
Citation: Palmeira, A.; Pereira, É.;

Ferreira, P.; Diele-Viegas, L.M.;

Moreira, D.M. Long-Term

Correlations and Cross-Correlations

in Meteorological Variables and Air

Pollution in a Coastal Urban Region.

Sustainability 2022, 14, 14470.

https://doi.org/10.3390/su142114470

Academic Editors: Pallav Purohit

and Sudhir Kumar Pandey

Received: 14 September 2022

Accepted: 1 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Long-Term Correlations and Cross-Correlations in Meteorological
Variables and Air Pollution in a Coastal Urban Region
Anderson Palmeira 1, Éder Pereira 2, Paulo Ferreira 3,4,5,* , Luisa Maria Diele-Viegas 6

and Davidson Martins Moreira 1

1 Manufacturing and Technology Integrated Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
2 Instituto Federal do Maranhão, Bacabal 65700-000, Maranhão, Brazil
3 VALORIZA—Research Center for Endogenous Resource Valorization, 7300-555 Portalegre, Portugal
4 Department of Economic Sciences and Organizations, Polytechnic Institute of Portalegre,

7300-555 Portalegre, Portugal
5 CEFAGE, IIFA, Universidade de Évora, Largo dos Colegiais 2, 7000 Évora, Portugal
6 Instituto de Biologia, Universidade Federal da Bahia, Salvador 40170-115, Bahia, Brazil
* Correspondence: pferreira@ipportalegre.pt

Abstract: In this work, we evaluated the evolution of some atmospheric pollutants (O3, NOx and
PM10) over time and their relationship with four different climate variables (solar irradiation, air tem-
perature, relative humidity and wind speed). To this end, we assessed the long-range dependence of
those concentrations with a Detrended Fluctuation Analysis (DFA) and analyzed the cross-correlation
of such dependence with the climate variables through a Detrended Cross-Correlation Coefficient
Analysis (ρDCCA). The results show that air pollution tends to increase over time, impairing air qual-
ity and likely affecting human health. The results indicate a cross-correlation between air pollution
and the climatic variables, which persisted for a certain period, with a greater correlation between
O3 concentration and wind, mainly temperature, and a negative correlation with humidity for all
monitoring stations. Moreover, unlike O3 and PM10, NOx concentrations always had a persistent
behavior in the region of study for the entire analyzed period.

Keywords: air pollution; detrended cross-correlation analysis; emissions; long memory

1. Introduction

Atmospheric pollution is a critical factor impairing biodiversity, ecosystem services
and human health [1]. The increase in pollutant concentrations due to the growth of urban
and industrial areas has led to the rise in scientific discussions on this topic [2–10]. The
concentration level of atmospheric pollutants (gases and particles) is correlated with the
combination of meteorological variables in a given region. Therefore, the concentration
of atmospheric pollutants and the meteorological data must be statistically evaluated to
verify their correlations, being an important topic in atmospheric dispersion problems.
In this sense, natural phenomena dynamics are characterized by long-range correlations,
where the autocorrelation function varies according to a potency law [11,12]. Thus, the
applicability of mathematical modeling in the description and interpretation of these dy-
namics constitutes a valuable tool for solving real problems and for reasoning decisions [13].
Specifically, determining a long-range correlation between pollutant emissions (pollutant
concentrations are the consequences of emissions) and environmental changes demands
understanding non-stationary processes such as global circulation patterns and global
warming tendencies [14].

