
Microsserviços em Jolie: uma experiência

RUI MIGUEL MADUREIRA ASSIS
Outubro de 2022

Jolie Microservices

An Experiment

Rui Miguel Madureira Assis

Dissertation to obtain the Master’s Degree in

Informatics Engineering, Area of Expertise in

Computer Systems

Supervisor: Isabel de Fátima Silva Azevedo

Porto, October 2022

i

ii

Dedication
This work is dedicated to my beloved parents, my true heroes.

iii

iv

Resumo
Os microsserviços estão cada vez mais presentes no mundo das tecnologias de informação, por

providenciarem uma nova forma construir sistemas mais escaláveis, ágeis e flexíveis. Apesar disto,

estes trazem consigo o problema da complexidade de comunicação entre microsserviços, fazendo

com que o sistema seja difícil de manter e de se perceber. Linguagens de programação específicas a

microsserviços como Jolie entram em cena para tentar resolver este problema e simplificar a

construção de sistemas com arquiteturas de microsserviços.

Este trabalho fornece uma visão ampla do estado da arte da linguagem de programação Jolie onde é

primeiramente detalhado o porquê de surgirem linguagens específicas a microsserviços e como a

linguagem Jolie está construída de maneira a coincidir com as arquiteturas de microsserviços através

de recursos nativos.

Para demonstrar todas as vantagens de usar esta linguagem em comparação com as abordagens

mais mainstream é pensado um experimento de desenvolvimento de um sistema de microsserviços

no âmbito de uma aplicação de e-commerce. Este sistema é construído de forma igual usando duas

bases tecnológicas – Jolie e Spring Boot. O Spring Boot é considerado a tecnologia mais usada para

desenvolver sistemas de microsserviços sendo o candidato ideal para comparação. É pensada toda a

análise e design deste experimento.

Em seguida, a implementação da solução é detalhada a partir das configurações do sistema, escolhas

arquitetónicas e como elas são implementadas. Componentes como API gateway, mediadores de

mensagens, bases de dados, orquestração de microsserviços, e conteinerização para cada

microsserviço e outros componentes do sistema.

Pol último as soluções são comparadas e analisadas com base na abordagem Goals, Questions,

Metrics (GQM). São analisadas relativamente a atributos de qualidade como manutenção,

escalabilidade, desempenho e testabilidade. Após esta análise pode-se concluir que a solução

construída com Jolie apresenta diferenças na manutenção sendo significativamente superior à

solução baseada em Spring Boot e apresenta diferenças em termos de performance sendo

ligeiramente inferior à solução construída com Spring Boot. O trabalho termina com a indicação das

conquistas, dificuldades, ameaças à validade, possíveis trabalhos futuros e observações finais.

Palavras-chave: microsserviços, Jolie, linguagens específicas de microsserviços, Spring Boot

v

vi

Abstract
Microservices are increasingly present in the world of information technologies, as they provide a

new way to build more scalable, agile, and flexible systems. Despite this, they bring with them the

problem of communication complexity between microservices, making the system difficult to

maintain and understand. Microservices-specific programming languages like Jolie come into play to

try to solve this problem and simplify the construction of systems with microservices architectures.

This work provides a broad view of the State of Art of the Jolie programming language, where it is

first detailed why microservices-specific languages emerge and how the Jolie language is built to

match microservices architectures through native resources.

To demonstrate all the advantages of using this language compared to more mainstream

approaches, an experiment is designed to develop a microservices system within an e-commerce

application. This system is built equally using two technological foundations – Jolie and Spring Boot.

Spring Boot is considered the most used technology to develop microservices systems and is an ideal

candidate for comparison. The entire analysis and design of this experiment are thought through.

Then the implementation of the solution is detailed from system configurations, architectural

choices, and how they are implemented. Components such as API gateway, message brokers,

databases, microservices orchestration, and containerization for each microservice and other

components of the system.

Finally, the solutions are compared and analyzed based on the Goals, Questions, Metrics (GQM)

approach. They are analyzed for quality attributes such as maintainability, scalability, performance,

and testability. After this analysis, it can be concluded that the solution built with Jolie presents

differences in maintenance being significant superior to the solution based on Spring Boot, and it

presents differences in terms of performance being slightly inferior to the solution built with Spring

Boot. The work ends with an indication of the achievements, difficulties, threats to validity, possible

future work, and final observations.

Keywords: microservices, Jolie, microservices specific languages, Spring Boot

vii

viii

Acknowledgements
I would like to thank my advisor Isabel Azevedo for all the revisions, help, and tips to increase the

quality of my work. I also want to thank Professor Susana Nicola for the help given in the early stages

of the thesis when big decisions needed to be made. Thank you to all the teachers at ISEP for always

providing the best learning materials and directions to all the student’s best interests.

Finally, I want to thank my entire family, my girlfriend, friends, all the teachers, colleagues, and

everybody that passed through my personal, academic, and professional life as I believe every one of

them was essential for completing this challenge.

ix

x

Table of Contents
1 Introduction .. 1

1.1 Problem .. 1

1.2 Objectives ... 2

1.3 Methodology ... 2

1.4 Structure ... 3

2 Background ... 5

2.1 Microservices .. 5
2.1.1 Orchestration and choreography ... 7
2.1.2 Challenges ... 9

2.2 Quality Attributes ... 9
2.2.1 Scalability .. 10
2.2.2 Performance ... 10
2.2.3 Maintainability .. 11
2.2.4 Testability ... 11

3 State of Art .. 13

3.1 Microservices specific languages ... 13

3.2 Jolie ... 14
3.2.1 Orchestrator ... 20
3.2.2 Native microservices ... 21
3.2.3 Advantages ... 21
3.2.4 Drawbacks ... 23

3.3 Jolie microservices ... 23
3.3.1 Architecture ... 24
3.3.2 Development .. 27
3.3.3 Containerization .. 30

4 Analysis and design .. 31

4.1 Scenario .. 31

4.2 Requirements .. 32

4.3 Usage ... 33

4.4 Architecture ... 34
4.4.1 Components ... 35
4.4.2 Microservices description .. 36
4.4.3 Orchestrated saga .. 36

4.5 Technology stack ... 38

5 Implementation ... 41

5.1 Overview ... 41
5.1.1 API Gateway ... 42
5.1.2 Containerization and deployment .. 44

xi

5.2 Jolie and Spring-based project distinction ... 49

5.3 Microservices implementation .. 51
5.3.1 High level view .. 51
5.3.2 Jolie ... 53
5.3.3 Spring Boot... 55

5.4 Solution verification and tests .. 59

6 Evaluation ... 63

6.1 Design ... 63

6.2 Experiments ... 64
6.2.1 Scalability .. 64
6.2.2 Maintainability .. 65
6.2.3 Performance ... 66
6.2.4 Testability ... 68

6.3 Summary ... 69

7 Conclusions .. 71

7.1 Achievements ... 71

7.2 Difficulties ... 71

7.3 Threads to Validity ... 72

7.4 Future work and final remarks ... 72

xii

List of Figures
Figure 1 – Microservice system architecture (MSA) UML diagram .. 6
Figure 2 – Orchestration versus choreography [18] ... 8
Figure 3 – Files needed for Spring Boot hello world program .. 17
Figure 4 – Simplicity and speed of Jolie development [33] .. 22
Figure 5 – Jolie metamodel architecture [29] ... 24
Figure 6 – Jolie Ports ... 26
Figure 7 – System’s use cases diagram ... 34
Figure 8 – System component diagram .. 35
Figure 9 – Spring Boot solution saga orchestration .. 37
Figure 10 - Jolie solution saga orchestration .. 38
Figure 11 - The API Gateway architectural pattern [55] ... 42
Figure 12 - Deployment diagram for the Jolie solution .. 46
Figure 13 - Deployment diagram for Spring Boot solution ... 47
Figure 14 - Product service file structure in Jolie implementation ... 50
Figure 15 - Product service file structure in Spring Boot framework implementation 50
Figure 16 - Initial Spring Boot microservice project structure .. 56
Figure 17 – Cart collection flow tests .. 60
Figure 18 - Cart collection run results ... 61
Figure 19 - Apache JMeter test plan for cart service flow .. 67
Figure 20 - Apache JMeter test plan for checkout service flow ... 68
Figure 21 – Microservice lifecycle [43] ... 83
Figure 22 – Market share prediction for cloud, IoT and mobile between 2020 and 2027/2028 [78]–
[80] .. 87
Figure 23 – Hierarchy tree of the AHP method .. 90
Figure 24 – Business model CANVAS .. 93
Figure 25 – Jolie S.W.O.T. analysis .. 94

xiii

xiv

List of Tables
Table 1 – Functional requirements of the application .. 32
Table 2 – Non-functional requirements of the application .. 32
Table 3 – Use cases of the application .. 33
Table 4 – Microservices description [50] .. 36
Table 5 - High level view of the microservices implementation ... 52
Table 6 - Quality attributes, goals, and questions .. 64
Table 7 - Distribution of dependencies on the microservices of the system 65
Table 8 - LOC metrics for the solution .. 65
Table 9 – Performance table report for cart service flow ... 67
Table 10 - Performance table report for checkout service flow ... 68
Table 11 — List of frameworks and programming languages to develop microservices 82
Table 12 – Fundamental scale [60] ... 90
Table 13 – Comparison of criteria ... 91
Table 14 – Normalized matrix with relative priority ... 91
Table 15 – Alternative composite priority and choice .. 92

xv

xvi

Acronymous and Symbols
List of acronymous:

AHP Analytic Hierarchy Process

API Application Programming Interface

APP Application

DB Database

ESB Enterprise Service Bus

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JSON JavaScript Object Notation

L2CAP Logical Link Control Adaptation Protocol

LOC Lines of Code

MS Microservice

MSA Microservice Architecture

MDE Model-Driven Engineering

MDD Model-Driven Development

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SODEP Simple Orientation Data Exchange Protocol

RCP Remote Procedure Call

RMI Remote Method Invocation

QA Quality Attribute

TCP Transmission Control Protocol

XML Extensible Markup Language

UI User Interface

xvii

xviii

1

1 Introduction

This first chapter contextualizes and presents the problem to be solved, addressing the main

objectives of the work to be developed and the approach to reach a solution. Last, the structure of

this document is presented.

1.1 Problem
Microservices have been adopted to take advantage of their promised benefits like agility and

scalability [1]–[3]. The tendency is for more businesses to move to microservices architecture (MSA)

in future years due to the emerging future of the Cloud, the Internet of Things, and mobile

computing [4], [5].

Microservices architectures bring complexity as other distributed systems, due to communication

between processes, testing, debugging, and deploying the system [6]. MSA systems also lead to

some problems regarding high memory use, the time required to fragment different microservices,

the complexity of managing many services, and developers that need to solve problems such as

network latency or load balancing. Also, if a big corporation already has a monolith system the cost

and complexity to move to a microservices architecture is even higher [7] since their systems run on

different types of technologies, platforms, and programming languages that can be an incredibly

hard task to change everything to MSA.

The emergence of programming languages such as Jolie [8] that include primitives to deal with the

programming of communications, monitoring, fault management, and architectural patterns (like

API gateway) [9], issues that are relevant in applications with multiples microservices, leads to

question how applications that use them compare with other more conventional approaches in

2

terms of some quality attributes. However, there is a lack of work regarding these technological

choices.

1.2 Objectives
In the field of microservices development, complex, error-prone and communication situations

abound. The specific languages of microservices, such as Jolie, due to abstraction and its ease of

development can help to obtain systems with better handling and communication management and

less complexity.

The main objective is to evaluate a microservice solution in terms of some attributes seen as

important in MSA systems and understand how a language-based approach can support software

architects in specific scenarios.

The presented work is studied and presented framed in the context of distributed systems, mainly in

the microservices architecture domain. The motivation behind the problem is that this architecture

is one of the current most adopted technology approaches in the world of software development,

being more and more popular each day. The proposed solution portrayed in the thesis aims to

highlight the benefits and drawbacks of the service-oriented programming language Jolie.

1.3 Methodology
To achieve the objectives defined the adopted methodology englobes all phases from the definition

of the problem to the developed solution and further evaluation. For this, the Design Science

Research Methodology (DSRM) was used [10].

With the following six activities:

1. Problem identification and motivation

a. Define the specific research problem

b. Collect information about the problem, namely what different people have already

addressed informally in relation with the problem

c. Look at microservices field knowledge regarding their actual design patterns,

techniques, frameworks, languages, and challenges looking at the advantages they

bring but also the disadvantages

2. Define the objectives for a solution

3

a. Propose the objectives of a solution from the problem definition and knowledge of

what is possible and feasible

b. Collect information about the state of problems, possible solutions, and their

efficacy

3. Design and development

a. Design the artifact: an application to be developed using Jolie and in a traditional

approach

b. Determine the experiment desired functionality and its architecture

c. Create the artifact (based on microservices architecture)

4. Demonstration

a. Demonstrate the construction of the solution in two different ways

5. Evaluation

a. Measure how well the experiment supports a solution to the problem. This activity

involves comparing the objectives of a solution to actual observed results from the

use of the artifact in the demonstration

b. Present quantitative performance measures relative to some Quality Attributes

namely scalability, maintainability, and performance, as these are the main quality

attributes seen as important and problematic in the microservices architecture that

a language-based approach can handle

c. Compare the two different ways on which the solution is built

6. Communication

a. Communicate the problem and its importance, the artifact, its utility and novelty,

the accuracy of its design, and its effectiveness to researchers. Moreover, the

comparison results and what was learned with the experiment.

1.4 Structure
This chapter concludes with the document structure of the thesis that aim at describing all chapters

that compose this document, divided, and described as:

1. Chapter 1 – Introduction: this is the current chapter, and it provides an introduction for the

thesis describing the problem, the objectives and how will the problem and objectives be

solved.

2. Chapter 2 – Background: provides general knowledge around microservices, namely what

are microservices, how they communicate with each other and some of the challenges that

4

these types of systems bring with them. It also mentions and describes the most important

quality attributes for such systems.

3. Chapter 3 – State of Art: presents the state of the art on microservices specific languages –

programming languages made just for microservice programming, and it details Jolie

programming language state of the art.

4. Chapter 4 – Analysis and design: presents the analyze and design choices for a solution,

introducing the requirements, use cases, architecture, and technology choices.

5. Chapter 5 – Implementation: provides the detailing of the solution implementation, namely

how API gateway and containerization is done, what distinctions exist between

implementing the solution with Jolie and a traditional approach, how the microservices

communicate with each other, and lastly the verification and testing of the solution.

6. Chapter 6 – Evaluation: this chapter does experiments to measure the quality attributes

define on chapter 2 in the solution developed with Jolie and with the traditional approach,

finishes by comparing both.

7. Chapter 7 – Conclusions: describes the conclusions of this thesis, namely the achieved goals,

found difficulties, the threads to validity of the findings, future work suggestions and some

final remarks.

8. Annex A – Microservices development: this chapter is a supplement to understand the

current most used frameworks, languages and libraries used for developing microservices, it

also gives insight into the lifecycle phases of such development and the design patterns

commonly use to develop the systems.

9. Annex B – Value analysis: this other supplemental chapter contains the value analysis, since

it decreases the ease of read of the document it is opted to put it as an annex. The chapter

emphases on the value that is projected with Jolie programming language, it is done and

opportunity identification and analysis to obtain a better overview in which market Jolie fits.

Then the Analytic Hierarchy Process (AHP) method is compared Jolie with other microservice

specific programming languages, and Jolie is evaluated as its business value.

5

2 Background

This chapter provides background about microservices and the microservices architecture, first, it is

provided in a summarized way the why and how microservices emerged, how they work in terms of

communication, and the challenges that came along. Secondly, the technologies and frameworks

that have been developed, the development lifecycle as well as the design patterns used in

microservices programming.

2.1 Microservices
A microservice is a program that offers functionalities to other components of the system (other

microservices, databases, user interfaces) via message passing [11] and this concept applies in

distributed computing. Microservices have the goal of eliminating unnecessary levels of complexity

to focus on simpler services and do just one single thing [11].

