-isopropylacrylamide (PEG-PNIPAM) and exhibited a weak fluorescence
at low temperature [30]. Copolymer 16 emits more brightly when above the lower critical
solution temperature, which can be explained by the hindrance of the conformational
motions of the GFPc due to the self-assembly of the PEG-PNIPAM blocks [30].
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The copolymer can also be built around a single GFPc. For example, the copolymer
poly(ethylene glycol)-17a-poly(methylmethacrylate) (PEG-17a-PMMA) has been grown
on GFPc 17a (Figure 17). Compared to the isolated GFPc 17a, PEG-17a-PMMA demon-
strated a red-shifted emission and an increased emission intensity (24 times) after the
self-assembly of the GFP-copolymer into micellar aggregates [31]. This can be rational-
ized by the higher planarity of the chromophore and by the interactions between the
chromophore and the copolymer [31]. The GFP-copolymers poly(ethylene glycol)-17b-g-
poly(methylmethacrylate) (PEG-17b-g-PMMA) include one chromophores 17b-g between
the two parts of the copolymer (Figure 17). They also present a brighter fluorescence after
assembly into micelles, with different emission wavelengths depending on the GFPc used
(17b-g), varying between blue, green, yellow and orange [32]. This emission enhancement
is related to the length of the hydrophobic chain, and is larger with longer chains, because
these chains are able to reduce the intermolecular interactions and inhibit the molecular
motions of the chromophore [32].
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The connection of a GFPc with an organic spacer promotes the formation of a three-
dimensional porous organic polymer with luminescent properties similar to the GFP. Two
conjugated microporous polymers (18a-CMP and 18b-CMP, Figure 18) were prepared
from two GFPc analogues (18a,b, Figure 18). The crystal structure of 18a revealed an
intramolecular hydrogen bond between the proton of the hydroxyl group and the nitrogen
of the imidazole. The quantum yields of the GFPc 18a and 18b are very low in methanol,
mainly due to presence of the iodine atom which quenches the emission [33]. The molecular
motions of the chromophores proved to be restricted in the three-dimensional network,
and the emission properties of 18a-CMP are similar to the GFP [33].
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The incorporation of a GFPc into a metal–organic framework was also reported as an
alternative to mimic the behavior of the GFPc inside the β-barrel [34]. A metal–organic
framework was prepared using GFPc 19 as linker (Figure 19) and zinc (II). It exhibits a green
emission similar to the GFP, and the authors demonstrated that the molecular motions of
the GFPc are hindered inside the framework [34].
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3. Fluorescence Enhancement with Structural Modifications

The physical rigidification of the GFPc backbone, through solidification or encapsu-
lation, proved to be a valid strategy to increase its emission intensity. However, another
approach is needed if the GFPc is to be used in solution. For this, the skeleton of the dye
can be modified to hamper or block the isomerization of the benzylidene double bond.

3.1. Intramolecular Hydrogen Bond

The introduction of a strong intramolecular hydrogen bond in GFPc analogues is
a simple strategy to hinder the torsional rotations, and the double bond isomerization,
responsible for the radiationless deactivation [35].

In order to demonstrate the validity of this approach, an isomer of the GFPc with
the hydroxyl group located on the ortho position of the phenyl ring instead of the para
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position (chromophore 20a, Figure 20) has been prepared. A slight enhancement of the
quantum yield is observed for GFPc 20a compared to GFPc 20b, in which the intramolecular
hydrogen bond is absent. The presence of the intramolecular hydrogen bond is supported
by the crystal structure of 20a. These results suggest that this intramolecular hydrogen bond
blocks the torsional vibrations and / or the isomerization, thus increasing the emission
intensity [35].
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Figure 22. GFPc analogues presenting a hydrogen bond and/or a cyclic substituent [37]. 