The DFA (Detrended Fluctuation Analysis) method was developed to extract long-
range correlation in non-stationary temporal series [15], becoming an important tool for
understanding such complex processes. It was applied in studies focusing on several
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topics, including environmental temperature behavior [16], wind speed [17–20], precipita-
tion [21], relative humidity [22] and the North Atlantic Oscillation Index [23]. On the other
hand, the ρDCCA (Detrended Cross-Correlation Coefficient Analysis) statistical model,
was developed to evaluate cross-correlations among pairs of non-stationary temporal
series [24]. If compared, for example, with Pearson’s coefficient, it is robust [25]. Some
works, such as [26], applied the ρDCCA to highly complex empirical data from financial
markets. In [27–29], it is analyzed how external meteorological variables are related, as is
proposed in this work with the ρDCCA multiple cross-correlation coefficients. In [30], cross-
correlations between three meteorological variables at the same time are analyzed; in [31],
ρDCCA is applied to identify and characterize correlated data obtained from drilled oil
wells; in [32], the ρDCCA cross-correlation coefficient method is adopted to quantify cross-
correlations between energy markets and emissions. Ref. [33] established a well-defined
relationship between αDFA (the long-range auto-correlation exponent) and λDCCA (the
long-range cross-correlation exponent), described by the DFA and DCCA methods, re-
spectively. Ref. [34] theoretically studied several fundamental properties of the DCCA
cross-correlation coefficient, which contributes to acquire more statistical characteristics of
this measure. Ref. [35] investigated power law cross-correlations between different time
series recorded simultaneously in the presence of non-stationarity. Ref. [36] analyzed and
quantified cross-correlation between climatological data, adopting the DCCA and ρDCCA
cross-correlation coefficients. In [37], the cross-correlation between air temperature and
relative humidity is studied using the DCCA cross-correlation coefficient. Furthermore, [27]
proposed to establish an extended multiple cross-correlation coefficient, and [30] analyzed
the cross-correlations in non-stationary time series.

Various studies show that the analysis of data over time allows guiding control actions.
In this way, persistence is evaluated, since persistent series tend to increase over time, so
that if the concentrations of pollutants show an increasing trend, the risks of air quality
will increase, which may, therefore, affect health human. In this sense, the literature is
still incipient to correlate the concentration of atmospheric pollutants and meteorological
variables, as proposed in this work. Understanding air pollution patterns and tendencies is
paramount to predicting, evaluating and mitigating its impacts on social, economic and
environmental systems.

Our objective is to show whether there are strong correlations between meteorolog-
ical factors and pollutants’ concentration in the port area of Aratu, Brazil, as well as to
statistically evaluate the persistence. The proposed methodologies to analyze persistence
and correlation can be used to test the suitability of complex numerical meteorological
and air pollution models, with the possibility to predict the results of pollution, since
these models must reproduce the effects of long-term memory, which may represent an
important advancement in the research area of atmospheric sciences. In particular, we
aimed to assess the long-term evolution and persistence of the air pollutant dispersion
data from industrial activities in the influence area of the port of Aratu, one of the most
important outlets for chemical and petrochemical production, located in Bahia State, Brazil,
by using DFA analysis. In addition, we aimed to evaluate the influence of climatic variables
(e.g., environmental temperature, relative air humidity, wind velocity and solar radiation)
on the pollution process through ρDCCA analysis.

This paper is organized as follows. Section 2 presents the materials and methods,
including the study area, experimental data and a brief review of DFA and ρDCCA method-
ologies. Section 3 presents the numerical results, applying DFA and ρDCCA to investigate
the long-range and cross-correlations between the concentrations of pollutants and each
meteorological factor. Section 4 draws the conclusions.

2. Materials and Methods
2.1. Study Area

The study area is the Metropolitan Region of Salvador (RMS), located in the state
of Bahia, between latitudes 12◦20′ S and 13◦10′ S and longitudes 37◦50′ W and 38◦50′ W,
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comprising 13 cities. It is occupied by approximately 3.6 million inhabitants spread over an
area of 4.375 km2. The RMS is an urban-industrial area with a peninsular configuration and
consists of a bay located in the southwest of the region, east of the Atlantic Ocean. The Baía
de Todos os Santos (BTS) is an indentation of the Brazilian coast where the sea penetrates
the continent from a narrowing between the city of Salvador, which is the capital of the state
of Bahia, and the island of Itaparica. Its presence adds local moisture due to evaporation,
forming a humid tropical climate in the region. The period with the highest rainfall is April–
May–June–July, while the least rainy period is September–October–November–December.
The annual averages of temperature and humidity are 26 ◦C and 80%, respectively, in
Salvador, with higher values of average hourly wind speed in the afternoon and lower
values during dawn and early morning hours [38]. Figure 1 shows the studied location.
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Figure 1. The three air monitoring stations located in Botelho, Malembá and Gamboa regions located
in Todos os Santos Bay, Bahia, Brazil.

