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ABSTRACT Hyperspectral images contain tens to hundreds of bands, implying a high spectral resolution.
This high spectral resolution allows for obtaining a precise signature of structures and compounds that
make up the captured scene. Among the types of processing that may be applied to Hyperspectral Images,
classification using machine learning models stands out. The classification process is one of the most
relevant steps for this type of image. It can extract information using spatial and spectral information and
spatial-spectral fusion. Artificial Neural Network models have been gaining prominence among existing
classification techniques. They can be applied to data with one, two, or three dimensions. Given the above,
this work evaluates Convolutional Neural Network models with one, two, and three dimensions to identify
the impact of classifying Hyperspectral Images with different types of convolution. We also expand the
comparison to Recurrent Neural Network models, Attention Mechanism, and the Transformer architecture..
Furthermore, a novelty pre-processing method is proposed for the classification process to avoid generating
data leaks between training, validation, and testing data. The results demonstrated that using 1 Dimension
Convolutional Neural Network (1D-CNN), Long Short-Term Memory (LSTM), and Transformer architec-
tures reduces memory consumption and sample processing time and maintain a satisfactory classification
performance up to 99% accuracy on larger datasets. In addition, the Transfomer architecture can approach
the 2D-CNN and 3D-CNN architectures in accuracy using only spectral information. The results also show
that using two or three dimensions convolution layers improves accuracy at the cost of greater memory
consumption and processing time per sample. Furthermore, the pre-processing methodology guarantees the
disassociation of training and testing data.

INDEX TERMS Hyperspectral imaging, CNN, LSTM, Transformer, remote sensing.

I. INTRODUCTION

HYperspectral imaging is one of the several methods for
capturing data from a scene in remote sensing systems.

A Hyperspectral Image (HSI) is a 3D data cube composed of
2D images that represent a scene at different electromagnetic

wavelengths (bands) [1], [2], [3], [4], [5]. In HSIs, electro-
magnetic wave spectra captured by sensors range from tens
to hundreds, depending on the sensor used. Furthermore, the
spectrum ranges from visible (400 nm) to infrared (2500 nm)
wavelengths, with a nominal spectral resolution of 10 nm [1],

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3255164

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-0972-2160
https://orcid.org/0000-0002-6806-9122
https://orcid.org/0000-0003-3039-4410
https://orcid.org/0000-0002-2191-6064
https://orcid.org/0000-0003-0446-9271


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[4]. Thus, an HSI is an image with a high spectral resolution
that provides more information about a single point than
other types of image used in remote sensing [6], [7], [8], [9].

The large amount of data in HSIs produces practical impli-
cations, such as identifying compounds and materials in the
scene. This data volume also has implications against com-
putational restrictions in sensing platforms, such as limited
memory and processing. The relationship between process-
ing large volumes of data and space applications, especially
with onboard processing, has been the subject of several
investigations in recent years [10], [11], [12], [13]. This issue
mainly affects the use of more complex onboard computers
(OBC) in spacecraft, which have been the subject of study
and constant evolution in various parts of their architecture
[10].

One of the main processes applied to HSIs is classification,
which mainly benefits from the high spectral resolution of
these images. This high resolution creates a unique spectral
signature at each point (pixel) of the scene, which allows
the extraction of which compounds are in the scene [14].
Among the models used to classify HSI, the Convolutional
Neural Network (CNN) models stand out. The CNN models
process the data in various ways and can be one-dimensional,
two-dimensional, or three-dimensional. Using one or more
dimensions directly impacts processing and computational
resource requirements, such as the memory used by the CNN
and the model inference time [15], [16], [17].

CNN is a type of artificial neural network that is partic-
ularly well-suited for analyzing and processing data with a
grid-like structure, such as images. A CNN consists of a
series of hidden layers, each one performing a convolution
operation on the input data. The convolution operation in-
volves applying a set of weights (also called filters) to a small
region of the input data and producing a transformed output.
The weights are learned through training and are used to
extract features from the input data. The transformed output
is then passed through a nonlinear activation function and is
used as input to the next hidden layer [18], [15].

One of the key benefits of CNNs is their ability to learn
hierarchical features from the input data. Multiple convolu-
tional layers achieve this learning, and each layer can learn
more complex features based on the features learned by the
previous layer. Additionally, CNNs can process data with a
large spatial size (such as an image) much more efficiently
than fully connected neural networks, which require many
weights to process the data. This property makes CNNs
particularly well-suited for tasks such as image classification
and object detection [18].

One Neural Network architecture that compares to 1D-
CNN is the Recurrent Neural Network (RNN). RNNs are par-
ticularly useful for processing sequential data because they
allow the model to incorporate information from previous
time steps. This approach contrasts traditional feedforward
neural networks, which process input data independently and
do not consider any information from previous time steps.
One of the key advantages of RNNs is that they can process

data of variable length, unlike feedforward neural networks,
which require fixed-length input. This characteristic makes
RNNs useful for tasks such as natural language processing,
as text length can vary significantly. RNNs can be unrolled in
time, meaning that the same network architecture is applied
to each time step in the sequence. This property allows the
network to learn long-term dependencies between time steps,
which is important for language translation or speech recog-
nition tasks. There are several variants of RNNs, and one
of the most important is Long Short-Term Memory (LSTM)
[18], [19], [17].

Transformer is an architecture that has been gaining pop-
ularity for 1-dimensional data applications and replacing
RNN [20]. Generally, natural language processing (NLP)
processing applies the Transformer architecture, including
machine translation, language modeling, and text summa-
rization. However, Transformer architecture can also be em-
ployed for time series processing. Using the Transformer de-
sign, image processing operations can also be accomplished.
The processing of visual features utilizing a 2D self-attention
mechanism, as opposed to the 1D self-attention mechanism
used in NLP tasks, is a standard method. This method allows
the network to dynamically weigh the importance of different
visual regions when making predictions. The Transformer
architecture is a versatile method for processing grid-like
and sequential data. It has shown promising performance
in various image processing applications, such as image
classification, segmentation, and generative modeling [21],
[22], [20].

Works in the literature report the classification of HSIs
with CNN. Among the existing literature, some solutions
address comparisons between 1D-CNN and 2D-CNN ap-
proaches applied to HSI with their own architectures [23],
[24], [25], [26]. Other works expand the comparison or
integration of CNNs, including 1D, 2D, and 3D architectures
for images originated from remote sensings, such as [27],
[28], [29], [30], [31]. Works such as [32], [33], [34], [35],
[36], [37], [38], [39] compare distinct architectures focusing
mainly on spatial information from remote sensing images,
including HSIs. The authors of these works propose ap-
proaches or CNN architectures that fuse spatial information
with spectral information. Another point worth highlighting
and relevant to CNN is how to generate and split the training
and testing dataset. The works of [40], [41], [42], [43],
[44], [45] show different techniques to split the dataset or
demonstrate techniques for data augmentation to present a
better balance and dissociation between training and testing
data.