Even though there is not a concrete definition of what a microservice is, the literature defines it in

relatively similar ways. In a revision of the state-of-art of microservices (Dragoni et al. 2017), a

microservice is defined to be “a cohesive, independent process interacting via messages” [11], this is

the definition to consider in the entirety of the thesis. A collection of these processes constitutes a

collection of microservices creating the structure of a system with a microservice architecture.

Software development evolved through the years of the digital world and systems became more and

more distributed. These new connected and distributed systems naturally created the necessity for

new architectures and approaches in software engineering. This originated the appearance of the

microservices architectures.

6

The microservices architecture has a lot of definitions reported in the literature as reviewed in [5]

where the most recurring definition by (Fowler et al.) is that a microservice architecture is “a

particular way of designing software applications as suites of independently deployable services”

[12] since this is the most recurring definition for the entirety of the thesis is the one considered.

Another popular definition is the one of (Dragoni et al. 2017) which defines that “a microservice

architecture is a distributed application where all its modules are microservices” [11], this tends to

show that all definitions give the impression that instead of having a single application the system is

composed of multiple applications and multiple databases that communicate with each other like a

multi-component that are isolated from each other but communication between them. In this thesis,

the definition given by (Fowler et al.) will be used when referring to a microservice.

Figure 1 – Microservice system architecture (MSA) UML diagram

Microservices architecture has some changes concerning service-oriented architecture. In Figure 1

we can see that the services are still present and are now called microservices, each one has its

database, and the UI communicates directly with the needed microservices for the feature that is

performing.

MSA changes the way systems are architected because as (Guidi et. al, 2017) says, “microservices

support a different view, enabling the organization of systems as collections of small independent

components. Independent refers to the capability of executing each microservice on its own

machine” [13]. We now think of systems of interconnected machines communicating by exchanging

data (in formats like e.g., JSON or XML, supported in HTTP and other protocols or simpler database

7

records) running simple services that have a single job and that can be anywhere, causing a

complete distribution of concerns making the programs very smaller in size compared to SOA [13],

[14].

Another interesting aspect of microservices is the use of containerization, a technology that allows

running a program (e.g.: a microservice) inside a “block” that contains the source code together with

all the needed libraries and resources into a final package. The container is then deployed in any

machine generating a running instance as an isolated process. This process can be replicated

anywhere [15] corroborating the statement of (Guidi et. al, 2017) that where they say that the

independency of a microservice “refers to the capability of executing each microservice on its own

machine” [13].

Important features and reasons why MSA triumphed in distributed systems are [14]:

• easy to find functionalities [14]

o related requirements are merged into a single business capability

• the small size of each component’s program [14]

o again, always providing a single business capability

o developers need to rethink the service if it starts to get too large

• the independence of each component’s program [14]

o service communicates only via published interfaces

o essential for easy bug fixing without impacting the entire system

o since they are deployed separately, it allows for the independent management of

components’ lifecycles as new versions of components can be gradually introduced

in a system, by deploying them side to side with previous versions [9]

• components can be more specialised, since they can be written in different technologies –

this happens due to message passing support of technologies used [9]

• scalability is different in MSA relatively to SOA since MSA does not imply duplication of all

the components and developers can conveniently deploy/dispose of instances of services

concerning their load [9]

2.1.1 Orchestration and choreography

To implement large application processes, microservices must communicate and collaborate

between them for the system to work flawlessly. Microservices collaborate in a business process by

8

implementing and modeling distributed system workflows using sagas. Sagas help to model

microservice workflows in a more adequate approach [16].

 The most known and discussed patterns both in the industry and the literature are (1) orchestration

and (2) choreography [17], [18].

Figure 2 – Orchestration versus choreography [18]

1. Choreography

a. communication happens asynchronously via message passing [17]

b. deals with service collaboration and interaction tracking the messages from the

multiple services involved in the message exchange [18]

c. normally developers interpret choreography as a sequence of execution of services

[18]

d. do not depend on centralized coordinators [16]

e. support a more loosely coupled model [16]

2. Orchestration

a. communication happens with a central controller [17] [16]

b. a central controller that is responsible to manage the entire flow of processes [17],

[16] and their behavior [18] expressed in Figure 2

c. all steps are business services [18]

d. it is the term for workflow in the formal specification of a business process [18]

e. describes a process flow and includes execution order of service interactions [18]

f. the control flow must always be controlled by one party (centralized control) [18]

(Montesi et. al, 2016) refer that “development methodologies for service communications typically

employ choreographies for the description of service protocols. Choreographies do not require

central control, a critical feature for the scalability of MSA systems” [9]. On the other hand, some

features like circuit breakers, service discovery, load balancing, and API gateways can’t be

9

implemented [9]. Also, orchestration provides better error handling alongside less event handling

leading to simpler code.

The choice between each pattern is business-dependent. It depends on what the business requires

and the system in question. The business logic is key, when there is a single point of logic, a

centralized one, orchestration is used, when the problem has a decentralized logic choreography is

used. In short for multiple business domains, a developer can consider more choreography while for

a single business domain he/she may be more on the side of orchestration.

2.1.2 Challenges

Microservices even though solved a lot of problems in distributed systems scope some challenges

came across also, some of those challenges are described in [19] being performance, orchestration,

and, cyber-security all related to the current approach of containerization.

The most targeted and worked problems in the literature are complex [4], [5] because of the hard

task that is to put every service communicating with each other, and the high number of distributed

services to operate. Microservices solve a lot of problems but to solve them they bring with them

the challenge of complexity which requires more attention to the way systems are designed and

documented before being implemented. By making sure the design is correct the system can avoid

future problems with the complexity issue [4].

2.2 Quality Attributes
The microservices architecture has some quality attributes (QA) important to this software

development approach. In the literature [20]–[24] the most referred are scalability, performance,

and maintainability. This makes sense regarding that companies move to the microservices

architecture to benefit from the system scalability aspect as referred to in section 1.1. Also,

performance is always a critical factor for systems to satisfy the user and the requirements in an

effective way. Maintainable system source code allows for quick error fixing and can be achieved for

example by decreasing the level of the system’s technology heterogeneity or reducing the lines of

code in the system.

The complexity of software affects multiple tasks of maintenance activities such as testability,

reusability, understandability, and modifiability for example [25]. Software complexity can be

defined as ― “the degree to which a system or component has a design or implementation that is

10

difficult to understand and verify” [26]. Complexity is present in MSA not in a single microservice

itself but in the inter-service communication [27]. Thus, it will also be analysed.

2.2.1 Scalability

Scalability is a measure of a system’s ability to add resources to handle a varying amount of requests

and can be divided into horizontal scalability (sometimes called elasticity) and vertical scalability

[20]. The resources can be added to logical units like servers of a cluster or adding resources to

physical units like more CPU or memory to a computer.

Horizontal scalability is the most important property of MSA since it decomposes the monolith into

independent microservices and enables microservice instances scale out conveniently. The tactic to

comply with this scalability is by increasing or decrease of microservice instances responding to the

changing amount of requests [20].

Scalability may seem one of the minimum QAs due to its importance in distributed systems. One can

measure this attribute by assessing the distribution of dependencies and diversity of synchronous

requests made by the microservice [23]. It also can be measured by checking if horizontal and

vertical scalability when applied does come with performance penalties [20].

2.2.2 Performance

Performance is one of the critical quality attributes in every software system, not only distributed

systems. It is a measure of a system’s ability to meet timing requirements when responding to an

event. MSA systems often target performance by using lightweight and REST-based mechanisms for

microservices’ communication [20].

Is important to note that performance sometimes needs to be abdicated to favor scalability, the

smaller the microservices the better the scalability and less performance whereas the bigger the

microservice (reducing communication costs) the better the performance with the cost of less

scalability. Companies need to make a trade-off when architecting MSA systems since containers

and VMs can influence response times but the communication complexity of trying to make

everything small can come with impacts on the performance of MSA systems [20]. This quality

attribute can be measured using the response time of a microservice [23].

11

2.2.3 Maintainability

In terms of software engineering maintainability is “the ease with which a software system or

component can be modified to correct faults, improve performance or other attributes, or adapt to a

changed environment” [26].

This quality attribute can be extracted from others like decreased level of system’s technology

heterogeneity. And also, good scalability of the system normally indicates good maintainability too

[23]. It seems that one of the best, most used, and most simple ways to analyze maintainability on

its own is to use the metric of lines of code (LOC). LOC metrics can tell the size of the source code

immediately, and it seems that a big LOC metric will lead to less maintainability in the system [25],

[28].

2.2.4 Testability

Testability refers to the ability of the system to determine faults using testing mechanisms, this is

normally done through some sort of execution-based testing. Testing has been seen as one of the

most important quality attributes in MSA because of the nature of such systems, microservices are

frequently modified and if testability is not present it can affect all the other quality attributes. This

quality attribute can be measured by checking the presence of Automating Test Procedures and API

Documentation and Management [20].

Multiple microservices are integrated between them creating large number of tests to perform,

doing this by hand would be time-consuming and not efficient, for this reason there are multiple

solutions in the market that provide the tools necessary to automate test procedures in MSA

systems.

API specification is necessary for testing to provide an overview of a microservice. APIs are updated

regularly and can turn the testing to be mor complicated. If the developers and testers have API

documentation generated automatically at their disposable every time a new version of an API is

created the testing procedures become more efficient. One can note that API documentation and

testing procedures are the two measurements of testability, and they work hand in hand since the

documentation generates the specification of the API reducing time testing that API.

12

13

3 State of Art

This chapter provides a state-of-the-art about the Jolie programming language, as well as other

microservice-specific languages that support the same approach and concept of Jolie. Additionally, it

is explained the reason behind the emergence of these languages.

3.1 Microservices specific languages
The field of microservices always makes developers think of complexity. To reduce the complexity is

shown that the Model-Driven Engineering (MDE) or Model-Driven Development (MDD) method has

become a vigorous methodology to design an MSA system [29], [30] reducing the complexity and

effort of development. Microservice-specific languages enter the domain of MDE because they are

formal languages, providing formalization for workflows and service composition. Their goal is to

make the most out of the microservices architectural style and distributed systems possibilities [31].

These languages have the benefits of MDE but solve some problems intrinsic to MDE-based

solutions like the fact that MDE is a long-term investment, needs customization of environment,

tools, and processes, requires training, and creation of metamodels in complex systems leading to

the use of several languages. In sum MDE comes with the problem of the difficulty of developing an

MDE environment tailored to the company’s needs [32] and microservice-specific languages can be

seen as a new paradigm for abstraction in MSA system development.

Generally, microservice applications use object-oriented (C#, Java, etc) or functional languages

(Haskell, Scala, F#) [11]. Even though these languages provide solutions for programming

microservices, orchestrating communications between them, and taking care of the monitoring,

14

observability, and deployment, it is still quite time-consuming, more prompt to errors and bugs

making the system very complex and prone to failures overall.

The creation and evolution of microservice-focused languages aim to solve this complexity and effort

intrinsic to MSA systems taking advantage of MDE foundations but solving problems regarding MDE

and traditional languages. To implement or move to an MSA system the standard industry approach

is already done using deployment paradigms, but the linguistic paradigm and abstraction are

unknown to the industry. Programming languages that natively support the microservices paradigm

is something quite new and unexplored – since services are built using functional or object-oriented

languages and then deployed and scaled using containerization.

Jolie and Ballerina programming languages are the two main players to take a step further in the

programming world of microservice-specific languages. They do not eliminate the infrastructure

solutions but they compete with other functional or object-oriented languages that are among the

many players to do it [31], [33]. Such languages are born to embrace languages that have as the core

technology the service-oriented paradigm [34].

So, in sum languages like Jolie and Ballerina appeared as an attempt to make a language that

provides primitives to deal with concerns regarding microservices, eliminating the need for

frameworks or libraries at the same time giving developers a way to produce and manage MSA

systems more efficiently [35] as well as bridge the gap between integration and general

programming languages providing agility and ease of integration [36]. The concept of Jolie for

example - programming native microservices, already attracted the attention of some companies

[33].

The microservices development came as an adaptation of this new architectural style of building

software and instead of new languages developed for this purpose frameworks and libraries were

created. Since these frameworks do the job the programming community is still starting to see the

advantages and the power of a language that is focused natively on microservices. Once these

languages start to be used in big companies or projects more and more microservices-directed

languages will probably appear.

3.2 Jolie
Jolie project started in 2005, and the language was created with concepts related to more legacy

approaches, like SOA and modeling of concurrency [37]. Since then, the language evolved and

according to (The Jolie Team, 2021) it is now a “service-oriented programming language: (…)

15

designed to reason effectively about the key questions of (micro)service development including the

following” [35]:

• “What are the APIs exposed by services?”

• “How can these APIs be accessed?”

• “How are APIs implemented in terms of concurrency, communication, and computation?”

But one can ask why a new programming language when there are a lot of frameworks that take

care of building MSA systems, that work and are referred to in Table 11. When Jolie emerged in 2005

distributed systems were still too focused on SOA and not on MSA, the language later become to

follow the microservice paradigm with the industry and literature adoption of microservices. The

biggest reason Jolie is in constant development still today is not only to make the development of

microservices more effective but in sum to minimize code-model distance [13], [38] for model-

driven engineering to be optimized in MSA [29]. The frameworks referred on Table 11 use functions

and objects modeling the services using these concepts, but in Jolie, the language has code to mimic

in a direct way. Concepts are implemented directly with the approaches referred on 3.3.1 like APIs,

access points, services, and behaviors [38].

For the Jolie team [39], this language is needed because of the central abstraction that it has. They

argue that the build and deployment are done using native language primitives. Since loose coupling

is an inherent problem in distributed systems architectures [40] the Jolie team also refers that in

Jolie the programmer can’t break loose coupling. Because two Jolie programs do not share data,

they only exchange data by communicating. This communication supports every data protocol and

communication technology presented on Figure 6. The share of data only happens in processes

inside the same program/microservice. This way thread-safe programming [41] and reusability can’t

be broken by hidden shared data structures.

Also, Jolie allows for better coordination. The translation from MSA to code without changing the

model is impossible. Jolie comes to support this translation reducing the risk of introducing errors or

unexpected behaviors since complex message exchange structures are used in MSA. Jolie’s key goal

is to tame this complexity, that is the goal and why the language exists in the first place. When the

merge between language and microservice technologies is thought one realizes that it can’t be

obtained by just using a framework on top of already existing mainstream programming languages

like Java or Python. It requires the design of a new language from the foundation [13].

In the Code Snippet 1 is an example of a hello world program in Jolie, one just needs to create a file

named for example greeter.ol and write the following code [35]:

16

// Some data types
type GreetRequest { name:string }
type GreetResponse { greeting:string }

// Define the API that we are going to publish
interface GreeterAPI {
 RequestResponse: greet(GreetRequest)(GreetResponse)
}

service Greeter {
 execution: concurrent // Handle clients concurrently

 // An input port publishes APIs to clients
 inputPort GreeterInput {
 location: "socket://localhost:8080" // Use TCP/IP
 protocol: http { format = "json" } // Use HTTP
 interfaces: GreeterAPI // Publish GreeterAPI
 }

 // Implementation (the behaviour)
 main {
 /*
 This statement receives a request for greet,
 runs the code in { ... }, and sends response
 back to the client.
 */
 greet(request)(response) {
 response.greeting = "Hello, " + request.name
 }
 }
}

Code Snippet 1 – Hello world program in Jolie

This creates a new service, to run it one just needs to open the OS-native terminal and run the

following:

jolie greeter.ol

To test a client request, one opens another terminal and runs the following:

curl http://localhost:8080/greet?name=Jolie

The output will be:

{"greeting":"Hello, Jolie"}

17

(The Jolie Team, 2021) say that Jolie allows “to build complex systems without having to worry about

the underlying communication details of the included microservices” [39]. The Jolie team also does

not want to reinvent the wheel when not necessary. The language can be used and run inside a Java

program due to the offered Jolie’s Java API. This way the language can be used as a Java library with

Jolie programming syntax if needed [39]. Not is the flexibility immense but also the simplicity is as

shown in the snippet of Code Snippet 1, even if one never handled microservices before one can

understand the code being written since it provides a very formal abstraction. This formal

abstraction forces the developer to focus on what matters and lead him/her to fewer errors

codifying the system by being less complex code that he/she needs to write. Another interesting and

important aspect of the language shown in the snippet of Code Snippet 1 is the separation of

concerns between behavior and deployment, being deployment information the addresses at which

functionalities are exposed, communication technologies, and data protocols used in the interaction

between services [13].