Figure 1 shows the three air quality stations (Malembá, Gamboa and Botelho) and some
fixed sources (industrial complex) in the study region. The meteorological and atmospheric
pollution data, the object of this study, are collected hourly from January to December 2019,
the period with the most complete data available. The Malembá station is located in a public
square in the municipality of Candeias, a rural region with many houses. The Malembá
station is a little further from the port than the others, but it is more influenced by mobile
sources as it is a more urbanized region. The Gamboa station is located in an Atlantic forest
region, a rural and sparsely inhabited area, positioned on high ground, 600 m away from
the sea coast. The Botelho station is located on the beach of Botelho (in the island of Maré).
The Botelho station is located on the sea line, 2 km by sea from the port of Aratu. The port of
Aratu has a large flow of trucks due to its cargo handling.

2.2. Experimental Data

The monitoring of air quality and the meteorological variables studied aims to meet
what is established in the Technical Cooperation Term (TCT) signed between the State
Public Ministry (SPM), the Institute of Environment and Water Resources of Bahia (INEMA),
the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA), the
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Camaçari Industrial Development Committee (COFIC), the Bahia State Docks Company
(CODEBA) and the Environmental Protection Company (CETREL). The TCT is made up of
public and private organizations. The purpose of its implementation was to meet a legal
obligation imposed by the SPM, repairing environmental damage caused by the factories to
the local community, according to [39,40]. However, even though the monitoring network
is of great importance to the health of the local community, its operation was suspended in
February 2020 due to the termination of the legal obligation that created the TCT and the
costs of operating the stations.

The air quality of the port complex is continuously monitored by monitoring stations
located in Botelho, Gamboa and Malembá [41], as shown in Figure 1. The pollutants
evaluated in this study are NOx (nitrogen oxide), O3 (ozone) and PM10 (particulate matter
smaller than 10 µm). Observations of meteorological variables and pollutant concentrations
are reported as hourly average values for the year 2019. In this sense, a preliminary analysis
of the behavior of meteorological variables (humidity, solar irradiation, temperature and
wind speed) during the period under analysis is important. Figure 2 shows the behavior of
the monthly average of each meteorological variable.
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Figure 2 shows how the meteorological variables portray the characteristics of the
location of each station. Gamboa, for example, has higher humidity and lower wind speed
than the other two for all months of the year. When evaluating solar irradiation, Botelho
has higher values during the summer (January–May), and for the other months, its solar
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irradiation profile is lower. A sudden drop in solar irradiation is observed at the Botelho
station (Figure 2b) in the months of September–October–November–December, which must
have occurred due to the presence of more constant clouds in the region (station located
on an island). Malembá and Botelho have similar behaviors for wind speed. However,
Malembá has more constant winds on average. Regarding the wind direction, Figure 3
shows that the wind increased during the study period.
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Figure 3. Wind increased for all stations.

Figure 3 shows a higher intensity preferential wind (3.5 to 6 ms−1) coming from the
NE to the Botelho station. For the Malembá station, higher intensity winds (3.9 to 7 ms−1)
are observed coming from the N direction. For the Gamboa station, wind is also observed
coming from the NE/E direction (1.5 to 3 ms−1). However, at this station, most of the time,
the NW wind has low intensity (0.1 to 0.8 ms−1). This is due, in part, to the presence of
many trees (forest) in its surroundings.

Figure 4 shows the behavior of concentrations with monthly averages at the three
monitoring stations.
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When analyzing Figure 4, we observed that the highest levels of NOx were collected
by the Botelho station, which is closer to the port of Aratu and petrochemical industries.
The Malembá station had the second highest concentration and also is located close to
petrochemical industries. In addition, both stations had higher wind speeds (Figure 2d),
a factor that may contribute to the collection of higher concentrations of NOx from other
regions. The Malembá and Gamboa stations show the highest concentrations of O3, but due
to their locations, these concentrations probably originated from distant emitting sources,
driven by the preferential wind. It is important to highlight that the Botelho station had
a drop in the average O3 in the months that coincided with the drop in solar irradiation.
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Botelho and Malembá indicated the highest concentrations of PM10 (peak in Malembá in
February), where the values are justified by the characteristics of the geographical positions
of these stations. Botelho is located near a port area with heavy vehicle movement, in
addition to industries. In this sense, Malembá is located close to petrochemical industries
and has a region with a greater flow of vehicles.

