

SCHOOL OF

MANAGEMENT AND

TECHNOLOGY

POLYTECHNIC OF
PORTO

M

Master

Engenharia Informática

R
ic

ar
d

o
 A

n
d

ré
 A

ra
ú

jo
 C

o
rr

e
ia

.
IIo

T
D

at
a

N
es

s:
 F

ro
m

 S
tr

ea
m

in
g

to
 A

d
d

ed
 V

al
u

e

 IIoT Data Ness: From Streaming to

Added Value
Ricardo André Araújo Correia

10/2022

SC
H

O
O

L
O

F

M
A

N
A

G
EM

EN
T

A
N

D

TE
C

H
N

O
LO

G
Y

P
O

LY
TE

C
H

N
IC

 O
F

P
O

R
TO

IIo
T

D
at

a
N

e
ss

: F
ro

m
 S

tr
ea

m
in

g
to

 A
d

d
ed

 V
al

u
e

R
ic

ar
d

o
 A

n
d

ré
 A

ra
ú

jo
 C

o
rr

e
ia

M
A

ST
ER

EN
G

EN
H

A
R

IA
 IN

FO
R

M
Á

TI
C

A

1
0

/2
0

2
2

M

		

	 	 	

	
	
	
	
	

SCHOOL OF
MANAGEMENT AND
TECNOLOGY
POLYTECHNIC OF
PORTO

	

	
	
	
	
	

	

M

	 	
MASTER

ENGENHARIA INFORMÁTICA	

	 IIoT Data Ness: From Streaming to Added Value

Ricardo André Araújo Correia

Cristóvão Dinis Polido Sousa

Davide Rua Carneiro

	

	

Acknowledgments

I want to thank all the people that supported me during the development of this work, because without

you I’m certain that it wouldn’t be possible.

I’ll start by thanking both Professor Cristovão Sousa and Professor Davide Carneiro for the countless

hours that was spent during the orientation. Thank you for believing in my potential and giving me all

the support to develop this project. You’re both outstanding role models.

At the personal level, I would like to start by thanking my beloved wife, that stood tirelessly by

my side while I spent the days on end in the computer working on this project. Thank you for your

partnership, strength and comfort that you have provided me.

I would also like to thank my friends Carlos and Pedro that have played a crucial part in keeping me

motivated throughout the development of this work.

Lastly, I would like to thank all of my colleagues that quickly became friends in the companies I

worked at, and cheered my efforts as a worker student. Thank you for contributing to my professional

growth. A special thanks to André Duarte, who gave me the final push in motivation to finish this project.

Thank you all!

I

Abstract

In the emerging Industry 4.0 paradigm, the internet of things has been an innovation driver, allowing for

environment visibility and control through sensor data analysis. However the data is of such volume and

velocity that data quality cannot be assured by conventional architectures. It has been argued that the

quality and observability of data are key to a project’s success, allowing users to interact with data more

effectively and rapidly. In order for a project to become successful in this context, it is of imperative

importance to incorporate data quality mechanisms in order to extract the most value out of data. If this

goal is achieved one can expect enormous advantages that could lead to financial and innovation gains

for the industry. To cope with this reality, this work presents a data mesh oriented methodology based

on the state-of-the-art data management tools that exist to design a solution which leverages data quality

in the Industrial Internet of Things (IIoT) space, through data contextualization. In order to achieve this

goal, practices such as FAIR data principles and data observability concepts were incorporated into the

solution. The result of this work allowed for the creation of an architecture that focuses on data and

metadata management to elevate data context, ownership and quality.

Keywords— Data observability, Data quality, FAIR data, Data Mesh, Data Fabric, IIoT

II

Resumo

O conceito de Internet of Things (IoT) é um dos principais fatores de sucesso para a nova Indústria 4.0. Através de

análise de dados sobre os valores que os sensores coletam no seu ambiente, é possı́vel a construção uma plataforma

capaz de identificar condições de sucesso e eventuais problemas antes que estes ocorram, resultando em ganho

monetário relevante para as empresas. No entanto, este caso de uso não é de fácil implementação, devido à elevada

quantidade e velocidade de dados proveniente de um ambiente de IIoT (Industrial Internet of Things). Outro

fator que também contribui para este possı́vel cenário de insucesso é o facto de os sensores implementados serem

sensı́veis a erros de dados. Exemplos incluem dados corrompidos, dados não enviados, outliers, duplicados, entre

outros. Muitos estudos indicam que fatores como a qualidade de dados e observabilidade de dados são as principais

causas de sucesso no projeto de uma arquitetura de dados. Por estas razões, convencionais arquiteturas de dados não

são suficientes para o desenvolvimento destes casos, e o requisito de uma metodologia baseada nas mais recentes

arquiteturas com um maior foco na gestão de qualidade de dados e capacidades de observabilidade é cada vez mais

inerente. Neste trabalho exploramos as mais recentes arquiteturas de dados, como Data Fabric e Data Mesh, para

a construção de um sistema que consiga a gestão de uma elevada quantidade de dados de forma escalável, tendo

em conta arquiteturas de referência já existentes, que contam com caracterı́sticas como design modular, adaptável,

flexı́vel e centrado em desempenho. A construção desta metodologia começou pela criação de um Data Lake

que consumia todos os dados provenientes do ambiente e, posteriormente, estes seriam distribuı́dos e processados

por zonas diferentes do Data Lake por pipelines de processamento. A próxima iteração resultou na criação de

uma camada responsável pela gestão de metadados, com inspiração nos princı́pios de arquitetura do Data Fabric.

Esta nova camada permitiu um melhor controlo sobre a qualidade dos dados, fornecendo contextualização dos

dados recolhidos por processos semânticos. A última iteração concebida foi feita com inspiração no padrão de

arquitetura do Data Mesh, colhendo de benefı́cios resultantes de tratar os dados como um produto. São muitos os

estudos na vertente de qualidade de dados, incluindo em ambientes de IIoT. Para estudo deste problema é preciso

definir o conceito de dados e como se interliga com o de qualidade de dados. A definição de dados engloba os

valores que são recolhidos continuamente através dos sensores e de outros pontos de integração do ambiente, assim

como o contexto à volta destes valores, como, por exemplo, a maquina em que o sensor está, há quanto tempo o

sensor for calibrado, os limites superiores e inferiores, entre outros. Parte deste contexto é composto por algumas

métricas referentes a caracterı́sticas de observabilidade de dados, tais como volume, distribuição, esquema, lineage

e freshness. Estas caracterı́sticas fornece ao utilizador uma visibilidade sobre não só os dados, mas também,

sobre os processos com interferência sobre esses dados, podendo potencialmente identificar pontos de falhar ou

ineficácia. Para além da observabilidade de dados, um dos grandes pontos de discussão no que toca a arquitetura

de dados é capacidade da arquitetura para reutilizar e integrar os dados que coleta. Por esta razão foi desenvolvido

um conjunto de princı́pios, denominados FAIR data principles, cujo objetivo é fornecer uma diretriz para alcançar

este propósito. O primeiro princı́pio apresentado é a encontrabilidade dos dados, que indica que os dados devem

estar visı́veis na plataforma com metadados de apoio a esta tarefa. O segundo princı́pio é a acessibilidade dos

dados, que dita que depois dos dados serem descobertos pelo utilizador, estes têm de ser facilmente acedidos,

com padrões estabelecidos de comunicação. Interoperabilidade dos dados é o terceiro ponto destes princı́pios, que

visa a integração de diferente conjuntos de dados entre si, para elevar o valor obtido dos dados. Em último lugar,

III

a reutilização dos dados é um ponto fundamental, que permite aos utilizadores processarem os dados múltiplas

vezes para diferentes objetivos sem terem de comprometer os dados originais. A arquitetura desenhada toma

como inspiração a arquitetura de Data Mesh, e foca-se nos pontos centrais de qualidade de dados, nomeadamente

os princı́pios FAIR e observabilidade de dados. Com esta visão foi desenhado um sistema que usa tecnologias

atuais. O primeiro componente desenvolvido é denominado Context Broker e funciona como a camada de gestão

de metadados do ambiente, contendo informação de contextualização sobre os dados. Este componente toma

vantagem da tecnologia de NGSI-LD, e usa Smart Models para a modelagem de dados. Seguidamente, o Data

Gateway foi desenhado para consumir os dados que chegam continuamente do ambiente, fornecendo-os a uma

série de serviços para poderem ser processados. Este componente foi desenhado com a tecnologia de Apache

Kafka. O componente responsável pelo processamento de dados são as Processing Pipelines, que recolhem os

dados de uma subdivisão do Data Gateway e que fazem uma serie de transformações aos dados. Apache Beam

foi a ferramenta escolhida para este componente e toma uso do motor de processamento de Apache Flink. As

Processing Pipelines foram desenhadas para serem reutilizadas entre processos. Por último, Apache Druid tomou

o papel de auxiliar na visualização de descobrimento de dados na plataforma.

Palavras-chave— Observabilidade de dados, Qualidade de dados, FAIR data, Data Mesh, Data Fabric, IIoT

IV

Contents

1 Introduction 1

1.1 IoT: A interconnected world . 1

1.2 Industry 4.0: A emerging revolution . 2

1.3 The industrial internet of things . 3

1.4 Big Data: myths and facts . 4

1.5 The need for data quality . 5

1.6 Motivation . 6

1.7 Objectives . 7

1.8 Structure . 7

2 Architectures for data management 9

2.1 Data Warehouse . 9

2.2 Data Lake . 10

2.3 Data Fabric . 12

2.4 Data Mesh . 13

3 Data Observability Challenges within IIoT data management 17

3.1 Data observability . 17

3.2 Data (re)usability principles - FAIR principles . 17

3.3 Definition of data . 18

3.3.1 Data quality definition . 21

3.4 Data act . 22

4 An intelligible Data Mesh based architecture for IIoT environments 23

4.1 Context Broker . 25

4.1.1 NGSI and Orion . 26

4.1.2 Smart Models . 26

4.2 Data gateway . 27

4.2.1 Apache Kafka . 27

4.3 Processing pipelines . 28

4.3.1 Apache Flink . 35

4.3.2 Apache Spark . 37

4.3.3 Apache Beam . 39

4.4 Storage tools . 39

4.4.1 Apache Druid . 40

4.4.2 MongoDB . 43

4.5 Other components . 44

V

5 Use case 45

5.1 Applied definition of data . 45

5.2 Pipeline ontology . 48

5.3 The flow of data . 53

6 Conclusion 60

6.1 Future work . 60

References 62

VI

List of Figures

1 Industrial revolutions represented by Simio LLC, in Cision [1] 3

2 Digital Twin representation . 3

3 Industrial automation & control systems (IACS or ICS) example implementation overview, by

Trend Micro [2] . 4

4 Data downtime consequences by Moses [3] . 6

5 Data Warehouse architecture by IBM [4] . 10

6 Data Lakehouse architecture compared to Data Lake and Data Warehouse by Databricks [5] . . . 13

7 Data Fabric architecture by Noel Yuhanna [6] . 14

8 Data as a product representation by Dehghani [7] . 15

9 Internet of Things (IoT) data quality threats by Karkouch [8] . 21

10 Data Ness Architecture . 23

11 Data Ness technologies . 25

12 Apache Kafka cluster illustration, designed by Qlik [9] . 29

13 Decoration pipelines examples . 30

14 Quality assessment pipelines examples . 31

15 Filtration and alerting pipelines examples . 32

16 Batch processing pipelines processing . 33

17 Pipeline systems example . 34

18 Pipeline systems role in the data flow . 34

19 Flink architecture [10] . 36

20 Bounded and unbounded streams [10] . 36

21 Watermark visualization by Cloudera [11] . 37

22 Stateful Computations over Data Streams by Flink [10] . 37

23 Spark cluster architecture [12] . 38

24 Apache Beam overview by Data Science Central [13] . 40

25 Druid chunk and segment architecture [14] . 41

26 Druid architecture [14] . 42

27 MongoDB architecture by Mungekar [15] . 43

28 Dataset transformation flow . 45

29 Device to device measurement relation . 47

30 Energy reading accumulator data flow . 54

31 Predicitive maintenance pipeline system data flow . 59

VII

List of Tables

1 Data Warehouse compared to Data Lake by Amazon Web Services (AWS) [16] 11

2 Data mesh principles by Dehghani [7] . 16

3 Sample of the result dataset from the Spark job . 46

4 Pipeline model specification . 50

Listings

1 Example pipeline model . 51

2 Energy reading aggregation pipeline . 53

3 Time to produce output pipeline . 54

4 Predictive maintenance pipeline . 55

5 Email alert pipeline . 57

6 Push notification alert pipeline . 57

VIII

Acronyms

API Application Programming Interface. Glossary:

AWS Amazon Web Services. 11, 12, 26, VIII

BI Business Intelligence. 11

CBKA Context Broker Kafka Adapter. 44

CEP Complex Event Processing. 32, 37

CPS Cyber-Physical Systems. 3

CRM Customer Relationship Management. 12

DAG Directed Acyclic Graph . 39, Glossary: DAG

DoD Definition of Data. 18

ETL Extract Transform Load. 10, 24, 28, 29, 32, 33

FAIR Findable Accessible Interoperable Reusable. 7, 17, 23, 25, 60, II

HDFS Hadoop Distributed File System . 42, Glossary: HDFS

HTTP Hypertext Transfer Protocol. 48, 61

ICS Industrial Automation & Control Systems. 3, 4, VII

IIoT Industrial Internet of Things. 1, 3, 4, 7, 9, 17–19, 21, 23, 27, 37, 40, 45, 60, II

IoT Internet of Things. 1–5, 11, 12, 19–22, 26, 45, 53, VII

ISO International Organization for Standardization . 21, Glossary: ISO

JSON JavaScript Object Notation. 5, 43, 51

JSON-LD JavaScript Object Notation Linked Data. 26

JVM Java Virtual Machine. 42

ML Machine Learning. 37

NGSI Next Generation Service Interfaces. 26, V

NGSI-LD Next Generation Service Interfaces Linked Data. 26

NoSQL Not Only SQL. 43

RDD Resilient Distributed Datasets. 38

IX

S3 Simple Storage Service . 42, Glossary: S3

SAO Stream Annotaion Ontology. 47, 48, 60

SCADA Supervisory Control and Data Acquisition. 3

SDK Software Development Kit. 39

SQL Structured Query Language. 12, 36, 38

URL Uniform Resource Locator. 26

XML Extensible Markup Language. 5

Glossary

DAG A set of actions can be conceptually represented by a directed acyclic graph (DAG). A graph, which is

visually represented as a collection of circles with some of them connected by lines to indicate the flow

from one action to the next, is used to show the sequence of the activities. Every circle is referred to as a