To demonstrate a better perspective between microservice-oriented languages like Jolie and

microservices frameworks the same hello world program developed in Java using in Spring Boot

framework as a dependency. One first creates three files, the build automation tool file in this case

using Maven, the controller, and the main application executor as shown in Figure 3.

Figure 3 – Files needed for Spring Boot hello world program

The file SpringBootHelloWorldExampleApplication.java is the main executor of the application and is

written as shown in Code Snippet 2.

package com.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

18

@SpringBootApplication
public class SpringBootHelloWorldExampleApplication
{
 public static void main(String[] args)
 {
 SpringApplication.run(SpringBootHelloWorldExampleApplication.class, args);
 }
}

Code Snippet 2 – Spring Boot hello world program main executor

Then the controller that represents the behavior of the service is presented in the Code Snippet 3.

package com.example.controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloWorldController
{
 @RequestMapping("/")
 public String hello()
 {
 return "Hello world";
 }
}

Code Snippet 3 – Controller for the Spring Boot hello world program

Finally, Spring Boot requires many dependencies and libraries to work. These libraries can be added

or deleted according to the necessity of the developer. The build automation tool Maven writes the

entire build on a pom.xml file which is normally referred to as the POM file and is represented for

this specific program on the Code Snippet 4.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.2.2.BUILD-SNAPSHOT</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.example</groupId>

19

 <artifactId>spring-boot-hello-world-example</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>spring-boot-hello-world-example</name>
 <description>Demo project for Spring Boot</description>
 <properties>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.2.1.RELEASE</version>
 <type>pom</type>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

20

 <repositories>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 </repository>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https://repo.spring.io/milestone</url>
 </pluginRepository>
 <pluginRepository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https://repo.spring.io/snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

</project>

Code Snippet 4 – POM file for the Spring Boot hello world program

From this simple analysis is possible to conclude that Jolie is more straightforward in terms of

understanding and reading the code. Spring Boot requires a developer to know the libraries to use,

and what they do and the annotations and code itself have more lines of code making it harder to

read.

3.2.1 Orchestrator

Jolie is not only a programming language but also an orchestrator and interpreter for service-

oriented programs that instead of an XML-based syntax follows a programming-like syntax [8]. Thus,

providing an easy way to learn the language for a developer who is costumed with orchestration.

21

This can be because the language took inspiration and can be seen as a descendant of orchestration

languages such as WS-BPEL and XLANG [8], [13]. It is a candidate to apply certain techniques:

runtime adaptation; process-aware web applications [31] using provide-until construct (that allows a

developer to program behaviors that are quite repetitive in the MSA system and are driven by

external calls and other services) [13]; correctness-by-construction in concurrent software [31].

3.2.2 Native microservices

The language contains native constructs that can point to communication between

services/processes and native support for distributed workflows programming [33]. Provides novel

workflow primitives since each Jolie program is a workflow – the blueprint of the program behavior,

has receive operations from input ports and send operations to output ports, has a sequence,

conditional and loop constructs. Provides parallel composition to enable concurrency, and input-

guarded choice to wait for multiple incoming messages, this means that input ports are available

only when a corresponding receive is enabled, otherwise messages to this port are buffered [13]. It

is a simple way to design orchestrators and coordinators [33].

These characteristics make Jolie heavily MSAs focused, even a simple variable fit into the

microservice paradigm with Jolie. The current approach for programming microservices is that it

does not matter the technology (programming language) used provided the approach that the

deployment is made in containers, Jolie reverses this idea by presenting that the deployment does

not matter how one does it, provided that a microservice programming language is used, this is the

main key idea behind Jolie [13] and the native approach the language takes into microservices.

3.2.3 Advantages

The Jolie developers argue that with Jolie one does not have to deal with multiple technologies

when a new MSA system is built as represented in Figure 4. Multiple technologies can lead to the

slow and complex development of microservices and with Jolie higher speeds of development are

achieved because Jolie lowers the level of knowledge for developing an MSA project. The Jolie

authors claim that Jolie is easy to learn and the communication is facilitated by sharing a common

linguistic reference and uniform technological approach helps to a common understanding between

developers [33]. All of Jolie’s advantages in terms of development can be summed up in the gains of

speed, sharing, and simplicity.

22

Figure 4 – Simplicity and speed of Jolie development [33]

Jolie has a deep integration between language and microservice technologies by using tree structure

variables [13]. Jolie code is simple that can be easily understood how the service can be invoked and

which service(s) it requires to work without prior knowledge of the language [9], [13]. This is

accomplished using Jolie Ports and Interfaces mentioned in section 3.3.1 as first-class

entities/citizens. Repeated functionality is exposed differently using different InputPorts, this way a

service is never replicated. Supports the programming of protocols and workflows that are not

natively supported by mainstream languages, it can have a new Port providing the same

functionality using the SOAP protocol and another using HTTP protocol for example. Also, since Port

(using location and protocol) can be changed dynamically by the behavior this improves flexibility.

The language allows changing the communication of services when the environment changes

without changing the behavior of the service [13].

For design patterns in microservices referred to in Annex B, Jolie implements all the main patterns.

In terms of circuit breakers, Jolie can implement a circuit breaker that can be deployed as a client-

side circuit breaker, service-side circuit breaker, or proxy circuit breaker and a Jolie circuit breaker

can be adapted to microservice interfaces changes [9]. Other solutions like Hystrix [42] require an

additional implementation of a HystrixCommand [9] and even though Jolie is not as mature as the

Netflix solution for circuit breakers it has the adaptability advantage [9]. In terms of load balancing

and service discovery which are both supported by Jolie, Netflix tools provide client-side solutions

and Amazon tools provide a server-side solution, and both can be achieved with Jolie [9].

Two programming languages very similar to Jolie are Erlang and Golang. Erlang comes close to Jolie

as one of the most mature implementations of processes and support workflows for the actor

23

model. The problem with these languages is the non-separation of behavior and deployment and

explicit ports are not present in both languages. WS-BPEL is another very similar language to Jolie as

it provides ports, interfaces, workflows, and processes but is just a composition language and cannot

be used to program single services, and those services when programmed are heavy [13].

3.2.4 Drawbacks

In the literature, Jolie is referred to as having the drawback of an API gateway implemented with the

language like the one in [9] where (Montesi et. al, 2016) refer that “redirections in Jolie (…) do not

take care of extra features such as security and monitoring by themselves” and that an API gateway

implemented with Jolie “should be composed with other patterns e.g., circuit breakers, to achieve

this extra features, keeping concerns separate” [9].

Also, The Jolie Team indicates on the official Jolie page that this type of programming has a

performance cost (even though not been noticed in production environments so far) [39]. This

performance issue is noted in other languages where the use of abstraction makes performance

decrease, and with time the language gets optimised for the gap between performance with

abstraction and without abstraction is not relevant. Jolie is a good option for communication

handling but not for critical algorithms where performance is key. That’s why the language allows

the embedding of other languages like Java, C, and JavaScript [35] as shown in the Code Snippet 5

and Code Snippet 6.

embedded {
JavaScript :
 "MyService.js" in MyService
}

Code Snippet 5 – Embedded JavaScript code in Jolie

embedded {
 Java: "mypackage.MyService" in MyService
}

Code Snippet 6 – Embedded Java code in Jolie

3.3 Jolie microservices

24

3.3.1 Architecture

Jolie as a microservice-focused programming language has as main blocks for programming the

following components:

• Interfaces (APIs)

• Ports (access points for deployment)

• Workflows and Processes (behaviour)

• Types

They are architected and related as shown in Figure 5.

Figure 5 – Jolie metamodel architecture [29]

3.3.1.1 Interfaces
As referred to in Annex B a component’s program in an MSA architecture needs to be independent

to compose it in large systems. To achieve this independence services communicate using published

interfaces, hiding the implementation [13] for better bug fixing, management, and updating of the

services [9], [14]. The interfaces also offer losing coupling, and contribute to technology agnosticism,

25

minimizing this way the assumptions made on the technologies used to implement behaviors of the

microservice program [29].

These published interfaces are known as APIs and describe the functionalities that a microservice

provides to clients to be remotely invoked and the ones it requires. Jolie’s Interfaces are the way

Jolie conceptualizes APIs in the language and they consist of first-class citizens in Jolie microservices

[13], [29].

As shown in Figure 5 a Jolie Interface is a collection of Operations that can be OneWay or

RequestResponse operations [29], [35]. A OneWay operation receives messages [35] and the sender

delivers the message to the service but does not wait for the processing by the service’s behavior

[29]. A RequestResponse operation replies or receives messages and sends back a response [35], this

means that the sender delivers its message and waits for the processing by the service’s behavior to

receive a reply with some response [29].

3.3.1.2 Ports
Ports are access points for the API/interface that a microservice implements. Is the where and how

the clients interact with the API, which communication technologies, data protocols, and interfaces

are required and offered? As microservices communicate via message passing with other

components of the MSA is important to know how data is structured for transmission (for example

using JSON) and transmitted (where microservices can contact each other and how data are

transported among them (for example using IP addresses) [29].

In other words, it represents how the functionalities in terms of the stated characteristics of a

microservice are made available into the network. Ports are important because of the need to

separate the implementation of the service from what it provides and/or needs, this way one can

look at a service and automatically know what and how it works without looking at the

implementation [13].

26

Figure 6 – Jolie Ports

A Jolie Port access point in terms of communication technology is defined by a URI that can have any

of the types defined in Figure 6; a data transfer protocol and it also can cluster one or more Jolie

Interfaces [29].

On Figure 5 is presented that a Jolie Port can be an InputPort or OutputPort [29], [35]. InputPort

describes the functionalities that the service provides to the rest of the MSA [13] by exposing a

public contract to clients [29]. OutputPort describes the functionalities that the service requires from

the rest of the MSA [13] by defining access points used in behaviors to invoke other microservices

[29].

3.3.1.3 Workflows and processes
(Guidi et. al, 2017) refers that a “workflow defines the blueprint of the behavior of a service” [13]. In

Jolie, the workflow is represented in code by the main keyword [29], [43].

This blueprint is the business logic or the implementation of the microservice. Jolie allows

developers to use Jolie, Java, or JavaScript to write the microservice behavior [29].

In runtime the workflow is then called a process that can interact with multiple other components of

the MSA (services or clients) and the number of processes running can always change in runtime

[13], [44]. The behavior when running can behave in various execution modalities that in Jolie can be

single, concurrent, or sequential [44] to align with the principle that microservices can be used in

different manners and are completely independent, this means that Jolie processes run

independently of the others avoiding interference [13].

27

Single

• Used by default, running the program behavior (main construct) once [44]

Concurrent

• Runs all the time when the first input statement can receive a message [44]

• Message exchanging can happen more frequently

Sequential

• When the currently running instance terminates the program behaviour (main

construct) is made available again [44]

• This provides exclusive access to the resource (a component of the MSA) [44]

3.3.1.4 Types
Microservices exchange messages and these messages need to be in a specific format/type, Jolie

exchanges these messages as data trees [13], [29], [31].

Jolie supports seven basic data types [29]:

• bool: booleans;

• int: integers;

• long: long integers (with L or l suffix);

• double: double-precision float (decimal literals);

• string: strings;

• raw: byte arrays.

• void: the empty type.

It also supports custom data types very similar to mimic the popular Data Transfer Objects (DTO)

[45]. Known in distributed systems world for being the most used approach for handling data and

reducing communication latency. Jolie data types and even interfaces are technology agnostic [29]

modelling a DTO that is built on native types and are used in Operations (see Figure 5).

3.3.2 Development

The development of a Jolie system starts with the definition of Interfaces and Types, to proceed with

the Ports. They are written where locations and protocols are defined, and the Interfaces are used

(see Figure 5). Lastly, behavior of each service must be specified using the main keyword.

28

The example provided in [35] where a basic calculator service is built is here detailed. The Types in

Jolie are the models that will be used in a specific service, and four Types are used (see Code Snippet

7). Each of these Types can be used in the Interface of the service. The Code Snippet 7 shows the

calculator example Types.

type SumRequest: void {
 term[1,*]: int
}

type SubRequest: void {
 minuend: int
 subtraend: int
}

type MulRequest: void {
 factor*: double
}

type DivRequest: void {
 dividend: double
 divisor: double
}

Code Snippet 7 – Use of Types in Jolie

These Types can then be used in Interfaces making it easy to write the blueprint of an operation.

interface CalculatorInterface {
 RequestResponse:
 sum(SumRequest)(int),
 sub(SubRequest)(int),
 mul(MulRequest)(double),
 div(DivRequest)(double)
}

Code Snippet 8 – Interface code example in Jolie

Types and Interfaces are saved in the same file for example CalculatorInterfaceModule.ol then this

file can be used on multiple services separating behavior and model. After defining the Types and

Interface in their respective file for the service the developer can then pass to the next phase which

is programming and running the service. For this a new file called CalculatorService.ol can be

created, the file will have the workflow and Ports of the service and starts like portraited on Code

Snippet 9 where the Ports are defined.

from CalculatorInterfaceModule import CalculatorInterface

29

service CalculatorService {
 inputPort CalculatorPort {
 location: "socket://localhost:8000"
 protocol: http { format = "json" }
 interfaces: CalculatorInterface
 }
}

Code Snippet 9 – Service behavior initial syntax in Jolie

The programmer can now go inside the CalculatorService block and type the Ports and behavior of

the service.

from CalculatorInterfaceModule import CalculatorInterface

service CalculatorService {

 inputPort CalculatorPort {
 location: "socket://localhost:8000"
 protocol: http { format = "json" }
 interfaces: CalculatorInterface
 }

 main {
 [sum(request)(response) {
 for(t in request.term) {
 response = response + t
 }
 }]

 [sub(request)(response) {
 response = request.minuend - request.subtraend
 }]

 [mul(request)(response) {
 response = 1
 for (f in request.factor) {
 response = response * f
 }
 }]

 [div(request)(response) {
 response = request.dividend / request.divisor
 }]
 }

}

30

Code Snippet 10 – Service workflow and Ports in Jolie

The development in Jolie is done always with the described four main steps in mind: create the

Types as portraited on Code Snippet 7; create the Interfaces as portraited on the snippet Code

Snippet 8; create the service Ports as portraited on the Code Snippet 9; create the Service behavior

as portraited on Code Snippet 10. Meaning that supposing that there is a service one must build it.

First one thinks about the model to be used, and what the data model will be both requested and/or

responded back to. Then how many operations will this service allow and support, and which models

are used in which one. Next, proceed with identifying the infrastructure that will be used like

protocols and addresses. Finally, write the service behavior for each operation. These four steps

make it possible to quickly build a microservice with minimal effort.

3.3.3 Containerization

Section 3.2 refer to that one of its advantages and goals of Jolie is to tame the complexity of MSA. A

common technology used to do this is container technology where the most popular one is Docker

[46]. Docker appeared to handle the multiple possible machines where the services are deployed

since these machines could have a different OS, installed libraries, and configuration. It was hard to

justify using virtual machines to handle all this, an abstraction was needed. In 2013, Docker was the

pioneer and standardized the industry with what is known as containers. These containers are a unit

of software where developers isolate an application (that can be a microservice or any program,

known as a containerized app) from the environment of the machine where the application is

deployed which solves the problem of the application working on a machine and not on others when

deployed [46]. In the MSA context, Docker isolates the execution of services from other programs

that might be running on the same machine.

The literature is often focused-on containerization and deployment solutions without consideration

of linguistic ones [31], [33] due to the emergence of the Cloud and the Internet of Things where the

deployment and relocation of containers are important. Jolie is not incompatible with the trend of

containerization, but it moves the focus from deployment to development in order to reduce and

tame complexity by providing interfaces to manage communication [13]. The mainstream languages

using their frameworks referred to in Table 11 do not handle this problem already as they do not

provide enough support for mastering communication since service coordination is programmed in

an unstructured and ad-hoc way hiding communication structure with less relevant low-level details

[13].