Taking into account the hourly data of global solar irradiation, air temperature, relative
humidity and wind speed (meteorological variables) and O3, NOx and PM10 (pollutants), we
studied the relationship between pollutant concentrations and four different climatic variables.

2.3. DFA, DCCA and ρDCCA

In this paper, we use two different methodologies, the Detrended Fluctuation Analysis
(DFA) and the Detrended Cross-Correlation Analysis Correlation Coefficient (ρDCCA), to
analyze the behavior of different time series. By estimating the DFA, which was applied for
the evolution of the pollutant concentrations, we want to assess the long-range dependence
of those concentrations. With the ρDCCA, which we performed to analyze the long-range
cross-correlation between the concentrations and four different climate variables, we want
to assess the correlation between variables.

The DFA, applied to individual time series, is calculated with the following proce-
dures. Based on a given time series xt of length N, the first step calculates the profile
Xt = ∑t

i=1(xi − 〈x〉), with 〈x〉 as the mean observed value of the original time series. That
profile is then divided into different time windows of length n, and for each window, using the
ordinary least squares, the local trend X̃t is calculated and used to detrend the profile Xt, i.e.,

F(n) =

√
1
N ∑N

t=1

(
Xt − X̃t

)2
.

This same process is repeated considering the different window sizes of dimension
n. The DFA ends calculating the log-log regression between x and n, resulting in a power-
law given by F(n) ∝ nα, with α being equivalent to the Hurst exponent, and interpreted
as follows: if a random walk describes the time series, if 0.5 < α < 1, the time series
has a persistent behavior; if α < 0.5, the time series has an anti-persistent behaviour.
As we wanted to evaluate the evolution of the Hurst exponent over time, we applied a
sliding windows approach, with windows of 500 observations, which allowed us to obtain
sequenced Hurst exponents.

Proposed by [15], the DFA has been used in several research areas, including clima-
tology and the emission of gases [21–23,42–45]. While the DFA analyzes the long-range
dependence in individual time series, the DCCA analyzes cross-correlation dependence
between pairs of time series, and the rationale of the methodology is similar to the DFA. In
this case, the DCCA considers different time series xt and yt, with the same time length,
and starts with the calculation of the profiles and Yt = ∑t

i=1(yi − 〈y〉), representing 〈.〉, the
mean observed value of the respective variable. After dividing the profiles into different
boxes of length n, the local trends are also calculated based on the ordinary least squares
and from the detrended series. The covariance of the residuals is calculated and given by

f2
DCCA(n) =

1
n− 1

i+n

∑
k=i

(
Xk − X̃k

)(
Yk − Ỹk

)
being the base of the calculation of the detrended covariance provided by

F2
DCCA(n) =

1
N− n ∑N−n

i=1 f2
DCCA.

This DCCA was proposed by [35]. Combining both the DFA and DCCA, [24] pro-

poses the DCCA correlation coefficient given by ρDCCA =
F2

DCCA
FDFA{x}FDFA{y}

. This correlation

coefficient, which we apply to analyze the cross-correlation between the emission of gases



Sustainability 2022, 14, 14470 7 of 12

and some climate variables, is efficient [25,34] and is testable according to the procedure
of [46], which we used to obtain the confidence levels to perform that test. DCCA and its
developments were already used in climatology and the study of the emission of gases by
NOx, O3 and PM10.

3. Results

We started our analysis by calculating the DFA exponents for the concentration of the
pollutants at the three stations [47,48]. As we aimed to analyze the evolution over time,
a sliding windows approach was used, with the results depicted in Figure 5 for Botelho,
Gamboa and Malembá stations.
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pollutant concentrations (PM10, NOx, O3): (a) Botelho; (b) Gamboa; (c) Malembá.

There, it is possible to identify that in all cases, the concentrations are described
by Hurst exponents above 0.5, meaning that the concentrations do not follow random
patterns. In most cases, the Hurst exponent is between 0.5 and 1, which means that the
concentrations have a persistent behavior; other higher levels more likely follow, i.e., higher
levels of concentrations. In some cases, it is possible to identify that some concentrations
have a Hurst exponent above 1. This happens, for example, at the Botelho station during
part of the year 2019 for O3 and PM10, although to a lesser extent. This also happens at the
Gamboa station with PM10, but for a smaller time extension, while at the Malembá station,
the evidence is lower, although also happening with O3 and PM10. A Hurst exponent
higher than 1 implies that during those sliding windows, the series is non-stationary, which
could be understood as uncontrolled concentration [49].