”vertex,” and every line is referred to as a ”edge.” Each edge must necessarily reflect a single directional

flow from one vertex to another since ”directed” implies that each edge has a clearly defined direction. The

term ”acyclic” refers to a graph in which there are no loops, or ”cycles.”. IX

HDFS HDFS is a distributed file system that handles large data sets running on commodity hardware. It is used

to scale a single Apache Hadoop cluster to hundreds (and even thousands) of nodes. HDFS is one of the

major components of Apache Hadoop, the others being MapReduce and YARN. [17]. IX

ISO ISO is a nongovernmental organization that comprises standards bodies from more than 160 countries, with

one standards body representing each member country. ISO members collaborate to develop and promote

international standards for technology, scientific testing processes, working conditions, societal issues, and

more. Documents detailing these standards are then sold by ISO and its members.. IX

S3 Amazon Simple Storage Service (Amazon S3) is an object storage service that offers industry-leading scala-

bility, data availability, security, and performance. Customers of all sizes and industries can use Amazon S3

to store and protect any amount of data for a range of use cases, such as data lakes, websites, mobile appli-

cations, backup and restore, archive, enterprise applications, IoT devices, and big data analytics. Amazon

S3 provides management features so that you can optimize, organize, and configure access to your data to

meet your specific business, organizational, and compliance requirements. [18]. X

X

1 Introduction

In the recent past, Internet of Things (IoT) has emerged as a revolutionary paradigm for connecting devices and

sensors. This allows visibility and automation of an environment, opening the path to industrial process optimiza-

tion which might lead to improved efficiency and increase flexibility [19]. When that paradigm was applied to the

industry world it became the fourth industrial revolution [20], seeking to improve efficiency and provide visibility

over not only the machines and products but also the whole value chain. The benefits of this new age of industrial-

ization, also known as Industry 4.0, has been enabling small, medium, and large companies to improve their ways

of working, thereby increasing quality and quantity of the product and services while reducing costs [21].

The adoption of IoT in the industry has been steadily increasing not only vertically, but also horizontally. Verti-

cal growth is driven by adding all kinds of sensors, wearables, and actors, estimating the market to grow to 102.460

million USD by the year 2028 [22]. This is because more clients and business departments are interested in the

data available. In contrast, horizontal growth has been stimulated by the integration of multiple companies, pro-

ducing information to the same data repository [19, 23, 24]. With machine learning, heavy computation processes,

and powerful visualization tools, the data collected is empowered to enhance process efficiency and predictability

across workstations, resulting in a massive increase in productivity and lower costs [25, 26]. However, without

a scalable architecture in place to extract and improve data quality, the data gathered within the environment be-

comes an asset difficult to convert into value. This leads to what data scientists describe as a Data Swamp [27]. The

quality of data extracted is a crucial factor in the success of an Industrial Internet of Things (IIoT) environment

since the data obtained will heavily contribute to key business decisions and even automated actions within the

production floor [24, 28]. It is possible that such scenarios could result in monetary losses or even security risks

if not handled correctly. For this reason, one cannot rely solely on the sensors to produce quality data, since many

of them are pruned to failure [29, 30]. Instead, a resilient architecture capable of identifying faulty data, man-

aging data quality metrics, and ensuring confidence in the englobing environment must be implemented. Adding

quality restrictions to the gathered data allows users to promote a much more productive communication between

machines, processes, people, and organisations.

One of the most significant aspects of data quality is the observability level that can be inferred from it.

[31, 3]. This is especially relevant when the data is getting more and more complex due to transformations and

relationships. For this reason, an architecture designed to cope with IIoT demands must include a feature to provide

data observability at a large scale, thus providing much-needed insights into the data.

To understand the motivation behind this work, it is necessary to first examine the world of the fourth industrial

revolution. This is how it is reshaping the manufacturing processes to become more efficient, flexible and robust.

It is also critical to contextualize Big Data meaning and what constitutes a Big Data problem. Finally, a brief

explanation about why Data Quality is an undinable key driver for successful data management tools must be

provided.

1.1 IoT: A interconnected world

The term Internet of Things, commonly abbreviated as IoT, represents an emergent paradigm that envisions a

global network of machines and devices fully interconnected with each other [32]. This advancing technology has

1

proven to have multiple beneficial results when integrated either at the personal or professional level [33].

In the 1980s, the vision of IoT was presented with the objective of integrating technology more deeply into

everyday life [34], and now it is clear that this vision is coming to life on a daily basis. At the individual level,

IoT has been playing a critical role in areas such as e-health, smart houses and smart learning. The applications

at the professional and enterprise level are far more extensive, playing a key role in smart supply chain [35],

transportation [36], remote monitoring [37], agriculture [23], smart cities [38], healthcare [39].

Within this context, both the amount of things as well has its types, raging from reading sensors, to entire

buildings, have been growing immensely, estimating a more than 29 billion IoT devices in 2030 according to a

recent study [40], almost tripling since 2020 with around 9.7 billion. In addition, this study shows that IoT devices

used in the industry, such as electricity, gas, steam, and A/C, water supply, waste management, retail and wholesale,

transportation and storage, and government, will see tremendous growth, projecting the addition of more than 8

billion devices. The reasons for this growth can be attributed to the improvements IoT applications have achieved

within environments. This paradigm offers advantages such as real-time visibility [32], automated tasks [41],

and predictive maintenance [42]. This concept has been elevated once again in light of advancements such as

machine learning [43], blockchain [44], virtual reality [45], 5G [46], data security and privacy [47], cloud-native

applications [48] and hyperautomation [49].

1.2 Industry 4.0: A emerging revolution

The industrial world has seen multiple revolutions that continuously increase production values and efficiency. The

first revolution was marked by the invention of the steam engine, which allowed the transition to manufacturing

processing, using coal has the main energy source, and trains as the main means of transportation. The second

industrial revolution began with the invention of the internal combustion engine. This led to an era of rapid

industrialization with mass production capabilities, with the help of electricity and oil. The third revolution was

started with the integration of electronic components and information technology to automate production on a large

scale [20].

The industry 4.0 was first proposed in 2011 as the next big step in developing the German economy [50], and is

now known as the latest industrial revolution. This new revolution is building on the third evolution, elevating the

digital environments previously constructed, and blurring the line between digital, physical and biological spheres

[20]. Figure 1 illustrates the iterations between the different revolutions.

The further evolution of automation in factories is enabled by the advancement of miniaturization, digitaliza-

tion and networking, enabling the creation of Cyber-physical systems where the material and digital levels merge.

It is at this point that concepts such as Digital Twin emerge. Digital twin represents the process in which a real-

world object is mirrored into a digital counter-part, including all the communications between them [51, 52]. With

artificial intelligence, this method can be utilized in simulations in order to improve object behavior or prevent fail-

ure scenarios in near real-time. This technology can also be used to monitor and control the physical environment

remotely [53]. Figure 2 represents a standart implementation of the digital twin concept and how it interacts with

the physical space

2

Figure 1: Industrial revolutions represented by Simio LLC, in Cision [1]

Figure 2: Digital Twin representation

1.3 The industrial internet of things

One of the main drivers of Industry 4.0 is the integration of the concept of IoT within the industrial space. This

integration results in the industrial internet of things, commonly abbreviated to IIoT [21]. This integration allows

for the creation of digital twins and eventually Smart Factories [54] through the creation of Cyber-physical sys-

tems (CPS). CPS can be defined as “a system comprising a set of interacting physical and digital components,

which may be centralised or distributed, that provides a combination of sensing, control, computation and net-

working functions, to influence outcomes in the real world through physical processes” [21]. The implementation

of sensors in the whole value chain, from the factory to the end customer, enables comprehensive visibility of the

full environment, providing a general overview of the value-chain and identifying efficiency and probable failure

points. Furthermore, such technology may also allow for automatic control, with artificial intelligence systems

[49], which could alleviate the pressure of the hierarchical level of the industry [54], as well as manual remote

control of the environment. The foremeantioned processes of automatic and manual control and visibility across

the environment are supported by Industrial automation & control systems (IACS or ICS) and Supervisory control

and data acquisition (SCADA) [21]. Figure 3 presents an example implementation of an ICS.

3

Figure 3: ICS example implementation overview, by Trend Micro [2]

The IIoT vision is one where smart connected assets operate as a part of a larger system that elevates man-

ufacturing in smart factories [55] with or without human intervation [56], allowing for an network of things that

improves visbility, automation and efficiency, functioning as one of the pillars for the fourth industrial revolution,

knonw as Industry 4.0.

1.4 Big Data: myths and facts

Big Data has been a recurring subject between researchers and companies. While there are some references to

this contested subject as early as the mid nineteens [57] with some contributions by NASA scientists [58], some

researchers defend that this has been building up since 1944 [59], hence, this trend has become more and more

popular over the years due to the requirements that emerged with the evolution of many environments like those of

IoT [60]. Nonetheless small and medium enterprises have chased this new trend seeking to grasp all the advantages

advertised [27]. There are many cases in which companies, after investing a large amount of money in a Big Data

solution, were not successful in getting their investment back. This might be a result of a lack of understanding of

what this concept represents and how it can be implemented. To mitigate such a possibility a clear definition of the

term is required.

Typically, big data consists of datasets whose size and structure exceed the capabilities of traditional comput-

ing tools (databases, software, etc.) for data collection, storage, and processing in a reasonable amount of time

and effort. Additionally, data can be structured, semi-structured, and unstructured which makes it impractical to

manage and process them effectively in traditional ways [61]

It was Laney who was one of the first to introduce the concept of Big Data ”Vs”[62], which are widely used

among researchers[60, 61, 63].

4

Accordingly, the so-called Big Data Vs stands for:

• Volume - This represents the size or magnitude of the data. In Big Data’s context, the numbers for this

metric are around multiple terabytes and petabytes. As of today, reports show that 4 petabytes of data are

created daily on Facebook. By 2025, it’s estimated that 463 exabytes of data will be created each day

globally [64]. A large slice of this number is coming from IoT environments, which were expected to have

doubled since 2016, multiplying the generated data.

• Velocity - Representing the rate at which data is being generated, having a substantial impact on real-time

analytics. In Big Data environments data is constantly coming in, especially from IoT scenarios in which

sensors are recording values every millisecond.

• Variety - A also well-known characteristic of Big Data is the format in which data comes in. The produced

data contain logs and sensor data (e.g., from the Internet of Things), low-level customer behavior (e.g.,

Website click streams), social media, document collections (e.g., email and customer files), geo-location

trails, images, video and audio and other data useful for integrated analyses[61]. These data can come

in three forms: structured, semi-structured, and unstructured. Structured data represents the most reliable

sources of data like databases and CSV files, which have a strong structure that needs to be respected.

Secondly, semi-structured data is data that is bound to a defined structure that can be understood at the

human or machine level, but that structure is somewhat malleable. XML and JSON are some examples.

Lastly, unstructured data is data that is not restricted to any structure and is highly malleable. Social media

posts text, images, video, and audio are good examples of this, and reports reveal that it represents the larger

slice of volume in Big Data [60].

After the community well accepted these characteristics some more ”V”s were introduced: IBM introduced

”Veracity” representing the unreliability inherent in some sources of data; ”Variability” was introduced by SAS

referring to the variations of data flow rates; Oracle introduced ”Value”, representing the ”low-value density” of

Big Data, which means that there is considerably low value in raw produced data compared to its volume, however,

significant value can be created by analyzing a large number of data [60].

These characteristics are key to understanding what classifies a real Big Data use case. Without them, compa-

nies build inefficient solutions that require a monumental effort to extract some amount of useful information [27].

Many are real-life scenarios in which Big Data architectures have drained vast amounts of resources only to fail at

the end [65].

1.5 The need for data quality

Multiple studies show that data quality has been a key factor in determining the success rate of data platforms

[66, 67, 8, 68]. Assurance and visibility of data quality can provide many advantages in the project, allowing the

business to understand their data and how well it fits their patterns.

A simplistic definition of data quality states that it is the level of ”fit-for-use” of data. This means that data

needs to be relevant to the use case that is required, which requires both accuracy and freshness. The accuracy

dimension of the data defines how well the data consumed actually represents the real-life conter-part. If accuracy

5

is low, data is not reliable because the system is being fed data that do not correctly depitcs the actual situation,

thus rendering the solution useless. Freshness is the other main dimension of data which depicts how recent is the

data, representing the interval from which data was generated to the actual consumption. If the interval is within a

defined tolerance then data is usable, otherwise, data cannot be relied on since it does not fit into the time-sensitive

requirements of the business. In today’s world, data processing tools are either fast or irrelevant.

The lack of data quality management in a platform can lead to revenue lost, company reputation and even legal

risk [3].

Figure 4: Data downtime consequences by Moses [3]

In Figure 4, a representation of data downtime over time is depicted, representing the risks that the company is

exposed to when it doesn’t have a data quality management tool. A data downtime occurs when data being fed into

the company’s system is not healthy and lacking in quality. This scenario is particularly relevant because often the

data engineers who are responsible for the quality of the data are the last to know that the data that is being fed to

the system is not in proper shape. This is where the new concept of data observability is introduced to aid the data

quality management task in a company. In this concept, a set of monitoring categories for the data are proposed.

These categories are so that it can be assessed over time as to its quality and usability, thereby providing visibility

when data quality drops below a certain standard and is no longer trustworthy.

Data quality definition is not strictly confined to the health state of the data within the system, it also extends

to data contextualization characteristics [69]. Data needs to be understood so it can be repurposed, integrated and

accessible, or else the data does not live up to its full potential. Contextualization through semantics elevates the

data, depicting a more accurate picture of the world. Spatial and temporal correlations of the data, periodicity, and

data variations are all examples of this contextualization [8].

1.6 Motivation

The fourth industrial revolution has been proven to provide incredibly effective results for companies that are

willing to restructure their manufacturing process. The industrial internet of things has played a key role in this

transformation by providing real-time information to all interested parties, such as business owners, workers, and

machine processes. However, on the one hand, this paradigm offers a voluminous amount of raw data from

6

sensors, machines, transportation, people and processes, but on the other hand such data has consistently proven

that a scalable and quality-centric data management tool is needed to handle it. Most data management tools today,

do not offer direct data quality capabilities, rendering implementations in these environments inefficient.