31

4 Analysis and design

This chapter introduces the experiment solution by describing its characteristics, providing

functional and non-functional requirements, and the use cases. The architecture of the solution is

presented and explained within the architectural choices using diagrams and tables when needed.

Also, the technology stack is described, and alternatives are explored leading to the final technology

choices.

4.1 Scenario
The proposed experiment is an e-commerce application where users can browse items, add them to

the cart, and purchase them. The application is built based on the microservices architecture style.

Two different solutions are to be built:

• One that will be built using Jolie

• Another will be built using Spring Boot since it is recognized that Java is the most popular

technology for MSA-based system development (see Table 11) and Spring Boot currently

leads the framework market for MSA systems [47]

These two technical possibilities have the goal to ponder the implications and limitations of Jolie as

well as the benefits of such technology.

The MSA prototype system for this scenario has multiple services running and the need for

interservice communication is required. The communication between microservices will be done

using Jolie as an orchestrator for the Jolie solution. For the Spring Boot solution, the communication

32

is implemented using Apache Kafka [48] for the reason that is the technology the developer is more

efficient and knowledgeable at.

To interact and test the microservices the software Postman [49] will be used. The graphical user

interface (GUI) of Postman looks simple and effective and for this reason, a front end will not be

built for the application. Also, since the purpose of this work is in the context of microservices, and

distributed systems, the Postman GUI by itself allows the interaction with microservices APIs and

performs tests to the microservices developed.

4.2 Requirements
Table 1 shows the functional requirements for the project to be developed. The requirements have

the goal to provide users with all the functionalities to support the entire process of online product

buying from browsing, purchasing, and shipping.

Table 1 – Functional requirements of the application

Identifier Functional requirement Description
FR1 Cart management System provides users to add and remove items from their

cart
FR2 Product lookup System provides users with the ability to browse and search

products
FR3 Product buying System provides users the ability to buy products
FR4 Email management System sends emails to users from transaction info and

status
FR5 User management System allows the user to edit personal information

Table 2 shows the non-functional requirements for the project which must be built having the

microservices architecture as the focus where communication is handled using sagas and design

patterns considered.

Table 2 – Non-functional requirements of the application

Identifier Non-functional requirement Description
NFR1 Technology choice The system/solution must use Jolie and/or Spring

Boot
NFR2 Use of a microservice

database
Every microservice as their own database

NFR3 Use of MSA Solution has the focus on the microservice system
architecture, and their principles need to be
considered

NFR4 API gateway use The microservices are called through an API
gateway

33

NFR5 Saga pattern use Saga transactions are implemented between the
microservices, more specifically saga orchestration
for interservice communication since the
developer is familiarized with the approach

NFR6 Use of service discovery Microservices are registered through a service
discovery system

4.3 Usage
The system’s usage can be detailed by presenting the actors of the system and the use cases that
these actors can perform.

The system is composed of the following actors:

• Customer

o This actor represents the customer of the e-commerce application

o This actor browses and buys products from the system, adds the products to the

cart, and places orders for those products

• Moderator

o This actor represents the moderator of the e-commerce application

o The moderator can perform operations that are specific to modify the system

standards – for e.g.: create, edit, or delete a product and edit specific statuses of

orders

o Has access to features that a normal customer should not have access to

Table 3 shows the use cases for the system providing all the user actions and essentially what the
user can do with the built system.

Table 3 – Use cases of the application

Identifier Actor Description
UC1 Customer Search and/or browse a product
UC2 Customer Add product(s) to the cart
UC3 Customer Remove product(s) from the cart
UC4 Customer Place an order from the products of the cart
UC5 Customer Manage their profile information
UC6 Customer Consult their own cart
UC7 Customer Consult the status of a placed order
UC8 Customer See the history of purchases/orders
UC9 Moderator Change the status of an order
UC10 Moderator Manage the product catalogue
UC11 Customer Manage their orders

34

The use case diagram represents the dynamic behavior of the system when it is running and can be

represented in Figure 7.

Figure 7 – System’s use cases diagram

4.4 Architecture
As in every other informational system, the architecture plays a very important role because it

represents the foundation of the system. To ensure a software system has a solid foundation it can

be proven by the software’s architecture. In MSA-based systems, the principle still applies. It is

applied with more intensity because the entire system is distributed and can communicate with

other external systems, which makes it very fault prominent. Every aspect of the architecture and

documentation needs to be done a priori to the development of the system itself.

The architecture will be described in diagrams using Unified Modelling Language (UML) and tables

with the following points:

35

• System components diagram

• Microservices description table

• Saga transactions diagram

4.4.1 Components

The system consists of a group of microservices that together provide all the features necessary to

have a complete e-commerce application. As seen in Figure 8 the system has 3 main components –

the client module, the API gateway, and all the microservices each one with its database. All these

components are deployed in different servers including each microservice and its database.

Figure 8 – System component diagram

The components are divided into different servers, and the client communicates with an API

Gateway that is present on another server.

36

4.4.2 Microservices description

Table 4 describes every microservice and its purpose. Shows what every microservice will be

responsible for and the general notes of each one.

Table 4 – Microservices description [50]

Service Description
CartService Stores the items in the user's shopping cart and retrieves it.

ProductService Provides the list of products and the ability to search, browse
products and get individual products.

PaymentService Charges a given credit card (mock) with the given amount.

OrderService Ships items to the given address (mock).

EmailService Sends users an order confirmation email (mock).

CheckoutService Retrieves user cart, prepares order, and orchestrates the payment,
shipping, and the email notification.

UserService Registers and holds information about the system users.

4.4.3 Orchestrated saga

The central coordinator is commonly called the orchestrator - it defines the order of execution of

actions and triggers required compensative actions. The orchestrator controls what happens,

therefore allowing for a good extent of visibility into what is happening with any given saga. In

general, orchestrated sagas heavily use request-response interactions between services. An

important caveat to avoid too much centralization with orchestrated flows is to ensure different

services play the role of the orchestrator for different workflows.

In this application, the two orchestrator services are the checkout and cart services. In the Spring

Boot solution, this orchestration is made using Apache Kafka and in the Jolie solution, the

orchestration is built-in within the Jolie programming language.

As Figure 9 portrays in a diagram how the Kafka cluster can handle the orchestration in the Spring

Boot solution.

37

Figure 9 – Spring Boot solution saga orchestration

Whenever the checkout service is called it sends a new message in the related Kafka broker, then

the order, email, payment, and cart services are listening to the respective topic and reading the

messages there, when they notice a new message, they trigger their respective actions. The cart

service also sends a message to another topic that the product service is listening for checking the

total amount in the cart is up to date with the product prices. Zookeeper [51] is responsible for

making the service discovery aspect of the architecture.

For the Jolie solution, there is no need of using external solutions like Kafka, even though it would be

possible since Jolie integrates with Java [52], by using embedding mechanisms. Jolie contains native

support for orchestration as explained in section 3.2.1 of the thesis. In Jolie a workflow can be

implemented by calling interfaces that are known to a service, working like APIs. The communication

between services can be achieved inside the codification of the service itself without the need for

38

external tools. Section 3.3.1.1 explains that the interfaces hide the implementation or behavior of

the service, which allows for this to be achievable. A service can call another service like an API call,

and it can know what to send and what it receives without even knowing the implementation or

behavior at the called service. Figure 10 illustrates the process for the Jolie solution in the checkout

service and cart service which are both orchestrators in the application.

Figure 10 - Jolie solution saga orchestration

As one can compare in the Jolie solution the microservices themselves implement the orchestration

saga required for the application. This is an important difference in Jolie because it reduces the

number of technologies necessary to develop the system.

4.5 Technology stack
The use cases are mapped into a specific technology stack that was chosen. For the communication

technology, the choices are HTTP as the communication protocol and JSON as the syntax of the

messages between components. The database of each microservice can be implemented in theory

with any database engine system. For the solution prototype, only open-source databases were

considered. The project does not have a dimension so large that requires commercial products, that

intend to produce more robust database systems. For this reason, for each component of the

39

database shown in Figure 8 only open-source database management systems are considered. Due to

the author’s experience with PostgreSQL, this technology was chosen to increase the speed of

development in terms of database components.

The client module is made using the Postman API client platform that is normally targeted for

developers to design, build, test, and iterate their APIs. The microservices as referred on section 4.1

will be developed two times each, one with Jolie programming language and another with Spring

Boot framework for comparison reasons.

Comparison of technology stack between the two solutions:

• Jolie based solution:

o Jolie programming language

o PostgreSQL database management system

o Docker OS-level virtualization platform

o Kong API gateway

• Spring Boot based solution:

o Java programming language

o Spring Boot framework

o PostgreSQL database management system

o Docker OS-level virtualization platform

o Kong API gateway

o Apache Kafka event store and stream-processing platform

o Apache Maven build automation tool

o Apache Zookeeper distributed coordinator

40

41

5 Implementation

This chapter provides an extensive description of how the solution is implemented. For this an initial

overview is presented, then each microservice is explained on how it is implemented and how the

data flows in the system. The source code of the implementation can be consulted on GitHub [53].

5.1 Overview
The solution experiment consists of a prototype MSA-based system as stated in previous sections of

the thesis. The microservices developed in the experiment are both developed in Jolie and Spring

Boot. Currently, microservices development as shown in Annex B is framework heavy and the

currently accepted standard in the industry seems to share this idea. For this reason, Spring Boot is

used as a comparison to Jolie because it is the most used framework for microservice development.

Although it may seem to be a standard in microservices is still a relatively new concept and some

companies are still trying to migrate their system. There is a high chance of these companies

choosing other frameworks other than Spring Boot because the trend is not consistent. Spring Boot

is used because it is the most used one and it shares some similarities with other popular

frameworks.

Each microservice will communicate to its database which stores data relative to the entities used by

the microservice. In microservices there is a relation between data handled differently – since

different databases are used the concept of intermediate tables for multiple-to-multiple relations

between data is not existent. A microservice’s database contains data relative to the entity of that

microservice – e.g., the product microservice will have a database that stores product information,

the orders microservice will contain a database that stores order information so on, and so forth.

42

5.1.1 API Gateway

An API gateway is a management tool contained between the consumer/client of the system and a

collection of backend microservices. It can be interpreted as the single point of entry for a defined

group of APIs that the microservice programs expose. The client of these API gateways varies, for

example, mobile devices, web browsers, API clients, internal systems, or any third-party application

that can communicate with the system. From a network perspective the API gateway behaves like a

reverse proxy to accept requests from clients and returns the appropriate result [54].

Figure 11 - The API Gateway architectural pattern [55]

Each microservice and its own database are deployed on different servers, therefore the

communication between the client and the microservices should pass through an API Gateway, as a

good practice and from a practical perspective. The existence of an API Gateway is a popular feature

in MSA, as referred to in the design pattern section of Annex B, where the API Gateway is seen as a

common design pattern for MSA.

The market of API Gateways is already robust and presents a great number of good solutions. Even

though Jolie can be used to implement an API Gateway on its own, since the focus of the thesis is the

microservices development with Jolie and not the design patterns of microservices, the API Gateway

will be an existent one. The developer already has experience with API gateway platforms therefore

for this experiment Kong [56] is used. Kong is one of the world’s most popular API gateway which is

built with microservices and distributed systems as its target, so it is the choice for the system.

Both solutions (Jolie-based one, and Spring Boot-based one) have an API gateway running with Kong.

Docker simulates the containerized production environment, so in each solution, on the docker-

compose.yml file, Kong is installed as a service (see Code Snippet 1) providing all the features

necessary for Kong to be accessed by clients and to communicate with the microservices.

version: "3.7"

43

services:
 kong:
 image: kong:latest
 volumes:
 - ./kong.yml:/usr/local/kong/declarative/kong.yml
 environment:
 - KONG_DATABASE=off
 - KONG_DECLARATIVE_CONFIG=/usr/local/kong/declarative/kong.yml
 - KONG_PROXY_ACCESS_LOG=/dev/stdout
 - KONG_ADMIN_ACCESS_LOG=/dev/stdout
 - KONG_PROXY_ERROR_LOG=/dev/stderr
 - KONG_ADMIN_ERROR_LOG=/dev/stderr
 - KONG_ADMIN_LISTEN=0.0.0.0:8001, 0.0.0.0:8444 ssl
 ports:
 - "8000:8000"
 - "8443:8443"
 - "127.0.0.1:8001:8001"
 - "127.0.0.1:8444:8444"

Code Snippet 11 - docker-compose file for Kong API gateway machine

In the volumes entry of the Code Snippet 11, the container named kong is trying to copy a kong.yml

file in the same directory as the docker-compose.yml file. This file is where the entire API Gateway

definition is written as shown on Code Snippet 12.

_format_version: "2.1"

services:
 - name: product-service
 url: http://host.docker.internal:9051
 routes:
 - name: product-route
 paths:
 - /product

 - name: user-service
 url: http://host.docker.internal:9052
 routes:
 - name: user-route
 paths:
 - /user

 - name: order-service
 url: http://host.docker.internal:9053
 routes:
 - name: order-route
 paths:
 - /order

44

 - name: checkout-service
 url: http://host.docker.internal:9054
 routes:
 - name: checkout-route
 paths:
 - /checkout

 - name: email-service
 url: http://host.docker.internal:9055
 routes:
 - name: email-route
 paths:
 - /email

 - name: payment-service
 url: http://host.docker.internal:9056
 routes:
 - name: payment-route
 paths:
 - /payment

 - name: cart-service
 url: http://host.docker.internal:9057
 routes:
 - name: cart-route
 paths:
 - /cart

Code Snippet 12 - kong.yml file

An important point on Code Snippet 12 is that the URL http://host.docker.internal:[PORT] is used.

The host machine where Docker is running has a changing IP address for networking reasons. For

this reason, Docker offers a special DNS name - host.docker.internal, which resolves to the internal IP

address used by the host machine. This does not work in a distributed environment where different

host machines are used (in that case the URL of the machine that has the Docker container needs to

be used). In order to develop the project and simulate a production environment, this can be done

using Docker Desktop software [57].

5.1.2 Containerization and deployment

Containerization is a standard approach for microservices-based systems as detailed in section 2.1.

The solution is implemented using containerization to mock the production environment of such a

system. The deployment logic is divided into layers – the layer that interacts directly with the actors

45

of the system, the layer of the microservices themselves, and the layer of all the external

dependency tools needed to make the system work.

Deployment architecture is different for the two solutions. The Jolie-based solution deployment

diagram as shown in Figure 12 shows that the microservices communicate with each other directly

and, as shown in Figure 13 the Spring Boot-based solution uses Kafka which itself requires

Zookeeper as a service discovery mechanism.

5.1.2.1 Jolie solution
The Jolie solution deployment diagram contains several containers holding a database for each

microservice, containing several microservice containers each one representing a microservice, and

exposes an API to the API gateway container that is the only container exposed to the clients of the

system. Also, in Figure 12 it is possible to see that in Jolie a microservice exposes APIs to other

microservices via interfaces, not requiring external tools for interservice communication.

46

Figure 12 - Deployment diagram for the Jolie solution

5.1.2.2 Spring Boot solution
The Spring Boot solution deployment diagram contains several containers, holding a database for

each microservice. It contains several microservice containers, each one representing a microservice

and exposing an API to the API gateway container. The API gateway container is the only container

exposed to the clients of the system. Also, in Figure 13 it is possible to see that in Spring Boot,

microservices requires Apache Kafka for orchestration saga and interservice communication

between the microservices.

47

Figure 13 - Deployment diagram for Spring Boot solution

Essentially both deployment diagrams can be divided into four logical layers: the application

management that consists of the API gateway, and the Zookeeper service discovery tool (in the

Spring Boot solution); the microservices layer that consists of all the microservices; the database

layer that contains all the databases; and the orchestration layer that uses Apache Kafka in the

Spring Boot-based solution and native provision for the Jolie-based one.

5.1.2.3 Dockerfile and Compose
Dockerfile is a set of instructions that allow Docker to build images automatically [58] and Compose

is a tool for specifying multi-container application’s services, it allows with a single command the

creation and starting of all the services defined in the configuration written in a YAML file [59]. Both

these approaches are used in the application since in some cases Compose is better that Dockerfile

for dependency management of services, e.g., Kafka’s dependency on Zookeeper.

