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Abstract In the last few years, the potential impact of big data on the manufactur-
ing industry has received enormous attention. This chapter details two large-scale
trials that have been implemented in the context of the lighthouse project Boost
4.0. The chapter introduces the Boost 4.0 Reference Model, which adapts the
more generic BDVA big data reference architectures to the needs of Industry 4.0.
The Boost 4.0 reference model includes a reference architecture for the design
and implementation of advanced big data pipelines and the digital factory service
development reference architecture. The engineering and management of business
network track and trace processes in high-end textile supply are explored with a
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focus on the assurance of Preferential Certification of Origin (PCO). Finally, the
main findings from these two large-scale piloting activities in the area of service
engineering are discussed.

Keywords Reference architecture · ISO 20547 · ISO/IEC/IEEE 42010 · DIN
27070 · Sovereignty · Data spaces · Track & Trace · Blockchain · FIWARE ·
Virtual commissioning · Testbed · Trial · Business networks 4.0 · SUMA 4.0 ·
Intralogistics

1 Introduction

Over the last few years, the potential impact of big data for the manufacturing
industry has received enormous attention. However, although big data has become a
trend in the context of manufacturing evolution, there is not yet sufficient evidence
on how and if big data will leverage such impact in practical terms. New concepts in
the area of Industry 4.0 such as digital twins, digital threads, augmented decision
support dashboards and systems, and simulation-based commissioning systems
rely significantly on advanced engineering and operation of big data techniques
and technical enablers. The emergence of data-driven techniques to increase data
visibility, analytics, prediction and autonomy has been immense. However, those
techniques have been developed in many cases as individual efforts, without the
availability of an overarching framework making the transfer of such applications
to other industries at scale cumbersome. Moreover, the development of such big data
applications is not necessarily realized in context with reference architectures such
as the European Reference Architectural Model Industry 4.0 (RAMI 4.0), which
serves as reference in the sector for Industry 4.0 digital transformation. Big data
promises to impact Industry 4.0 processes at all stages of the product life-cycle.

The aim of this chapter is to present the advances made in the area of service
engineering and commissioning in the context of H2020 EU large-scale piloting
project Boost 4.0 [1]. It gathers the first set of experiences, best practices and lessons
learned during the deployment of the two lighthouse trials in the scope of the Boost
4.0 project: the most ambitious European initiative in big data for Industry 4.0. It
presents the experiences of two European manufacturing leaders (large industry and
SME) in the engineering and management at large scale of data-driven and traceable
intra-logistics and supply chain processes. Intra-logistic processes will be addressed
by the Volkswagen Autoeuropa (Portugal) plant in the automotive sector, whereas
supply chain business network engineering and management will be addressed by
the Italian SME Piacenza in the high-end textile sector. This chapter addresses initial
data value innovation elicitation and presents and assesses how a common RA can
be used to leverage advanced service engineering practices at large scale, as well as
lessons learned and impact evaluation.

This chapter relates mainly to the technical priorities Data Management Engi-
neering and optimized architectures for analytics of data-at-rest and data-in-motion
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of the European Big Data Value Strategic Research & Innovation Agenda [2]. It
addresses the horizontal concerns of heterogeneity, scalability and processing of
data-in-motion and data-at-rest of the BDV Technical Reference Model. It addresses
the vertical concerns of communication and connectivity, engineering and DevOps
for building big data value systems areas to facilitate timely access and processing of
big data and evolving digital twin models. The work in this chapter relates mainly
but not only to the Systems, Methodologies, Hardware and Tools cross-sectorial
technology enablers of the AI, Data and Robotics Strategic Research, Innovation &
Deployment Agenda [3].

The chapter is organized as follows: First the Boost 4.0 initiative is introduced
with a focus on the instantiation of the Boost 4.0 common big data-driven Reference
Architecture (RA). This RA is aligned with the big data RA proposed by Big
Data Value Association (BDVA) and harmonized with the Digital Factory Alliance
(DFA) overall digital factory open reference model. Next, the big data intra-
logistic process engineering trial and lessons learned at Volkswagen Autoeuropa are
introduced. Next, the engineering and management of business network track and
trace processes in high-end textile supply are presented with a focus on assurance
of Preferential Certification of Origin (PCO). Finally, the main findings extracted
from these two large-scale piloting activities in the area of service engineering are
discussed.

2 Boost 4.0 Universal Big Data Reference Model

Boost 4.0 (Big Data Value Spaces for Competitiveness of European Connected
Smart Factories 4.0) is the biggest European initiative in big data for Industry
4.0. With a 20 MAC budget and leveraging 100 MAC of private investment, Boost
4.0 has led the construction of the European Industrial Data Space to improve the
competitiveness of Industry 4.0. Since January 2018, it has guided the European
manufacturing industry in the introduction of big data in the factory, providing the
industrial sector with the necessary tools to obtain the maximum benefit of big data.