Figure 6 shows the ρDCCA between wind speed and concentrations at the different stations.
We identified a positive cross-correlation between O3 and wind velocity, temperature

and solar irradiation for smaller temporal scales (~24 h–1 day) at all stations, with more
evidence at the Gamboa station. However, this correlation is more pronounced with the
temperature variable. For the wind variable, at the Gamboa station, there is a decrease
in the correlation up to 400 h, remaining constant until 800 h, decreasing smoothly, but
remaining positive and small until the end of the period. For the Botelho station, there is
also a decrease up to 400 h, but with a tendency to increase the correlation until the end of
the period. At the Malembá station, there is a lower correlation, remaining similar until
the end of the period. For the temperature variable, at all monitoring stations, there is a
decrease in the correlation up to approximately 200 h. At the Malembá station, from 200 h
onwards, a negative correlation begins, where for Botelho and Gamboa stations, it starts
at 800 h. For the variable solar irradiation, at the Botelho station, it has a low positive
correlation, reaching a peak up to 100 h and becoming negative after 200 h. For the Gamboa
station, a small peak of positive correlation appears around 24 h, but quickly becomes
negative, returning to increasing positive around 1100 h. The Malembá station already
starts with a negative correlation, becoming positive and increasing around 200 h. For
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the humidity variable, O3 is strongly anti-correlated for all stations within a day. At the
Malembá station, it reaches a positive correlation around 300 h, remaining positive, but
small, until the end of the period.
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Regarding PM10, we identified a negative cross-correlation between wind velocity,
temperature and solar irradiation for smaller temporal scales (1 day) at all stations. For the
wind variable at the Botelho station, around 100 h, the correlation becomes positive until
the end of the period. For the Malembá station, the correlation becomes positive at 50 h,
reaching a maximum around 500 h, then decreases, but remains positive. At the Gamboa
station, it remains negative until the end of the period. For the temperature variable, the
three stations present a negative correlation, with a maximum around 24 h. For the Botelho
station, it starts to be positive around 50 h, reaching a maximum at 200 h, becoming negative
around 800 h until the end of the period. At the Gamboa station, it starts to be positive around
100 h and reaches a maximum at 400 h, becoming negative at 1000 h. At the Malembá station,
it becomes positive around 150 h with a tendency to increase until the end of the period. For
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the variable solar irradiation, negligible behavior is observed. For the humidity variable, a
greater positive correlation is observed for the Malembá station, becoming negative around
200 h and remaining until the end of the period. At the Botelho station, there is a positive
correlation with a maximum in 24 h, becoming negative around 100 h. At the Gamboa station,
there is a small negative correlation for almost the entire period.

In addition to this, we identified a negative cross-correlation between NOx and wind
velocity for all temporal scales at all stations. For the temperature variable, the three stations
present a negative correlation with a maximum around 24 h. For the Botelho station, it
starts to be positive around 200 h, reaching a maximum at 200 h, with a smooth increase
until the end of the period. At the Gamboa station, it starts to be positive around 400 h,
remaining until the end of the period. At the Malembá station, it becomes positive around
200 h with a slight growth trend until the end of the period. At the Botelho station, for
the variable solar irradiation, a positive growth is observed around 100 h until the end of
the period. For Gamboa and Malembá stations, there are few variations. For the humidity
variable, there is a positive correlation with a maximum around 24 h, decreasing up to
200 h for the three stations, but remaining small until the end of the period.