A methodology that is based on the state-of-the-art data management tools, with the main data quality prin-

ciples defined at its core, and follows the existing reference architectures in the space could lead to an easier

transition to the new industrial revolution for medium small and micro enterprises.

1.7 Objectives

The purpose of this work is the development of a reliable and scalable methodology, that can be used to face

the highly complex data challenges that can be found in the Industrial Internet of Things applications, such as

data quality issues, lack of data context visibility and understanding, and scalability. Data quality and context

management through semantics needs to be the key focus of such a methodology, as well as observability patterns

and FAIR data principles. Furthermore, decentralized components, centralized infrastructure, resilient, accessible,

and observable data and metadata repositories, data ownership information, and scalable data transformation tools

are also specific requirements that must be implemented to assure the required capabilities.

The reference architectures of today [70, 71], must also be taken into account, so as to create a design that

is based on successful use cases in IIoT environments, incorporating features such as modular design, horizontal

scalability, adaptability, flexibility, and performance efficiency.

This work also aims to explore the data and data quality definitions, in order to understand their role in the

industry. In addition, it aims to understand how quality can be achieved through paradigms such as data observ-

ability.

Lastly, this paper must also explore the state-of-the-art data management tools, with the purpose of helping

establish a robust methodology capable of dealing with the data requirements above mentioned.

1.8 Structure

Section 2 explores the state-of-the-art data management tools and the differences between them. They are presented

in the order that they were studied and implemented over several iterations of the methodology. Each explains the

reasons why they were considered for the implementation and how it translated to the final solution.

In section 3 the importance and challenges of Data Observability is discussed. The topic explains how different

concepts relate to one another and how data quality is at the core of the discussion. There are also introductions to

the FAIR data principles, the data definition, categories of data observability, and the data act.

The architecture of this project is described in section 4, presenting the main ideas behind the structure and

the designed components. These components and respective technologies have their place justified in the overall

architecture and what benefits they provide. The inner workings of the technology and its contextualization are

presented accordingly.

Section 5 presents the use case that was chosen to test the methodology. Analysis of the use case and its data

is performed in order to determine how well it matches the target environment. In this section are also provided

examples for each section of the architecture as well as the overall flow of data inside the architecture.

7

Finally, in section 6 the proper conclusions are presented, along with the future work.

8

2 Architectures for data management

The interest in closing the gap between data and knowledge within IIoT has driven the design of multiple data

management architectures and patterns from early stages. Such designs were iteratively improved along the way,

splitting into very different architectures for very different use cases [72, 73]. These architectures have evolved

and can even be hybridized in certain environments. The main architectures that are most popular today are to be

presented and discussed in the following section.

The data collected from IIoT environments exhibits some Big Data characteristics that need significant effort

to be effectively utilized [73]. For this reason, in order to be successful in designing an IIoT data management and

gov- ernance solution it was necessary to analyse existing state-of-the-art architectures with focus on capabilities

to close the gap between data and knowledge. Due to the significant volume and heterogeneity of data within

these environments, the first strategy analyzed was the implementation of a Data Lake. Although the Data Lake

architecture does offer some interesting features that can be used to construct an efficient data management tool,

there are some requirements for data quality that this centralized data storage couldn’t easily fulfill. In order

to tackle these challenges such as metadata management, the Data Fabric architecture was examined. The final

iteration of the data management system was an evolution into a Data Mesh platform. This step emerged from the

data quality benefits that handling data as a product can offer. This path of iterations was driven by the search for a

data management architecture that prioritized data quality aspects of the data. The first step was to consider a large

centralized repository that handled all the data within the environment, allowing for data quality processes to be

applied to the data within. Then a series of services were created to interact with the consumed data and context

metadata. And finally, the last iteration allows for multiple features that improve data quality, interoperability,

observability, reusability and visibility.

2.1 Data Warehouse

One of the first data management systems to appear within the industry was the proprietary enterprise data ware-

house. This architecture was widely accepted in the past and it still can provide adequate results in the present

[74, 75, 76], it has been losing traction as a data management structure for more complex use cases such as IIoT

[77, 72, 78], since its focus on answering a priori questions, that force a delimited structure that must be followed,

and changed if something within the environment evolves and it does not offer real-time capabilities needed in

such cases [79]. ThoughtWorks has put implementations of this architecture on hold since 2014, stating that it has

a failure rate higher than 50%, due to demanding up-front data modeling that takes years to develop [80].

This architecture was designed primarily for easy query and analysis of transaction data from one or multiple

sources, allowing decision-makers to effectively support their choices about the business. For these reasons, the

data warehouse contains historical data, that will be presented to very few users for data exploration, being almost

exclusively a read-heavy architecture, not fit for real-time environment management.

The data warehouse architecture has a set of main characteristics that are to be noted, such as being subject

oriented, having integrated data, having a time variant, and being non-volatile [81]. Subject-oriented design refers

to the fact that data warehouses need to be designed around a specific topic. This improves the query efficiency

of the data and user understanding. However, this attribute requires the majority of the data to be discarded,

9

hindering a more broad view of the data on-demand. The integrated feature of the architecture touches on the

necessity of integrating multiple data sources in order to empower exploration. Nonetheless, this integration must

be carefully considered before the data warehouse can be implemented effectively. The time-variant attribute

of data warehouses refers to the ability to retain historical data to be queried. Lastly, the non-volatile aspect of

this architecture refers to the fact that when data is imported into the Data Warehouse it will not be changed by

operational and transactional data. The data inside the Data Warehouse can only be rewritten or added to through

large computing jobs, commonly known as ETL.

The data warehouse typical architecture and usage is depicted in figure 5.

Figure 5: Data Warehouse architecture by IBM [4]

2.2 Data Lake

The Data Lake is a massive centralized and scalable repository that contains a vast amount of data in its original

format and/or the result data from transformation to the native data [82] which needs to be analyzed by business ex-

perts and data scientists alike [83]. Data Lakes have the capability of processing voluminous and quickly generated

unstructured data [61]. The Data Lake should be architected to be divided into sections, which Bill Inmon refers

to as data ponds [27] and some other researchers refer to as zones [84]. As a result, data separations facilitate data

lifecycle management and, therefore, data quality. Having the Data Lake separated into different sections allows

for a more scalable solution since each section can grow separately. As an example, the raw data station and its

process pipeline can be scaled to boost a fast data application, providing quick data insights and sacrificing the

processed data level; this can be extremely useful depending on the context. Using this architecture, an archival

data level can be deployed [27], so old generated data may be stored in a cheaper storage system, allowing the data

to be kept as long as possible.

While this architecture was born as a result of the necessity left by data warehouses [3], it has been at the center

10

of attention in the Data Engineering community since. While it has been praised by many, there are many reports

in which this architecture has failed miserably, creating monumental data silos. That allowed some products to

grow, such as Delta Lake, to respond to such necessities. This most recent iteration of the Data Lake architecture

aims to provide more functionality to the Data Lake, contributing features such as stream and batch processing

unification, cloud-based storage, and real-time data availability.

Although this architecture is often seen as an alternative to the Data Warehouse approach, they are really

designed to meet different types of business requirements. As mentioned in the previous section, data warehouses

are highly specialized in one particular business domain, having a strong schema associated with it for fast data

querying. In addition, data needs to be cleaned and enriched before it can be stored in the Data Warehouse. On the

other hand, Data Lakes aim to retain as much information as possible in its raw format. As well as reducing the

delivery time for data analytics and data staleness, since data does not require a definite structure to be able to be

stored, a raw data format requirement for Data Lake is the ability to meet future requirements. By having all data

available in one repository, users are able to query the past history to understand if such a requirement would be

feasible. These cases are rarely taken into account by data warehouses since they need to filter and exclude data in

order to provide a better performance based on their present requirements. Amazon Web Services (AWS) provides

a table that highlights these characteristics [16].

Characteristics Data Warehouse Data Lake

Data Relational from transactional sys-

tems, operational databases, and line

of business applications

Non-relational and relational from

IoT devices, web sites, mobile apps,

social media, and corporate applica-

tions

Schema Designed prior to the data warehouse

implementation (schema-on-write)

Written at the time of analysis

(schema-on-read)

Price/Performance Fastest query results using higher cost

storage

Query results getting faster using low-

cost storage

Data Quality Highly curated data that serves as the

central version of the truth

Any data that may or may not be cu-

rated (ie. raw data)

Users Business analysts Data scientists, Data developers, and

Business analysts (using curated data)

Analytics Batch reporting, BI and visualizations Machine Learning, Predictive analyt-

ics, data discovery and profiling

Table 1: Data Warehouse compared to Data Lake by AWS [16]

As it can be seen in Table 1, while Data Lake tend to fit more broad scenarios, Data Warehouses still may find

a place in data analytics in terms of being capable of analysing very specific scenarios.

The use of Data Lakes has tremendous benefits. The data can be accessed faster, allowing for faster analytics. It

is also a centralized architecture in which can facilitate the discovery of data across the organization, empowering

11

reusability and interpolation, enabling for high value use cases such as integrating CRM data with marketing,

social media analytics, buying history, and website engagement. This allows the business to elevate the customer

experience to a new level. Another result of these features is that scenarios such as IoT can produce an enormous

amount of data to be analysed, and potentially find ways to reduce operational costs, and increase quality.

Having this large amount of data stored also allows for users to take advantage of it to test new features with

real raw data, lowering the implementation time of business features.

However, these features often introduce difficult challenges. The main challenge of Data Lake implementation

lies in its most distinctive characteristic: raw data ingestion. Since the Data Lake architecture is capable of high

throughput ingestion and storage of data in its raw form, some companies have fallen into the mistake of ingesting

every single piece of data on its newly implemented Data Lake [27]. Such practice may transform the Data Lake

into a Data Swamp. If ingested data is not properly governed, labeled, and carefully integrated into the Data Lake,

its use may come at a very high price. In the absence of data quality practices such as semantic context and data

cataloging, acquired data quickly becomes difficult to discover and impossible to integrate due to a lack of trust

and security in the acquired data.

With the increase interest in the Data Lake architecture, some companies now offer cloud solutions for this

architecture, such as AWS, Microsoft Azure, Cloudera, Databricks, and Google Cloud. AWS is one of the main

providers that has created some features to respond to the increasingly complex demands of such use cases. For

example for data that is most frequently accessed (also known as hot data) a SSD can be used to store and cache it

for better performance, and for other data that is not accessed as often features such as AWS Glacier can be used

to create archival storage, lowering the storage costs of the implementation [85].

A new interesting iteration over the Data Lake architecture has been the Data Lakehouse [85], which proposes

the to take advantage of the main benefits of Data Lake, as well has having the query efficiency of Data Warehouses.

This new movement proposes to use the main components of a Data Lake such as low-cost object store for storage,

but on top of that introduce an metadata layer, that allows for data specification and categorization, with techniques

such as versioning, statistics and semantics. The other component that was introduced in this iteration is to use

a caching system, so hot data is quickly available on demand so it can achieve a SQL-like performance, and

at the same time keeping an large amount of raw data for it b used in more extensive processes such as machine

learning mode training. This architecture presents some similarities to the Data Fabric architecture, by constructing

a virtualization layer on top of its storage layer, to facilitate the access and visibility to data, and potentially

increasing the overall performance.

2.3 Data Fabric

This novel architecture emerged from the need for ingestion, governance, and analytics of the uncontrolled growth

of data, which provides features that can streamline the Big Data platform [6]. The solution proposed aims to assist

in end-to-end data integrations and data discovery through data virtualization, with the assistance of APIs and data

services data across the organization allowing for better discoverability and integration within the environments

even if they are in old legacy systems [86]. Instead of proposing a completely revamped design for data manage-

ment, the data fabric simply seeks to create a virtualization layer on top of each data stage, such as transformation,

storage, and serving, creating a global uniformization to facilitate data access [87].

12

Figure 6: Data Lakehouse architecture compared to Data Lake and Data Warehouse by Databricks [5]

This movement focuses on automatizations in areas such as ingestion, curation, and integration of diverse and

heterogeneous data sources across the organization, with the goal of augmenting the capabilities of data analytics

[6].

The interaction with data in a Data Fabric platform is centralized and abstracted from the tools that store and

process the data, which aids in processes such as:

• Security - Since data governance is done in a centralized space, it is much easier to manage each user’s

access to the data.

• Data discovery - The virtualization service enables the user to discover data from all available data sources,

regardless of the tool or location.

• Self-service for business users - These users can explore the data in a single place instead of having to search

within specific divisions or be limited by data warehouse implementations.

Researchers present the multiple virtualization layers of the architecture as data ingestion, processing and

persistence, orchestration, data discovery, data management, intelligence, and data access as it can seen in Figure

7 [6].

2.4 Data Mesh

Data Mesh aims to restructure the organizational structure around Data utilization, following the concepts laid out

by Domain Driven Design [88] to introduce more ownership over the data, thus creating less friction when trying

to produce valued information and mitigating the problems encountered in Big Data Lakes and warehouses[72].

In order to face the challenges of extracting information and inter-divisional problems, this approach proposes

a paradigm shift comparable to the microservices architecture in software architecture, focusing on treating data

as a product, and creating data teams to handle the whole subset of data belonging to the business domain, rather

than dividing them into teams for the different data processes, such as collection, transformation, and provisioning.

13

Figure 7: Data Fabric architecture by Noel Yuhanna [6]

This allows for increased ownership of the data itself by the teams, thus leading to more agility when it comes to

producing knowledge [7].

This paradigm does not aim to replace any of the architectures for data management, it instead aims to re-

structure the organization around it, creating bounded contexts around the data management. This will allow each

data team to use the preferred data structure for the specific domain. With these changes, teams are also more

incentivized to maintain data quality. This is because they are the owners of that domain of data that will be served

to other data teams and customers [89].

Researchers propose a set of principles to guarantee correct Data Mesh function and thus improved data quality.

The principles are domain-oriented decentralized data ownership and architecture, data as a product, self-serve data

infrastructure as a platform, and federated computational governance.

The first principle focuses on the data ownership aspect of the Data Mesh, and follows the author description

of ”decentralization and distribution of responsibility to people who are closest to the data in order to support

continuous change and scalability” [7]. To create scalable tools around a Data Mesh infrastructure it is necessary

to analyze the development process across the organization to fully identify the different bounded contexts.