Since the beginning of the project, Boost 4.0 has demonstrated in a realistic,
measurable and replicable way an open, certifiable and highly standardized shared
data-driven Factory 4.0 model through 11 lighthouse factories, and has also
demonstrated how European industry can build unique strategies and competitive
advantages through big data across all the phases of product and process lifecycle.

2.1 Boost 4.0 Objectives

Boost 4.0’s overall mission is to accelerate the adoption of Industry 4.0 big
data-intensive smart manufacturing services through highly replicable lighthouse
activities that are intimately connected to current and future Industry 4.0 invest-
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ments, resolving the smart connected product and process data fragmentation and
leveraging the Factory 4.0 data value chain.

To accomplish this mission, Boost 4.0 has defined the following objectives:

• Global Standards: Contribution to the International Data Space data models
and open interfaces aligned with the European Reference Architectural Model
Industry 4.0 (RAMI 4.0).

• Secure Digital Infrastructure: Adaptation and extension of cloud and edge
digital infrastructures to ensure high-performance operation of the European
Industrial Data Spaces, i.e. support of high-speed processing and analysis of huge
and very heterogeneous industrial data sources.

• Trusted Big Data Middleware: Integration of the four main open-source
European initiatives (International Data Space, FIWARE, Hyperledger, Big Data
Europe) to support the development of open connectors and big data middleware.

• Digital Manufacturing Platforms: Opening of interfaces for the development
of big data pipelines for advanced analysis services and data visualization
supported by the main digital engineering, simulation, operations and industrial
quality control platforms.

• Certification: Development of a European certification programme for equip-
ment, infrastructures, platforms and big data services for operation in the
European Industrial Data Space.

2.2 Boost 4.0 Lighthouse Factories and Large-Scale Trials

In Boost 4.0, some of the most competitive factories, from three strategic economic
sectors that drive not only European manufacturing economy but also the IoT/smart
connected market development (i.e. automotive, manufacturing automation and
smart home appliance sectors) join forces to set up 11 lighthouse factories and 2
replication factories (Fig. 1) that are a coherent, complementary and coordinated big
data response to the 5 EFFRA Factory 4.0 Challenges, i.e. (1) lot size one distributed
manufacturing, (2) operation of sustainable zero-defect processes and products, (3)
zero break down operations, (4) agile customer-driven manufacturing value network
management and (5) human-centred manufacturing.

Boost 4.0 leverages five widely applicable big data transformations: (1) net-
worked commissioning and engineering, (2) cognitive production planning, (3)
autonomous production automation, (4) collaborative manufacturing networks and
(5) full equipment and product availability—across each of the five key product and
process lifecycle domains considered: (1) Smart Digital Engineering, (2) Smart Pro-
duction Planning and Management, (3) Smart Operations and Digital Workplace, (4)
Smart Connected Production and (5) Smart Maintenance and Service.
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Fig. 1 BOOST 4.0 big data driven lighthouse and replication factories 4.0

2.3 Boost 4.0 Universal Big Data Reference Architecture

One of the main ambitions of Boost 4.0 is to define and develop highly replicable big
data solutions to ensure the impact of the project beyond the project lifetime. One of
the main challenges Industry 4.0 faces when designing their big data solutions is first
of all to effectively address the design and development of high-performance big
data pipelines for advanced data visualization, analytics, prediction or prescription.
Then, the challenge lies in how to successfully integrate such big data pipelines in
the digital factory engineering and production frameworks. In this sense, to facilitate
the replicability of the lighthouse trials and big data solutions implemented, Boost
4.0 has relied on two reference models. On one hand, the BDVA Big Data Reference
Model (BD-RM) [4] to drive Industry 4.0 big data pipelines and process engineering
and operation. The goal of this RM is to ensure universality and transferability of
trial results and big data technologies as well as economies of scales for big data
platform and technology providers across sectors.

On the other hand, Boost 4.0 has developed and applied a RAMI 4.0 [5]
compliant Service Development Reference Architecture (SD-RA) for big data-
driven factory 4.0 digital transformation. This model is now maintained by the
Digital Factory Alliance (DFA) [6]. The goal is to ensure a perfect alignment
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between big data processes, platforms and technologies with overall digital transfor-
mation and intelligent automation efforts in manufacturing factories and connected
manufacturing networks.

As illustrated in Fig. 2, the Boost 4.0 BD-RA [7] is composed of four main
layers: Integration Layer, Information and Core Big Data Layer, Application
and Business Layers. This approach is aligned with the ISO 20547 Big Data
Reference Architecture—Big Data Application Provider layer—from Data Acqui-
sition/Collection through Data Storage/Preparation (and sharing) further to any
Analytics/AI/Machine Learning and also environmental Action/Interaction includ-
ing Visualization.