Other works explore and combine RNN architectures for
HSI classification, including LSTM and Gated Recurrent
Unit (GRU). The authors of [46] propose an architecture
combining a Dense Connected Convolutional Network with
a bidirectional RNN with an attention mechanism network.
In [47], a bidirectional-convolutional long short-term mem-
ory architecture is proposed that explores spatial-spectral
features for HSI classification. The work of [48] presents
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two RNN architectures using LSTM and GRU for HSI.
Also, it proposes a new activation function called Parametric
Rectified Tanh (PRetanh) focused on RNNs. Finally, in [49],
a combination of convolutional layers with GRU-type RNN
layers is also presented to combine spatial-spectral features
present in HSI for more robust classification.

The Transformer architecture is already being applied to
the classification of HSIs with an option for the CNN and
RNN architectures. The works [50], [51], [52], [53] classify
HSIs using a spectral-spatial approach, using steps to extract
spatial information and using the spectral signature, and
applying the concept of Vision Transformer (ViT). There
are authors, as [54], [55], [56], that unite features of CNN
and LSTM architecture with Transformer for HSI classifica-
tion. Some works like [57], [58] also present an extensive
comparison of the transformer architecture with other types
of architectures, comparing approaches using spectral and
spatial information.

In this context, the main contribution of the present work
relies on:

• Evaluating three types of CNN (1D, 2D, and 3D),
considering performance, processing time, and memory
consumption metrics. This evaluation identifies which
models concomitantly balance accuracy, resource con-
sumption (required memory and number of parameters),
and processing time.

• An extensive comparison among 1D-CNN, LSTM, and
Transformer architectures for classifying HSIs using
only spectral information. The comparison is also ex-
panded, adding Attention Mechanism Layer in 1D-CNN
and LSTM architectures.

• A proposed pre-processing methodology that performs
a total dissociation of training and testing data, avoiding
poor generalization and metrics overestimation to 2D
and 3D architectures.

• Demonstration that 1D architectures are faster, require
less memory, and can achieve 99% accuracy. We also
demonstrate a correlation between the size of the train-
ing dataset and the accuracy that allows the 1D architec-
tures to be equivalent to the 2D architecture and the 3D
architectures of reference in the literature, even using
less information.

The remainder of this work is structured as follows. Sec-
tion II describes the materials and methods used in the work
development, providing details about the implementation and
verification steps, with the main point being the methodol-
ogy used to split the training and testing data in the pre-
processing stage. Section III presents the CNN architectures,
Section IV presents the LSTM architectures, and Section V
presents the Transformer architecture used and explored in
work. Section VI discusses the results obtained and analyzed.
Concluding, Section VII presents the final remarks.

II. MATERIALS AND METHODS

A. DATASET
The datasets used are literature benchmarks available in [59].
Those datasets represent aerial views captured by three dis-
tinct sensors, NASA/JPL AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer), Hyperion on NASA Earth Obser-
vation 1 (EO-1), and the ROSIS (Reflective Optics System
Imaging Spectrometer) sensor. The HSIs used as datasets
and benchmarks were Indian Pines, the University of Pavia,
the Center of Pavia, Kennedy Space Center, Botswana, and
Salinas Valley. The AVIRIS sensor captured Indian Pines,
Salinas Valley, and Kennedy Space Center images. The RO-
SIS sensor captured the University of Pavia and the Center
of Pavia scenes. In contrast, the Hyperion sensor on NASA
EO-1 satellite captured the Botswana scene [59].

Indian Pines (IP), Salinas Valley (SA), and Kennedy Space
Center (KC) scenes have 224 spectral bands covering the
electromagnetic spectrum from 400 to 2500 nm. However,
24 bands are removed because they are in water absorption
regions for IP and SA. For the HSI KC, 176 bands were uti-
lized for the analysis after water absorption, and low Signal-
to-Noise Rate (SNR) bands were eliminated. The IP scene
has a spatial dimension of 145×145 pixels and comprises
two-thirds agriculture and one-third forest or other perennial
natural vegetation. This scene has some of the corn and
soybean crops in the early stages of growth, two main dual-
lane highways, a railway line, some low-density housing,
other built structures, and more minor roads. This HSI has
16 previously mapped classes in an 145×145×224 hyper-
cube. The SA HSI represents the region of the same name
in California, with a spatial resolution of 512×217 pixels
and the hypercube being 512×217×224. This HSI includes
vegetation, bare soil, and vineyards, with 16 mapped classes.
The KC scene 512×614 pixels comprises different spectral
fingerprints of vegetation species in 13 classes representing
the various land cover types that occur in this ecosystem [59].

The Botswana (BT) scene has a spatial resolution of
1476×256 pixels and 242 bands that covers the 400-2500 nm
region of the spectrum in 10 nm windows, representing the
region Okavango Delta in Botswana. After preprocessing to
reduce the impacts of subpar detectors, inter-detector miscal-
ibration, and sporadic abnormalities, only 145 bands remain.
Their observations from 14 recognized classes represent the
various forms of land cover in the distal seasonal wetlands,
occasional swamps, and dry forests. Finally, the University
of Pavia (UP) and Center of Pavia (CP) scenes also represent
the region of Pavia in Italy. CP has a spatial resolution of
1096×1096 pixels and 102 bands, with the hypercube being
1096×1096×102. UP has a spatial resolution of 610×610
pixels and 103 spectral bands, with the hypercube being
610×610×103. These HSIs are previously mapped and di-
vided into nine classes ranging from asphalt to bare soil [59].

B. DEVELOPMENT PLATFORM AND LANGUAGE
The development of the machine learning models was per-
formed using Python version 3.8, with the NumPy, Keras,
TensorFlow, Spectral, and Time libraries. Keras is a high-
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level user-friendly Application Programming Interface (API)
running on top of TensorFlow, enabling the development
of machine learning models with great ease. In contrast,
TensorFlow is a robust library focused on DNN training,
inference, and serving. NumPy library is used to manipulate
arrays and create tensors for CNN models. Spectral is em-
ployed to manipulate the HSIs used as the dataset. Finally,
the Time library enables the removal of execution time from
the prediction.

We used the Google Collaboratory Pro cloud service plat-
form for training, inference, and evaluation. Three configu-
rations were used: CPU only, CPU+NVIDIA Tesla T4 GPU,
and CPU+NVIDIA A100 GPU. The CPU-only infrastructure
offers three Intel Xeons running at 2.2 GHz, 25 GB of main
memory, and 225 GB of disk. The CPU+NVIDIA Tesla T4
GPU infrastructure offers three Intel Xeons at 2.2 GHz, 25
GB of main memory, 166 GB of disk, and an NVIDIA Tesla
T4 GPU with 15 GB of memory. Finally, The CPU+NVIDIA
A100 GPU infrastructure offers a computational infrastruc-
ture with an Intel Xeon CPU with 2.2 GHz of operating
frequency and 11 processors, 83.78 GB of main memory, 166
GB of disk storage, and an NVIDIA A100-SXM4 offboard
graphics card with 40 GB of memory. This setup enables the
execution of experiments with high performance, mainly due
to the use of a dedicated graphics card.