The principle of data as a product focuses more on the data itself, striving for better data quality, accessability,

discoverability and understanding. The core idea of the principle is to treat data as the product of a process,

and its users as customers that need to be satisfied. The components that are a part of this principle are code,

infrastructure, and data and metadata. The code includes data pipelines, to consume, produce and compute data,

14

as well as s to access data and metadata repositories. The infrastructure part of it aims to manage the deployment

and management of such processes. Lastly, the data and metadata are the representation of the actual final product

and what must be shown to the customers. A visual representation of this principle can be seen in Figure 8

Figure 8: Data as a product representation by Dehghani [7]

The next principle of the Data Mesh is the self-serve data platform, and it focuses on ”scalable polyglot data

storage, data products schema, data pipeline declaration and orchestration, data products lineage, compute and data

locality” [7]. This principle aims to remove the challenges of having to replicate different data infrastructures to

every context within an organization, appealing for a use of a decentralized architecture in a centralized platform.

Last but not least is federated computational governance. This emerged out of necessity for a grouping of

distinct data products with distinct lifecycles that were developed and distributed by probably distinct teams. How-

ever, for the majority of use cases, these independent data products must work together in order to gain value in the

form of higher-order datasets, insights, or machine intelligence. This requires the ability to correlate them, create

unions, find intersections, or perform other graph or set operations on them at scale. A governance paradigm that

includes decentralization and domain self-sovereignty, interoperability through global standardization, a dynamic

topology, and most crucially automated decision-making by the platform are necessary for any of these processes to

be feasible in a data mesh implementation. The author refers to this process as federated computational governance

[7].

15

Domain-oriented decentralized data ownership

and architecture

So that the ecosystem creating and consuming

data can scale out as the number of sources of

data, number of use cases, and diversity of access

models to the data increases; simply increase the

autonomous nodes on the mesh.

Data as a product So that data users can easily discover, understand

and securely use high quality data with a de-

lightful experience; data that is distributed across

many domains.

Self-serve data infrastructure as a platform So that the domain teams can create and consume

data products autonomously using the platform

abstractions, hiding the complexity of building,

executing and maintaining secure and interopera-

ble data products.

Federated computational governance So that data users can get value from aggrega-

tion and correlation of independent data products

- the mesh is behaving as an ecosystem following

global interoperability standards; standards that

are baked computationally into the platform.

Table 2: Data mesh principles by Dehghani [7]

16

3 Data Observability Challenges within IIoT data management

There have been significant efforts to create and iterate data management architectures to close the gap in the level

of knowledge that can be extracted from raw data. However, all of those architectures have faced similar problems

when formulating their solution [90, 28]. The problems around data quality that were focused on with this approach

were traceability, trust, fit for use, context and semantic value, interoperability and reusability. Different strategies

can be used to formulate solutions to these problems, and the prime strategy was the implementation of strong data

observability practices.

3.1 Data observability

Derived from the original concept of system observability, data observability has followed the same practices that

made systems successful in their monitoring practices.

Instead of tracking logs, traces, and metrics as is usual for system observability, data observability practices

aim to monitor other concepts such as freshness, distribution, volume, schema, and lineage to prevent downtime

and ensure data quality [3]. This has become an essential requirement within data management applications to

ensure availability and robustness.

Each dimension of data observability aims to enrich data quality in different ways. Freshness seeks to under-

stand how up-to-date the ingested data is, as well as the frequency at which it is updated. It is imperative to consider

this dimension when designing a data management system, so it can determined if the data consumed is stale and

prevent becoming irrelevant in the IIoT world. Distribution is a dimension that establishes the limits of data val-

ues, defining the accepted values that reading can have, and defining outliers and possible flawed data and sources.

Volume refers to the completeness of the data, identifying possible data shortages and sources that stopped sending

data downstream. Schema monitoring keeps track of data structure definitions and changes. This is particularly

relevant due to the importance of interpolating multiple datasets to produce more valuable knowledge, implement-

ing one of the most important FAIR principles [91]. Lineage is the last dimension that observability focuses on but

it’s one of the most critical since it allows us to have full visibility of which transformations data has been through

since its conception, allowing us to identify possible breaking points and which systems might be impacted.

The dimensions of data observability allowed for some of the challenges to be tackled in an efficient way.

Freshness increased data quality in the fit for use and trust dimension. Distribution and volume improved context

value and trust in data. In addition, schema monitoring and lineage allowed for better context value, traceability,

and data interoperabilty.

When designing an architecture that aims to manage data produced from an IIoT system, it’s crucial that these

dimensions are considered in the design. This allows for major data quality enhancements and streamlines the

placement within the FAIR framework.

3.2 Data (re)usability principles - FAIR principles

As mentioned before, many data management projects fail because they fall short of their ultimate goal of extract-

ing knowledge. This has led to more advanced patterns and principles being a prerequisite when designing an

17

effective architecture. Such principles try to tackle the problem of ungoverned metadata that can lead to data that

is challenging to read, discover, and process, requiring an immense effort to extract valuable information.

Recently, researchers have published the FAIR principles [91] to help design a data management platform.

These principles emphasize the capacity of computation systems to find, access, interoperate, and reuse data with

minimal human intervention. They enable scale with the increasing volume, complexity, and velocity of data [91].

A successful data management strategy is not a goal in itself, but rather a conduit for innovation and discovery

within such structures, and the authors present four fundamental principles that guide their approach.

The first concept introduced in the FAIR principles is Findability. Data should be visible and easily discov-

erable within the platform. Metadata context for these purposes is essential since it can be used to allow users

to easily locate related datasets. This will allow for more data contextualization and thus a higher potential for

knowledge creation. The next concept is Accessibility which focuses on the stage after the data has been discov-

ered. Data needs to be accessible and retrievable. Often paired with authentication and authorization, documented

and uniformed through the platform. The third principle is referent to one of the most relevant requirements to

use data. The Interoperability principle is centered on the necessity of integrating different datasets. The key

conduit for this process is context metadata and data semantics, allowing us to connect different datasets through

common properties and similar circumstances. The process of implementing this principle should be looked upon

with special attention since the interpolation of data is crucial for information and knowledge creation [92, 78].

The last principle presented by the authors is described as the FAIR principle’s ultimate goal, which is Reusability.

And to achieve this, both metadata and data are required to be well described so they can be replicated and reused.

Keeping a history of data and data changes is also a critical part of this principle, in order to be able to reprocess

untouched data.

The authors propose a set of techniques to achieve these principles, such as having metadata indexed in a

searchable resource, having it accessible via a standard communication protocol, and metadata representation

using a standard language so it can be acted upon.

These principles led to the development of a service to host context and semantic metadata. The use of such

a service enabled continuous data quality improvements through streaming data processes and data observability

practices. This newly introduced service also allowed for easier data interoperability and reusability since it hosted

all the metadata needed for such use cases.

In order to understand which metadata was kept in the service, first the concept of definition of data must be

introduced.

3.3 Definition of data

The Definition of Data (DoD) is the first problem that arises when discussing IIoT data management platforms.

Data and data quality needs to be defined so the designed solution can fit the needs of the environment.

The need for this step is paramount, not only for modeling and integrating data, but also for establishing

common concepts to which the entire business chain can refer, thus ensuring resilient communication across the

organization. When these concepts are implemented into the application contextualization system, a common

understanding and development platform for the entire organization can be created.

The process of data definition must be done iteratively across all the business layers to ensure scalability. Some

18

of the data definition concepts may rely on technical terms that are very specific to the business as well as some

more broad definitions that can be used across multiple projects. For this reason a definition of the concept of data

and data quality in the IIoT environment must be provided.

The next two sections will be exploring the definitions of data and data quality respectively. Although this

division is being made, there are characteristics that can be applied to both concepts and some researchers have

used them in different ways [8, 93, 94].

It’s imperative to understand the data within any data management use case, and IIoT is no exception. The

particular case of the Internet of Things contains some characteristics that should be taken into consideration when

designing a solution to cope with its challenges.

Laura Sebastian-Coleman [69] defined Data as ”abstract representations of selected characteristics of real-

world objects, events, and concepts, expressed and understood through explicitly definable conventions related to

their meaning, collection, and storage”. Lina Zhang [93] has proposed a derived interpretation applied in the IoT

environment by stating that ”from the perspective of data semantics, the data in the IoT can be the underlying raw

data and the high-level generalized data”. Sunho Kim [95] has identified types of data that can be found in an IoT

environment, which include:

• Sensor data is the actual values that are recorded by the sensors in the environment. Other than the values

this data must also contain a timestamp from when that reading was made in order to be properly analyzed.

• Observed metadata describes the behavior of the sensor data. This can include information about the rules

for data value changes, and the range of data value changes across a time period. Such metadata is dynamic

and should be continuously calculated through the data lifecycle.

• Device metadata refers to the information around the device that records real-life readings. This metadata

often includes sensor installation data, location, model, precision, value range limits, and manufactories,

among other information. This data is commonly defined when the sensor is installed and does not change

often, in contrast to the observed metadata.

• Business data represents the category of data that is related to the business section of the environment. This

can include information such as service history or warranty status from business systems. This data source

can reveal some interesting data interpolation opportunities.

• External data is often described as the data that comes from external systems. Some examples include

energy prices, traffic, weather, or social media.

Technical data is the dimension that englobes the technical specification of the data. This can include

information such as data standards and data structure.

These data categories allow for a better understanding of the IoT environment and the data that can be gener-

ated within.

These descriptions and data categorizations suggest that the definition of data in the IoT environment englobes

the sensor readings and context metadata around the sensor reading, being complemented with representations of

other business aspects.

This definition can be further understood by classifying the types of data into a hierarchy.

19

• Streaming or continuous data

– Sensor

– Business

– External

• Context Metadata

– Device

– Observed

– Technical

• Historical data

The streaming data includes sensor readings that are continuously being recorded within the environment,

projecting a replicated portrayal of the real-life environment. The business data is another instance of streaming

data, representing other events higher up in the value-chain. And finally, external data refers to all other data

collected from external systems, such as weather, traffic or energy costs.

The second categorization in this hierarchy is the context metadata. This field contains the contextualization

of data which allows for better data reutilization, accessibility, integration, visibility, and, ultimately, better quality.

The context metadata is divided into device metadata, observation metadata, and technical metadata. The device

metadata aggregates all the context around the device that did the reading. This can include things such as owner,

installation date, room, or reliability. On the other hand, observation metadata refers to metadata that is associ-

ated with the reading itself, containing attributes that contribute to the distribution and lineage capability of data

observability. Accuracy and outlier information are some of the example fields that can be found in this category.

Lastly, technical metadata combines information about the technical aspect of the data, such as where it was stored

or schema classification.

The final stage in the data hierarchy is the historical data. This category gathers previously collected data that

can be used for future analyses, creating a repository that can be queried for various purposes, such as audit or

model training.

Karkouch [8] has identified IoT data quality characteristics and challenges that must also be addressed.

• Uncertain, erroneous, and noisy: There are several factors that threaten data quality in this dimension, such

as deployment scale, network, sensor calibrations, or fail-dirty. Karkouch has presented these factors and

how they relate to architecture layers in a typical IoT solution in Figure 9

• Voluminous and distributed. Typically there is a multitude of sensors deployed at any time constantly

sending data. This can overwhelm software systems.

• Smooth variation. A minor fluctuation (or none) occurs between two successive timestamps for many

physically observed variables (such as temperature).

• Continuous. Related to the smooth variation and voluminous and distributed points, data is constantly being

generated by the sensors reading real-life metrics.

20

• Correlation. Datasets generated from sensor values frequently contain underlying correlations. The corre-

lations between the data might be either temporal, spatial, or both.

• Periodicity. Many phenomena-related datasets may have an underlying periodic pattern where the same

values repeat at regular periods.

Figure 9: IoT data quality threats by Karkouch [8]

3.3.1 Data quality definition

There have been some definitions of data quality which are focused on the fact that it’s ”fit for use”. The ISO 9000

standard [96] declares quality as ”the degree to which a set of inherent characteristics fulfills a need or expectation

that is stated, generally implied, or obligatory”, Juran [97] defines it as ”data are of high quality if they are fit for

their intended uses in operations, decision making,and planning”, and Wang [98] also supports these definitions by

writing ”data thatare fit for use by data consumers”. Karkouch [8] extends the data quality definition to the IIoT

domain, declaring that ”for the IoT, data quality means essentially how suitable the gathered data (from the smart

things) are for providing ubiquitous services for IoT users”.

ISO 8000-8 expands the data quality definition into three dimensions. The first dimension is syntactic quality,

and refers to the extent which data conforms to the syntax previously defined, and is according metadata specifi-

cation. Semantic quality is the second category, and it refers to how well the data corresponds to the content that

is representing. Lastly, pragramatic quality is referent to the measuring of usage of data to a specific objective.

Following these definitions, additional aspects of data quality can be identified:

• Data is fit for use: Data follows a specified schema that is defined in metadata.

• Data is correct: Data correctly represents the real-world counterpart.

• Data is completed: Data that is collected at a fixed time frame is present any of those collections.

• Data is relevant: The system has the right data at the right time. Data is only relevant if its content can be

used for specific use-case and if its timing match its requirement.

21

• Data is findable and acessable: Data can easily be found and accessed to extract value.

• Data is visible and understandable: In order to extract the maximum value, data needs to be understood.

Context over the data is needed in this point. This context must include how the data relates to other

entities in the environment, the quality history of it, what is measuring, how reliable is the value, what kind

of transformation has data gone through before getting at the current point, and much more. All of this

information is relevant to interpolation, reusability, and overall better environment visibility.

In order to better understand the context around data, and how it can help to increase data quality, definition

of the contecept was divided into two sections. Each section focuses on concepts inspired by separate dimen-

sions of data observability. The first category contains statistical and computed metadata, which are automatically

generated through computing processes along with data processing. This category presents fields that relate to

dimensions such as freshness, distribution, and volume. These fields include metrics such as medians, minimums

and maximums, outlier percentages, time evolution, missing data percentages, throughput, and much more. The

second category centers on the semantic value of the data. The information in this category focuses not only on

schema monitoring and lineage dimensions of data observability but also on interoperability capabilities by con-

structing a semantic net relating entities from the environment to each other. This perspective of data quality is one

of the most influential and impactful categorizations within data quality. This is because it strongly contributes to

the contextualization of the data within the whole environment of data, improving visibility, interoperability, and

discoverability [99, 100]. During the construction of this metadata, questions such as what, when, who, why, and

how should be asked, and then, additional values should be continually added to enrich the data context that can

be valuable for data utilization. Some examples of semantic metadata in IoT include sensor creation date, sensor

brand, sensor expiration date, IP address, battery level, owner, location, sensors in the same room, and much more.