These four layers allow the implementation of a big data pipeline and the
integration of such pipelines in specific business processes supporting the Factory
4.0 product, process and service lifecycle, i.e. smart digital engineering, smart
digital planning and commissioning, smart digital workplace and operations, smart
connected production and smart servicing and maintenance. These four Boost 4.0
layers are supported by a set of transversal services, in particular data sharing
platforms, engineering and DevOps, Communications and Networking, Standards
and Cybersecurity and Trust. These layers enact the manufacturing 4.0 entities and
leverage a data 4.0 value chain that transforms raw data sources into quality data
that can be interpreted and visualized, providing mining and context for decision
support. This value chain is developed as data is aggregated, integrated, processed,
analysed and visualized across the Factory 4.0 layers (product, device, station,
workcentre, enterprise and connected world). The Boost 4.0 BD-RA adopts the
BDVA RM and adapts it to the specific needs of Industry 4.0.

However, the generic Boost 4.0 BD-RA needs to be articulated and instantiated
with the support of specific platforms, solutions and infrastructures so that the big
data-driven manufacturing processes can actually be realized. So, even if, as shown
in Fig. 2, the BDVA big data reference model can in fact be adapted to Industry
4.0 needs and aligned with the RAMI 4.0 model, a more formal harmonization
and integration of the BDVA RM is required to facilitate development of big
data services in the context of a digital factory exhibiting high transferability and
replication capabilities for big data-driven manufacturing processes. This is further
facilitated with the application of the DFA Digital Factory Service Development
RA (SD-RA), which ensures a broad industrial applicability of digital enablers,
mapping the technologies to different areas and to guide technology interoper-
ability, federation and standard adoption. The DFA SD-RA design complies with
ISO/IEC/IEEE 42010 [7] architectural design principles and provides an integrated
yet manageable view of digital factory services. In fact, DFA SD-RA integrates
functional, information, networking and system deployment views under one unified
framework. The DFA SD-RA address the need for an integrated approach to how
(autonomous) services can be engineered, deployed and operated/optimized in the
context of the digital factory. With this aim, the DFA SD-RA is composed of three
main pillars, as depicted in Fig. 3:
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1. Digital Service Engineering. This pillar provides the capability in the archi-
tecture to support collaborative model-based service enterprise approaches
to digital service engineering of (autonomous) data-driven processes with a
focus on supporting smart digital engineering and smart digital planning and
commissioning solutions to the digital factory. The pillar is mainly concerned
with the harmonization of digital models and vocabularies. It is this pillar that
should develop interoperability assurance layer capabilities with a focus on
mature digital factory standards adoption and evolution towards an “industry
commons” approach for acceleration of big data integration, processing and
management. It is this pillar where “security by design” can be applied both
at the big data, manufacturing process and shared data space levels.

2. Digital Manufacturing Platforms and Service Operations. This pillar sup-
ports the deployment of services and DMPs across the different layers of the
digital factory to enact data-driven smart digital workplaces, smart connected
production and smart service and maintenance manufacturing processes. The
pillar is fundamental in the development of three enabling capabilities central
to the gradual evolution of autonomy in advanced manufacturing processes,
i.e. multi-scale AI-powered cognitive processes, human-centric collaborative
intelligence and adaptive Intelligent Automation (IA). The enablement of both
knowledge-based (multi-scale artificial intelligence) and data-driven approaches
(collaborative intelligence) to digital factory intelligence is facilitated by the
support of service-oriented and event-driven architectures (interconnected OT
and IT interworking event and data buses) embracing international and common
standard data models and open APIs, thereby enabling enhanced automated con-
text development and management for advanced data-driven decision support.

3. Sovereign Digital Service Infrastructures. The operation of advanced digital
engineering and digital manufacturing platforms relies on the availability of
suitable digital infrastructures and the ability to effectively develop a digital
thread within and across the digital factory value chain. DFA SD-RA relies
on infrastructure federation and sovereignty as the main design principles for
the development of the data-driven architecture. This pillar is responsible for
capturing the different digital computing infrastructures that need to be resiliently
networked and orchestrated to support the development of different levels and
types of intelligence across the digital factory. In particular, the DFA SD-RA
considers three main networking domains for big data service operation; i.e.
factory, corporate and internet domain. Each of these domains needs to be
equipped with a suitable security and safety level so that a seamless and cross-
domain distributed and trustworthy computing continuum can be realized. The
pilar considers from factory-level digital infrastructure deployment such as PLC,
industrial PC or Fog/Edge to the deployment of telecom-managed infrastructure
such as 5G multi-access edge computing platforms (MEP). At the corporate
level, the reference architecture addresses the need for the development of IoT
Hubs that are able to process continuous data streams as well as dedicated big
data lake infrastructures, where batch processing and advanced analytic/learning
services can be implemented. It is at this corporate level that private ledger
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infrastructures are unveiled. Finally, at the internet or data centre level, the digital
factory deploys advanced computing infrastructures exploiting HPC, Cloud or
value chain ledger infrastructures that interact with the federated and shared data
spaces.