C. BASELINE, DATA PREPROCESSING, AND
EVALUATION METRICS

The CNN architectures used [14] as a baseline. Also, a
distinct HSI dataset-splitting methodology is proposed. The
purpose is to enable splits that do not contaminate training
data in testing data and testing data in training data. This
splitting methodology aims to improve the classification pro-
cess, avoiding over-optimistic model metrics and resulting
in increased confidence in the precision results displayed in
[14]. In [14], the authors use a data split methodology for
training and testing that, when creating the spatial-spectral
cubes, causes information leakage (data leakage) between
training, validation, and testing sets. This contamination
causes a high degree of distrust regarding the macro precision
of the prediction in the testing set on production in real-world
applications.

This proposed data division process splits the HSI into
even and odd rows, with the even rows for training and the
odd rows for testing. After this row division, it generates
a column division. After this splitting, the even rows and
columns are allocated for training and the odd rows and
columns are allocated for testing. Figure 1 illustrates the
proposed data division methodology. It is important to note
that 1D-CNN makes a pixel classification, and this method-
ology is applied to maintain a comparison between the three
architectures. However, the train_test_split function from the
scikit-learn library was also used.

In addition, to achieve efficient training and classification
regarding memory requirements, a transformation using the

FIGURE 1: Proposed dataset-splitting approach to avoid
contamination between training and testing datasets.

PCA (Principal Component Analysis) algorithm is applied to
reduce the number of bands of the HSIs used. The basic idea
behind PCA is to compress the original data into a lower-
dimensional set of variables, called principal components
(PCs), that are orthogonal (i.e., uncorrelated) and are ranked
by their importance in explaining the variance in the data.
The first principal component (PC1) is the direction in the
data that captures the greatest amount of variance, the second
principal component (PC2) is the direction that captures the
second greatest amount of variance, and so on. The PCA
transformation is applied to the training and testing sets [60].
Exclusively for the 1D-CNN with the Indian Pines image,
class balancing was applied for the architecture based in [14].
The class balancing aimed to allow equal training for the IP
HSI due to this HSI having classes with almost 2,000 samples
and classes with less than ten samples during training. In
addition, a validation set was applied to the architectures to
observe a prediction result without compromising the testing
set.

The metrics used to extract results were the Overall Ac-
curacy (OA), Average Accuracy (AA), Cohen Kappa Score
(kappa), prediction time, and the amount of memory used
by the model. The Python libraries Time (prediction time),
Keras (model size in bytes), and scikit-learn (model ac-
curacy) were used in the results extraction. The OA will
measure the number of correctly classified samples out of
the total samples. Kappa is a statistical measurement metric
that provides mutual information about the strong agreement
between the ground truth map and the classification map. AA
represents the mean of the classwise classification accuracy.
The equations that define each metric are:
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OA =
tp+ tn

tp+ tn+ fp+ fn
(1)

AA =

∑nclasses
i=1 AccuaracyClassi

nclasses
(2)

Kappa =
po − pe
1− pe

(3)

where tp are true positives, tn are true negatives, fp are
false positives, fn are false negatives, nclasses indicates
the number of classes present in the HSI, AccuracyClassi
indicates the individual accuracy of the class. In Kappa, po
is the observed relative agreement between raters (identical
to precision) and pe is the hypothetical probability of chance
agreement, using the observed data to calculate the probabil-
ity that each observer randomly sees each category.
III. CNN ARCHITECTURE
The basic idea behind convolution is to take a small matrix
of numbers (called a "kernel" or "filter") and slide it over
the input data, performing an element-wise multiplication
between the entries in the kernel and the input data and
summing the results. This process is repeated for each po-
sition of the kernel, resulting in a new feature map matrix.
The process of sliding the kernel over the input data and
performing the element-wise multiplication and summing
is called a convolutional operation. Applying a kernel to
an input matrix is called a convolutional layer in a CNN.
A CNN typically consists of multiple convolutional layers.
Each layer is followed by a nonlinear activation function
(such as a ReLU function) to introduce nonlinearity into
the model. The output of the convolutional layers is then
often passed through one or more fully-connected layers
(also called "dense layers") before a final output layer that
produces the predictions [18].

For the implementation of the 1D-, 2D-, and 3D-CNN
architectures, we used the model proposed in [14] as a
reference. However, the CNNs underwent adaptations to fit
the proposed architecture implementation of this work. For
the 1D-CNN, we used 1D convolutional layers and dense
layers. Following, we used 2D and 1D convolutional layers,
as well as dense layers, to implement the 2D-CNN. Finally,
we applied the same architecture proposed in [14] to build
the 3D-CNN.

In addition, all CNNs have the Flatten layers to vectorize
the data and Dropout layers to prevent overfitting by ran-
domly setting a fraction of the activations in the network to
zero during training.

All architectures were subjected to the Adaptive Moment
Estimation (Adam) optimizer with a learning rate ranging
from 0.001 to 0.0001. The first moment, which is an expo-
nentially weighted moving average of the gradients, and the
second moment, which is an exponentially weighted moving
average of the squares of the gradients, are the two moving
averages that the Adam optimizer employs to calculate the
adaptive learning rates [61], [62]. The following is how the

adaptive learning rates are calculated using these moving
averages:

mt = β1mt−1 + (1− β1)gt (4a)

vt = β2vt−1 + (1− β2)g
2
t (4b)

m̂t =
mt

1− βt
1

(4c)

v̂t =
vt

1− βt
2

(4d)

wt = wt−1 − α
m̂t√
v̂t + ϵ

(4e)

where mt is the first moment at time t, vt is the second
moment at time t, gt is the gradient at time t, wt is the weight
at time t, α is the learning rate, β1 and β2 are the exponential
decay rates for the first and second moments, respectively,
and epsilon is a small constant used to prevent division by
zero.

Below, the architectures for HSI classification are de-
scribed in more detail.

A. 1D-CNN
1D-CNN is intended to explore only the spectral character-
istics of the HSIs, performing a pixel-wise classification. In
its development, we used an architecture that adapted better
to the two image types after applying PCA. This approach is
due to the number of PCs used for the IP HSI being different
from the number used for the SA and UP HSIs. We used 30
components for the IP and KC scenes and 15 for the SA, UP,
CP, and BT scenes. In both cases, the PCs were generated
by the transformation with the PCA algorithm. The number
of components affects the size of the kernels used in the
convolutional layers, but the number of layers is the same.
For example, the kernels used in the Conv 1D layers (1, 2, 3,
and 4) for the IP HSI were 9, 7, 5, and 2, respectively, while
for the SA, UP, CP, KC, and BT HSIs were 7, 5, 3, and 3,
respectively.

Figure 2 illustrates the architecture of the developed 1D
CNN. Tables 1 and 2 describe the characteristics of the layers
of the models created, respectively, for the IP scene and the
SA, PU, CP, KC, and BT scenes.

In addition, two methodologies for dividing training and
testing data were used, as mentioned in Section II-B.