3.4 Data act

There’s also been some development in the political spectrum to compel companies to improve their data manage-

ment so it can be used more ethically [101]. This includes the requirement for users that generate the data to be

able to access their data. In addition, the public sector must have access to data generated by it held by the private

sector.

Overall, this requires better data management with proper semantics and a platform that allows for high avail-

ability and accessibility for multiple clients.

22

4 An intelligible Data Mesh based architecture for IIoT environments

Considering the challenges that were identified, such as the need for decentralization, data quality metrics evolu-

tion, data context as a central component and low latency, an architecture was designed that focuses on metadata

management and standardization to enhance data value.

Figure 10: Data Ness Architecture

The entry point of the architecture is the Context Broker. Besides being responsible for receiving all the raw

data from the IIoT environment, this component is also responsible for the key aspect of metadata management.

When raw data comes from the IIoT environment it is ingested by the context broker and is automatically enriched

with the context metadata. The base semantics and context management should be managed beforehand, so the

semantic graph can have a wider reach.

The context broker can also function as documentation for all the sensors and relations within the environment,

and when a newly added component is integrated, the semantics graph should be updated with the revised values,

keeping a realistic view of the monitored environment. This environemnt documentation is used with the aid of

shared smart data models.

The component that is responsible for the data storage and delivery is the data gateway. This piece is designed

according to the event sourcing pattern, to retain the full history of data, and maximize the interoperability and

reusability aspects of the FAIR data principles. Ideally, the data gateway should be decentralized and meant to hold

all the data across all the domains and stages of the data lifecycle, providing enough flexibility to satisfy specific

business needs, and facilitating discoverability, access, and findability, thus enhancing the other two principles of

FAIR data. This design enables the data gateway to be the central point of data access, allowing for processing

23

pipelines to move the data around, third party projects to use the stored data, and data visualization tools to

empower environment observability.

The final model implemented in the architecture is the plug-and-play pipeline design. These pipelines are

meant to connect to the data gateway and move data around it, performing all necessary computations in between,

so data can be iteratively converted into knowledge. The computations that can take place within a pipeline include,

but are not limited to, filtration systems, machine learning model building, automated actions, ETL processes,

alerting, and data quality metrics. Among the most significant pipeline types are the data context enrichment

pipelines, which will take data from a data stage, add context information in the form of data packs, and output the

newly computed data back to the data gateway to be used in a more mature data stage.

To ensure data lineage capabilities, all pipelines should mark data with some type of metadata. Such metadata

should include information such as pipeline identifier, timestamp that data was consumed, timestamp that data

was produced, initial value, and output value. Such data lineage metadata should belong to a shared and common

pipeline model that needs to be maintained. This is so the pipelines can be more easily understood so they can

be applied across multiple business divisions and data stages. Said model should include values such as pipeline

name, description, data input requirements, data output format, input model, and ownership.

The pipelines may output results to a diverse range of destinations, such as:

• Data gateway, in the form of the next iteration of enhanced data, passes data to the next data stage.

• Context broker, with updated data context and freshly calculated data quality metrics. This path is specially

significant because it allows for context iterations, allowing for continuous progress in data quality reflecting

changes within the environment.

• External services, such as alerts, environment updates, or monitoring systems.

The flexibility of pipeline development allows for abstractions in the form of parametrizable variables, which

empowers reusability. Also, pipeline development should aim to create simple and business-focused code, fol-

lowing the single responsibility principle which allows for a lower development cycle, high cohesion, and also

increasing reusability.

The presented architecture assures the most significant components of the reference architectures of today

[70, 71], such as: context management with device management and defined ontology, data management with

ingestion and provisioning capabilities, analytics processes, visualization support, and decentralization.

The presented architecture in Figure 11 is the implementation version of the conceptualization presented be-

fore. The role of context broker is played by Fiware Orion Context Broker (1). The data gateway responsibility

is attributed to Apache Kafka (2). The processing of data and metadata within the architecture will be done by

Apache Beam with Apache Flink (3). As a visualization tool, the choice was Apache Druid (4). For last but not

least, it was decided to take advantage of the plug-in capabilities of the architecture and use MongoDB (5) to

function as an archival system to store all data that flows through the architecture.

A closer look at these components will be done in the next sections.

24

Figure 11: Data Ness technologies

4.1 Context Broker

The first component of the architecture is the context broker, and plays the main part in data quality management.

This component is identified by the number 1 in the Figure 11.

The context broker serves as a data management layer on top of the architecture, and receives all the data that

comes through the architecture. When this component receives the data, it is its responsibility to enhance it with

context metadata. For this reason the context broker will always have the most recent version of the collected data

and its context in form of metadata. The static metadata needs to be provided by users when the entity is created

in the system. For example, when a brand-new sensor is installed, it needs to be also added to the context broker

along with its context, which may include installation date, building room installed, owner, reading type, among

others. In contrast, dynamic metadata, which is stored in the context broker, will be continuously calculated by

underlying quality enrichment and assessment processes that will provide information back to the context broker.

Examples of this metadata are average values, outlier detection, room-aggregation, deviations, and evolution over

time.

The design of this component was inspired by a virtualization layer design described in the Data Fabric ar-

chitecture [6]. This design can also be found in the Data Lakehouse architecture, which proposes a metadata and

governance layer to assure data quality [85]. This new layer proposed in the Data Lakehouse was the core evolution

from its predecessor, the Data Lake. Last, but not least, FAIR data principles also proposes to have the metadata

accessible and searchable indexed resource via a standard communication protocol [91].

This component allows for the findability, accessibility, and interoperability of the data and the context meta-

data around it to users and processes alike, containing a range of multiple metadata types, from dynamic metadata

that is continuosly calculated, static metadata that does not change as often, and tecnhical metadata that may

contain information such as schema and locations. This allows for efficient knowledge sharing and data quality

management, ultimately leading to a high success factor for the architecture.

25

The technology of choice for this role was Fiware Orion context broker [102], which may also be referred to

as Orion. The reason for this choice was that it’s an open-source tool that is at the forefront of context management

technologies, being developed by one of the key organisations in IoT and Big Data solutions in the market. The FI-

WARE Foundation has continually provided open-sourced platforms to enable the development of smart solutions

[103], backed by major organizations such as AWS, RedHat, and Telefónica.

4.1.1 NGSI and Orion

Orion is a C++ implementation of NGSIv2 REST API binding developed as a part of the FIWARE platform. First

released as an open specification by ETSI, NGSI-LD is an information model and an API for easy use and standard

management of context information. Ontology-based NGSI-LD information models use JSON-LD as serialization

format for context information. [104]. The NGSI standard is part of FIWARE organization, which is a foundation

that provides a set of tools for supporting the development of Smart City, Smart Agri-Food, and Smart Industry

applications and is currently being promoted in Europe to be used in large research and innovation projects [105].

NGSI-LD defines three levels of data abstraction: core meta-model, cross domain model and domain specific

model [104].

The core meta-model describes the core information that can be published to the context broker. This includes

entities, properties and relationships. An entity in Orion represents a physical counterpart in the real world and

can include concepts such as a sensor, machine, room, etc. These entities have many properties associated with

them, representing the actual values of some concepts. A few examples of these properties would be air quality,

temperature, the number of sensors in a room, location, and owner. Relationships are the last type of information

that is managed in Orion’s context broker. Within the context broker, entities can have zero or more relationships.

This defines the contextualization of the entity and its values across the full environment, providing an excellent

semantic reference for data quality metrics. One distinguishing feature of the most recent version of Orion is that it

uses NGSI-LD, which is modeled using the JSON-LD standard, which means the relationships defined are linked

by URL, which enables quick access to information. To maximize the contextualization of data and to be compliant

with the Linked Data world, every entity should specify a context binding the data representation to a vocabulary,

which can be published to Orion.

Alternatively, the cross domain model focuses more on concepts like time and space. Geolocation, creation

time, and time intervals are among its concepts.

Last but not least, the domain-specific model should be defined in accordance with the domain-specific vision

of the use case, because it is closely related to the application.

4.1.2 Smart Models

Based on actual use cases and open standards, the Smart Data Models program offers multisector agile, standard-

ized data models that are freely available and openly licensed [106]. The data models available are based on the

NGSI standard, and they will accommodate most smart use cases, including smart cities, smart agrifood, smart

energy, and smart sensoring.

The available smart data models are currently hosted in Github [107] and are open-sourced and free to use.

26

The data models are currently supported by initiatives such as Fiware, IUDX, TMForum, and OASC, along with

more than 70 companies that have already contributed.

The smart data models project is another initiative led by Fiware. These models allow for a specification of a

baseline context-based ontology that fits well in the IIoT space, with terms and properties that correctly identify

the environment. Besides, the smart data models were designed to be used alongside Orion, integrating seamlessly

with it. Another great feature of this project is that it presents a level of flexibility that allows for extension with

another smart data model or a different ontology.

4.2 Data gateway

The data gateway, identified by the number 2 in figure 11, is the conduit where data flows through and reaches

all the other components. Designing this component must meet certain requirements, such as being decentralized

storage, scalable, and persistent. This is the glue that binds all of the architecture together, as shown in Figure 10

and 11.

The decentralized requirement is the baseline requirement for all components of this architecture, and this

component is responsible for storage decentralization, as it needs to distribute data out across different nodes, to

ensure robustness [19]. This distribution also needs to assure scalability, in order to handle a sudden increase in

traffic. The persistent requirement refers to the necessity of keeping the data for a defined period of time, so it can

be accessed after the actual event has occurred.

With these requirements, it is of great importance that this component provides decentralization in a centralized

infrastructure, so the data that flows through it can be easily discoverable and accessible.

This component was designed with data accessability and findability in mind, keeping the data in a decen-

tralized component in a centralized infrastructure. This capability allows for multiple actors to have access to the

information in a scalable and performant manner. The data gateway was also designed to keep an recent history

of data, in order to ensure data replayability and reusability. The scalable feature is particulary important because

this component is the conduit of data inside the architecture, in which all the data actors will connect to, such as

data transformation processes, visualization tools, and even the context broker.

The technology that was chosen for this component was Apache Kafka. This tecnhology is the state of the art

in event streaming platforms, used by thousand of companies to build high-performant data pipelines, streaming

analytics, data integration, and mission-critical applications [108]. Another critical characteristic of this project is

that is open-source. The choice of this technology was clear and no great comparisons were made due to either the

lack of usability of other technologies or lack of scalability required for the use case [109]. Besides Apache Kafka

has other features that aided the development, such as Kafka connectors.

4.2.1 Apache Kafka

Apache Kafka is an open-source publish-subscribe messaging system. This technology is designed to have per-

sistent messaging, high throughput, real-time processing, and multiple client support [108]. One of the main

characteristics of Kafka is that it is also distributed across multiple nodes.

The Kafka nodes, commonly referred to as Kafka brokers, are servers that run a Kafka instance that can be

27

connected to, in order to publish or subscribe to a particular segment of data.

Kafka has a specialized set of terminology, which will be defined as it’s proven relevant moving forward.

• Kafka broker - Server that runs an Apache Kafka instance, which can be connected to a client, allowing for

publishing or subscription actions.

• Kafka cluster - Aggregation of Kafka brokers that connect with each other, providing resiliency and robust-

ness to the service.

• Topic - Aggregated segment of data to which producers or consumers can connect. As a rule, topics hold

information in the same format and belong to the same context.

• Partition - The messages sent to a Kafka topic will be mainly a key-value pair, and messages that have the

same key will be published to the same partition. The partition is a sub-segment of data inside a topic. Since

messages with the same key are persisted in the same partition, the order of those events will be ensured

inside Kafka.

• Retention policy - Rule that defines how long Kafka needs to retain messages or events. This rule is defaulted

to a time-based retention of seven days.

• Consumer group - Using consumer groups, distributed clients can connect to Kafka without the possibility

of duplicate events. Clients that have multiple nodes can share the same consumer group to connect to

Kafka, which will result in a single consumer from the Kafka cluster, avoiding data duplication

• Replication factor - Configuration that defines how many brokers the message will be replicated to.

This component follows a leader-follower approach for distributed data. Inside a cluster, a particular Kafka

broker will be the leader of topic partition. This broker will be the main source of truth for that data. However,

depending on the replication factor of the cluster, the message will be propagated to other brokers. Zookeeper, a

node-administrating system, orchestrates this process by keeping meta-information about nodes in a cluster, and

determining whether they are leaders or followers, and if replication is possible [110]. A Kafka cluster representa-

tion can be seen in figure 12.

One of the main differences between Apache Kafka and other publisher-subscriber systems, such as RabbitMQ

or ActiveMQ, is that it’s designed to persist the events that flow through it, providing a historical view of past

activity. In a Big Data context this could be problematic, since a large amount of data needs to be kept for a

specified amount of time, especially if the data is replicated across nodes. With Kafka, however, messages are

highly compressed, allowing for space optimization in the cluster.

Another aspect that has elevated Apache Kafka to be the system of choice when designing performance sensi-

tive systems, is that it provides real-time capabilities and one of the highest throughputs when comparing to other

tools in a Big Data context [109].

4.3 Processing pipelines

Data processing pipelines, identified by the number 3 in figure 11, are responsible for all types of data modification.

This can include but not limited to decorations, filtrations, alerting, machine learning model training, integration

with external services, data quality calculations, and ETL processes.

28

Figure 12: Apache Kafka cluster illustration, designed by Qlik [9]

The necessity of having data iteratively processed according to different requirements led to the creation of

this component. This component is the driver that moves the data across the data gateway and context broker.

The design of the component was made with the ”plug-and-play” model, to facilitate the development of new

pipelines in the architecture. Using this model, the ability to build a new pipeline and connect it to any part of the

data gateway without interfering with the already existing pipeline that moves the data allows for a high degree of

reusability and accessibility. A further capability of this component is the reusability of the pipelines themselves.

This allows users to reuse created pipelines for a different use case simply by changing a set of parameters. Lastly,

these pipelines must offer both streaming and batch processing capabilities to fit the different requirements of the

environment.

The main input for this component will be the data gateway, but it is not limited to it, as it can connect to other

sources to enrich the data. The typical use cases for this are to connect to the context broker in order to get full

semantic context of the data or to access external services to get third-party contextualization.