The DFA RA is aligned with ISO 20547 Big Data Reference Architecture. The
DFA Sovereign Digital Service Infrastructures pillar allows Boost 4.0 reference
model to additionally address the ISO 20547 Big Data Framework Provider layer.
The DFA RA is composed of four layers that address the implementation of the 6 big
data “C” (Connection, Cloud/edge, Cyber, Context, Community, Customization),
enables four different types of intelligence (smart asset functioning, reactive rea-
soning, deliberative reasoning and collaborative decision support) to be orchestrated
and maps to the 6 layers of the RAMI 4.0 (product, devices, station, workcentre,
enterprise and connected world), which target all relevant layers required for the
implementation of AI-powered data-driven digital manufacturing processes:

1. The lower layer of the DFA RA contains the field devices in the shopfloor:
machines, robots, conveyer belts as well as controllers, sensors and actuators
are positioned. Also in this layer the smart product would be placed. This layer is
responsible for supporting the development of different levels of autonomy and
smart product and device (asset) services leveraging on intelligent automation
and self-adaptive manufacturing asset capabilities.

2. The workcell/production line layer represents the individual production line or
cell within a factory, which includes individual machines, robots, etc. It covers
both the services, that can be grouped in two those that provide information about
the process and the conditions (IoT automation services), and the actuation and
control services (automation control services); and the infrastructure, typically
represented in the form of PLC, industrial PCs, edge and fog computing systems
or managed telecom infrastructures such as MEC. This layer is responsible
for developing reactive (fast) reasoning capabilities (automated decision) in the
SD-RA and leveraging augmented distributed intelligence capacities based on
enhanced management of context and cyber-physical production collaboration.

3. At the factory level, a single factory is depicted, including all the work cells or
production lines available for the complete production, as well as the factory-
specific infrastructure. Three kinds of services are typically mapped in this
layer: (1) AI/ML training, analytics and data-driven services; (2) digital twin
multi-layer planning services; and (3) simulation and visualization services.
The infrastructure that corresponds to this layer is the IoT Hubs, data lakes
and AI and big data infrastructure. This layer is responsible for supporting
the implementation of deliberative reasoning approaches in the digital factory
with planning (analytical, predictive and prescriptive capabilities) and orches-
tration capabilities, which combine and optimize the use of analytical models
(knowledge and physics based), machine learning (data-driven), high-fidelity
simulation (complex physical model) and hybrid analytics (combining data-
driven and model-based methods) under a unified computing framework. This
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leverages in the architecture collaborative assisted intelligence for explainable
AI-driven decision processes in the manufacturing environment.

4. The higher layer refers to the enterprise/ecosystem level, that encompasses all
enterprise and ecosystem (connected world) services, platforms and infrastruc-
tures as well as interaction with third parties (value chains) and other factories.
The global software systems that are common to all the factories (collaboration
business and operation services as well as engineering and planning services) are
supported usually by Cloud or HPC infrastructures. It is this layer that supports
the implementation of shared data spaces and value-chain-level distributed ledger
infrastructures for implementation of trusted information exchange and federated
processing across shared digital twins and asset administration shells (AAS).
This layer leverages a human-centric augmented visualization and interaction
capability in the context of data-driven advanced decision support or generative
manufacturing process engineering.

2.4 Mapping Boost 4.0 Large-Scale Trials to the Digital
Factory Alliance (DFA) Service Development Reference
Architecture (SD-RA)

This chapter aims to present two Boost 4.0 lighthouse trials that focus on the
engineering and process planification services, using big data technologies and
exploiting the digital twin capabilities to improve the overall production process
(Fig. 4). Each section corresponds to one trial:

Section 2 describes the trial that was deployed in Volkswagen Autoeuropa
Plant in Palmela (Portugal). This lighthouse factory has deployed a big-data-based
solution to plan intra-logistic processes, which fully integrates the material flow
from the unloading docks to the point of fit.

Section 3 introduces the Piacenza lighthouse trial, discussing how a business
network can be developed in the high-end textile sector with the support of
blockchain technology to guarantee traceability and visibility through the supply
chain.

3 Big Data-Driven Intra-Logistics 4.0 Process Planning
Powered by Simulation in Automotive: Volkswagen
Autoeuropa Trial

Volkswagen Autoeuropa (VWAE) belongs to an automotive manufacturing industry
located in Portugal (Palmela) since 1995 and is a production plant of Volkswagen
Group. VWAE plays a strategic role in the Portuguese automotive industry, as it is
the largest automotive manufacturing facility in the country and is responsible for
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around 10% of all Portuguese exportations. The plant employs around 6000 workers
and, indirectly, it employs close to 8000 people through the more than 800 suppliers
that provide materials, components and parts to the facility.

The goal of VWAE, within the Boost 4.0 project, is to take advantage of the
latest big data technology developments and apply them to an industry environment
with non-stop cycles and with high up-times. In the end, the desirable target is to
transform an environment overwhelmed with manual complex processes with one
that brings modular flexibility and automation.