Changing the substitution of the imidazolone ring with the introduction of heteroa-
toms is rare but can be promising. For example, the GFPc analogues 23a-n contain a 2-
(phenylamino)imidazolone core (Figure 23). The introduction of an aminophenyl substit-
uent and the repositioning of the hydroxyl group into position 2 of the benzylidene moi-
ety, in GFPc 23c,e-l, to allow a strong intramolecular hydrogen bonding led to an en-
hanced emission intensity, an increased Stoke shift (up to 185 nm) and a considerable red 
shift, when compared with the GFPc 23d which lacks the hydrogen bond. The addition of 
a dialkylamino substituent on the benzylidene ring led to a two orders of magnitude en-
hancement in the quantum yields. Furthermore, an enhanced two-photon cross-section 
was observed for compounds 23f-k, which is relevant for certain neurobiological applica-
tions [38].  

Figure 20. GFPc analogues demonstrating that the intramolecular hydrogen bond increases the
emission intensity in solution [35].

A family of GFPc analogues (chromophores 21a-g, Figure 21) with a seven-membered
ring hydrogen bond, also demonstrated that this intramolecular hydrogen bond is impor-
tant to hinder the nonradiative deactivation associated with the rotation of the exocyclic
double bond [36]. Moreover, these dyes presented an Excited-State Intramolecular Proton
Transfer, which shifts the emission towards longer wavelengths.
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Figure 21. GFPc analogues with enhanced emission intensity due to the intramolecular hydrogen
bond [36].

Another example of seven-membered ring hydrogen bonds is presented in the family
of chromophores 22a-c (Figure 22), where it was demonstrated that chromophore 22a
exhibits an enhanced fluorescence (ϕ=0.18 in toluene) compared to the chromophores 22b
and 22c [37]. Therefore, it seems that combining an intramolecular hydrogen bond with a
cyclic substituent around the double bond is even more efficient to lock the isomerization.
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Figure 22. GFPc analogues presenting a hydrogen bond and/or a cyclic substituent [37].

Changing the substitution of the imidazolone ring with the introduction of het-
eroatoms is rare but can be promising. For example, the GFPc analogues 23a-n contain a
2-(phenylamino)imidazolone core (Figure 23). The introduction of an aminophenyl sub-
stituent and the repositioning of the hydroxyl group into position 2 of the benzylidene
moiety, in GFPc 23c,e-l, to allow a strong intramolecular hydrogen bonding led to an
enhanced emission intensity, an increased Stoke shift (up to 185 nm) and a considerable red
shift, when compared with the GFPc 23d which lacks the hydrogen bond. The addition
of a dialkylamino substituent on the benzylidene ring led to a two orders of magnitude
enhancement in the quantum yields. Furthermore, an enhanced two-photon cross-section
was observed for compounds 23f-k, which is relevant for certain neurobiological applica-
tions [38].
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Figure 23. GFPc analogues with a benzimidazole ring substituted with nitrogen, and intramolecular
hydrogen bond [38,39].

Following a similar approach, GFPc 23m,n include an heteroatom on the imidazolone
core, and a strong intramolecular hydrogen bond (Figure 23). These GFPcs demonstrated
higher quantum yields than the GFPc lacking the hydrogen bond. Unexpectedly, the GFPc
23n with an aza-indole substituent shows a much higher emission intensity than the indole
analogue 23m [39]. Further derivatization of these GFPc analogues included hydrophilic
groups, so that the dyes can be used for biological imaging.

3.2. Boron Complexes

These results demonstrated the intramolecular hydrogen bond can somehow block the
isomerization, but that it is not enough to substantially increase the emission intensity. The
substitution of the hydrogen bond by a boron complex has been attempted to overcome
this limitation.

The hydrogen-bonded GFPc analogues 24 (Figure 24) emit faintly in solution, with
very low quantum yields, demonstrating that the hydrogen bond is not very efficient to
block the isomerization of the double bond. They were transformed into a hybrid between a
BODIPY and a GFPc by reaction with trifluoroboron etherate, forming the boron complexes
25a-g. This modification proved to efficiently restrict the rotation and isomerization of
the GFPc, and consequently, block the non-radiative decay [40]. Indeed, the GFPc 25a-g
exhibited higher quantum yields, around 0.80-0.89 in methanol, when compared to the
precursors 24. Only GFPc 25f demonstrated a lower quantum yield (0.0004 in methanol
and 0.53 in hexanes), probably due to the presence of the nitroaryl substituent, which may
quench the emission [9]. The absorption and the emission wavelengths of all GFPc 25b-g
are quite similar, with exception of derivative 25a, probably due to the substitution with a
methyl group instead of an aryl group [9].
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hydrogen-bonded precursors [9].