The output of these processes is not as streamlined as the input, since there are considerable increases in use

cases, such as quality calculations feedback to the context broker, data decoration results to the data gateway, ETL

processes that move the data to a data warehouse, and connection to external services for alert porpuses.

The pipelines are divided into different types, so they can be referenced more easily. The types will be dis-

tinguished by their inputs and outputs, data transformation types, and processing classification (stream or batch

processing). Examples are going to be provided for each category, to better explore the capabilities of each type.

Context decoration pipelines

These pipelines add information to the data, either from an external service or from another entity within the

context broker. The input is typically the data gateway, and then it will connect to the context broker or an external

29

service to add further contextualization of the data. Ultimately, the output will be the data gateway, either for a

different data stage or for the next pipeline. The processing time of these pipelines tends to be stream processing,

as it can be calculated easily at the rate that events are consumed.

Figure 13: Decoration pipelines examples

In Figure 13 it is presented three use cases for decoration pipelines. In the first scenario (A) it’s making a

simple decoration, by adding the roomName to a light level reading. Using 2 data sources, the reading and the

room information, the pipeline combines them to create a more detailed event reading.

The second use case (B) uses a similiar approach to the first, but instead of using a data source that is typically

inside the context broker, such as room information, uses an external service to add relevant information to the

consumed event. In this case, the pipeline is taking measurements from the environment and combining them with

meteorological data at the same time.

The third and final example for these categories of pipelines (C), is using the data consumed from the envi-

ronment to decorate the room information. This is done by aggregating readings from the sensors into a single

common entity.

Quality assessment pipelines

These pipelines are responsible for generating data quality metadata, which will be referred to as quality data

packs. This metadata contains attributes and properties to be added so it can be accessed the data quality level of

ingested data. Pipelines of this type tend to have similar inputs and outputs, as it consumes both the data dateway

and the context broker, and then produces the results to both of these components for further processing. Simpler

versions of these pipelines can be done via stream processing. However, more complex implementations, such

as the use of machine learning processes to evaluate data quality, might be done via batch processing due to the

complexity.

The four example use cases presented for this category in Figure 14 will be explored further.

30

Figure 14: Quality assessment pipelines examples

The first two scenarios present pipelines that calculate statistical metadata about the data, at the rate that is

generated. The first scenario (A) is calculating the percentage of outliers, based on recent and acceptable values

for a given measurement. In the second use case (B), it’s being observed that an instance where is expected to

have data for a given measurement every five minutes. When the data that is expected to arrive is missing (in this

example, data at 17h55) characteristics such as missing data percentage can be computed.

In the third scenario (C) its presented a pipeline that is creating a statistical report for the data that is consumed.

This generated report can then be used to enrich the context metadata for data, allowing for value estimation and

continuously improving processes such as outlier detection.

The fourth scenario (D) presents us with a similiar premisse as the third scenario, but it’s creating a more

detailed report that is subdivided by time frame. This allows for a better understanding of data through time, and

even greater certainty in processes of identifying inaccurate data.

Filtration and alerting pipelines

The pipelines of these types generally refer to filtration of events, either for data cleaning activities or alerting

systems. These filtrations can be accomplished by simple data classification, analysing the values according to

a defined set of rules that the data must obey to. This can be done through the analysis of patterns within the

31

environment. The input of this type of pipeline is typically the data gateway, and the output can be the data

gateway in the cases of data filtration, or external services in the case of the alerting scenario. Due to the necessity

of seeing data near real-time, these pipelines typically employ stream processing.

Figure 15: Filtration and alerting pipelines examples

Figure 15 illustrates three pipelines for filtration and alerting.

The first scenario presents a pipeline that filters events out according to a set of rules. In this case it filters

events that have a value between 0 and 100.

The second scenario contains a pipeline that is creating an alert based on the condition of having 3 events with

a value bigger than 100 in the last 20 minutes.

These first two scenarios depict simple, yet common processes in the data ingestion environment. This makes

the reutilization of such pipelines with parameterized values a key feature of this architecture.

The last use case illustrates a more complex scenario of processing multiple event sources, and triggering an

action depending on a certain predetermined pattern. This is based on Complex Event Processing (CEP) [111] and

it is used to filter related events, according to a pattern. In this particular instance its painted a simple scenario

where it’s predicting if a given machine needs to be stopped for maintainence based on recorded temperature and

amount of product defect generated.

Heavy batch processing

This category englobes processes that take a batch processing approach to the computation of data. This

umbrella term includes processes such as machine learning model training, ETL processes, pattern processing and

32

aggregations.

Figure 16: Batch processing pipelines processing

For this last category, it was identified three common processes in Figure 16 that fit in the description.

The first process (A) is an ETL process. These processes are commonly used to extract data from a given data

source. They then transform it and mold it to a certain required criteria and then store the result in a separate data

storage. These data storage systems are typically data warehouses and are very useful for speciallized requirements

within the business.

The second process (B) presents the usage of machine learning algorithms to create a machine learning model

that can then be tranformed into pipelines to enrich, classify, aggregate and filter the data depending on the use

case. Other machine learning methods such as Deep Learning can be utilized in this field to identify patterns within

the enviroment [112]. The patterns identified with these techniques are very useful as context information, since

they provide a visual representation of the correlation of the data. Besides being of extreme importance to the user,

this extracted information can also be shipped back to components such as the context broker, which can then be

used for filtration pipelines that use complex event processing.

The last identified scenario in this category (C) represents an aggreation process. The result of this process

includes a broad overview of the total or subsets of the environment. This can then be used for analysis by the user,

and sent context broker to update semantic and context information. These practices are very relevant from a data

quality perspective, since it provides information across the integrated systems and how they are behaving.

Classifications such as these enable us to better understand typical pipelines that can be developed for this archi-

tecture, but they should not be taken as an absolute rule. Although these classifications will be suitable to use in

most scenarios, they can be expanded and hybridized to better address highly specialized requirements.

It’s imperative for the architecture to offer options for both streaming and batch processing, taking inspiration

from the Lambda Architecture. This will allow for a more flexible and scalable architecture [113]

The pipelines for this architecture also have a very distinct characteristic. This is that they can be assembled

in a hierarchical way, so that an output of a pipeline can be the input of another, creating a pipeline system.

Pipelines can be reused in multiple pipeline systems with different parameters. For this process to be implemented

successfully, pipelines need to define a set of requirements. They can be related to the data consumption stage,

33

required data fields, previous pipeline results or data model versions.

Example of these pipeline systems, and the dependency of the pipelines can be seen in Figures 17 and 18.

Figure 17: Pipeline systems example

Figure 18: Pipeline systems role in the data flow

The figures illustrate how pipelines are integrated within the architecture, their hierarchy and how they are

shared between pipeline systems.

Analysing the first scenario in depicted in figures 17 and 18 it’s clear that pipeline P1.1 does not have any

requirements and consumes every data that comes in from the environment. Then the next pipeline P1.2 that

depends on P1.1 and P1.3 that depends on P1.2, resulting in a direct dependency in this first stage. After data is

processed by P1.3, its moved to the next data stage, then being picked up by another pipeline P2.3. In addition to

the data being processed by P1.3. This pipeline was the additional requirement of data that lives in the second data

stage, adding another dependency level.

It can be seen in the example pipelines P3.2 and P3.3 being shared across pipeline systems. It also can be

examined how these pipelines can have quality feedback functionality, sharing computed data with the context

broker, so that it can subsequently be used.

The technologies examined for these components were Apache Flink, Apache Spark, and Apache Beam.

34

Apache Flink and Apache Spark are both open-source projects in the Apache Software Foundation, and are the

state-of-the-art tools for stream-processing and batch-processing. There is a high public contribution and interest

in both of these technologies, and they can be used in similar ways. Although studies have shown that there’s

no one-size-fits-all solution [114, 115, 116, 117, 118], both of the tools are capable of handling a high velocity

and significant volume of data. Ultimately, the choice was Apache Flink for stream processing, since its on the

core design of the technology, offering features such as checkpoints, watermarks, and in-memory state processing.

For batch processing, Apache Spark was the chosen candidate, offering high performance processing along with

machine learning and advanced analytics features.

Apache Beam was the chosen technology to create the pipelines that process the data. It allows for the creation

of code that is agnostic to the engine that is being run beneath it. This allows users to construct pipelines that can

run in both Apache Flink and Apache Spark engines without modifying them. With these features users can

take advantage of both engines and compare the performance of both for different use cases, finding the most

appropriate tool that fits their requirements.

4.3.1 Apache Flink

Apache Flink [10] is an open-source platform for streaming and batch processing of data. Data processing appli-

cations such as real-time analytics, continuous data pipelines, historical data processing (batch), and iterative algo-

rithms (machine learning, graph analysis) can all be expressed and executed as pipelined fault-tolerant dataflows

in Flink [119].

To express complex datapipelines, Flink’s dataflow execution encapsulates distributed, record-centric operator

logic, following the guidelines of the Dataflow model [120]. Data processing pipelines written in Flink are com-

mitted to preserving consistent application state using a modular state backend. Furthermore, the system manages

operations state and orchestrates failure recovery and reconfiguration(scale-out/in) whenever necessary without

imposing heavy impact on execution or violating consistency [121].

The Flink architecture consists of two main components: JobManager and TaskManager. In addition to deter-

mining when the next job (or collection of tasks) should be scheduled, the JobManager orchestrates the distributed

execution of Flink Applications. This includes coordinating checkpoints, coordinating failure recovery, and re-

sponding to completed tasks or execution errors. On the other hand, Task managers, also known as workers,

execute the tasks of the dataflow. They are composed of task slots that indicate how many concurrent processing

tasks are able to run inside the pipeline. This architecture is illustrated in figure 19.

Apache Flink is capable of processing data in both unbounded and bounded data. Unbounded streams have a

start, but no defined end. This is why events that come in this kind of processing mode need to be continuously

processed, and they must be processed in the order that those events occur. Unlike unbounded streams, bonded

streams, or batch processing, have a clear start and end. For this type of processing, all the events can be ingested

and order is not relevant because the stream can be sorted in any way.

Figure 20 illustrates how these different streams can be modeled.

When it comes to aggregation functions, Flink has a efficient way to process unbounded streams. While this

issue is easily resolved in batch processing, since the events are stored in the same place at once. However, at

unbounded streams Flink resorts to windows to make these aggregations.

35

Figure 19: Flink architecture [10]

Figure 20: Bounded and unbounded streams [10]

Event-time processing in Flink is based on specific timestamped items known as watermarks, which are in-

jected into the stream by either the data sources or a watermark generator. A watermark with a timestamp t can be

interpreted as a claim that all events with timestamps t have already arrived (with acceptable probability). Figure

21 illustrates this scenario.

Another significant feature of Apache Flink is the low latency processing that it offers, due to its in-memory

state feature. For some operations Flink will need to retain state in order to make calculations. Some examples

include aggregations, decoration data and filtration rules. This state is stored in memory, which results in very

low latency to access the state. The state will periodically be stored in a persistent data store, to guarantee failure

recovery.

Flink also provides a set of packages to serve different requirements. Some examples include:

• SQL support - Flink SQL allows for simple development of streaming applications using standard SQL.

This allows users with SQL skills to develop complex applications without knowing other programming

languages.

36

Figure 21: Watermark visualization by Cloudera [11]

• Flink ML - This library provides machine learning APIs and infrastructure that streamline the building of

machine learning pipelines. Users can utilize the standard ML APIs to develop ML algorithms and then

leverage these infrastructures to build ML pipelines for both training and inference jobs.

• FlinkCEP - this library allows for Complex Event Processing (CEP) operations inside a Flink pipeline. This

empowers the ability to detect event patterns in a continuous event stream.

The choice of Apache Flink to implement the architecture pipelines is justified by its scalability, consistency,

and real-time capabilities. When dealing with IIoT environments, it’s of the utmost importance to process real-time

streaming data to create relevant information, since the more time the data takes to be processed, the less relevant

is its result.

Figure 22: Stateful Computations over Data Streams by Flink [10]

4.3.2 Apache Spark

The Apache Spark [122] engine offers a unified solution for large-scale data analysis on a variety of workloads.

Due to its multipurpose processing engine and general-purpose languages, data science and engineering have been

revolutionized. As a result of its advanced programming model, Apache Spark has been adopted by both academia

and industry as a fast and scalable framework. It has become the most active big data opensource project and one

of the most active projects in the Apache Software Foundation [123].

Apache Spark has been the tool of choice for data analytics for many years, but in recent years Apache Flink

has emerged as an alternative. The main reason for this is that Apache Flink filled a gap that Spark was lacking,

which was stream processing. While Flink is tuned specifically for stream processing, with the possibility of

37

applying those capabilities to batch processing as well, Spark was first designed for batch processing and then

applied those concepts to processed streaming data, resulting in higher latency in some cases. [117].

Spark has a fundamental data structure known as Resilient Distributed Datasets (RDD). An RDD is formally

defined as a read-only, partitioned collection of records. RDDs can be generated using deterministic operations on

either stable storage data or other RDDs. RDD is a fault-tolerant collection of items that may be used concurrently.

This concept functions as a programmatic abstraction over the distributed data of a dataset.

Much like Flink, Spark takes advantage of in-memory computing which reduces latencies. This allows to run

iterative algorithms, as programs can checkpoint data and refer back to it without reloading it from disk [124].

Spark has another relevant characteristic in that it has a wide range of libraries available. This ecosystem

includes:

• Spark core - This library functions as the main engine for distributed data processing. Subsequent libraries

are built on top of this engine, taking advantage of its memory management, fault recovery, scheduling,

distributing and monitoring capabilities.

• Structured streaming - This library adapts the Spark engine to process streaming data, allowing batch capa-

bilities to be adapted to run in streaming jobs. By default the input stream data is divided into small chunks

of data, also known as micro-batches. Alternatively, this can be configured to run in a smaller latency mode

called continuous processing.

• Spark SQL - This library adds native SQL capability to Spark and simplifies the process of accessing data

stored in RDDs as well as external sources.

• MLib - This is a machine learning library, that has a series of features that simplify the development of

machine learning pipelines.

The Spark Cluster architecture is presented in figure 23.

Figure 23: Spark cluster architecture [12]

The first components of the architecture are the SparkContext and the Driver program. The SparkContext

contains the basic functions of the application, while the Driver Program is responsible for components such as

38

DAG scheduler, task scheduler, backend scheduler, and block manager. These components are responsible for

translating user-written code into jobs that can be executed inside the cluster.