The expected benefits with the implementation of a data-driven autonomous
warehouse would translate into financial benefits for the Volkswagen Group,
increase in flexibility (which is key specially during the introducing of a new model),
minimization of human dependency for manual operations and, thus, an increase in
the process efficiency. The automation and control of the process through a big data
architecture enables a business intelligence approach to the warehouse system. Tools
such as reporting, Digital Twin simulation, monitoring and optimization-support
offer the opportunity to analyse and improve the system with real-world big data.

3.1 Big Data-Driven Intra-Logistic Planning
and Commissioning 4.0 Process Challenges

Currently the logistics process is heavily reliable on manual processes and in
addition to that, the operation is performed inside the factory, where space is
limited. On the receiving area, trucks are traditionally unloaded by a manual forklift
operation, and then the unit loads are transported to the warehouse where they
will be stored either in shelves or block storage concept. System wise there is one
database to control the parts coming from each truck and then a separate database
which registers the unloading, transportation and storing of the material in the
warehouse.

Figure 5 represents the data silos used throughout the process to collect the
necessary logistics information. Besides the labour-intensive tasks within the logis-
tics at VWAE, the data silo-based architecture does not allow the monitorization
and optimization of the overall logistics process. Apart from the data silos for
receiving, unloading, warehousing and sequencing, there is a lack of information
about the transport operations between these phases in the process. Furthermore,
data is captured and collected manually, which contributes to loss of time in the
process and potentiates the existence of errors in the collected data.

Hence, the main challenge is to transform the siloed nature of data storage within
the logistics process to support a true big data architecture, from which valuable
insights can be extracted so as to optimize the whole logistics process and to aid
in the optimization and automation efforts within the logistics process at VWAE.
To achieve the transformation to a big data context, the integration of data present
in the various silos is of the utmost importance. Such data integration efforts will
enable the application of big data processing and analytics methods that will support



386 O. Lázaro et al.

Fig. 5 Intra-logistic silo-based system flow of current process

the capitalization on valuable insights within the process. Moreover, the envisaged
big data architecture will also form a basis for the development of a digital twin of
the logistics area, which will enable real-world simulation, testing and validation
of new automated solutions without the need for actual application in real-world,
ready-for-production scenarios.

The planning and commissioning of advanced intra-logistics 4.0 processes
therefore presents clear big data challenges in the velocity (real-time warehouse
data streaming), veracity (accuracy of digital twin simulations), variety (breaking
intralogistics information silos) and volume (data deluge) dimensions.

3.2 Big Data Intra-Logistic Planning and Commissioning
Process Value

The expected future scenario aims at achieving a full integration of the material flow,
from receiving up to the point of fit. Figure 6 shows the system flow integration as it
is foreseen in VWAE. The main objective of the VWAE trial is to eliminate human
intervention or at least reduce to a minimum at all phases from receiving up to the
point of fit.

In order to test and validate the future scenario, a recurrent issue was chosen as a
proof-of-concept: the issue of optimum stock in the logistics area. Due to the lack of
data-supported, informed decisions in the process of supply ordering, the logistics
area is often in a situation of overstock, meaning that there is always a surplus of
parts that goes beyond the envisaged safety stock. The safety stock exists to tackle
problems of parts’ delivery, due to transportation issues or other obstacles, such as
supplier shortfalls due to demand instability. Overstock has several consequences,
from overspending and time-in-shelf issues to more concrete problems, such as part
rejection due to its temporal validity.
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Fig. 6 System flow of data-driven intra-logistic 4.0 process

Hence, the chosen proof-of-concept was the overstock of batteries, since batteries
are perishable parts (they have temporal validity) and the overstock situations for
this type of part is a known problem and mitigating it represents real business value
due to the unit price involved.

3.3 Big-Data Pipelines for Intra-Logistic Planning
and Commissioning Solutions in Automotive

Figure 7 shows the general big data architecture and core open source big data
technologies that support most of data ingestion, processing and management work,
namely to efficiently gather, harmonize, store and apply analytic techniques to
data generated within the intra-logistics process. The use of big data technologies
with parallel and distributed capabilities is essential to address the processing
of large batch/stream data with different levels of velocity, variety and veracity.
Therefore, the architecture must meet requirements such as scalability, reliability
and adaptability.