TABLE 1: 1D-CNN for the IP and KC scenes.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
Conv1d_1 (1,22,16) 160
Conv1d_2 (1,16,32) 3,616
Conv1d_3 (1,12,64) 103,304
Conv1d_4 (1,11,128) 16,512
Flatten (1024) 0
Dense_6 (256) 360,704
Dropout (256) 0
Dense_8 (128) 32,896
Dropout (128) 0
Dense_10 (16) 2,064

Subsequently, the proposed architecture for 1D-CNN was
expanded to use the Attention layer in conjunction with
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FIGURE 2: 1D-CNN architecture (based in [14]). We named this architecture 1D-CNN-O (-O stands for original architecture).

TABLE 2: 1D-CNN for the SA, PU, CP, and BT scenes. The
values of the last layer are 2064 (16 classes) to SA scene,
1161 (9 classes) to UP and CP scenes, 1677 (13 classes) to
KC scene, and 1806 (14 classes) to BT scene. The values in
Dense 6 layer are 524,544 to KC scene and 33,024 for other
scenes.

Layer Output Shape Number of Parameters
Input (1,15,1) 0
Conv1d_1 (1,9,16) 128
Conv1d_2 (1,5,32) 2,592
Conv1d_3 (1,3,64) 6,208
Conv1d_4 (1,1,128) 24,704
Flatten (128) 0
Dense_6 (256) 33,024/524,544
Dropout (256) 0
Dense_8 (128) 32,896
Dropout (128) 0
Dense_10 (16)/(9)/(13)/(14) 2,064/1,161/1,677/1,806

MaxPooling layers. Additionally, the 1D-CNN-R and 1D-
CNN-RA architectures explore the characteristic of using
few resources, in this case, parameters, to observe whether
accuracy can be satisfactory using fewer storage resources.
The R in 1D-CNN-R stands for Reduced, and RA in 1D-
CNN-RA stands for Reduced with Attention. Figure 3 illus-
trates the 1D-CNN-RA, with the difference to 1D-CNN-R
being only the absence of the Attention layer. Tables 3 and 4
show the characteristics of the created architectures.

It is worth mentioning that the reduced architectures de-
crease the number of components after the PCA to 30.
Adding the layers is intended to observe the positive and
negative impacts primarily generated by adding the Atten-
tion layer. For example, in a neural network, the Attention
mechanism allows the model to selectively focus on certain
parts of the input data when processing it rather than using a
fixed weighting or considering all parts of the input equally.
This characteristic is advantageous when dealing with long
sequences of data, such as natural language sentences, where
certain words or phrases may be more relevant to the task

at hand than others [22], [21]. The kernels used in the Conv
1D 1, 2, 3, and 5 layers for the IP HSI were 15, 1, 3, and
2. The choice of hyperparameters kernels size and number
of filters of the convolutional layers, number of units of the
Attention layer, number of neurons of the Dense layers, and
the learning rate performed were found via Hyperband of the
keras_tunner library.

TABLE 3: Reduced 1D-CNN without Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
Conv1d_1 (16,120) 1,920
Conv1d_2 (16,104) 12,584
Conv1d_3 (14,24) 7,512
MaxPolling1d_4 (7,24) 0
Conv1d_5 (6,16) 784
MaxPolling1d_6 (3,16) 0
Attention_7 (32) 1,280
Flatten (48) 0
Dense_8 (96) 3,168
Dropout (96) 0
Dense_9 (96) 9,312
Dropout (96) 0
Dense_10 (16) 1,552

TABLE 4: Reduced 1D-CNN with Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
Conv1d_1 (16,120) 1,920
Conv1d_2 (16,104) 12,584
Conv1d_3 (14,24) 7,512
MaxPolling1d_4 (7,24) 0
Conv1d_5 (6,16) 784
MaxPolling1d_6 (3,16) 0
Flatten (48) 0
Dense_7 (96) 4,704
Dropout (96) 0
Dense_8 (96) 9,312
Dropout (96) 0
Dense_9 (16) 1,552

The attention mechanism works by introducing a set of
"attention weights" that indicate the importance of each part
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FIGURE 3: 1D-CNN-RA architecture proposed to explore satisfactory performance with a reduced number of parameters.

of the input to the model’s output. These weights are learned
during training and can be thought of as a set of coefficients
applied to the input data before passing through the rest of the
network. There are several different ways in which attention
mechanisms can be implemented in a neural network. One
common approach is to use a separate "attention layer" that
takes the input data and calculates the attention weights based
on some measure of relevance or importance. These weights
are then applied to the input data before it is passed through
the rest of the network [22], [21].

This process involves calculating the dot product between
the query vector and each key vector in the input data, as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (5)

where, Q is the query vector, K is the set of key vectors,
and V is the set of value vectors. The dot product between
the query vector and each key vector is normalized by the
square root of the key vector dimension, dk. The resulting
dot products are then passed through a softmax function
to produce a set of weights, which are used to weight the
value vectors. The weighted sum of the value vectors is then
returned as the output of the attention mechanism.

B. 2D-CNN
The 2D-CNN developed in this work relies on the archi-
tecture of the model proposed in [14]. However, unlike that
work, the model uses three 2D convolutional layers and one
1D layer, followed by three dense layers. This architecture
means that the model is more than just 2D. This architec-
ture allows decreasing the number of parameters while still
exploring the spatial characteristics of the HSI. A purely 2D
model resulted in a considerable number of parameters (75

times more) for the same number of convolutional layers. The
dense layers have the same number of units as the proposal in
[14], which is the same architecture used in the 3D approach.
In addition, we used a 19×19 spatial filtering window, which
is smaller than the one applied in the reference work (i.e.,
25×25).

Tables 5 and 6 provide a more detailed description of the
architectures for the IP scene and the SA and UP scenes,
which also differ in the number of components generated by
the PCA algorithm.

Unlike the methodology used in [14], the division of
training and testing data was done using the methodology
proposed in this work (described in Section II-B).

TABLE 5: 2D-CNN for the IP scene.

Layer Output Shape Number of Parameters
Input (19,19,30,1) 0
Conv2d_1 (19,13,24,8) 400
Conv2d_2 (19,9,20,16) 3216
Conv2d_3 (19,7,18,32) 4640
Reshape (19,7,576) 0
Conv1d_4 (19,5,64) 110656
Flatten (6080) 0
Dense_5 (256) 1556736
Dropout_6 (256) 0
Dense_7 (128) 32896
Dropout_8 (128) 0
Dense_9 (16) 2064

Figure 4 illustrates the developed 2D CNN architecture
designed to work primarily with spatial characteristics.

C. 3D-CNN
The 3D-CNN used in this work was proposed and developed
in [14], which was used as a guide for the other two architec-
tures described in this work. However, unlike the reference
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FIGURE 4: Proposed 2D-CNN architecture (based in [14]).

TABLE 6: 2D-CNN for the SA, PU, CP, and BT scenes. The
values of the last layer is 2064 (16 classes) to SA scene, 1161
(9 classes) to UP and CP scenes, 1677 (13 classes) to KC
scene, and 1806 (14 classes) to BT scene.