The next component in the architecture is the Cluster Manager, and it is responsible for controlling the execu-

tion of vaious jobs, with the help of the Driver Program. Once the job has been broken down into smaller jobs, the

Cluster Manager distributes them to worker nodes.

The worker nodes, along with the executor, are responsible for running the actual jobs.

4.3.3 Apache Beam

With Apache Beam [125], both streaming and batch data processing are handled in a unified way. This is done

with a common programming interface that can be used across various engines without modifying applications.

This reduces switching overhead, which has drawn increasing attention from academia and industry. A pipeline

is constructed using PCollections and PTransforms from the Beam SDK. There are two types of PCollections:

bounded datasets for batch processing and unbounded data streams for stream processing. PTransforms take one

or more PCollections as inputs, apply user-defined functions, and output PCollections. [126].

Beam SDK allows for developed pipelines to run in different computing engines such as Apache Apex [127],

Google Cloud Dataflow [128], Apache Flink [10], Apache Gearpump [129], Apache Hadoop [130], Apache JStorm

[131], Apache Spark [122], and IBM Streams [132].

With this tool, pipelines can be easily developed that will be used for both streaming and batch processing

without the switching overhead. It also can utilize specialized engines for the use case at hand, taking advantage

of the strongest features of each engine. For example, Spark can be used for jobs that require batch processing and

Flink for streaming use cases. The Figure 24 illustrates how Beam abstracts both the input mode of the data as

well as the underlying engine

Apache Beam provides multiple features that can deal with the data pipeline at a very flexible level. These

features include transformations, time windowing, grouping functions and viewing functions. It also provides

other features that are critical when interacting with streaming data, such as watermarking. The watermarking

process allows for the pipeline to identify late events and decide how to deal with them. For this feature to work

properly Apache Beam distinguishes event time from processing time, in which event time is the time when the

event occurs, while processing time is when the event is being processed.

The pipelines that were used for the architecture are implemented with Apache Beam, with the possibility of

choosing between Apache Flink and Apache Spark processing engines for different scenarios. This provides

extreme flexibility when designing pipelines and pipeline systems, promoting reusability and scalability.

Apache Beam, Apache Flink and Apache Spark can all be deployed to work on the cloud and use distributed

processing.

4.4 Storage tools

Data storage systems are the component of the architecture that allows users to browse and explore data. These

practices enable discovery and reuse within the architecture. Also, it provides the framework to enhance the quality

39

Figure 24: Apache Beam overview by Data Science Central [13]

of data by visualizing how data can be interpolated. It’s also necessary to keep history records of the data so it can

be used for auditing purposes or simply to keep track of processes.

The IIoT environment requires a scalable and decentralized component to accommodate fast data ingestion. It

also needs to be quick when serving data to the user, so its use can be as impactful as possible.

The technologies of choice for this component were Apache Druid and MongoDB.

MongoDB plays a simple but significant role in storing all of the data that flows through the data gateway.

Despite Apache Kafka having the ability to keep data for a set period of time, old data is deleted according to

a time or size-based schedule. In order to maintain the archival capabilities of the architecture, MongoDB was

introduced. This source-available tool was chosen because of its flexibility and data search capabilities.

Apache Druid was introduced to function as an analytical data source, able to perform low-latency queries on

real-time data that is ingested from Kafka. Additionally, this open-source tool serves as a column-oriented time-

series database that is able to ingest enormous amounts of data. The analytical capabilities of this tool allowed for

data discovery and interoperability.

4.4.1 Apache Druid

Apache Druid is an open source, distributed, column-oriented, real-time analytical data store to power modern

analytics applications. This technology was conceived after facing problems with Hadoop implementations. When

it comes to processing data in batch, Hadoop is a very powerful tool. It also serves as a data store for the results

of such processings. The problem with this technology is that it struggles to meet query performance and data

availability standards when data begins to scale. Druid was designed to fulfill these requirements [133]

This tool is an excellent candidate for the main data visualization and discovery tool, since it provides high

query performance, low-latency aggregations [134].

Druid provides visualization of data in form of datasources, which are collections of events that are partioned

into a set of segments with million of rows. These segments are the basic unit of storage where queries will retrieve

the data.

40

Being a time-series database, Druid always require that the events ingested have an associated timestamp,

which allows for datasources to be divided into well defined time intervals, and simplifying data distribution

policies, retention policies and first level query prunning.

Each data source is divided by a time range and optionally by one or more data attributes. Each time range

that partitions the data is called a chunk, which is for example a day, if the data is partitioned by days. Within each

of those chunks, the data is divided into segments, as seen in figure 25.

Figure 25: Druid chunk and segment architecture [14]

Each segment is identified by a data source identifier, the time interval of the data, the version of the segment,

and the partition number. The version represents the freshness of the contained data, and is increased every time

a new segment is created and its typically an timestamp corresponding to when the segment was first started.

Later versions represent newer views of data than segments with older versions. Metadata such as this is used for

concurrency control, which dictates that read operations always access data in a particular time range from the

segments with the latest version identifiers for that time range. These segments are stored in a column orientation,

since one of its main features is the aggregation of data event streams. This is because column orientation allows

for more efficient CPU usage since some columns can be immediately discarded before processing, loaded and

scanned, while row-processing requires the whole row need to be scanned for aggregation porpuses [134]. Another

characteristic of Druid segments is that they are immutable. This offers benefits such as read consistency, and

multiple threads can scan the same segment at the same time. This helps enable higher read throughput.

The Druid cluster architecture is composed of different types of servers, each with different capabilities and

purposes. The intercommunication between these nodes is kept to a minimum, making them independent of each

other, which assures data availability when intra-cluster communication fails [14, 133]. A diagram of the Druid

cluster is presented in Figure 26.

Druid servers are divided into three categories: Master, Query and Data. Master servers manage data avail-

ability and ingestion, query servers address queries, and lastly, data servers execute ingestion workloads and store

all queryable data.

Coordinator This component is part of the master servers of Druid and is responsible for segment management

and distribution. Nodes of this type notify historical processes to load or drop segments, based on the configu-

ration given. They are also responsible for ensuring that segments created are replicated across nodes to ensure

availability.

41

Figure 26: Druid architecture [14]

The coordinator runs periodically, and connects to the zookeeper cluster to acquire cluster information.

Overlord This process is in charge of accepting tasks, organizing their distribution, putting locks around them,

and updating callers on their status.

Broker This component is responsible for routing queries received to different nodes, based on segment metadata

stored in the Zookeeper cluster.

Router This component is used to route different queries to Broker processes. This allows for the isolation of hot

zones, which contain the majority of the queries received. This is done with the objective of keeping less important

data from interfering with more critical data.

Historical This process is responsible for serving segments and queries. The segments are assigned by the Coordi-

nator. This component downloads segments from deep storage and responds to queries about these segments. The

data is stored in memory.

Middle manager This is the process that is responsible for task execution and data ingestion. These tasks are

distributed by Peons, which are small processes that run in the JVM.

Deep storage This component is used to store any data that has been ingested into Druid. This is not directly

part of the Druid system, it is an file storage system that Druid have access to. In a cluster environment, this is

generally a distributed object store such as S3 or HDFS. Druid does not access this component for data serving,

since that would take more latency, it instead uses this component to restore the data if this ever gets lost, making

this an important component of the architecture since it allows for a fault-tolerant design. Segments are periodically

42

committed and published to this component.

Metadata storage This component is responsible for storing metadata about the system, such as segment infor-

mation, rule records, configurations, task-related tables and audit records.

Zookeeper This component is used for internal service discovery, coordination, and leader election. Zookeeper is

responsible for processes such as coordinator leader election, segment publishing protocol, segment load and drop

protocol, overlord leader election, and middle manager task management.

The purpose of Druid in the architecture is to provide a platform for data exploration and accessability. Allowing

for multiple actions such as data aggregation, interpolation and distribution, it is identified by the number 4 in

Figure 11,.

4.4.2 MongoDB

MongoDB is one of the most popular NoSQL databases. It is an open-source, high performance, high availability

database that provides automatic scaling [135]. Data is stored in the form of documents inside MongoDB, which

have flexible schema modeled by JSON objects.

This non-relational database also provides high performance query language processing, that empowers the

analysis of data. The architecture of this tool is represented in figure 27.

Figure 27: MongoDB architecture by Mungekar [15]

The data is distributed per shards in MongoDB, so scalability can be assured. Inside these shards, the data is

replicated into replica sets, to ensure high availability. The query router distributes queries to the shards to process

the data.

43

MongoDB will play a small but significant part in the architecture. It will be used as a history data store,

storing all events that pass through the architecture and is identified by the number 5 in figure 11,

4.5 Other components

There are a few components that were designed specifically for this architecture to assure the proper kilter of this

architecture.

The first component designed is an adapter that subscribes to all newly created events in the context broker

and publishes them to Kafka. This component is called Context Broker Kafka Adapter, shorted to CBKA, and is a

Java application that can be scaled up or down depending on the throughput needs.

The other component is the MongoDB Kafka Connector [136], and it was configured to store all information

that flows through the topics in collections.

44

5 Use case

The use case used to test this methodology was a dataset that contains the of different sensors in multiple houses

in New York with an IoT environment. This dataset was chosen for its sensor and sensor reading data. Although it

does not come directly from an IIoT environment, it offers strong parallels, making it a valid first use case.

The dataset presents its data in a column oriented form. The first two columns are dataid and localminute,

which represent a house identifier and the time that the values are being recorded respectively. The remaining 77

columns represent different devices that record values within the environment. The devices are identified by the

type of metric that is recording followed by a number. Some examples of these devices are air1, bedroom2, car2,

dishwasher1.

In order for this dataset to serve the purpose that is needed for the use case, it needs to be transformed so

the columns that represent the devices can be turned into rows, containing the sensor, house identifier, timestamp

that the value is recorded and type of recording, fitting into the standard sensor reading format found in most IIoT

devices. A Apache Spark job was developed for this porpuse, which transformed the data in the format seen in

Table 3.

After the original dataset is transformed, an Python application was created to read from the newly transformed

dataset. In this application, the values are sent to the entrypoint of the architecture, which is the context broker.

The application sends dataset rows at a configurable frequency, acting as an gateway in a real-life IIoT scenario.

The dataset transformation flow is illustrated in Figure 28.

Figure 28: Dataset transformation flow

5.1 Applied definition of data

The data model that was used for this project was heavily based on the smart models that are hosted by Fiware

[106]. The model that was shown to be most suitable to fit the current use case was the Smart Sensoring Model.

This model is extremely focused on the Sensor interconnection within an IoT environment, with extensive mod-

ulation of sensor and sensor reading information. In this model, the entities most commonly used in the context

broker were Device and DeviceMeasurement, seen in figure 29. The Device entity is a combination of hardware,

software and firmware intended to represent the sensor as a whole. It is responsible for sensing a particular part

of the environment. By contrast, the DeviceMeasurement indicates the values that the Device has measured inside

the environment, creating a direct correlation between them.

The Device entity has numerous fields to represent the sensor itself. The following list will enumerate some

of them.

• ID - This is the main form of device identification and reference. Using this field, all entities can be

connected to each other. If some device is related to another device or even another entity, such as a room,

45

house id localminute sensor name reading value type

5997 2019-06-24 15:55:00-05 bathroom1 0.001 bathroom

5997 2019-06-24 15:55:00-05 clotheswasher1 0.0 clotheswasher

5997 2019-06-24 15:55:00-05 dishwasher1 0.0 dishwasher

5997 2019-06-24 15:55:00-05 drye1 0.0 drye

5997 2019-06-24 15:55:00-05 garage1 0.003 garage

5997 2019-06-24 15:55:00-05 grid -1.036 grid

5997 2019-06-24 15:55:00-05 kitchenapp1 0.002 kitchenapp

5997 2019-06-24 15:55:00-05 lights plugs1 0.011 lights plugs

5997 2019-06-24 15:55:00-05 microwave1 0.001 microwave

5997 2019-06-24 15:55:00-05 solar 1.686 solar

5997 2019-06-24 15:55:00-05 utilityroom1 0.503 utilityroom

5997 2019-06-24 15:55:00-05 waterheater1 0.0 waterheater

5997 2019-06-24 15:55:00-05 leg1v 122.046 legv

5997 2019-06-24 15:55:00-05 leg2v 122.846 legv

3700 2019-06-24 15:59:00-05 grid 0.469 grid

3700 2019-06-24 15:59:00-05 heater1 0.001 heater

3700 2019-06-24 15:59:00-05 kitchen1 0.002 kitchen

3700 2019-06-24 15:59:00-05 livingroom1 0.012 livingroom

3700 2019-06-24 15:59:00-05 microwave1 0.003 microwave

3700 2019-06-24 15:59:00-05 oven1 0.006 oven

Table 3: Sample of the result dataset from the Spark job

it will reference that external entity by its ID.

• name - This is also a form of device identifaction, but it tends to be more human-readable for better contex-

tualisation.

• description - This field is entirely for contextualization of the device, in order to better understand its place

in the environment.

• owner - This field allows for the specification of an organization or people that are responsible for the device.

• location - This allows for spatial contextualization of the device inside the environment.

• category - This field describes the type of device. It can be a multitude of values such as Sensor, Actor,

Meter, Network, etc.

• controlledProperty - This describes which environment values are being monitored. This represents any-

thing that can be measured. Some examples are temperature, air quality, conductance, humidity, and light.

46

Figure 29: Device to device measurement relation

• controlledAsset - Represents which real-world object is controlling. This can include buildings, rooms,

objects, machines, or cars. This field can also be used to reference an external entity. For example, if a

device is monitoring a building or a car, it can refer to them by their ID.

• dateInstalled - A time field that shows when the device was installed.

• dateFirstUsed - Another time field, but this one represents when the device was first used.

• dateLastCalibration - This field shows when the device was last calibrated.

• provider - Provider of the device. It can be considered to be the company that manufactured it.

• deviceState - Represents the operational state of the device.

The next list will follow the same strategy, but will examine some of the properties of DeviceMeasurement.

• id - Unique identifier of the measurement

• numValue - This field contains the numeric value of the measurement. When a reading is parsable to a

number this field will contain it.

• textValue - This field contains the text value of the measurement. It will always contain the value regardless

of the format.

• controlledProperty - In the same way that the Device has the same field.

• refDevice - This field contains the reference information to the Device that the measurement is tight to. This

is what allows us to create a semantic net around the devices and the actual values that it records.