48

The Compose file used for Apache Kafka can be checked on the Code Snippet 13, here two

containers are going to be created, based on the official images of Zookeeper and Kafka. The string

“depends_on” states that the Kafka container depends on the Zookeeper one. The Kafka container

exposes port 9092, which is the port the other containers will use to communicate with this one, and

Zookeeper container exposes port 2181 to the outside, in this case to be used by the Kafka

container.

version: '3'
services:
 zookeeper:
 image: 'bitnami/zookeeper:latest'
 ports:
 - '2181:2181'
 environment:
 - ALLOW_ANONYMOUS_LOGIN=yes
 kafka:
 image: 'bitnami/kafka:latest'
 ports:
 - '9092:9092'
 environment:
 - KAFKA_BROKER_ID=1
 - KAFKA_LISTENERS=PLAINTEXT://:9092
 - KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://127.0.0.1:9092
 - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
 - ALLOW_PLAINTEXT_LISTENER=yes
 depends_on:
 - zookeeper

Code Snippet 13 - docker-compose.yml file for Apache Kafka and Zookeeper containers

For the Jolie microservices Dockerfile as one can see on the Code Snippet 14 the image is based on

the official Jolie image on Docker Hub. In addition, the code will download the jar necessary for the

PostgreSQL database, then port 9001 is exposed for the Product service, and for other services

instead of the 9001, other ports are used. For simplicity and non-replication, the Product service is

only one used as example. Another important point is that when the container launches

ProductService.ol (file that contains the behavior of the microservice itself) is run. For other

microservices not only has the port to be changed but also the name of the microservice pointing to

the file name of that microservice behavior.

FROM jolielang/jolie

Set the working directory to /app
WORKDIR /app

49

Copy the current directory contents into the container at /app
ADD . /app

Install any needed packages (PostgreSQL JDBC)
RUN wget https://jdbc.postgresql.org/download/postgresql-42.4.0.jar
RUN mv postgresql-42.4.0.jar jdbc-postgresql.jar
RUN cp jdbc-postgresql.jar /usr/lib/jolie/lib/jdbc-postgresql.jar

Make port 9001 available to the world outside this container
EXPOSE 9001

Run ProductService.ol when the container launches
CMD jolie ./ProductService.ol

Code Snippet 14 - Dockerfile for a Jolie microservice

For Spring Boot microservices the Dockerfile can be seen on the Code Snippet 15 where it will be

based on the official Open JDK image on Docker Hub. Then it will copy the jar resultant of the project

build and place it on the container running as the entry point, which means that when the container

starts running, the jar file is run using Java.

FROM openjdk:11

VOLUME /tmp

ARG JAR_FILE=./target/ProductService.jar

COPY ${JAR_FILE} ProductService.jar

ENTRYPOINT ["java","-jar","/ProductService.jar"]

Code Snippet 15 - Dockerfile for a Spring Boot microservice

5.2 Jolie and Spring-based project distinction
It is relevant to know how to distinguish projects that are made using Jolie versus projects using

Spring Boot as the main technology.

In Jolie, it is considered a good practice to write every microservice using two files: a .iol and a .ol file

– the first is the interface file, and the second is the implementation file. Each microservice only

needs these two files to run on a system with Jolie installed.

Spring Boot projects require more files, most of the time 8 files minimum: one pom.xml file for the

build tool and dependency management; one application.properties file where all the project

properties like ports, locations, database drivers and database connection information; and six Java

50

files that together make the bulk of the program. Spring Boot being a Java framework normally

requires the usage of a build automation tool like Apache Maven [60] or Gradle [61], and this makes

it one of the factors to immediately identify if a project is built using Spring Boot.

To better understand these differences one can, look at the file structure of the ProductService

implementation in Jolie on Figure 14 and on Spring Boot on Figure 15.

Figure 14 - Product service file structure in Jolie implementation

Figure 15 - Product service file structure in Spring Boot framework implementation

The file structure shows a great difference in terms of organization and nomenclature. Jolie only

divides its logic of files into interfaces and behavior/implementation, and Spring Boot has a division

on the same logic – resources and behaviors/implementation, on the first are stated constants like

ports, drivers, database connections, etc, and in the second one are the controllers, entities,

repositories, and services divided in a specific logic. The controller can be seen as the surface and the

services as a deep implementation that integrates with the JPA repository defined in the repository

folder, the entities folder works as a DAO for the entity in the question of the specific microservice.

As showed in Figure 15 is the product entity, this entity mirrors the data object of the object stored

51

in the microservice respective database. This way of developing in Spring Boot is a typically used

layout for Spring Boot projects, the framework does not require any specific code layout to work but

these best practices of structuring the code can help developers’ productivity and code universal

readability [62].

5.3 Microservices implementation
As referred to in previous sections the experiment microservices solution is implemented using

Spring Boot framework and Jolie programming language creating two separate solutions that are

explained in this section.

5.3.1 High level view

Both solutions have the same microservices and API paths communicating via HTTP. In Table 5 are

displayed in a more structured way all the paths and to which microservice they belong.

52

Table 5 - High level view of the microservices implementation

Topic Rationale (why)

Services • Product service
• Cart service
• Order service
• Payment service
• User service
• Email service
• Checkout service

Assignment of operations
to services

Product service /all
/product
/create
/update
/delete

Cart service /all
/cart
/create
/update
/delete
/addProduct
/removeProduct

Order service /all
/order
/create
/update
/delete

Email service /sendEmail

Payment service /withdrawlAccount

User service /all
/user
/create
/update
/delete

Checkout service /pay

Communication
technologies

• HTTP
• JDBC driver for PostgreSQL

53

5.3.2 Jolie

In Jolie, a microservice implementation begins by creating the interfaces. The behavior is the last

step in writing a microservice since the interfaces are APIs that will be consumed by clients and

other microservices.

Code Snippet 16 showcases that it is possible to understand how to interact and use the Product

service just by reading the interface. First, the types are defined to be used as the request body or

the response body. Then interfaces are created using those types when needed, here the methods

are defined, and they all are RequestResponse type meaning that a response will always be sent back

to the client. Finally, the constants represent persistent data relative to the location of the service on

the network as well as the database location and respective connection information. It also contains

the code for database table(s) creation.

type Product {
 .id: string
 .description: string
 .product: string
 .type: string
 .price: double
}

type Products {
 .products[1, *]: Product // an array of Products
}

type CreateRequest {
 .description: string
 .product: string
 .type: string
 .price: double
}

type DeleteRequest {
 .id: string
}

interface ProductInterface {
 RequestResponse:
 all(void)(Products),
 product(undefined)(undefined),
 create(CreateRequest)(Product),
 update(Product)(Product),
 delete(DeleteRequest)(string)

54

}

constants {
 LOCATION_SERVICE_PRODUCT = "socket://host.docker.internal:9051",

 SQL_USERNAME = "postgres",
 SQL_PASSWORD = "welcome1",
 SQL_HOST = "host.docker.internal",
 SQL_DATABASE = "postgres",
 SQL_DRIVER = "postgresql",

 SQL_CREATE_TABLE_PRODUCT = "CREATE TABLE product (
 id UUID,
 description VARCHAR(50),
 product VARCHAR(50),
 price DECIMAL(20,2),
 type VARCHAR(50),
 CONSTRAINT product_pkey PRIMARY KEY (id)
);

 ALTER TABLE IF EXISTS public.product
 OWNER to postgres;

 COMMENT ON TABLE public.product IS 'Table that holds
all the products of the application.';",
}

Code Snippet 16 – Snippet of Product service interface

All the microservices in Jolie have their respective interface. Then on the microservice behavior .ol

file is imported the interface and defined as inputPort (see Code Snippet 17). This specifies that the

Product service will have a port opened to client requests that need to use the ProductInterface

contract.

include "console.iol"
include "database.iol"
include "string_utils.iol"
include "time.iol"

include "./ProductInterface.iol"

execution { concurrent }

// deployment info
inputPort ProductPort {
 Location: LOCATION_SERVICE_PRODUCT
 Protocol: http { .format = "json" }

55

 Interfaces: ProductInterface
}

Code Snippet 17 - Product service behavior snippet

5.3.2.1 Interservice communication
In Jolie, interservice communication happens via simple API calls as explained in section 4.4.3.

Therefore, for example, the cart service requires communication with the product service to retrieve

the total price of a product present in the cart. To accomplish this on the behavior of the operation

that adds a product to the cart an API call (see Code Snippet 18) needs to be added.

requestProduct.id = request.productId
product@ProductService(requestProduct)(responseProduct)

Code Snippet 18 – Calling product service ‘product’ operation from cart service

The call on Code Snippet 18 will return responseProduct. This returns the same data as if the

‘product’ operation was called via a different client via URL. So, e.g., to use the product price, one

would write in the code responseProduct.price.

To call ‘product’ operation from ‘ProductService’ as showed on Code Snippet 18, the product

interface needs to be imported to the Cart service and defined as an output port (see in Code

Snippet 19).

include "../product-service/ProductInterface.iol"

. . .

outputPort ProductService {
 Location: LOCATION_SERVICE_PRODUCT
 Protocol: http { .format = "json" }
 Interfaces: ProductInterface
}

Code Snippet 19 - Product interface import on Cart service

5.3.3 Spring Boot

In the Spring Boot solution, the microservices implementation starts by creating a Maven project,

this includes the creation of a pom.xml file and the standard directory structure for such projects

[63]. One could also use Gradle instead of Maven as the build automation tool, the reason Maven is

used is due to the experience of the developer with the tool. The Dockerfile for a Spring Boot

56

microservice is explained in section 5.1.2.2 and placed in the same directory as the pom.xml file. The

initial structure of each microservice project is displayed in Figure 16.

Figure 16 - Initial Spring Boot microservice project structure

On the resources folder, one adds an application.properties file. This file is responsible for

configuring some aspects of the Spring Boot framework. It also allows the developers to define

custom properties of their own, working as a built-in mechanism for application configuration. The

initial setup for the application.properties is present on snippet Code Snippet 20.

APP CONFIG
server.port:9001

POSTGRES CONFIG
spring.datasource.url=jdbc:postgresql://host.docker.internal:5432/postgres
spring.datasource.username=postgres
spring.datasource.password=welcome1
spring.jpa.generate-ddl=true
spring.jpa.hibernate.show-sql=true
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.PostgreSQL81Dialect

Code Snippet 20 – application.properties initial content

The server.port contains the port on which the microservice API exposes itself to its clients. Database

connection URL, username, and password are settled on properties starting with the prefix

spring.datasource. The properties with the prefix spring.jpa are the properties defined for Spring

Data JPA [64] commonly used on Spring-powered applications. This technology makes it easier to

build applications that use data access technologies. In sum, it supports the database connection

and configuration providing a built-in system used by the framework to perform database queries

and operations. These properties are what allow this project auto-create database tables, as well as

reading and writing operations on the database.

57

The main folder contains the basic Spring Boot project structure and follows the same structure

explained in 5.2. Each microservice was implemented with the previously described steps, also, it

was first developed all requirements that do not involve interservice communication.

5.3.3.1 Interservice communication
When the bulk of the microservice development is concluded and requirements can only be satisfied

by using interservice communication between microservices, then Kafka needs to be added to the

code of the microservices that need to talk between them.

To establish communication between microservices Kafka relies on four concepts – messages, topics,

producers, and consumers. A message is some data, e.g., simple strings or JSON objects. The

producer is responsible for producing messages on a specific topic. The consumer is responsible to

read the messages that the producer puts on a topic. A topic is a group of categorized messages.

What happens when interservice communication is established is that the producer produces a

message that is annexed to a categorized topic, and the consumer receives that message followed

by the execution of some code.

On each microservice project that requires Kafka a package named kafka is added for ease of

understanding. Also, some properties on the application.properties file are added (see Code Snippet

21). A property for the Spring application to know the location of the Kafka server and another

property to disable the auto-creation of topics in Kafka.

KAFKA PROPERTIES
spring.kafka.bootstrap-servers=host.docker.internal:9092
auto.create.topics.enable=false

Code Snippet 21 – Kafka properties on application.properties file

Regarding the package, this one contains child packages two of them which are used on every

microservice that communicates with other(s), and another one that is used on those microservices

that need to listen to Kafka topics for new messages.

The package named bean contains the objects that are passed from a microservice to the Kafka

topic, and the ones that come from the topic to the microservice. The parsing of the objects before

being sent to any topic is made using Gson [65] - an open-source Java library used to serialize and

deserialize Java objects into JSON. For example, the product service receives a request from the cart

service for the total price of a product that is present on the cart and answers it back, therefore it

needs two beans, one for the request (see Code Snippet 22) that needs a product id and the quantity

and another one for the response (see Code Snippet 23) that responds with the total price.

58

package org.example.kafka.bean;

import lombok.*;

@Getter
@Setter
@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public class RequestProductPrice {

 private String id;
 private Integer quantity;

}

Code Snippet 22 - Product price topic request bean

package org.example.kafka.bean;

import lombok.*;

@Getter
@Setter
@Data
@Builder
@NoArgsConstructor
@AllArgsConstructor
public class ReplyProductPrice {

 private Double totalPrice;

}

Code Snippet 23 - Product price topic response bean

The package named config contains the Kafka configurations including base Kafka configuration and

the configuration of the topics. This package has a file – KafkaConfig.java, that contains producer

and consumer configuration, templates for the messages to be sent and received, and creation and

configuration of the topics on which these messages are passing.

The last package named listener is a package that contains the topic listener, a method that is

listening to a topic for new messages. In this case, all methods that are listening also reply to another

topic (see Code Snippet 24) using the @SendTo annotation on the method. The @KafkaListener

defines the topic on which this method is listening to.

59

@Slf4j
@Component
public class KafkaListenerTopic {

 @Autowired
 ProductCRUD productCRUD;

 @KafkaListener(id = "server", topics = "cart-request")
 @SendTo
 public String listenAndReply(String message) {
 log.info("Received message: " + message);

 RequestProductPrice topicRequest = new Gson().fromJson(message,
RequestProductPrice.class);

 UUID productId = UUID.fromString(topicRequest.getId());
 Integer productQuantity = topicRequest.getQuantity();

 Product productDB = productCRUD.findById(productId).get();
 Double productSingleUnitPrice = productDB.getPrice();

 Double productPrice = productSingleUnitPrice * productQuantity;

 ReplyProductPrice topicResponse =
 ReplyProductPrice
 .builder()
 .cartTotalPrice(productPrice)
 .build();

 log.info("Sending message: " + topicResponse.toString());

 System.out.println("Sending message: " + topicResponse.toString());

 return new Gson().toJson(topicResponse);
 }

}

Code Snippet 24 – Listener of cart-request Kafka topic on product service

5.4 Solution verification and tests
To automate the verification of the solution Postman Automated API Testing feature [66] was used.

Postman software allows for the creation of a test suite of multiple types of tests that can run again

and again. These tests will be run against Docker containers pointing to the Kong API Gateway.

To start the process a Postman workspace is created which provides a way to organize the API work

by organizing the tests into collections, each collection can have a set of requests with tests that can

be run. Figure 17 displays an example of the cart service collection flow covering all possible

resources and success scenarios on the cart service. Since the cart service has interservice

communication with product service this entire collection can also provide feedback on the

60

communication between the services. The same is done for all the other collections and

microservices.

Figure 17 – Cart collection flow tests

Figure 18 shows the Cart collection run results. It is a reliable automatic way to verify both service

basic requirements and the requirements that integrate multiple microservices.

61

Figure 18 - Cart collection run results

62

The same process is made on all the other collections providing a mechanism to test the entire flow

of a microservice.

63

6 Evaluation

In this section, the solutions are evaluated according to the most relevant quality attributes in

microservices architecture defined in Section 2.2: Scalability, Performance, Maintainability, and

Testability. First, the Goals, Questions, and Metrics (GQM) approach are explained and analyzed how

to use it in these solutions. Then the development of the experiments to perform is explained.

Finally, the conclusions of each experiment using GQM are taken.

6.1 Design
The evaluation of both solutions used to develop the experiment is based on the Goal, Question,

Metrics (GQM) paradigm [67], this approach is a method for driving goal-oriented measurements.