Layer Output Shape Number of Parameters
Input (19,19,15,1) 0
Conv2d_1 (19,13,9,8) 400
Conv2d_2 (19,9,5,16) 3216
Conv2d_3 (19,7,3,32) 4640
Reshape (19,7,96) 0
Conv1d_4 (19,5,64) 18496
Flatten (6080) 0
Dense_5 (256) 1556736
Dropout_6 (256) 0
Dense_7 (128) 32896
Dropout_8 (128) 0
Dense_9 (16)/(9)/(13)/(14) 2,064/1,161/1,677/1,806

architecture, the training and testing data were split using the
methodology proposed by the authors (described in Section
2). Again, this methodology prevents contamination of the
training and testing datasets. As discussed above, we used a
spatial filtering window smaller than the one applied in the
reference work. Figure 5 ilustrated the architecture proposed
by [14].

Tables 7 and 8 provide a more detailed description of the
architectures for the IP scene for the SA and UP scenes,
respectively, which also differ in the number of components
generated by the PCA algorithm. Unlike 1D-CNN, 30 com-
ponents are used for the IP scene.

IV. RNN ARCHITECTURE
RNNs are a type of neural network especially well-suited for
processing data sequences, such as text, audio, or video. They
are called recurrent because they have connections between
neurons that allow information to be passed from one-time
step to the next. It means that RNNs can store and retrieve
information from previous steps and use it to make decisions
in the present. RNNs are a powerful tool for processing data
sequences and making inferences and predictions based on

TABLE 7: 3D-CNN for the IP scene.

Layer Output Shape Number of Parameters
Input (19,19,30,1) 0
Conv3d_1 (17,17,24,18) 512
Conv3d_2 (15,15,20,16) 5776
Conv3d_3 (13,13,18,32) 13856
Reshape_3 (13,13,576) 0
Conv2d_4 (11,11,64) 331840
Flatten (7744) 0
Dense_6 (256) 1982720
Dropout (256) 0
Dense_8 (128) 32896
Dropout (128) 0
Dense_10 (16) 2064

TABLE 8: 3D-CNN for the SA, PU, CP, and BT scenes. The
values of the last layer is 2064 (16 classes) to SA scene, 1161
(9 classes) to UP and CP scenes, 1677 (13 classes) to KC
scene, and 1806 (14 classes) to BT scene.

Layer Output Shape Number of Parameters
Input (19,19,15,1) 0
Conv3d_1 (17,17,24,18) 512
Conv3d_2 (15,15,20,16) 5776
Conv3d_3 (13,13,18,32) 13856
Reshape_3 (13,13,576) 0
Conv2d_4 (11,11,64) 55360
Flatten (7744) 0
Dense_6 (256) 1982720
Dropout (256) 0
Dense_8 (128) 32896
Dropout (128) 0
Dense_10 (16)/(9)/(13)/(14) 2,064/1,161/1,677/1,806

previous information. They are well-suited for applications
involving time series data such as natural language process-
ing or sensor sampling at different times [18], [19].

RNNs are composed of layers of neurons, each connected
to the previous and subsequent layers through weights. Dur-
ing training, the weights are adjusted according to the errors
generated by the network when processing the input data.
The more accurate the network’s prediction, the smaller the
errors will be; therefore, the more accurate the weights will
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FIGURE 5: HybridSN proposed by [14].

be [18], [19]. Several types of RNN architectures exist, such
as LSTM and GRU [18], [19].

A. LSTM
LSTM is an RNN architecture proposed to handle long-term
dependency problems in data sequences. These RNNs are
called LSTM because they have an internal structure called
an LSTM cell that allows the network to store information
for extended periods [48], [47], [19].

The LSTM cell comprises three inputs, output, and forget
gates that control the input, output, and deletion of informa-
tion from the cell. This feature enables the LSTM network
to control what is stored in memory and what is discarded,
allowing it to capture broader context dependencies in se-
quences of data [48], [47], [19]. The LSTM network can be
mathematically represented as follows:

it = σ(Wixxt +Wihht−1 + bi) (6a)
ft = σ(Wfxxt +Wfhht−1 + bf ) (6b)
c̃t = tanh(Wcxxt +Wchht−1 + bc) (6c)
ct = ft · ct−1 + it · c̃t (6d)
ot = σ(Woxxt +Wohht−1 + bo) (6e)
ht = ot · tanh(ct) (6f)
yt = Wyhht + by (6g)

where xt is the input at time step t, ht is the hidden state
at time step t, yt is the output at time step t, it, ft, and ot
are the input, forget, and output gates, respectively, c̃t is the
output of the hyperbolic tangent activation function, and ct is
the memory cell. The weights W and biases b are learnable
parameters of the model. Figure 6 illustrates the LSTM cell
(and equations) with a forget gate [19].

LSTM networks can capture complex syntactic and se-
mantic relationships in a text. Due to this, LSTMs are used in
time series prediction, for example. In summary, LSTMs are
a form of RNN that is particularly well-suited for processing
sequences of data and capturing broader context dependen-
cies [48], [47], [19].

We create two architectures of LSTM to apply HSI classi-
fication at the pixel level, as made in 1D-CNN. Figure 7 illus-
trates the architecture of the proposed LSTM with Attention
Layer (LSTM-A).

Tables 9 and 10 provide a more detailed description of the
LSTM architectures. As made in the 1D-CNN architecture
proposed with and without the Attention layer, the proposed
LSTMs use 30 components in PCA for three HSI images
used in this work. The choice of the hyperparameters kernels
size, number of filters of the convolutional layers, number of
units of the Attention layer, number of neurons of the Dense
layers, number of units in the LSTM, and the learning rate
performed were found via Hyperband from the keras_tunner
library.

TABLE 9: LSTM without Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
LSTM_1 (30,40) 6720
Dropout (30,40) 0
LSTM_2 (30,90) 47160
Dropout (30,90) 0
LSTM_3 (120) 101280
Dropout (120) 0
Dense_4 (24) 2904
Dropout (24) 0
Dense_5 (240) 6000
Dropout (240) 0
Dense_6 (16) 3856

V. TRANSFORMER
Transformer is an ANN architecture presented by [20]. It is
primarily used for Natural Language Processing (NLP) tasks
such as machine translation, language modeling, and text
summarization, but it can also be used for time series pro-
cessing. One of the main features of Transformer is the use
of a Self-Attention Mechanism, or just Attention Mechanism
[21], [22], [20].

Transformer also uses Multi-Head Attention, allowing the
model to simultaneously attend to different parts of the input
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FIGURE 6: LSTM cell with Forget Gate.

FIGURE 7: LSTM architecture with Attention layer.