After this analysis, it is important to note that the state of Bahia is located in the tropics,
and the tropical climate can change rapidly with convection and sea breeze and the weather
is dominated by local, mesoscale and macroscale (synoptic) effects [44]. The winds in the
tropics are usually light and variable, and in the coastal strip, the temperature and humidity
are higher. Furthermore, it is important to mention that the winds are generated by the
non-uniform heating of the Earth’s surface. In addition, the topographic characteristics of a
region also influence the behavior of the winds since, in a given area, differences in speed
may lead to a reduction in wind speed. In this sense, it is well known that the local wind
field is the result of a nonlinear interaction between the large-scale (synoptic) effects and
local circulation. Because of this, the time series of wind speed is expected to be dependent
on global and local circulations [44]. Fundamentally, the planetary boundary layer (PBL)
is characterized by a diurnal cycle, indicating that the correlation and anti-correlation
peaks in the meteorological variables studied here respond to forcings within a 24-h cycle,
represented in Figure 6. The cycle is forced by solar irradiation, which heats the Earth’s
surface during the day, and the infrared radiation released into space cools the Earth’s
surface at night. These processes are influenced by external mesoscale forces, and the
turbulence generated in the PBL arises from this interaction. The influence of larger time
scales (mesoscale—week (~200 h); macroscale—month (~700 h)) is also noticed, related to
variations in the correlations between meteorological variables and the concentration of
each pollutant, in addition to the persistent and non-stationary character.

4. Conclusions

The results of this work contributed to advancing knowledge of different statistical
methods. After the exploratory analyses, it was possible to identify a persistent influence
of meteorological variables on the pollution process considering the entire period analyzed.
The various studies analyzed and implemented show that data analysis guides control
actions over time. In this sense, the concentrations of O3, NOx and PM10 were mostly
persistent, but with some periods where the system dynamics are characterized as non-
stationary (transient regime or transient conditions). It is important to mention that NOx
always had a persistent behavior at all monitoring stations. In addition, there was a
greater correlation between concentration of O3 and wind and also temperature in the three
analyzed monitoring stations. Thus, with correlation between 0.5 and 1.0 for wind speed
and O3, the Gamboa station was up to 250 h (~10 days). In the same correlation interval,
the temperature variable was up to 150 h (~6 days) (Gamboa), 100 h (~4 days) (Botelho)
and 80 h (~3 days) (Malembá). It is important to highlight the strong negative correlation
between humidity and O3 concentration for all monitoring stations.

Using the DFA method, it was possible to identify in all cases that the concentrations
are described by Hurst exponents above 0.5, meaning that the concentrations do not follow
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random patterns. In most cases, the Hurst exponent is between 0.5 and 1, which means
that the concentrations have a persistent behavior; other higher levels more likely follow,
i.e., higher levels of concentrations. In some cases, the Hurst exponent is higher than 1,
which implies that during those sliding windows, the series is non-stationary, which could
be understood as uncontrolled concentration. On the other hand, the ρDCCA method
was able to perceive the correlation between the studied meteorological variables and the
pollution process to a certain extent; the results show physical coherence for the studied
climatic events.

Our results show evidence that a reduction in pollutant emissions in the region under
study could be stimulated by the state’s environmental agency, particularly in relation to
NOx (precursor of O3), persistent in all months of the year. This type of pollutant comes
from vehicular emissions, particularly from heavy vehicles (trucks, cranes, tractors), and
from industrial processes, in addition to emissions from maneuvered and berthed ships.
In this sense, this work represents an important advancement, as this is the first time
that a more thorough statistical analysis has been carried out in this port region. In this
way, the results could serve as a basis for a larger study with the objective of outlining
mitigating strategies and effective practices to reduce the impact of emissions from both
maritime transport, as well as all associated port activities, promoting better management
and protection of air quality in the region.

This paper presents an unprecedented approach, emphasizing the difficulty of access-
ing an air quality database, with its limitations related to the lack of access to a database
for a longer period, and its analysis is restricted to the domains of the Port Authority. The
continuous assessment of air quality is important for the local community; even with this
importance, due to the cost of operation and the termination of the legal obligation that
created the working group responsible for their operation, these stations stopped operating
in February of 2020. Authorities face the need to balance concerns between known impacts
on human health and the environment with improving or maintaining economic devel-
opment; using science is key to that balance. As our knowledge has better application in
the science of air pollution, we can better predict, assess and mitigate the implications of
air pollution on economic systems. Finally, it is believed that the methodology adopted
in this article can serve as another form of analysis of this type of event for private and
governmental institutions and researchers interested in the topic. Future work should
address the analysis of other monitoring stations deployed in different zones of the MRS,
as well as the use of the state of the art in numerical models (meteorological and pollutant
dispersion) to assess whether these models effectively capture the long-range processes
perceived in the data measured in the study region.
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