Instead of using a boron complex, the boron can also be covalently linked to the
aromatic ring of the benzylidene moieties, forming a donor-acceptor bond with one nitrogen
of the imidazole ring (chromophore 26, Figure 25). This interaction would also lock the
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isomerization of the benzylidene double bond, resulting in an increase in the emission
intensity [41–43]. Chromophore 26 presents absorption and emission spectra similar to the
GFPc. However, its quantum yield is much higher (ϕ = 0.73 in acetonitrile), similar to the
quantum yield of GFP (ϕ = 0.60), as a result of the stiffening of the chromophore [41].

Molecules 2023, 28, 234 12 of 19 
 

 

intensity [41–43]. Chromophore 26 presents absorption and emission spectra similar to 
the GFPc. However, its quantum yield is much higher (φ = 0.73 in acetonitrile), similar to 
the quantum yield of GFP (φ = 0.60), as a result of the stiffening of the chromophore [41]. 

 
Figure 25. GFPc analogue with the Z/E isomerization blocked by intramolecular interaction [41]. 

Based on this result, a family of modified GFPc (chromophores 27, Figure 26) was 
designed [40,44]. The modifications performed on these derivatives also promote an in-
crease in their quantum yield, ranging from 0.30 to 0.77 in acetonitrile. These chromo-
phores present a solvent-dependent quantum yield. The introduction of a rigid cycloalkyl 
substituent on the aromatic amino group of chromophores 27f-h avoids the twisting of 
the amino group, promoting an increase in the quantum yield [44]. These modifications 
of rigidity also induced a red shift in the absorption and emission spectra, compared with 
the acyclic analogues 27a-d [44].  

 
Figure 26. GFPc analogues locked with intramolecular interaction, used to study the effect of the 
cyclic substituents [40,44]. 

This approach to block the isomerization of benzylidene double bond uses a link be-
tween the phenyl ring and the core of the imidazolone. Another approach has been at-
tempted, using a boron complex formed between the carbonyl of the imidazolone and an 
amino group introduced on the double bond of the benzylidene (chromophores 28 and 
29, Figure 27) [45]. The difluoroborate complex efficiently blocks the Z/E isomerization of 
the double bond and, as expected, the quantum yield increases up to 0.60. These GFPcs 
also show solvent-dependent quantum yield [37]. Contrary to what has been observed 
with other GFPc containing a boron complex, the absorption spectra of chromophores 28 
and 29 are blue-shifted relatively to the free ligand (without boron), while the emission 
spectra are red-shifted. The difference in their absorption spectra is due to the nitrogen(3)–
boron coordination of the imidazole ring [45]. 

 
Figure 27. GFPc analogues with a boron complex blocking the Z/E isomerization [45]. 

In order to tune the absorption and emission toward longer wavelengths, a family of 
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Figure 25. GFPc analogue with the Z/E isomerization blocked by intramolecular interaction [41].

Based on this result, a family of modified GFPc (chromophores 27, Figure 26) was
designed [40,44]. The modifications performed on these derivatives also promote an in-
crease in their quantum yield, ranging from 0.30 to 0.77 in acetonitrile. These chromophores
present a solvent-dependent quantum yield. The introduction of a rigid cycloalkyl sub-
stituent on the aromatic amino group of chromophores 27f-h avoids the twisting of the
amino group, promoting an increase in the quantum yield [44]. These modifications of
rigidity also induced a red shift in the absorption and emission spectra, compared with the
acyclic analogues 27a-d [44].
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Figure 26. GFPc analogues locked with intramolecular interaction, used to study the effect of the
cyclic substituents [40,44].