TABLE 10: LSTM with Attention layer.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
LSTM_1 (30,40) 6720
Dropout (30,40) 0
LSTM_2 (30,90) 47160
Dropout (30,90) 0
LSTM_3 (30,120) 101280
Dropout (30,120) 0
Attention ( 56) 27840
Dense_4 (24) 1368
Dropout (24) 0
Dense_5 (240) 6000
Dropout (240) 0
Dense_6 (16) 3856

sequence of the [20] input sequence. This can be expressed
as:

MH(Q,K, V ) = Concat(head1, .., headh)W
O (7)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (8)

where the function Attention(Q,K, V ) is applied several
times (in this case, h times) with different linear projections
for Q, K and V for each Attention head and WO is a [20]
projection matrix. Finally, Transformer also makes use of
feedforward networks with residual connections and layer
normalization [20], which can be expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (9)

LayerNorm(x) =
γi(x− µi)√

σ2
i + ϵ

+ βi (10)

where FFN(x) is the feedforward network and W1, W2, b1,
b2 are trainable weights. The terms W1 and W2 are the weight
matrix, while b1 and b2 are the bias. The LayerNorm(x) is the
layer normalization function, µ and σ are the mean and the
standard deviation of input x, respectively, and parameters γ
and β are learnable scale and shift parameters, respectively
[20], [63].

The Transformer architecture used is based time series
example of [64]. The architecture input was modified to
support pixel-level HSI classification as done in 1D-CNN.
For the model, the pixel with 30 PCs is used for the IP, SA,
UP, CP, KC, and BT HSIs.

The architecture is composed of four blocks named Trans-
former Layers. Internally, each block is divided into Multi-
head Attention block and 1D-CNN block. Multi-head Atten-
tion blocks comprise four heads of 128 units and a normaliza-
tion layer. The 1D-CNN block comprises two convolutional
layers of 4 filters with kernel size 1, in addition to the normal-
ization layer. Between the blocks, there is the TOFpLambda
layer, also called Lambda layer, which serves as an adapter
for sequential data between different layers and is inserted by
the TensorFlow library.

VI. EXPERIMENTAL RESULTS

As a result, the performance metrics proposed architectures
are related to prediction time, precision, and size (in bytes)
were used.
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FIGURE 8: Transformer architecture implemented based in [64].

TABLE 11: Transformer layers. Layers 2 to 9 are repeated 4
times.

Layer Output Shape Number of Parameters
Input (1,30,1) 0
LayerNormalization (30,1) 2
Multi-head Attention (30,1) 7,169
Dropout (30,90) 0
Lambda (30,120) 0
LayerNormalization (30,120) 2
Conv1D (30,4) 8
Dropout (30,4) 0
Conv1D (30,1) 5
Lambda (30,1) 0
– – –
GlobalAveragePooling (30) 0
Dense (128) 3,968
Dense (16) 2,064

A. CLASSIFICATION PERFORMANCE
Table 12 illustrates the results obtained in prediction (classifi-
cation) with the testing data set. This table presents the result
for the six HSIs used with the proposed division methodology
and the size of the data sets used for training and testing.

TABLE 12: Classification performance of the three CNN
architectures using the new dataset-splitting methodology.

HSI CNN
Arch.

OA
(%)

AA
(%)

Kappa
(×100)

Training
Dataset

Testing
Dataset

IP
1D 74.23 66.69 70.72 2.560 2.569
2D 97.00 93.05 96.58 2.560 2.569
3D 97.58 98.45 97.25 2.560 2.569

SA
1D 94.21 97.45 93.55 13.580 13.490
2D 99.92 99.97 99.91 13.580 13.490
3D 100.00 100.00 100.00 13.580 13.490

UP
1D 93.20 90.92 90.98 10.647 10.729
2D 99.35 99.30 99.14 10.647 10.729
3D 99.92 99.91 99.90 10.647 10.729

CP
1D 99.08 97.14 98.69 37,109 36,959
2D 99.94 99.81 99.92 37109 36959
3D 99.71 98.70 99.59 37109 36959

KC
1D 92.64 90.10 91.81 1,308 1,305
2D 91.03 87.19 90.01 1308 1305
3D 88.73 82.29 87.42 1308 1305

BT
1D 93.91 92.97 93.51 817 802
2D 99.87 99.88 99.86 817 802
3D 99.25 99.12 99.18 817 802

The process of dividing the HSIs used in the tests was

also evaluated for division using the proposed methodology
and the train_test_split function from the scikit-learn library.
Table 13 presents the results obtained.

TABLE 13: Accuracy of the two dataset-splitting methodolo-
gies for 1D-CNN.

HSI Divison
Method

OA
(%)

AA
(%)

Kappa
(×100)

Train.
Size

Test.
Size

Proposed 75.36 70.45 72.01 2.560 2.569IP scikit-learn 83.17 84.96 80.78 8.199 2.050
Proposed 94.21 97.45 93.55 13.580 13.490SA scikit-learn 96.24 98.19 95.81 43.303 10.826
Proposed 93.20 90.92 90.98 10.647 10.729UP scikit-learn 95.17 93.61 93.59 34.220 8.556
Proposed 99.08 97.14 98.69 37,109 36,959CP scikit-learn 99.16 97.38 98.82 118,521 29,631
Proposed 92.64 90.10 91.81 1,308 1,305KC scikit-learn 96.06 94.10 95.62 4,168 1,043
Proposed 93.91 92.97 93.51 817 802BT scikit-learn 96.92 97.26 96.66 2,598 650

Table 14 presents the accuracy difference only of the ar-
chitectures that process the spectral information, comparing
the 1D-CNN based on [14], the proposed CNN without and
with Attention and LSTM architecture with and without the
Attention layer. It is observed that the proposed CNN and
Attention architectures present adequate results with fewer
parameters. However, they do not affect the classification
performance with the three metrics, showing a general result
worse than their use. However, the architectures demand a
number and variety of training samples, observed in the SA
andUPdatasets.

B. MEMORY REQUIREMENTS
Model storage is a feature that must be considered for
computational systems with limited memory available. This
requirement is essential for any application to run on these
platforms. Therefore, the amount of memory (space) used
by the model in bytes (without the dataset) was also mea-
sured. For more accurate model comparison, the number of
parameters used by each architecture of each dataset was also
obtained.

Table 15 presents the memory required by the three CNN
architectures and by the three datasets based in [14]. There is
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TABLE 14: Performance of the 1D architectures.