One starts by defining the goals to achieve, then clarifying the questions to answer with the data

collected, and lastly performs mapping between business outcomes and goals to data-driven

metrics. By doing this one can obtain a great overview of the entire span of the software [68].

The result of the implementation of the GQM approach is the specification of a measurement

system targeting a particular set of quality attributes and a set of rules for the interpretation of the

measurement data. The resulting measurement model has three levels [68]:

• Conceptual level (goal): Define a goal for each quality attribute presented, all having in

account both solutions developed

• Operational level (question): Define how the goals can be achieved using some questions

64

• Quantitative level (metric): Define the metrics that reply to the questions and determine if

the goals are achieved

First, the goals and questions are defined for each quality attribute (see Table 6).

Table 6 - Quality attributes, goals, and questions

Quality Attribute Goals Questions
Scalability The experiment solutions

should be easily scalable.
Can the experiment solutions scale by
having low distribution of dependencies,
and can the system scale horizontally and
vertically?

Maintainability The experiment solutions
must have a low number of
lines of code and low
technology heterogeneity.

Can the experiment solutions be
maintainable easily?

Performance The experiment solutions
work under heavy loads and
the response times are
acceptable.

The developed microservices have decent
response times when running under heavy
loads?

Testability The experiment solutions
provide testing features.

Does the experiment solutions provide a
way to execute automatic tests and
generation of API documentation?

The metrics for each quality attribute are in a generalized way defined on Section 2.2. However, for

these solutions in specific, one needs to be more particular in the way to establish the metrics.

6.2 Experiments
To understand each quality attribute for both solutions built the experiments are carried out

separately on each quality attribute for both solutions.

6.2.1 Scalability

Regarding scalability, the following components need to be addressed as referred on section 2.2.1 -

distribution of dependencies, diversity of synchronous requests, and horizontal and vertical

scalability. Both solutions, Jolie-based, and Spring Boot-based ones, need to comply with the

scalability components and requirements to be considered scalable.

65

Distribution of dependencies is the measurement of the percentage of microservices operations that

call other microservices. The lower the total percentage more scalable the entire system.

Table 7 - Distribution of dependencies on the microservices of the system

Microservice Operations number Calls to other
microservices

Cart 7 2

Checkout 1 4

Email 1 0

Order 5 0

Payment 1 0

Product 5 0

User 5 0

From the analysis of Table 7, the total amount of operations is 25 and the calls to other

microservices are 6 making it 4.17% of the operations calling other microservices, which is a low

number, meaning the system is scalable in this regard.

Both solutions can use horizontal and vertical scalability, the first being referring to adding more

resources to logical units like servers of a cluster and the second being adding more physical unit

resources like memory to a machine [20].

6.2.2 Maintainability

Measurements of maintainability are done using lines of code (LOC) as previously mentioned in

section 2.2.3 and looking at the technology heterogeneity. To accomplish the LOC measurement the

tool cloc [69] was executed on the folder of each microservice achieving the results presented in

Table 8.

Table 8 - LOC metrics for the solution

Microservice LOC in Spring Boot based
project LOC in Jolie based project

Cart 638 231

66

Checkout 831 143

Email 423 66

Order 810 204

Payment 485 96

Product 695 160

User 429 169

Total LOC 4311 1069

Section 2.2.3 states that the lower the technology heterogeneity the more maintainable the system

is. From the analysis of both solutions’ technology stack (see section 4.5) it is possible to conclude

that the Jolie-based solution is less heterogeny, therefore more maintainable in this regard.

Also, from the analysis of Table 8 Jolie-based solution has around 75.2% less LOC than the Spring

Boot-based solution. It’s considered that the Jolie-based solution has better maintainability since the

LOC measurement and the technology heterogeneity are lower than the Spring Boot-based one.

6.2.3 Performance

For performance metrics, the tool used to automate the process is Apache JMeter [70]. The

scenarios were adapted to the developer machine resources and are tested for the cart service flow

and checkout service flow since these are the two microservices that are saga orchestrators and

contain interservice communication with other microservices.

The testing plan scenarios are the following for both flows:

• 15 virtual users performing the test plan 10 times

• 150 virtual users performing the test plan 10 times

• 1500 virtual users performing the test plan 10 times

Both solutions are tested by running the microservices, API gateway, and databases with Docker

containers. The Docker host is present on the developer’s machine.

67

6.2.3.1 Cart service flow
The cart service flow can be seen on Apache JMeter graphical user interface (GUI) as shown in Figure

19 – every used executes all the HTTP requests in the Thread Group several times defined in the

configuration.

Figure 19 - Apache JMeter test plan for cart service flow

Table 9 shows the performance metrics like throughput, which consists of the number of requests

handled per second, of each scenario of testing – 15, 150, or 1500 virtual users performing the cart

service flow for 10 times each user.

Table 9 – Performance table report for cart service flow

Solution Number of users Throughput
(requests/s) Deviation Time elapsed

(hh:mm:ss)

Jolie based 15 100.9 29 00:00:19

Jolie based 150 98.2 333 00:03:18

Jolie based 1500 93.4 4028 00:34:48

Spring Boot based 15 101.2 31 00:00:19

Spring Boot based 150 119.2 91 00:02:43

Spring Boot based 1500 116.1 2092 00:27:59

68

6.2.3.2 Checkout service flow
The checkout service flow can be seen on Apache JMeter graphical user interface (GUI) as shown in

Figure 20 – every used executes all the HTTP requests in the Thread Group several times defined in

the configuration.

Figure 20 - Apache JMeter test plan for checkout service flow

Table 10 shows the performance metrics like throughput, which consists of the number of requests

handled per second, of each scenario of testing – 15, 150, or 1500 virtual users performing the

checkout service flow for 10 times each user.

Table 10 - Performance table report for checkout service flow

Solution Number of users Throughput
(requests/s) Deviation Time elapsed

(hh:mm:ss)

Jolie based 15 98.2 25 00:00:16

Jolie based 150 109.3 21 00:02:30

Jolie based 1500 79.6 12703 00:34:33

Spring Boot based 15 100.9 19 00:00:16

Spring Boot based 150 107.6 50 00:02:33

Spring Boot based 1500 109.8 278 00:25:02

6.2.4 Testability

For testability, in terms of API documentation Spring Boot supports the automatic generation of

OpenAPI documentation with the usage of annotations [71]. OpenAPI is the standardization of how

69

APIs are described [72], Spring Boot allows the usage of the Swagger plugin to create an HTML page

to explore the API. Jolie programming language on the other hand comes with Joliedoc [73] - a tool

that comes with the installation of Jolie programming language and can automatically generate

documentation in the format of an HTML page. Even though the two technologies (Jolie and Spring

Boot) use different tools to achieve the automatic generation of documentation, they both have

testability features.

For testing the application in unit, integration, and acceptance tests Spring Boot has unit tests and

integration tests provision using Java that can be easily automated. Jolie because of the nature of

the language the tests are done using a tool called Joliemock [74]. This tool also comes native with

the Jolie language installation. It is used since, in Jolie a service interface is firstly defined providing

an automatic way to mock services starting from an input port. Also, both languages use Postman to

create collections to automatically execute the entire bulk of microservices built.

6.3 Summary
The evaluation results are overall acceptable, and one can conclude that both technologies (Jolie and

Spring Boot) are viable to comply with quality attributes seen as most important in MSA systems.

Regarding similarities both solutions provide similar scalability and testability. Both technologies

(Jolie and Spring Boot) provide native resources for testing and have a low number of calls to other

services. Also, scalability and testability can be partially obtained using external tools (Docker and

Postman), this can make one can conclude that they are similar in terms of these two quality

attributes.

On performance Spring Boot-based solution ranks slightly higher as both cart and checkout flow

performed better with a high number of virtual users (1500) performing the entire flow. If a low

number of users are performing the flow, there are no significant changes in performance. It is

important to note that this performance results could change if more containers (horizontal

scalability) were used to multiply the number of instances of each microservice or if machines with

better hardware were used, but for this test scenario and resources available only one container per

microservice is used on the developer machine and results interpreted as such. As for

maintainability, the Jolie-based solution ranks significantly higher as it contains a lower

heterogeneity of technologies and a lower LOC compared to the Spring Boot solution.

70

71

7 Conclusions

7.1 Achievements
Some objectives were defined at the beginning of this thesis and presented in section 1.2. This thesis

provides insights on the current knowledge of MSA-based systems focusing on language-based

approaches found in the literature using Jolie. Two experiment solutions are developed with source

code available on GitHub [53] and analyzed in this document. The experiment demonstrates how to

implement an e-commerce MSA-based system using Jolie programming language face to the same

system using Spring Boot framework as the base technology. Also, it was demonstrated how to apply

interservice communication, testing, and containerization on both solutions. The focus is to evaluate

both solutions based on some quality attributes – scalability, maintainability, performance, and

testability.

The output of this document is an assessment of part of the benefits and possible limitations to pay

attention to when using Jolie versus using Spring Boot to build the same solution. The document is

also a solid starting point when using Jolie programming language to build an MSA system.

7.2 Difficulties
The development of the thesis brought some challenges mainly because the language-based

approach to microservices development is a recent topic and in its only being started to be used by

companies and portrayed more in the research community. Therefore, most of the literature and

community projects and discussions are around framework solutions for MSA systems.

72

Jolie is a product of renowned research authors and its presence in the literature is extensible. It is

important to praise the authors of the programming language for the effort made to provide great

formal insight into the language. Also, the official documentation on the language is user-friendly

and understandable being a great source of information. Nevertheless, the development is still hard

because whenever some issue is faced by unfamiliarity with the programming language the

community answers for the problems are quite inexistent and some issues took the developer a

great amount of time to figure out how to overcome them.

7.3 Threads to Validity
Testing was performed in a local environment which brought limitations due to resource limitations

and unavailability to make more large tests and experiments. This is important for testing the system

at a large scale as using thousands of users. On this work only a maximum of 1500 virtual users were

used for performance testing. A real production environment could bring different results. Also, if

container orchestration was applied, and the containers multiplied themselves accordingly to the

load on the service the performance could have a different result too.

It is important to note that the author is more familiarized with Spring Boot than with Jolie which

can also impact the results.

7.4 Future work and final remarks
In the future, it would be interesting to see how container orchestration can impact the

performance of both solutions. Also, documentation must be generated for the two solutions.

A final improvement is to compare more frameworks and microservice-specific languages to Jolie to

further investigate the difference in quality attributes between more different technologies.

The overall development of the project was positive. It was a satisfaction to the author to discover

and use language-based approaches for microservices development, an approach that the author

did not know that it existed. It is an area of interest, and it hopefully gets more explored by the

author, research community, and businesses.

Is satisfactory to conclude a challenging work where every aspect of an MSA system is developed.

The work provided the author with much valuable experience in microservices for future career

paths and opportunities.

73

74

75

References
[1] Karma, ‘How we build microservices at Karma’, Medium, Apr. 04, 2016.

https://blog.karmawifi.com/how-we-build-microservices-at-karma-71497a89bfb4 (accessed
Oct. 28, 2021).

[2] E. Haddad, ‘Service-Oriented Architecture: Scaling the Uber Engineering Codebase As We Grow’,
Uber Engineering Blog, Sep. 08, 2015. https://eng.uber.com/service-oriented-architecture/
(accessed Oct. 28, 2021).

[3] ‘Amazon Architecture - High Scalability -’. http://highscalability.com/amazon-architecture
(accessed Oct. 28, 2021).

[4] P. D. Francesco, I. Malavolta, and P. Lago, ‘Research on Architecting Microservices: Trends,
Focus, and Potential for Industrial Adoption’, in 2017 IEEE International Conference on Software
Architecture (ICSA), Apr. 2017, pp. 21–30. doi: 10.1109/ICSA.2017.24.

[5] P. Di Francesco, P. Lago, and I. Malavolta, ‘Architecting with microservices: A systematic
mapping study’, J. Syst. Softw., vol. 150, pp. 77–97, Apr. 2019, doi: 10.1016/j.jss.2019.01.001.

[6] Advantages and Disadvantages of Microservices Architecture, (Nov. 13, 2019). Accessed: Oct.
31, 2021. [Online Video]. Available: https://cloudacademy.com/blog/microservices-architecture-
challenge-advantage-drawback/

[7] ‘Microservices definition, advantages and disadvantages’, Chakray, May 15, 2019.
https://www.chakray.com/what-are-microservices-definition-characteristics-and-advantages-
and-disadvantages-2/ (accessed Oct. 31, 2021).

[8] F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro, ‘JOLIE: a Java Orchestration Language
Interpreter Engine’, Electron. Notes Theor. Comput. Sci., vol. 181, pp. 19–33, Jun. 2007, doi:
10.1016/j.entcs.2007.01.051.

[9] F. Montesi and J. Weber, ‘Circuit Breakers, Discovery, and API Gateways in Microservices’,
ArXiv160905830 Cs, Sep. 2016, Accessed: Dec. 08, 2021. [Online]. Available:
http://arxiv.org/abs/1609.05830

[10] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, ‘A Design Science Research
Methodology for Information Systems Research’, J. Manag. Inf. Syst., vol. 24, no. 3, pp. 45–77,
Dec. 2007, doi: 10.2753/MIS0742-1222240302.

[11] N. Dragoni et al., ‘Microservices: yesterday, today, and tomorrow’, ArXiv160604036 Cs, Apr.
2017, Accessed: Dec. 05, 2021. [Online]. Available: http://arxiv.org/abs/1606.04036

[12] ‘Microservices’, martinfowler.com. https://martinfowler.com/articles/microservices.html
(accessed Feb. 06, 2022).

[13] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi, ‘Microservices: a Language-based Approach’,
ArXiv170408073 Cs, Apr. 2017, Accessed: Oct. 26, 2021. [Online]. Available:
http://arxiv.org/abs/1704.08073

[14] N. Dragoni, I. Lanese, S. Larsen, M. Mazzara, R. Mustafin, and L. Safina, Microservices: How To
Make Your Application Scale. 2017.

[15] H. Zhu and I. Bayley, ‘If Docker is the Answer, What is the Question?’, in 2018 IEEE Symposium
on Service-Oriented System Engineering (SOSE), Mar. 2018, pp. 152–163. doi:
10.1109/SOSE.2018.00027.

[16] S. Newman, Building Microservices, 2nd Edition, 2nd ed. O’Reilly Media, Inc., 2021. Accessed:
Aug. 30, 2022. [Online]. Available: https://learning.oreilly.com/library/view/building-
microservices-2nd/9781492034018/

[17] A. Megargel, C. M. Poskitt, and V. Shankararaman, ‘Microservices Orchestration vs.
Choreography: A Decision Framework’, in 2021 IEEE 25th International Enterprise Distributed
Object Computing Conference (EDOC), Oct. 2021, pp. 134–141. doi:
10.1109/EDOC52215.2021.00024.

76

[18] F. B. Vernadat, ‘Reengineering the Organization with a Service Orientation’, in Service Enterprise
Integration: An Enterprise Engineering Perspective, C. Hsu, Ed. Boston, MA: Springer US, 2007,
pp. 77–101. doi: 10.1007/978-0-387-46364-3_3.

[19] E. Casalicchio and S. Iannucci, ‘The state-of-the-art in container technologies: Application,
orchestration and security’, Concurr. Comput. Pract. Exp., vol. 32, no. 17, p. e5668, 2020, doi:
10.1002/cpe.5668.

[20] S. Li et al., ‘Understanding and addressing quality attributes of microservices architecture: A
Systematic literature review’, Inf. Softw. Technol., vol. 131, p. 106449, Mar. 2021, doi:
10.1016/j.infsof.2020.106449.

[21] J.-P. Gouigoux, D. Tamzalit, and J. Noppen, ‘Microservice Maturity of Organizations: towards an
assessment framework’, ArXiv210514935 Cs, vol. 415, pp. 523–540, 2021, doi: 10.1007/978-3-
030-75018-3_34.

[22] L. Chen, M. Ali Babar, and B. Nuseibeh, ‘Characterizing Architecturally Significant Requirements’,
IEEE Softw., vol. 30, no. 2, pp. 38–45, Mar. 2013, doi: 10.1109/MS.2012.174.