This approach to block the isomerization of benzylidene double bond uses a link
between the phenyl ring and the core of the imidazolone. Another approach has been
attempted, using a boron complex formed between the carbonyl of the imidazolone and an
amino group introduced on the double bond of the benzylidene (chromophores 28 and 29,
Figure 27) [45]. The difluoroborate complex efficiently blocks the Z/E isomerization of the
double bond and, as expected, the quantum yield increases up to 0.60. These GFPcs also
show solvent-dependent quantum yield [37]. Contrary to what has been observed with
other GFPc containing a boron complex, the absorption spectra of chromophores 28 and 29
are blue-shifted relatively to the free ligand (without boron), while the emission spectra
are red-shifted. The difference in their absorption spectra is due to the nitrogen(3)–boron
coordination of the imidazole ring [45].
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Figure 27. GFPc analogues with a boron complex blocking the Z/E isomerization [45].

In order to tune the absorption and emission toward longer wavelengths, a family
of conformationally locked GFPc containing the naphthalene ring has been prepared
(chromophores 30, Figure 28). This modification leads to an increase in the Stokes shift, up to
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100 nm, and to a dramatic bathochromic shift of the absorption and emission maxima when
compared to the corresponding GFPc with only one benzene ring (GFPc 26, Figure 25) [46].
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Figure 28. GFPc analogues with a more conjugated backbone [46].

The peripheral substituents can also have a dramatic effect on the photophysical prop-
erties of these dyes. A GFPc analogue locked by a boron complex has been functionalized
with a dimethylamino substituent (31a, Figure 29). The quantum yield of this dye depends
heavily on the solvent polarity, ranging from 0.02 in water to 0.69 in toluene, thus being
a potential polarity sensor. On the contrary, when the motions of the amino group are
restricted by introduction of a cyclic substituent (31b and 31c), the quantum yield is similar
in all solvents (0.60 to 0.95), with a much lower dependence of the polarity [47].
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3.3. Metal Complexes

The previous section illustrates the increase in the emission intensity of GFPc when
the Z/E isomerization is blocked by a boron complex. Metallic cations can also be chelated
by bidentate ligands, and fluorophores have been designed to see their emission modified
upon complexation, thus turning them into sensors. This approach has also been developed
with GFPc analogues, changing benzyl for 2-pyridyl, forming the bidentate ligand 32a
(Figure 30), with which metallic cations can bind [48]. The chromophore 32a is weakly fluo-
rescent in solution, and its emission is blue-shifted and quenched when the pH decreases.
The fluorescence is also quenched upon addition of metallic cations, with the exception
of Zn(II), Cd(II) and Pb(II), which induce an enhancement of the emission intensity 48].
This emission enhancement is rationalized by the locking of the Z/E isomerization upon
complexation, with the condition that the metallic cation does not quench the emission.
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Figure 30. GFPc analogues with an increased emission intensity when complexed with Zn (II) [41,48].

In another report, the chromophore 32b (Figure 30) has been demonstrated to complex
reversibly with Zn2+, producing a bathochromic shift both in the absorption and emission
spectra, and its fluorescence also increased when compared to the Zn2+ free ligand [41].

Chromophore 33 (Figure 31) was demonstrated to be highly selective to Zn2+. The
emission spectra of the Zn2+ complex is blue-shifted relatively to the free ligand, and the
emission intensity is enhanced, but this does not happen with other metal ions [49]. When
the pH of the solution decreases, the emission of the complex is quenched. The GFPc
34 (Figure 31) presents similar features, but a different complexing pocket [13]. It also
demonstrated an emission enhancement at 474 nm in the presence of Zn2+ ions, probably
due to the blocking of the aryl–alkene bonds [13]. Additionally, the emission of the complex
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is also quenched at lower pH, in accordance with previous reports [48,49]. In the presence
of Hg2+ ions, GFPc 34 changes from its characteristic yellow color (400 nm) to a pink color
(550 nm); however, its emission remains undetectable.
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Figure 31. GFPc analogues for the detection of metallic cations [13,49].