HSI Architecture OA (%) AA (%) Kappa (×100)

IP

1D-CNN-O 83.17 84.96 80.78
1D-CNN-R 77.34 73.97 74.03

LSTM 75.70 73.08 72.28
1D-CNN-RA 73.49 71.36 69.80

LSTM-A 75.48 76.73 72.22
Transformer 82.56 79.13 80.00

SA

1D-CNN-O 96.24 98.19 95.81
1D-CNN-R 95.04 97.47 94.47

LSTM 94.76 97.59 94.17
1D-CNN-RA 94.39 96.95 93.75

LSTM-A 94.77 97.48 94.16
Transformer 96.23 98.22 95.80

UP

1D-CNN-O 95.17 93.61 93.59
1D-CNN-R 92.16 89.94 89.63

LSTM 93.99 92.39 92.02
1D-CNN-RA 89.28 86.34 85.75

LSTM-A 94.43 91.81 92.59
Transformer 95.10 93.05 93.50

CP

1D-CNN-O 99.16 97.38 98.82
1D-CNN-R 98.92 96.85 98.47

LSTM 99.13 9747 9877
1D-CNN-RA 98.41 94.95 97.75

LSTM-A 99.04 97.15 98.65
Transformer 99.20 97.34 98.87

KC

1D-CNN-O 96.06 94.10 95.62
1D-CNN-R 94.11 91.43 93.45

LSTM 91.24 87.11 90.24
1D-CNN-RA 94.56 91.83 93.94

LSTM-A 91.56 88.82 90.61
Transformer 92.45 88.32 91.59

BT

1D-CNN-O 96.92 97.26 96.66
1D-CNN-R 91.89 91.64 91.21

LSTM 95.28 95.92 94.89
1D-CNN-RA 75.38 75.46 73.32

LSTM-A 95.79 96.43 95.44
Transformer 97.12 97.23 96.88

a difference in batch size between the architectures, with 1D-
CNN using 32 and 2D-CNN and 3D-CNN using 256. This
difference was used based on the size of the training samples.

TABLE 15: Number of parameters and memory required by
the three CNN architectures.

HSI CNN
Architecture

Size
(bytes)

Number of
Parameters

1D 1,095,952 426,256
2D 287,543,824 1,710,608IP
3D 360,030,336 2,369,664
1D 298,224 100,616
2D 78,786,064 1,618,448SA
3D 97,266,816 2,093,184
1D 296,425 100,713
2D 78,777,993 1,617,545UP
3D 97,258,745 2,092,281
1D 296,425 100,713
2D 78,777,993 1,617,545CP
3D 97,258,745 2,092,281
1D 297,453 101,229
2D 78,782,605 1,618,061KC
3D 97,263,357 2,092,797
1D 297,710 101,358
2D 78,783,758 1,617,545BT
3D 97,264,510 2,092,926

Comparison of required memory and number of param-
eters has also been expanded to the 1D architectures, as

shown in Table 16. It is observed that the memory demands
mainly for the 1D-CNN-R and -RA architecture, in joint
analysis with the performance results in classification, show
that this architecture offers a good trade-off. This feature is
essential for use in the final application with the restriction
of computational resources such as embedded systems. By
default, we use the split method via scikit-learn since it has
more samples, and 1D architectures do not have the problem
of separating training and testing samples as in 2D and 3D
architectures.

TABLE 16: Number of parameters and consumed memory of
the 1D classification architectures.

HSI CNN
Architecture

Size
(bytes)

Number of
Parameters

IP

1D-CNN-O 1,095,952 426,256
1D-CNN-R 637,408 38,368

LSTM 1,266,672 167,920
1D-CNN-RA 639,200 38,112

LSTM-A 2,191,024 194,224
Transformer 307,672 34,776

SA

1D-CNN-O 298,224 101,616
1D-CNN-R 637,408 38,368

LSTM 1,266,672 167,920
1D-CNN-RA 639,200 38,112

LSTM-A 2,191,024 194,224
Transformer 307,672 34,776

UP

1D-CNN-O 296,425 100,713
1D-CNN-R 635,833 37,689

LSTM 1,264,089 166,233
1D-CNN-RA 637,625 37,433

LSTM-A 2,188,441 192,537
Transformer 305,873 33,873

CP

1D-CNN-O 296,425 100,713
1D-CNN-R 635,833 37,689

LSTM 1,264,089 166,233
1D-CNN-RA 637,625 37,433

LSTM-A 2,188,441 192,537
Transformer 547,793 37,713

KC

1D-CNN-O 297,453 101,229
1D-CNN-R 636,733 38,077

LSTM 1,265,565 167,197
1D-CNN-RA 638,525 37,821

LSTM-A 2,189,917 193,501
Transformer 548,821 38,229

BT

1D-CNN-O 297,710 101,358
1D-CNN-R 636,958 38,174

LSTM 1,265,934 167,438
1D-CNN-RA 638,750 37,918

LSTM-A 2,190,286 193,742
Transformer 549,078 38,358

C. TIME FOR PREDICTION

The prediction time of CNNs with different architectures was
measured at the testing dataset and sample levels to observe
the impact of classifying HSIs using 1D, 2D, and 3D data
formats. This approach allows us to see which architecture
fits best when processing time is a constraint (CPU or SoC
with slow or low-power cores). Table 17 presents the results
obtained with the prediction of the different architectures
using the NVIDIA A100 GPU, NVIDIA Tesla T4 GPU,
and CPU-only infrastructures. The number of samples used
for testing and training is shown in Tab. 12 for 1D-, 2D-,
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and 3D-CNNs and in Tab. 13 for 1D architectures. For 1D
architectures, the size in Tab. 13 is used for scikit-learn.

This comparison of time results on different GPUs demon-
strates that the use of communication resources and the
computing system makes the computing time vary. As can
be seen, using an A100 GPU offers a communication latency
that makes a 1D or 3D sample irrelevant to what is available
in terms of bandwidth between CPU and GPU. However, the
sample size is already relevant when we use Tesla T4 CPU-
only and CPU+GPU mode. Furthermore, if we calculate
the total sample time divided by the total time to process
the dataset by the number of samples, we can see that the
acceleration is much greater when processing files with the
CPU and more than 2× with the T4 Tesla GPU. Therefore,
even with the A100 GPU, we will obtain a result similar to
the Tesla T4 GPU if we calculate the processing time per
sample based on the processing time of the dataset by the
number of samples. The calculated processing time came
to mitigate this effect and evaluate how much the inference
costs (in the processor that will make it – CPU or GPU).
We made an approximation by dividing the processor time
of the entire dataset by the number of samples in the dataset.
This operation minimizes the impact of latency generated by
the above factors and allows for a closer look than just the
processed inference.

Table 18 expands the processing time results to sort the
complete and sample-only dataset. The presented results
compare the different classification architectures at the pixel
level, considering only the spectral information. The low time
required is a consequence of the low amount of parameters
and memory and the lack of data structuring as in the 2D-
CNN and 3D-CNN architectures.

D. DISCUSSION
When we compare only the 1D architectures, we see that
the processing performance is uniform. The variation is
presented when the prediction of the entire dataset is made
due to the variation of samples to be processed. What is
worth mentioning is that regardless of the 1D architecture
presented, CNN with or without the Attention layer, LSTM
with or without the Attention layer, and Transformer, the
processing is around from 40 to 90 ms per sample. This result
can be motivated by the processing infrastructure that Google
Colaboratory offers. However, it is worth mentioning that
the memory consumption was more discrepant, which may
impact computing platforms differently from the one used
in this work. When considering the processing time, using
only CPU and CPU+NVIDIA Tesla T4 GPU, we observe that
1D-CNNs enable an acceleration of almost a hundred times
compared to 2D- and 3D-CNNs in the case of only CPU
and more than two times in the case CPU+NVIDIA Tesla
T4 GPU. This acceleration is only visible when we minimize
the impact of data communication offered by the computing
infrastructure. We divided the dataset processing time by the
number of samples to minimize the impact.