The architecture is mainly split into four layers: Data ingestion layer, Data
Storage layer, Data Processing layer, and Data Querying/Analytics/Visualization
layer. For data processing and collection, Apache Spark [8] is used in conjunction
with the IDSA Connectors [9], enabling direct linkage with the IDSA Ecosystem,
while for big data storage, the chosen technologies were PostgreSQL [10] and
MongoDB [11]. Finally, for data querying and access, data analytics and data
visualization, the chosen tools were, respectively, Apache Hive [12], Spark Machine
Learning Library and Grafana [13].
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Fig. 7 Big data architecture for the VWAE trial

3.4 Large-Scale Trial of Big Data-Driven Intra-Logistic
Planning and Commissioning Solutions for Automotive

The large-scale trial connects the Visual Components simulation environment with
the suite of big data Analytics and Machine Learning tools, provided by UNINOVA,
in a bidirectional way, as shown in Fig. 8: First, big data and machine learning
technologies are used to aggregate real-time logistics operations’ data, perform
prediction over the data if needed, and send the results to the Visual Components
simulation environment. Then, after the simulation ends, analytics and machine
learning techniques are used in order to analyse key performance indicator data
returned by the simulation environment, in order to find patterns, anomalies or
possible points of optimization for future reference.

The 3D simulation environment replicates the trial scenario within the virtual
world, i.e. a digital twin. The real model provides the logistics process data, which,
after simulation, are validated with the current production outcomes. Once the
simulation scenario is validated, simulation data can be analysed to be reused in
the simulation to improve process performance and building the digital twin.

When the first version of the simulation, or digital twin, was developed, there
was a need to propose actual key performance indicators (KPIs) extracted from
the real logistics processes, focusing on the arrival and storage of batteries, with
the simulation itself. Several KPIs were selected, such as the number of batteries,
per battery type, in the warehouse and in the sequencing area at any given time,
the occupation percentage of workers in the several logistics steps and the overall
execution times of the different processes.

The first KPI to be validated in this phase was the reduction of truck arrivals, and
consequent decrease of battery palettes in stock. The reduction in KPI corresponds
to a decrease of 5% of the stock for the so-called high runners: the types of batteries
that are most used in the production line. So, the test was performed as follows:
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Fig. 8 VWAE Digital Twin Analytics trial data flow and planning platform

1. Real data corresponding to the truck arrivals, and to the usage of batteries in
production was injected into the simulation, via Orion Context Broker. From this
data injection, the Digital Twin produced a benchmark for the battery palettes’
arrival percentages and truck arrival times.

2. The selected KPI was to decrease the arrival of high-runner palettes by 5%, while
increasing the time interval between trucks, also saving in CO2 emissions and
direct costs for transport and stock, but maintaining the current production rates.
The percentages of arriving palettes were arranged so that there would be a cut of
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5% in the high runners while maintaining a total throughput/arrival of 100%. The
time between truck arrivals was also arranged in order to have bigger intervals.

3. Hence, an average decrease of 5% in the high runners’ arrival percentage, along
with an increase in the truck arrival time interval was simulated. The new values
showed that the battery stock was always above the level required, even with the
decrease of 5% arrival of batteries and the increase in the time interval between
truck arrivals.

4. Finally, a prediction model for the battery stock optimization was developed and
tested. The chosen model was an optimized long short-term memory (LSTM)
which is an artificial recurrent neural network model. This choice was made
because LSTM are reportedly very good at forecasting time series data and do
not require a lot of parameterization for multivariate datasets. Historical data was
used to estimate the possible optimizations.

In 2018, there were multiple cases of overstock of car batteries at VWAE. For
instance, in the case of the batteries, the warehouse was at least half of the time in
overstock situations and 25% of the time in severe overstock. The results showed
that a significant decrease in stock can be achieved, along with real benefits for
VWAE, financially, by cutting in stock costs, and environmentally, by reducing both
the number of truck arrivals and the occurrence of past-validity batteries.

3.5 Observations and Lessons Learned

The fusion between the big data architecture, developed in the Boost 4.0 project,
and the Visual Components simulation environment, in order to create a true Digital
Twin, was proven to be a crucial decision-support system, in the sense that it helped
relevant stakeholders at VWAE to better understand the limitations in the current
logistics process, but also to optimize critical aspects of this process, such as in the
case of the overstock situation.

Furthermore, the overall system is ready for full scale-up, since it is capable
of ingesting data from the whole logistics process, and for all the parts that are
necessary for automotive production. The system is also ready to simulate, in near-
real-world conditions, all phases of the logistics process, apart from the arrival of
trucks. Hence, it will be a powerful aid in achieving the future automation requisites
of VWAE, by enabling the simulation of new, automated and optimized scenarios
for the logistics processes.
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4 From Sheep to Shop Supply Chain Track and Trace
in High-End Textile Sector: Piacenza Business Network
Trial

Piacenza company is based in the Italian textile district of Biella, where all its
production is carried out, and is one of the oldest textile industries in the world,
founded in 1733 and from then on owned by the Piacenza family. Piacenza is one
of the few undisputed worldwide leaders in high fashion fabrics and accessories
production, with a competitive strategy focused on the maximum differentiation of
the product, in terms of raw material choice, style, and colour. Fabric production
includes more than 70 production passages or steps, which starts in the countries
of origin of the natural fibres used for fashion fabrics (cashmere, vicuna, alpaca,
mohair, silk, wool, linen, etc.) and can be summarized into three main changes of
material status: raw material ➔ yarn ➔ fabric.