[23] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu, ‘Attributes Assessing the Quality of Microservices
Automatically Decomposed from Monolithic Applications’, in 2019 18th International
Symposium on Parallel and Distributed Computing (ISPDC), Jun. 2019, pp. 84–93. doi:
10.1109/ISPDC.2019.00021.

[24] F. H. Vera-Rivera, C. Gaona, and H. Astudillo, ‘Defining and measuring microservice granularity—
a literature overview’, PeerJ Comput. Sci., vol. 7, p. e695, Sep. 2021, doi: 10.7717/peerj-cs.695.

[25] Y. Tashtoush, M. Al-Maolegi, and B. Arkok, ‘The Correlation among Software Complexity Metrics
with Case Study’, ArXiv14084523 Cs, Aug. 2014, Accessed: Apr. 09, 2022. [Online]. Available:
http://arxiv.org/abs/1408.4523

[26] ‘IEEE Standard Glossary of Software Engineering Terminology’, IEEE Std 61012-1990, pp. 1–84,
Dec. 1990, doi: 10.1109/IEEESTD.1990.101064.

[27] F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, ‘From Monolithic
Systems to Microservices: A Comparative Study of Performance’, Appl. Sci., vol. 10, no. 17, Art.
no. 17, Jan. 2020, doi: 10.3390/app10175797.

[28] L. Ardito, R. Coppola, L. Barbato, and D. Verga, ‘A Tool-Based Perspective on Software Code
Maintainability Metrics: A Systematic Literature Review’, Sci. Program., vol. 2020, p. e8840389,
Aug. 2020, doi: 10.1155/2020/8840389.

[29] S. Giallorenzo, F. Montesi, M. Peressotti, F. Rademacher, and S. Sachweh, ‘Jolie & LEMMA:
Model-Driven Engineering and Programming Languages Meet on Microservices’,
ArXiv210402458 Cs, Apr. 2021, Accessed: Oct. 26, 2021. [Online]. Available:
http://arxiv.org/abs/2104.02458

[30] F. Rademacher, J. Sorgalla, P. N. Wizenty, S. Sachweh, and A. Zündorf, ‘Microservice architecture
and model-driven development: yet singles, soon married (?)’, in Proceedings of the 19th
International Conference on Agile Software Development: Companion, New York, NY, USA, May
2018, pp. 1–5. doi: 10.1145/3234152.3234193.

[31] A. Bandura, N. Kurilenko, M. Mazzara, V. Rivera, L. Safina, and A. Tchitchigin, Jolie Community on
the Rise. 2016. doi: 10.1109/SOCA.2016.16.

[32] P. Mohagheghi, M. Fernández, J. Martell, M. Fritzsche, and W. Gilani, MDE Adoption in Industry:
Challenges and Success Criteria, vol. 5421. 2008, p. 59. doi: 10.1007/978-3-642-01648-6_6.

[33] ‘italianaSoftware - Jolie, il linguaggio di programmazione’.
http://www.italianasoftware.com/jolie.html (accessed Oct. 26, 2021).

[34] A. Fernando et al., ‘Ballerina and Jolie: Connecting Two Frontiers of Microservice Programming’,
p. 3.

[35] ‘Introduction · Jolie Documentation’. https://docs.jolie-lang.org/v1.10.x/ (accessed Dec. 28,
2021).

[36] D. Madushan, Cloud Native Applications with Ballerina. Packt Publishing, 2021. [Online].
Available: https://www.oreilly.com/library/view/cloud-native-applications/9781800200630/

77

[37] I. Lanese, F. Montesi, and G. Zavattaro, ‘The Evolution of Jolie: From Orchestrations to
Adaptable Choreographies’, in Software, Services, and Systems, vol. 8950, R. De Nicola and R.
Hennicker, Eds. Cham: Springer International Publishing, 2015, pp. 506–521. doi: 10.1007/978-3-
319-15545-6_29.

[38] ‘In a nutshell: because we want to minimise code <-> model distance. Other langua... | Hacker
News’. https://news.ycombinator.com/item?id=27183206 (accessed Oct. 31, 2021).

[39] ‘Jolie, the service-oriented programming language’. https://www.jolie-lang.org/faq.html
(accessed Dec. 31, 2021).

[40] C. Pautasso and E. Wilde, Why is the Web Loosely Coupled? A Multi-Faceted Metric for Service
Design. 2009, p. 920. doi: 10.1145/1526709.1526832.

[41] V. Alessandrini, ‘Chapter 4 - Thread-Safe Programming’, in Shared Memory Application
Programming, V. Alessandrini, Ed. Boston: Morgan Kaufmann, 2016, pp. 83–99. doi:
10.1016/B978-0-12-803761-4.00004-6.

[42] ‘Hystrix: Latency and Fault Tolerance for Distributed Systems’. Netflix, Inc., Dec. 30, 2021.
Accessed: Dec. 30, 2021. [Online]. Available: https://github.com/Netflix/Hystrix

[43] ‘Microservices Applications’ Life Cycle | LinkedIn’.
https://www.linkedin.com/pulse/microservices-applications-life-cycle-sam-gabrail/ (accessed
Dec. 29, 2021).

[44] S. Giallorenzo, M. Gabbrielli, and F. Montesi, ‘Service-Oriented Architectures: from Design to
Production exploiting Workflow Patterns’, Adv. Distrib. Comput. Artif. Intell. J., vol. 3, no. 2, pp.
26–52, Mar. 2015, doi: 10.14201/ADCAIJ2014322652.

[45] Archiveddocs, ‘Data Transfer Object’. https://docs.microsoft.com/en-us/previous-versions/msp-
n-p/ff649585(v=pandp.10) (accessed Dec. 30, 2021).

[46] ‘Empowering App Development for Developers | Docker’. https://www.docker.com/ (accessed
Dec. 31, 2021).

[47] T. Colanzi et al., ‘Are we speaking the industry language? The practice and literature of
modernizing legacy systems with microservices’, in 15th Brazilian Symposium on Software
Components, Architectures, and Reuse, New York, NY, USA, Sep. 2021, pp. 61–70. doi:
10.1145/3483899.3483904.

[48] ‘Apache Kafka’, Apache Kafka. https://kafka.apache.org/ (accessed Aug. 26, 2022).
[49] ‘Postman API Platform | Sign Up for Free’, Postman. https://www.postman.com/ (accessed Apr.

07, 2022).
[50] ‘GoogleCloudPlatform/microservices-demo’. Google Cloud Platform, Feb. 24, 2022. Accessed:

Feb. 24, 2022. [Online]. Available: https://github.com/GoogleCloudPlatform/microservices-
demo

[51] ‘Apache ZooKeeper’. https://zookeeper.apache.org/ (accessed Aug. 30, 2022).
[52] F. Montesi, C. Guidi, and G. Zavattaro, ‘Service-Oriented Programming with Jolie’, in Web

Services Foundations, A. Bouguettaya, Q. Z. Sheng, and F. Daniel, Eds. New York, NY: Springer
New York, 2014, pp. 81–107. doi: 10.1007/978-1-4614-7518-7_4.

[53] R. Assis, ‘jolie-experiment’, GitHub. https://github.com/ruimiguel98/jolie-case-study (accessed
Jul. 17, 2022).

[54] J. Gough, D. Bryant, and M. Auburn, Mastering API Architecture. O’Reilly Media, Inc., 2022.
Accessed: Aug. 31, 2022. [Online]. Available:
https://learning.oreilly.com/library/view/mastering-api-architecture/9781492090625/

[55] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘Continuous Architecting With Microservices and DevOps: a
Systematic Mapping Study’, 2019. doi: 10.1007/978-3-030-29193-8_7.

[56] A. Kuhn, ‘Kong Open-Source API Management Gateway for Microservices’, Kong Inc.
https://konghq.com/products/api-gateway-platform (accessed Jul. 17, 2022).

[57] ‘Explore networking features’, Docker Documentation, Aug. 30, 2022.
https://docs2.docker.com/desktop/networking/ (accessed Aug. 31, 2022).

78

[58] ‘Dockerfile reference’, Docker Documentation, Aug. 30, 2022.
https://docs2.docker.com/engine/reference/builder/ (accessed Aug. 31, 2022).

[59] ‘Overview of Docker Compose’, Docker Documentation, Aug. 30, 2022.
https://docs2.docker.com/compose/ (accessed Aug. 31, 2022).

[60] ‘Maven – Welcome to Apache Maven’. https://maven.apache.org/ (accessed Jul. 19, 2022).
[61] ‘Gradle Build Tool’, Gradle. https://gradle.org/ (accessed Jul. 19, 2022).
[62] ‘14. Structuring Your Code’. https://docs.spring.io/spring-

boot/docs/2.0.0.RELEASE/reference/html/using-boot-structuring-your-code.html (accessed Jul.
19, 2022).

[63] ‘Maven – Introduction to the Standard Directory Layout’.
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-
layout.html (accessed Oct. 02, 2022).

[64] ‘Spring Data JPA’. https://spring.io/projects/spring-data-jpa (accessed Oct. 02, 2022).
[65] ‘Gson’. Google, Oct. 02, 2022. Accessed: Oct. 02, 2022. [Online]. Available:

https://github.com/google/gson
[66] ‘Automated API Testing | Postman’, Postman API Platform.

https://www.postman.com/automated-testing/ (accessed Jul. 19, 2022).
[67] V. R. Basili, ‘Software Modeling and Measurement: The Goal/Question/Metric Paradigm’, Sep.

1992, Accessed: Sep. 28, 2022. [Online]. Available: https://drum.lib.umd.edu/handle/1903/7538
[68] V. R. Basili, G. Caldiera, and H. D. Rombach, ‘THE GOAL QUESTION METRIC APPROACH’, p. 10.
[69] AlDanial, ‘cloc’. Oct. 05, 2022. Accessed: Oct. 05, 2022. [Online]. Available:

https://github.com/AlDanial/cloc
[70] ‘Apache JMeter - Apache JMeterTM’. https://jmeter.apache.org/ (accessed Oct. 07, 2022).
[71] O. 3 L. for spring-boot B. B. N. LAHSEN and L. for O. 3 with spring-boot B. B. N. LAHSEN,

‘OpenAPI 3 Library for spring-boot’, OpenAPI 3 Library for spring-boot. http://springdoc.org/
(accessed Sep. 28, 2022).

[72] ‘OpenAPI - About’, OpenAPI Initiative. https://www.openapis.org/about (accessed Sep. 28,
2022).

[73] ‘Documenting APIs · Jolie Documentation’. https://docs.jolie-lang.org/v1.10.x/language-tools-
and-standard-library/documenting-api.html (accessed Sep. 28, 2022).

[74] ‘Mock Services · Jolie Documentation’. https://docs.jolie-lang.org/v1.10.x/language-tools-and-
standard-library/mock/ (accessed Sep. 28, 2022).

[75] C. Nokleberg and B. Hawkes, ‘Application Frameworks: While powerful, frameworks are not for
everyone’, Commun. ACM, vol. 64, no. 7, pp. 42–49, Jul. 2021, doi: 10.1145/3446796.

[76] G. Márquez and H. Astudillo, ‘Actual Use of Architectural Patterns in Microservices-Based Open
Source Projects’, in 2018 25th Asia-Pacific Software Engineering Conference (APSEC), Dec. 2018,
pp. 31–40. doi: 10.1109/APSEC.2018.00017.

[77] P. Koen et al., ‘1 Fuzzy Front End : Effective Methods , Tools , and Techniques’, 2002.
https://www.semanticscholar.org/paper/1-Fuzzy-Front-End-%3A-Effective-Methods-%2C-Tools-
%2C-and-Koen-Ajamian/b6731a73075c82622ad9babe296f853fce62bf71 (accessed Feb. 08,
2022).

[78] F. B. Insights, ‘Cloud Computing Market to Reach USD 791.48 Billion by 2028; Microsoft
Corporation Launches Cloud for Healthcare Organizations Set to Offer Growth Prospect: Fortune
Business InsightsTM’, GlobeNewswire News Room, Jan. 11, 2021.
https://www.globenewswire.com/news-release/2021/11/01/2324091/0/en/Cloud-Computing-
Market-to-Reach-USD-791-48-Billion-by-2028-Microsoft-Corporation-Launches-Cloud-for-
Healthcare-Organizations-Set-to-Offer-Growth-Prospect-Fortune-Business-Insights.html
(accessed Feb. 08, 2022).

[79] F. B. Insights, ‘IoT Market Size, Share, Growth, Trends, Business Opportunities, IoT Companies,
Statistics, Report 2028 | Internet of Things Industry Report- Fortune Business Insights’,
GlobeNewswire News Room, Oct. 11, 2021. https://www.globenewswire.com/news-

79

release/2021/11/10/2331267/0/en/IoT-Market-Size-Share-Growth-Trends-Business-
Opportunities-IoT-Companies-Statistics-Report-2028-Internet-of-Things-Industry-Report-
Fortune-Business-Insights.html (accessed Feb. 08, 2022).

[80] R. and Markets, ‘Global Smartphone Market (2020 to 2027) - by Operating System, Display
Technology, Screen Size, RAM Capacity, Price Range, Distribution Channel and Region’,
GlobeNewswire News Room, Sep. 17, 2021. https://www.globenewswire.com/news-
release/2021/09/17/2298924/28124/en/Global-Smartphone-Market-2020-to-2027-by-
Operating-System-Display-Technology-Screen-Size-RAM-Capacity-Price-Range-Distribution-
Channel-and-Region.html (accessed Feb. 08, 2022).

[81] C. Xu, H. Zhu, I. Bayley, D. Lightfoot, M. Green, and P. Marshall, ‘CAOPLE: A Programming
Language for Microservices SaaS’, in 2016 IEEE Symposium on Service-Oriented System
Engineering (SOSE), Mar. 2016, pp. 34–43. doi: 10.1109/SOSE.2016.46.

[82] D. Jordan et al., ‘Web Services Business Process Execution Language’, p. 264, 2007.
[83] A. Osterwalder and Y. Pigneur, Business Model Generation: A Handbook for Visionaries, Game

Changers, and Challengers. John Wiley and Sons, 2010.
[84] ‘How SWOT (Strength, Weakness, Opportunity, and Threat) Analysis Works’, Investopedia.

https://www.investopedia.com/terms/s/swot.asp (accessed Feb. 04, 2022).
[85] J. Sorgalla, AjiL: A Graphical Modeling Language for the Development of Microservice

Architectures. 2017.
[86] ‘JHipster - Full Stack Platform for the Modern Developer!’ https://www.jhipster.tech/ (accessed

Feb. 04, 2022).
[87] ‘Welcome’, Context Mapper, Dec. 17, 2021. https://contextmapper.org/docs/home/ (accessed

Feb. 04, 2022).

80

81

Annex A – Microservices Development
Frameworks, libraries, and languages

When one talks about the development of microservices it always leads to some framework or

library that can help developers in the process.

Libraries are essentially pieces of code written by others that allow developers to reuse code, be

consistent in their teams and improve the speed and quality at which a system is coded. Frameworks

on the other hand use these libraries too but also configure them and wire everything together to

make it even easier for developers to code the system. Frameworks have preinstalled and

preconfigured libraries providing a simplified, allowing for more consistency and therefore more

simplified and greater development experience which offers large productivity gains. Frameworks

avoid developers the hard task of having to choose which are the right libraries to use, the

configurations to use, and how to incorporate everything together to make them work flawlessly.

Also, frameworks boost security, because as they are universalized and widespread through multiple

companies the share of security concerns and fixed multiplies among all teams make systems more

secure without developers even realizing it. Another interesting fact that happens with the

universalization of frameworks usage is that the structure of frameworks provides a foundation for

building higher-level abstractions like microservices platforms allowing new architectures and

automation. Not everything is perfect, and frameworks have some disadvantages like the cost of

flexibility as the maintainers of such frameworks need to provide standards and defined behaviours

without being too restrictive on developers’ creativity [75].

Currently, there are plenty of frameworks and libraries for microservice development but not so

many programming languages microservice oriented.