In an analysis taking into account pixel sampling, the

1D-CNN architecture has an advantage. It can perform the
classification without storing multiple samples and window
size (19×19) and only perform the classification after sam-
pling by the camera. A point that is also worth mentioning
is the lack of control offered by the SaaS architecture of
Google Colaboratory, where there is no certainty of how the
computational system is organized, making the time obtained
an estimate.

In an analysis taking into account pixel sampling, the 1D-
CNN architecture has an advantage, as it can perform the
classification without storing multiple samples and window
size (19×19) and only then perform the classification after
sampling by the camera.

Regarding the accuracy metric of the three architectures,
we observed that the 1D-CNN architecture performs as well
as the 2D- and 3D-CNNs when considering a training set
with a good balance of samples and many training samples.
This analysis comes when we observe the results of the
IP scene, regardless of the division methodology, which
presents poor results due to the significant class imbalance
(number of samples). Comparing the results of the SA, UP,
CP, KC and BT scenes, we observe that the 1D-CNNs do
not cope well with this imbalance compared to 2D- and 3D-
CNNs. Therefore, HSI with a significant class imbalance,
due to the region covered by the sensing system having this
characteristic, should be classified using 2D- or 3D-CNNs.
This statement is due to the ability of the 2D- and 3D-
CNNs to relate much information, mitigating the imbalance.
Therefore, if accuracy is the most critical requirement for
the application, 2D- or 3D-CNNs should be considered.
These two architectures also stand out compared to the 1D
architecture, even with the balance in the dataset. Another
impacting factor is that the new dataset division methodology
generates a smaller number of samples for training, directly
impacting the generalization ability of the network.

Nevertheless, the results in Tab. 12 and 14 show a cor-
relation directly proportional to the number of samples for
training with accuracy above 99%. The results in these tables
show that using spectral-spatial information in the case of
3D architectures has the same impact as using larger datasets
with good balance in the case of the CP scene. This result
allows us to conclude that architectures such as Transformer,
which has better average performance among 1D architec-
tures, can be used instead of 3D architectures as long as
it is trained with a dataset with a high number of samples.
In addition, the 1D architecture will provide less processing
time and memory demand.

When we focus on comparing 1D architectures, we ob-
serve that adding the Attention layer had no effect on the
CNN performance but (little) impacted the LSTM architec-
ture. As already mentioned, the IP dataset highly affects the
reduced and unbalanced samples. However, the 1D archi-
tectures with the SA dataset have expressive results, which
are also verified with theUPdataset. The classification perfor-
mance in the three evaluated metrics shows that the 1D archi-
tecture can reach an accuracy close to, or even greater than,
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TABLE 17: Processing time for the three CNN architectures running on different infrastructures and using the new dataset-
splitting methodology.

HSI CNN
Arch.

Test
dataset

size

Time all
dataset
A100 (s)

Time 1
sample capt.
A100 (ms)

Time 1
sample calc.
A100 (ms)

Time all
dataset
T4 (s)

Time 1
sample T4
capt. (ms)

Time 1
sample T4
calc. (ms)

Time all
dataset
CPU (s)

Time 1
sample CPU

capt. (ms)

Time 1
sample CPU

calc (ms)

IP
1D 2.569 0.62 87.48 0.24 0.3 193.1 0.12 0.6 55.41 0.24
2D 2.569 0.77 87.57 0.30 0.7 238.3 0.29 9.3 55.26 3.63
3D 2.569 0.54 84.78 0.21 0.7 242.6 0.30 32.3 61.29 12.58

SA
1D 13.490 1.66 81.59 0.12 1.1 191.0 0.8. 1.2 60.95 0.09
2D 13.490 2.21 92.15 0.16 1.7 229.5 0.12 15.3 46.13 1.13
3D 13.490 1.85 87.71 0.14 1.6 204.3 0.12 46.8 49.98 3.47

UP
1D 10.729 1.33 65.83 0.12 0.9 211.4 0.08 0.9 54.43 0.09
2D 10.729 1.75 68.86 0.16 1.3 173.6 0.12 12.3 46.56 1.15
3D 10.729 1.47 69.83 0.14 1.3 130.0 0.12 36.8 50.04 3.43

CP
1D 36,959 3.51 78.86 0.09 2.9 87.95 0.08 3.8 56.72 0.10
2D 36,959 5.56 63.89 0.34 6.8 75.27 0.20 44.3 54.41 1.43
3D 36,959 4.35 51.66 0.11 5.6 63.95 0.15 128.3 63.03 3.47

KC
1D 1,305 0.43 63.47 0.33 0.3 47.85 0.25 0.4 55.97 0.28
2D 1,305 0.40 59.08 0.35 0.4 60.05 0.22 1.7 52.62 1.46
3D 1,305 0.24 74.47 0.18 0.2 57.66 0.17 4.6 63.49 3.52

BT
1D 802 0.37 59.95 0.46 0.3 46.41 0.43 0.3 57.03 0.43
2D 802 0.37 60.79 0.47 0.3 57.67 0.44 1.2 57.14 1.57
3D 802 0.15 55.81 0.18 0.2 54.39 0.24 2.8 71.63 3.54

95%, presenting a significantly lower number of parameters,
processing time, and required storage memory. In addition,
HSI, because they present enough scene information in the
pixel, can only be classified with 1D architectures when
the application does not demand special knowledge, such as
structures, present in the scene of interest.

VII. CONCLUSION
In this work, an evaluation of CNN using different numbers
of dimensions for convolution in HSI classification was per-
formed. The results lead to and support the conclusion that
the amount of dimensions directly impacts the most relevant
metric for the target HSI application. For applications with
strict resource restrictions, such as memory and process-
ing, 1D-CNNs are ideal when there is an adequate class
balance. On the other hand, for applications that demand
higher accuracy, 1D-CNNs can be used when they have
a large dataset with an excellent class balance. Even so,
prioritizing precision, 2D- and 3D-CNNs are more indicated
for being more accurate even without class balancing. With
these results, designers can base themselves on implementing
CNN for embedded platforms such as satellites, which have
computing resource constraints and can use 1D-CNN. On the
hand, classification systems in the food industry usually do
not have computational limitations and value the accuracy of
the analysis/classification [65].

From the presented results, using 1D-CNNs and LSTM
for HSI classification has several benefits compared to using
2D- or 3D-CNNs. 1D-CNNs and LSTMs demand lower
processing time and memory consumption and require fewer
parameters, making them a good choice for systems with
memory constraints. In acceleration, 1D-CNNs and LSTMs
performed significantly faster than 2D- and 3D-CNNs, par-
ticularly when considering a single sample (pixel) classifica-
tion. However, LSTM and 1D-CNN may not perform as well
as 2D- and 3D-CNNs in cases with a large class imbalance

in the data, as these architectures can better relate more
information and mitigate the imbalance.

In future work, we intend to evolve the study on the
Transformer architecture for per-pixel classification of HSIs.
In addition, the studies will evolve towards implementing the
hardware accelerator format of the models, particularly the
Transformer architecture.
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