The GFPc analogues 35 (Figure 32) presents a different complexing site, introduced by
the ring-opening of the azlactone ring with ammonium acetate, followed by a cyclization
to obtain the imidazole derivative which was finally reacted with acetic anhydride [6]. It
demonstrated good chelation ability toward cobalt, with an enhanced emission intensity
upon complexation.
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Figure 32. GFPc analogues with a chelating pocket selective for cobalt cations [6].

Palladium can also be used to block the isomerization of the GFPc, in a manner similar
to the boron complexes presented before. For this, the GFPc 36 and 37 have been prepared
(Figure 33), starting from azlactones or imidazolones, by orthopalladation. The complexes
lead to a rigidification of the GFPc analogues and promoted significant modifications in the
absorption and emission wavelengths relative to the free ligand. However, these complexes
did not demonstrate enhanced quantum yields, demonstrating that the restriction of
the isomerization is not always a sufficient condition to restore the luminescence of the
GFPc [50].
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3.4. Covalent Modifications

The restriction of the Z/E isomerization through covalent bonds that limit the ro-
tational motions has also been studied. Different approaches have been explored, such
as introducing a cyclic pattern on the benzylidene moiety, and introducing bulky sub-
stituents or particular push–pull combinations on the aromatic ring, that would hamper
the isomerization.

In the family of GFPc analogues 38a-h (Figure 34), rotational motions are restricted
by the introduction of a cyclic pattern [51]. The locked chromophores 38d-h demonstrated
higher emission intensity than the unlocked 38a-c, in both solution and solid state. However,
even in solution the locked chromophores 38d-h exhibited a low fluorescence intensity,
which indicates that the rotational motion is not the only non-radiative pathway responsible
for the loss of fluorescence [44]. This observation had been supported by the study of the
crystal structure of chromophores 38 [18].
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The effect of the substituents of the benzylidene ring on the emission of the GFPc
has been studied, as they are expected to hamper the isomerization of the double bond.
The GFPc 39a (Figure 35) bear two methoxy groups on the benzylidene ring and exhibits
a bright emission in solution. However, if the positions of these methoxy groups are
different, the emission is much lower [26]. Additionally, when the substituents are changed
to electron-withdrawing or less bulky groups (39b-d), the emission is also quenched. The
methoxy groups can nevertheless be changed to other ether groups, and GFPc 39a,e-g
demonstrate emission quantum yields of 10.1%, 11.1%, 11.4% and 12.7%, respectively.
From these results, the authors concluded that the emission quantum yield increases with
the increase in the steric hindrance of the substituents, when they are electron-donating
and on the positions 2 and 5 of the aromatic ring.
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The effect of the electron-donating or withdrawing character of the substituents has
also been studied. For this, a GFPC analogue has been prepared with a dimethylamino
group in the meta position of the benzylidene ring, and the position of a cyano group
has been varied (chromophores 40a-d, Figure 36). All of them emit brightly in solution,
especially 40b with a quantum yield of 0.60 in hexane [52]. These GFPcs also demonstrated
a dramatic solvatochromism, both for the absorption and emission, with their emission
shifting from ca. 480 nm in hexane to ca. 600 nm in acetonitrile.
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4. Conclusions

This review summarizes different approaches used to restore the emission intensity of
the GFPc outside the protein. The main strategy is to block the torsional rotations and the
isomerization of the benzylidene double bond, responsible for the non-radiative decay in
solution. Physical methods, such as crystallization or encapsulation, are effective and allow
the development of light-up sensors. Chemical methods rely on the modification of the
structure of the GFPc, by introducing substituents that restrict or lock the isomerization,
thus restoring the emission intensity in solution. These modifications can be permanent, or
only light up the GFPc in the presence of a metal ion, in this case forming a sensing probe.
Nevertheless, locking the benzylidene double bond of the GFPc is not always enough to
enhance its emission intensity. Due to the versatility of its synthesis, and the high number
of substituents that can be modified, the GFPc is highly tunable, and many analogues can
be prepared to tune their physical, chemical and luminescent properties. All the results
presented here demonstrate the high potential of the GFPc for applications in biological
imaging, sensors and luminescent materials.
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