High textile fabric production is characterized by an extremely high number of
product variables, deep customization, hardly predictable demand, length of pro-
duction cycle (60–90 days from raw materials to receipt), physical prototyping and
sampling, fragmented distribution and very small batches due to high customization.
The combination of these aspects leads to a very complex production, which must
properly balance the request of a very fast and demanding market with the length
and rigidity of a fragmented and long value chain.

4.1 Data-Driven Textile Business Network Tracking
and Tracing Challenges

The garment and footwear industry has one of the highest environmental footprints and
risks for human health and society. The complexity and opacity of the value chain makes
it difficult to identify where such impacts occur and to devise necessary targeted actions.
Key actors in the industry have identified interoperable and scalable traceability and
transparency of the value chain, as crucial enablers of more responsible production and
consumption patterns, in support of Sustainable Development.

—United Nations Economic and Social Council [14].

Textile and clothing play a significant role in climate change with 1.7 million
tons/year of CO2 emissions [15], 10% of substances of potential concern to
human health, 87% of the workforce (mainly women) gets below living wages.
Permitted by lowered cost, a garment is worn an average of 3 times in its lifecycle,
with 400 billion euros lost a year due to discarding clothes which can still be
worn, 92 million tons of fashion waste every year, 87% of clothes ending up
in landfills. In addition, the market for counterfeit clothing, textiles, footwear,
handbags, cosmetics, amounted to a whopping $450 billion per year—and growing.
The producers of these counterfeit goods, usually located in developing countries,
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do not adopt sustainable, circular and ethical models, and cause great harm to
European companies that are seriously committed to implementing them.

On the contrary, fashion and luxury consumers are becoming more and more
demanding with regard to sustainability of the products they are buying; 66%
of consumers are ready to pay more for products or services from companies
committed to sustainability [16]. But sustainability is only possible when supported
by production traceability, which demonstrates how and where the manufacturing
process is carried out. In addition, in recent years, duties have been increased as
the most evident aspect of international commercial turbulences. Since they are
calculated on the basis of the Preferential Certification of Origin (PCO), a proper
traceability of production is becoming mandatory to simplify the export procedures
and to address the increasing requirements of custom agencies.

4.2 Supply Chain Track and Trace Process Value

Traceability by blockchain technology provides all the information to support
informed purchase decisions of consumers, favouring real sustainable products.
We apply blockchain technology to build a shared tamper-proof ledger that tracks
the fabric manufacturing from source to sales. Our sheep to shop track and trace
blockchain-based solution records the transformation of raw materials into fabrics
and enables verification of EU PCO.

The expected impact is providing a complete and controlled set of information
to support the efforts of the Piacenza company in the field of sustainability,
environmental protection and ethical respect. The proposed solution leverages the
competitive positioning of Piacenza and its customers, by providing final consumers
with full provenance of items and documents. In addition, blockchain enables the
full visibility of textile manufacturing by a safe and not modifiable process, which
prevents the market from being affected by counterfeiting and unfair competition.

4.3 Distributed Ledger Implementation for Supply Chain
Visibility

The blockchain solution implemented in the Piacenza trial records all steps and
documents in the production process in a general way, storing documents hash on
the ledger (on-chain) and a reference to their physical location while assuring their
authenticity.

Figure 9 illustrates the main components of the supply chain visibility solution.
Real data flows from Piacenza’s ERP system through a wrapper so data can be
written to the blockchain ledger through a RESTful API. The wrapper extracts the
data from the ERP system in JSON format that matches the blockchain data model.
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Fig. 9 High-level overview of the solution

The wrapper also feeds a dedicated Web UI whose role is to show the provenance
of a specific selected item along with the corresponding documents as follows: The
UI feeds the data from the API wrapper. The wrapper has a recursive function to
retrieve every element in the chain. The recursive function calls the blockchain API
to retrieve the information. The same information stored in the blockchain is then
displayed in the UI. The PCO and other tracked documents information is displayed
in the UI with a link to download the document. In other words, for a selected
tracked item it graphically depicts its provenance and the (validated) documents
stored on the ledger. This web UI can serve all participants in the network to trace a
specific item and to check for specific documents (e.g., customs asking for a specific
PCO).

Figure 10 shows the main modules for our sheep to shop blockchain applica-
tion:

• Blockchain infrastructure: We apply Hyperledger Fabric [17] components. Our
data model consists of two primary entities: trackedItem and document.

• Smart contracts layer: Smart contracts (chaincodes in Fabric) embed the
business logic of the solution. Smart contracts functions are accessed through
the Hyperledger Fabric Client (HFC) Software Development Kit (SDK) in
Node.js.

– Query functions enable accessing and fetching information stored in the
ledger, including trackedItems and documents.