Microservice development is still too focused-on frameworks and libraries using other technology

stacks like Java, Python, etc because these frameworks have been around for a long time and are

mature in the industry already. Programming languages oriented to microservice which have as only

focus the area of microservice are still emerging and capturing the attention of developers in an

initial phase. Ballerina and Jolie are the two main popular languages at the frontier of microservice

programming [34].

82

Table 11 — List of frameworks and programming languages to develop microservices

Name Type of technology Used for
Spring Boot Framework Java
Helidon Framework Java
AxonIQ Framework Java
Micronaut Framework Java
Lagom Framework Multi-language
Dropwizard Framework Java
Restlet Framework Java
Quarkus Framework Java
GoMicro Framework Golang
Kite Framework Golang
Django Framework Python
Flask Framework Python
Falcon Framework Python
Bottle Framework Python
Nameko Framework Python
CherryPy Framework Python
Moleculer Framework Node.js
.NET Framework C#
Spark Framework Multi-language
Slim Framework PHP
Ballerina Programming language —
CAOPLE Programming language —
Jolie Programming language —
WS-BPEL Programming language —

Table 11 shows that there are so many frameworks to choose from when developing microservices

that enterprises always face challenges to choose the right one. They need to consider the following

factors:

• Speed of development

• Cost efficiency

• Community support

• Developers’ skillset

• Learning time

• Future business needs analysis

• Industry acceptance

A recent study showed that Spring Boot dominates the technology adoption for microservices

framework choice followed by ASP.NET [47].

83

Lifecycle phases

In the programming of an MSA system questions like these are raised:

• What the microservice will do?

• What programming language to use?

• Which framework to use?

• Where is data stored?

• How will the microservice scale?

• How it will be deployed?

Each microservice lifecycle is mainly constituted by the build phase where the service is

programmed, then the running phase is when the service is running and the system can monitor,

secure, bug fix, or change update the source code with a new version in case the business logic

change.

Figure 21 – Microservice lifecycle [43]

One needs to remember that a system developed on top of MSA has specific characteristics and

needs that make it different from a monolith architecture or SOA, namely because of the nature of

the architecture. The infrastructure is super distributed, scalability in real-time is performed because

of the load on each component, since some systems have like hundreds of microservices we need to

remember that to rearchitect such a system and better allocate resources there is a constant need

for monitoring and changes to be applied over time.

Because of this and to avoid rearchitecting such systems the focus when programming an MSA

system should always be the design of the system as shown in the literature being the most

84

predominant researched lifecycle phase the design one [4], [5]. By providing a great and solid design

the maintenance, operation, implementation, and testing phases are less prone to errors.

Design patterns

Some strategies are defined to allow the design lifecycle phase to elapse flawlessly, these are known

in the programming world as design patterns or architectural patterns, which are strategies to solve

common problems. With the inherent complexity of MSA systems, a lot of design patterns appeared

to mitigate some issues allowing for the code to be more flexible. Is worth mentioning some of these

strategies as they are very common and almost like a foundation of microservices.

The most used design patterns are API gateway, publish/subscribe, circuit breaker, proxy, load

balancer, discovery pattern, service registry, and service bus [4], [5], [76] handling most of the

concepts of communication and orchestration. Also, the infrastructure needs constant monitoring to

make sure services do not fail and if they do are replaced immediately.

These design patterns mainly appeared because of the already stated complexity, to handle

communication between hundreds of services that need to communicate between them and

handling millions of requests from clients having to provide responses as fast as possible led the

programming community to achieve such strategies that allow MSA systems to be more

maintainable, trustable, error-free, and flexible. Microservices can then provide the benefits of

scalability that every system is after.

85

Annex B – Value analysis
Value analysis

This chapter emphases on the value that is projected with Jolie, by means of the opportunity

identification and analysis is possible to obtain a better overview in which market Jolie fits, then

using the Analytic Hierarchy Process (AHP) method is compared Jolie with other programming

languages and which one is the better decision, lastly a more business focused approach is done to

evaluate Jolie in terms it’s proposed value, in which points it shines and which ones is not that great.

Opportunity identification

As a new programming language, to enter the market for the industry and developers to embrace it

is not easy. There are an immense number of languages already in use for various types of

requirements. Jolie has particularities that can make it fit in and one needs to think of it as a service-

oriented programming language so if this type of languages become more and more popular instead

of frameworks the language might have a change in the market for wide adoption of it, but this is a

slow process.

The key for success in the market and developer usage of Jolie is being really purpose specific and at

the same time providing some benefits over the frameworks that fulfil the same purpose.

Microservices always emerge the word complexity with them, and Jolie can be the solution for that.

Thus, if the programming community and industry starts to see the advantages of Jolie in practice

and not only in the academia and research probably Jolie will have a good position in the

microservices development space.

If one decides to use Jolie to build a MSA system several benefits can be reached like:

• Codebase easy to read and understand as Jolie code is formal

• Support for programming of protocols and workflows that are not natively supported by

mainstream languages

• No need to change behaviour of services when service communication changes

• Deep integration between language and microservice technologies

• Allows one to clearly understand how a service can be invoked, and which services it

requires by just reading the code

86

• Allows the focus to be shifted into architecture and model of the system

• Reduced gap between model and code

Opportunity analysis

After identified an opportunity is of extreme importance to assess the opportunity and analyse it to

confirm the worth if it’s worth pursue. Thus, to confirm the value of the opportunity there is the

need of additional information to transform the opportunity identification into specific business and

technology opportunities. All the information can be obtained with extensive technology and

marketing assessments like groups, market studies, and/or scientific experiments.

Information technology never stops evolving as new trends will reach top market growth in the

future like ubiquitous computing, Internet of Things, datafication or big data and artificial

intelligence [53]. Thus, as being technologies that require a lot of the features that microservices

provide like scalability and agility. It can be seen as an even more promising world for microservices

programming.

To analyze this opportunity three assessments are done: market, customers, and competitors. The

market is assessed doing a detailed description of the market segment, showing why it represents a

great opportunity, this is done providing a market size analysis, growth rates, and market share. For

customers the assessment is done by determining what major customer needs are not being met by

current solutions. The competitor’s assessment determines who the major competitors are in the

identified market segment and how to gain advantage over them [77].

Market

The areas of industry where microservices has more research perspective are Cloud, Internet of

Things and mobile oriented technology as showed in [4], [5]. Thus, there must be analysed the

market share of all these three areas to have a better perception if the opportunity is worth

pursuing.

87

Figure 22 – Market share prediction for cloud, IoT and mobile between 2020 and 2027/2028 [78]–
[80]

As Figure 22 shows the grow of these three sectors will be super high as predictions suggest. Cloud

and mobile areas will grow pretty much the same amount, but Internet of Things will explode

beating mobile and cloud market share combined. This is an excellent sign for Jolie since

microservices will be even more needed than ever as they already are in these sectors.

Customers and competitors

To place Jolie against his major competitors in the microservices programming world one must

consider the Jolie biggest opponents and the current market leaders in providing solutions to

develop microservices. Since frameworks are the most used type of technology provided to the

market the ones identified in [47] refer that the most used ones are Spring Boot and ASP.NET.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Cloud Computing Internet of Things Mobile

Market share prediction for Cloud, IoT and Mobile (in
billion USD)

2020 2027-2028

88

These competitors have all kinds of customers in the technology field like the technologic giants that

moved to MSA systems [1]–[3] as being the biggest since their systems serve millions and millions of

users. To be more likely to get these customers Jolie needs to appeal to his strong points and

perhaps make more promotional content showing the difference between all the frameworks and

the Jolie programming language. Customers might not even know what they can gain and expect

using a formal language for microservices programming since this is a quite new approach for it.

The opportunity here is to provide the biggest value customers want: reduce complexity together

with all the challenges brought with them as mentioned in 2.1.2 and reduce costs by providing an

easier way to manage and integrate all the services and not needing developers with high-level

experience [27] making them easy to read and develop.

Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process known as the AHP method was created by Thomas L. Saaty in 1980.

AHP is a multicriteria decision and analysis method that uses numerical techniques to help decision

makers choose an option from a discrete set of alternatives. This process is carried out based on

crossing the alternatives with the existing criteria. Is important that the criteria get structured in

such way that all the different criteria get the same level of importance.

This method allows for the use of qualitative and quantitative methods in the process evaluation.

Main key of the method is to divide the decision problem in hierarchy levels allowing for better

comprehension and evaluation.

Problem

The AHP method provides help in deciding something. But, to do so the problem/question needs to

be declared explicitly and directly. This AHP will compare four microservice specific oriented

programming languages: Jolie, Ballerina, WS-BPEL and CAOPLE. Thus, the question can be defined as

- which service-oriented programming language to use?

Criteria

Some criteria used to evaluate each one of the programming languages and choose the best one

accordingly.

• Documentation – the amount of documentation each language has on various web

resources

89

• Community support – GitHub project stars can help to decide the biggest community of the

programming language

• Performance – Here a hello world program performance can be done to measure the fastest

language

• Versatility – What Jolie allows to do more than Ballerina and other languages? With this we

can see which language is more versatile

Alternatives

For the alternatives, it will be used Jolie, Ballerina, WS-BPEL, and CAOPLE as they are the most used

service-oriented programming languages in the community accordingly to [13], [34], [81], [82].

These programming languages are the ones that are on the frontier of the microservices, and cloud

technology-focused programming languages.

The data for each alternative in relation to the criteria is searched in different places, namely: for

documentation is searched on the programming languages’ official websites and other

documentation sources that appear on a Google search, even without official support from the

programming language development team. For community support, the GitHub repositories of the

languages are consulted if they exist (WS-BPEL and CAOPLE do not have an official GitHub

repository) and the stars of the repositories set the scale for community support criteria.

Performance is one of the least critical measures of the thesis since service-oriented programming

languages are still emerging into the industry and literature, and because that do not dictate the full

potential of performance in the programming language, performance is a measure outside of the

programming language spectrum alone and other variables come into account like network latency,

the architecture of the system, and things outside of the language control. Versatility approached

with the data existing in the industry and literature about the programming languages and what they

can provide in terms of different design patterns implementations, architectural styles, ways of

programming, and any other important characteristics and features of the language, the one that

has more features and allows for more diversity has better versatility.

Process

To start the process there is the need to define the problem and structure it in a hierarchical

diagram. This is done by decomposing the problem/decision into a hierarchy, composed of an

objective, criteria, and alternatives.

Figure 23 shows the hierarchy levels defined for the decision problem:

90

• General decision objective statement

• Criteria associated with the decision problem

• Available and more suitable alternatives

Figure 23 – Hierarchy tree of the AHP method

Now that the tree is completed the next phase consists in establishing priorities among each level of

the criteria using the Fundamental Scale developed by Thomas L. Saaty represented in the Table 12.

Table 12 – Fundamental scale [60]

Level of importance Definition Explanation
1 Equal importance Two activities contribute equally

to the objective
3 Moderate importance of one

over another
Experience and judgment
strongly favour one activity over
another

5 Essential or strong importance Experience and judgement
strongly favour one activity over
another

7 Very strong importance An activity is strongly favoured,
and its dominance
demonstrated in practice

9 Extreme importance The evidence favouring one
activity over another is of the

91

highest possible order of
affirmation

2, 4, 6, 8 Intermediate values between
the two adjacent judgments

When compromise is needed

Reciprocals If activity i has one of the above numbers assigned to it when
compared with activity j. then j has the reciprocal value when
compared with i

Rationales Ratios arising from the scale If consistency were to be forced
by obtaining n numerical values
to span the matrix

These criteria comparison can be seen in Table 3.

Table 13 – Comparison of criteria

 2.1. 2.2. 2.3. 2.4.
2.1. 1 3 2 1
2.2. 1/3 1 1/2 1
2.3. 1/2 2 1 1/3
2.4. 1 1 3 1
SUM 2 5/6 7 6 1/2 3 1/3

To obtain the relative priority of each criteria it is necessary to:

a) Weight each criteria in relation to the problem/question

b) Obtain the normalized matrix values, done by dividing each matrix value by the total of the

respective column

c) Obtain the priority vector, done by calculating the arithmetic mean of the values of each row

of the normalized matrix

Dividing each value by the SUM value present on Table 13 at the end of the column. Normalized

matrix is presented in Table 13. Next the priority vector containing all the relative priority of each

criteria can be obtained. Table 14 presents the relative priority percentages.

Table 14 – Normalized matrix with relative priority

 2.1. 2.2. 2.3. 2.4. Relative priority
2.1. 0.3529 0.4286 0.3077 0.3000 34.73%
2.2. 0.1176 0.1429 0.0769 0.3000 15.94%
2.3. 0.1765 0.2857 0.1538 0.1000 17.90%
2.4. 0.3529 0.1429 0.4615 0.3000 31.43%

92

After the relative priority the AHP method instructs to calculate the Consistency Ratio (CR) to

measure how much the judgements where consistent when compared to big samples of random

judgements. Thus, checking if the level of importance of each criteria is not done randomly. If the CR

is greater than 0.1 the judgments made by the decision maker are not reliable because they are too

close to the comfort of randomness.

The obtained CR value is 0.09146086 which is less than 0.1, therefore the obtained results do not

present consistent values.

After the CR value is obtained there are left three more phases for the process to be completed. The

construction of the comparation matrix peer to peer for each criteria as well as obtain the

normalized matrices for each alternative considering the criteria are defined on the Attachment A.

In the Attachment A are all procedures for the construction of the comparison matrix and for the

determination of the relative priority of each criteria that must be carried out again, observing now

the relative importance of each of the alternatives that make up the hierarchical structure of the

problem in question. Then one obtains the composite priorities of the alternatives, multiplying the

previous values and those of the relative priorities, obtained at the beginning of the method. After

this the choice of the alternative is made.

Table 15 – Alternative composite priority and choice

 2.1. 2.2. 2.3. 2.4. Best alternative
3.1. 0.4774 0.2765 0.2786 0.5408 42.9690
3.2. 0.2969 0.5739 0.4690 0.3212 37.9471
3.3. 0.1810 0.1141 0.1484 0.0884 13.5381
3.4. 0.0448 0.0355 0.1040 0.0497 5.5458

Based on the AHP process, the Jolie programming language is the best service-oriented

programming language solution to develop microservices followed by Ballerina, WS-BPEL and

CAOPLE respectively.

Value proposition

CANVAS model

The business model is the way a company is structured to generate and capture value. Every

company needs to know how to combine the means to deliver value to the relevant stakeholders

and capture that value to the organization [83].

93

For this purpose, a practical and very system focused way to do it is to use a Business Model CANVAS

that creates a template board to overview the business, it is important to not confuse the business

model with product or service. Figure 24 portraits the model developed for the Jolie programming

language.

Figure 24 – Business model CANVAS

S.W.O.T. analysis

S.W.O.T. (strengths, weaknesses, opportunities, and threats) analysis is a process where a

framework is used to evaluate a company, product, or service at a competitive level. Allows for a

better strategic plan and decisions of the future. It also assesses the internal and external factors

that can provide an overview of the potential of a product or service [84].

The S.W.O.T. analysis here is used to provide an overview of the Jolie programming language in

terms of is current and future positive aspects and negative aspects. Provides a better perspective

94

that can be retained about the programming language. Figure 25 presents the complete Jolie

S.W.O.T. analysis.

Strengths Weakness

• Jolie code is simple
• Supports programming of protocols and

workflows that are not natively
supported by mainstream languages

• Changes on the communication of a
service when environment changes
without changing the behaviour of the
service

• Deep integration between language and
microservice technologies

• Allows one to clearly understand how a
service can be invoked, and which
services it requires by just reading the
code

• Monitoring microservices is not easy
using Jolie

• Security is a problem with Jolie
specially when communicating with
external services

• Performance cost by using such a
formal language

Opportunities

Threats

• Allow to build a complete ecosystem
based on a programming language

• Compete against other tools for service
discovery, load balancing, circuit
breakers, API gateways

• Consolidation and wide adoption from
the software development community
of new programming paradigms and
architectures

• Implementation of the formal language
approach used by Jolie by other
languages

• Appearance of more languages that
want to reduce the gap between
model and code and ease the
development of MSA using MDE
approaches like AjiL [85], JHipster [86]
or Context Mapper [87]

Figure 25 – Jolie S.W.O.T. analysis