– Invoke functions include the possibility of creating trackedItems and docu-
ments, and connecting a new document to an existing trackedItem.

– Administration functions enable the management of the channels imple-
mented as well as basic functions such as enrolment and registration.
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Fig. 10 Blockchain solution high-level design

• Blockchain apps: HFC SDK allows developing a blockchain client application
which can use the SDK to invoke smart contract functions. This client can serve
as a middle layer between frontend applications and the backend blockchain
platform by providing RESTful APIs to be used by frontend applications.

4.4 Observations and Lessons Learned

Our achievements include the blockchain backend (released to open source under
Apache v2 license [18]) and a (private) repository containing the dedicated code
developed for extracting data from Piacenza’s ERP system and enabling the display
of the provenance of items in the chain along with scripts, data and documents.
The trial has emulated a complete blockchain business network. Obviously, the
most natural way of extending and exploiting the results of the trial is by gradually
incorporating Piacenza partners to the business network (e.g. customs and buyers)
through the APIs provided. The provided blockchain backend is generic so this can
be done in a straightforward manner.

The more challenging part is, therefore, not the technical but the business one,
by defining a business model of onboarding, how to manage the network and how
to monetize the savings and costs of participating and managing such a network.
There are compelling evidences that show a great potential for this first trial solution
to be extended to a full production environment for a full transparent and trackable
solution towards a sustainable textile supply chain.
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5 Conclusions

This chapter has introduced two large-scale trials that have been implemented in the
context of the lighthouse project Boost 4.0. The Chapter has introduced the Boost
4.0 Reference Model, which adapts the more generic BDVA big data reference
architectures to the needs of Industry 4.0. The Boost 4.0 reference model includes,
on one hand, a reference architecture for design and implementation of advanced
big data pipelines and, on the other hand, the digital factory service development
reference architecture. Thus, Boost 4.0 can fully address ISO 20547 for Industry
4.0.

This chapter has demonstrated that the BDVA big data reference architecture can
indeed be adapted to the needs of the Industry 4.0 and aligned with an overall digital
factory reference architecture, where big data-driven processes will have to extend
advanced manufacturing processes such as smart engineering, smart planning and
commissioning, smart workplaces and operations, smart connected production and
smart maintenance and customer services. Such digital factory service development
architecture can indeed host and accommodate the needs of advanced big data-
driven engineering services.

The chapter has demonstrated that both intra-logistic process planning and
connected supply chain track and tracing can achieve significant gains and extract
significant value from the deployment of big data-driven technologies. The evolu-
tion from traditional data analytic architecture into big data architectures will enable
increased automation in simulation and process optimization. The combination of
Industry 4.0 data models such as OPC-UA, AML and IoT open APIs such as
FIWARE NGSI allows for dynamic and real-time optimization of intra-logistic
processes compared to off-the-shelve commercial solutions. Moreover, big data
architectures allow a higher granularity and larger simulation scenario assessment
for a high-fidelity intra-logistic process commissioning.

The use of open-source big data technology suffices to meet the challenge
of very demanding big data processes in terms of variety, velocity and volume
as the VWAE trial has demonstrated. This trial has also shown that digital twin
operations can be greatly improved if supported by advanced big data streaming
technologies, and the use of shared data spaces demonstrates the suitability of
such technologies to break information silos and increase efficiency and scale
up intralogistics processes. This chapter has also shown that distributed ledger
technology can be seamlessly integrated with distributed data spaces and support
business network traceability and visibility in the high-end textile sector (Piacenza
trial). The chapter has also provided evidence on how the extensive use of open
technologies, APIs and international standards can greatly support the large-scale
adoption and uptake of big data technologies across large ecosystems. The chapter
has provided compelling evidences that big data can greatly improve performance of
Industry 4.0 engineering services, particularly when development and exploitation
of digital threads and digital twins come into operation. The interested reader is also
referred and invited to browse the content in chapters “Next Generation Big Data
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Driven Factory 4.0 Operations and Optimisation: The Boost 4.0 Experience” and
“Model Based Engineering and Semantic Interoperability for Trusted Digital Twins
Big Data Connection Across the Product Life Cycle” focused on the Boost 4.0
lighthouse project; these chapters discuss how further trials have incorporated big
data technologies as part of the business processes for increased competitiveness.

This research is opening the ground for implementation of more intelligent,
i.e. cognitive and autonomous, intra-logistic processes. As the diversity of parts
considered and the autonomy in decision process increase, further research is needed
in terms of development of sovereign and large-scale distributed data spaces that
can provide access to the necessary data for AI model training beyond pure data
analytics and digital twin simulation. The Boost 4.0 big data framework calls for
further research on the development of federated learning models that can combine
highly tailored models matching and optimized to the specificities of the factory
layout with more general models that can be shared and work at higher levels of
abstractions; thus, speed and long-term planning can be combined in new forms of
autonomous shopfloor and supply chain operations.
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