• measurementType - The type of measurement that is being done.

• dateObserved - The timestamp when the measurement was made.

• outlier - Defines if a particular measurement is an outlier.

• unit - The unit that in which the value is expressed.

The Smart Sensoring data model is the basis for data contextualization, but it’s not limited by it. Smart models

are meant to extended with other properties that can bring even more value to the solution. In this case, the original

data model was enhanced the smart model with properties originated from other smart models and properties

coming from the SAO ontology [137].

47

The smart manufactoring model was used to model manufactoring machines that sensors can be attached

to, interconnecting the machines to the sensors and even other machines. The smart city smart model was used to

enhance the data with building and room information, connecting them to the other existing entities in the semantic

net.

The SAO ontology [137] is an defined stream annotation ontology that served as inspiration to various fields

in the model. Many of those fields are directly connected to data quality metrics. This project also provides

temporal concepts such as StreamData, Segment, StreamAnalysis. This last temporal concept is deeply tight to

data observability, since it allows to model a series of transformation that were made to the data in a specific

time frame, allowing for the understanding of the data and eventual reconstruction if needed. This ontology is

also heavily connected data quality classifications, through a field that directy refers to the Quality Ontolgy [138].

The Quality Ontology is extremely important, as it provides fields that are used to model the main quality issues

that were already mentioned, such as Accuracy, Age, Completeness, Correctness, Deviation, EnergyConsumption,

Frequency, Latency, MonetaryConsumption, Precision, among others. These two ontologies allows us to enhance

the established smart model with already accepted fields in the data quality and stream analysis spectrum.

Most of the Device context will be provided by a user, since it contains almost entirely static metadata, which

can only be given initially by a manual insert. The devices inserted will be attributed an ID which the Device-

Measurement will then reference, so the measurements can be associated with the ID and then with the whole

environment. As of now, these devices can be inserted via a HTTP request to the Orion Context Broker. The

created entities will then be sent to the context broker and then to a Kafka topic, to be processed by the pipelines.

DeviceMeasurement entities which represent the sensor readings are also sent via HTTP request to the context

broker, but these ones are sent through the gateway instead of manually. When the measurement is loaded into

the system, the context broker will automatically add the context to it via the Device reference, reaching the data

gateway with already context associated for proper processing.

The context broker also serves as an explorable and searchable tool to find data. This component contains

the most recent data that is found in the system. This is because it is the entrypoint and any pipelines that do

data decoration feedback to the context broker. Orion Context Broker contains an that allows for searching

entities with specific parameters [139]. Additionally, due to the lineage capabilities incorporated into the pipelines

for observability purposes, the context data should include both the topics and pipelines that the data is flowing

through. This will enable users to connect to those topics and retrieve the data.

5.2 Pipeline ontology

This section will describe the pipeline model inside the architecture. This will serve as documentation to under-

stand the function of the pipelines as well as allowing for creating pipeline templates. The pipeline template allows

for pipeline reusability by only changing specific parameters to conform to separate but similar use cases. A sim-

ple example that fits into this description is the usage of a pipeline that filters sensor readings that have a value

above a certain limit. In this described scenario a template pipeline could be created that takes in parameters such

as input information, value limit, and output information. The template pipeline instantiates a specific pipeline

that conforms to the defined use case. This process allows for reutilization of created processes and improves the

scalability and maintenanceability of the architecture.

48

Ultimately, these pipeline templates can be stored in a repository that users can access, providing visibility and

shareability.

49

id
St

ri
ng

Id
of

th
e

pi
pe

lin
e.

T
hi

s
w

ill
be

th
e

m
ai

n
m

et
ho

d
of

id
en

tif
yi

ng
pi

pe
lin

es
.I

tw
ill

al
so

be
us

ed
fo

rw
at

er
m

ar
ki

ng
th

e
da

ta
.

na
m

e
St

ri
ng

N
am

e
of

th
e

pi
pe

lin
e.

T
hi

s
ai

m
s

to
ge

ta
sm

al
ld

es
cr

ip
tio

n
of

th
e

fu
nc

tio
na

lit
y

of
th

e
pi

pe
lin

e.

de
sc

ri
pt

io
n

St
ri

ng
T

hi
s

fie
ld

co
nt

ai
ns

th
e

fu
ll

de
sc

ri
pt

io
n

of
th

e
pi

pe
lin

e,
so

it
ca

n
be

ea
si

er
to

un
de

rs
ta

nd
its

re
qu

ir
em

en
ts

an
d

pu
rp

os
e.

ta
gs

A
rr

ay
of

St
ri

ng
Se

to
fw

or
ds

or
ph

ra
se

s
th

at
ca

n
be

us
ed

to
qu

ic
kl

y
se

ar
ch

fo
rp

ip
el

in
es

in
si

de
th

e
re

po
si

to
ry

.I
tc

an
be

th
e

te
ch

no
lo

gy
its

el
fo

rt
he

w
ay

da
ta

is
tr

an
sf

or
m

ed
.

de
pe

nd
en

ci
es

A
rr

ay
of

O
bj

ec
t

T
hi

s
ob

je
ct

co
nt

ai
ns

al
lt

he
re

qu
ir

em
en

ts
th

at
ar

e
ne

ed
ed

fo
rt

he
pi

pe
lin

e
to

in
ge

st
th

e
da

ta
.

de
pe

nd
en

ci
es

.d
at

aS
ta

ge
A

rr
ay

of
St

ri
ng

D
efi

ni
tio

n
of

th
e

da
ta

st
ag

es
th

at
it

ai
m

s
to

co
ns

um
e

fr
om

.A
lth

ou
gh

m
os

tc
as

es
w

ill
re

qu
ir

e
da

ta
pi

pe
lin

es
to

be
co

nn
ec

te
d

to
on

ly
D

at
aS

ta
ge

,

th
e

ar
ch

ite
ct

ur
e

al
lo

w
s

fo
rm

ul
tip

le
da

ta
st

ag
e

co
nn

ec
tio

ns
.

de
pe

nd
en

ci
es

.s
ta

gi
ng

To
pi

c
A

rr
ay

of
St

ri
ng

D
efi

ni
tio

n
of

th
e

da
ta

st
ag

es
th

at
it

ai
m

s
to

co
ns

um
e

fr
om

.A
lth

ou
gh

m
os

tc
as

es
w

ill
re

qu
ir

e
da

ta
pi

pe
lin

es
to

be
co

nn
ec

te
d

to
on

ly
D

at
aS

ta
ge

,

th
e

ar
ch

ite
ct

ur
e

al
lo

w
s

fo
rm

ul
tip

le
da

ta
st

ag
e

co
nn

ec
tio

ns
.

de
pe

nd
en

ci
es

.d
at

aF
ilt

er
O

bj
ec

t
T

hi
s

fie
ld

al
lo

w
s

fo
rt

he
sp

ec
ifi

ca
tio

n
of

da
ta

fil
tr

at
io

n.
T

he
va

lu
e

of
th

is
fie

ld
is

a
se

to
fk

ey
-v

al
ue

pa
ir

s,
w

he
re

th
e

ke
y

id
en

tifi
es

th
e

ta
rg

et
pr

op
er

ty

na
m

e
th

at
w

ill
be

fil
tr

at
ed

,a
nd

th
e

va
lu

e
is

a
st

ri
ng

th
at

de
fin

es
a

re
ge

x
on

ho
w

th
e

da
ta

sh
ou

ld
be

fil
tr

at
ed

.

de
pe

nd
en

ci
es

.p
ip

el
in

e
A

rr
ay

of
St

ri
ng

Se
to

fp
ip

el
in

e
ID

s
th

at
ar

e
re

qu
ir

ed
to

ru
n

be
fo

re
th

is
pi

pe
lin

e
ca

n
ta

ke
ac

tio
n.

de
pe

nd
en

ci
es

.m
od

el
A

rr
ay

of
ob

je
ct

s
Sp

ec
ifi

ca
tio

n
of

th
e

m
od

el
s

th
at

th
e

pi
pe

lin
e

w
ill

co
ns

um
e.

W
he

n
m

ul
tip

le
m

od
el

s
ar

e
de

fin
ed

,t
he

pi
pe

lin
e

w
ill

co
ns

um
e

di
ff

er
en

td
at

a
so

ur
ce

s
an

d
ty

pe
s.

de
pe

nd
en

ci
es

.m
od

el
.id

St
ri

ng
T

he
ID

of
th

e
m

od
el

in
w

hi
ch

da
ta

w
ill

be
co

ns
um

ed
.

de
pe

nd
en

ci
es

.m
od

el
.m

in
V

er
si

on
St

ri
ng

M
in

im
um

ve
rs

io
n

of
th

e
m

od
el

th
at

th
e

pi
pe

lin
e

is
ab

le
to

pr
oc

es
s.

de
pe

nd
en

ci
es

.m
od

el
.m

ax
V

er
si

on
St

ri
ng

M
ax

im
um

ve
rs

io
n

of
th

e
m

od
el

th
at

pi
pe

lin
e

is
ab

le
to

pr
oc

es
s.

ou
tp

ut
O

bj
ec

t
T

hi
s

ob
je

ct
de

fin
es

th
e

ou
tp

ut
sp

ec
ifi

ca
tio

n
of

th
e

pi
pe

lin
e

pr
oc

es
s

ou
tp

ut
.d

at
aG

at
ew

ay
O

bj
ec

t
D

efi
ni

tio
n

of
th

e
ou

tp
ut

th
at

is
se

nt
to

th
e

da
ta

ga
te

w
ay

.

ou
tp

ut
.d

at
aG

at
ew

ay
.m

od
el

O
bj

ec
t

M
od

el
sp

ec
ifi

ca
tio

n
of

th
e

da
ta

th
at

is
se

nt
to

th
e

da
ta

ga
te

w
ay

.

ou
tp

ut
.d

at
aG

at
ew

ay
.m

od
el

.id
St

ri
ng

T
he

ID
of

th
e

m
od

el
ou

tp
ut

te
d.

ou
tp

ut
.d

at
aG

at
ew

ay
.m

od
el

.n
am

e
St

ri
ng

N
am

e
of

th
e

m
od

el
ou

tp
ut

te
d.

ou
tp

ut
.d

at
aG

at
ew

ay
.m

od
el

.v
er

si
on

St
ri

ng
V

er
si

on
of

th
e

m
od

el
ou

tp
ut

te
d.

ou
tp

ut
.d

at
aG

at
ew

ay
.m

od
el

.li
nk

St
ri

ng
L

in
k

of
th

e
m

od
el

ou
tp

ut
te

d.

ou
tp

ut
.d

at
aG

at
ew

ay
.d

at
aS

ta
ge

St
ri

ng
N

am
e

of
th

e
da

ta
st

ag
e

in
w

hi
ch

da
ta

w
ill

be
ou

tp
ut

to
.

ou
tp

ut
.d

at
aG

at
ew

ay
.s

ta
gi

ng
To

pi
c

St
ri

ng
N

am
e

of
th

e
st

ag
in

g
to

pi
c

in
w

hi
ch

da
ta

w
ill

be
ou

tp
ut

to
.

ou
tp

ut
.d

at
aG

at
ew

ay
.d

oc
um

en
ta

tio
n

O
bj

ec
t

D
oc

um
en

ta
tio

n
of

th
e

tr
an

sf
or

m
at

io
n

th
at

w
as

m
ad

e
to

th
e

da
ta

.

ou
tp

ut
.d

at
aG

at
ew

ay
.d

oc
um

en
ta

tio
n.

ch
an

ge
Ty

pe
St

ri
ng

D
es

cr
ip

tio
n

of
th

e
da

ta
tr

an
sf

or
m

at
io

n
pr

oc
es

s,
su

ch
as

ag
gr

eg
at

io
n,

fil
tr

at
io

n,
de

co
ra

tio
n,

al
er

tin
g,

et
c.

..

ou
tp

ut
.d

at
aG

at
ew

ay
.d

oc
um

en
ta

tio
n.

ch
an

ge
dF

ie
ld

s
A

rr
ay

of
St

ri
ng

A
n

ar
ra

y
of

fie
ld

s
th

at
w

er
e

ad
de

d,
de

le
te

d
or

ed
ite

d
du

ri
ng

th
e

pr
oc

es
si

ng
.

ou
tp

ut
.c

on
te

xt
B

ro
ke

r
O

bj
ec

t
D

efi
ni

tio
n

of
th

e
qu

al
ity

fe
ed

ba
ck

th
at

w
as

se
nt

fr
om

th
e

pi
pe

lin
e

to
th

e
co

nt
ex

tb
ro

ke
r.

ou
tp

ut
.c

on
te

xt
B

ro
ke

r.e
nt

ity
N

am
e

St
ri

ng
T

he
en

tit
y

th
at

w
as

m
od

ifi
ed

in
th

e
qu

al
ity

fe
ed

ba
ck

.

ou
tp

ut
.c

on
te

xt
B

ro
ke

r.v
al

ue
C

ha
ng

ed
A

rr
ay

of
St

ri
ng

N
am

es
of

th
e

pr
op

er
tie

s
of

th
e

m
od

el
th

at
w

er
e

ad
de

d
or

ed
ite

d
in

th
e

qu
al

ity
fe

ed
ba

ck
ite

ra
tio

n.

ou
tp

ut
.e

xt
er

na
lS

er
vi

ce
O

bj
ec

t
A

n
ex

pl
an

at
io

n
of

th
e

in
te

gr
at

io
n

of
ex

te
rn

al
se

rv
ic

es
w

ith
th

e
pi

pe
lin

e.

ou
tp

ut
.e

xt
er

na
lS

er
vi

ce
.n

am
e

St
ri

ng
N

am
e

of
th

e
ex

te
rn

al
se

rv
ic

e.

ou
tp

ut
.e

xt
er

na
lS

er
vi

ce
.d

es
cr

ip
tio

n
St

ri
ng

D
es

cr
ip

tio
n

of
th

e
in

te
ra

ct
io

n
an

d
w

hy
it

is
ne

ed
ed

.

Ta
bl

e
4:

Pi
pe

lin
e

m
od

el
sp

ec
ifi

ca
tio

n

50

The pipeline model presented in Table 4 is divided into three dimensions: Base information, input or depen-

dency information and output information.

The base information of the pipeline consists of fields such as ID, name and description, that allows for pipeline

identification and understanding. Another critical field that is included in the base information about the pipeline is

the tags. The tags are a set of words or phrases that can be used to search for the pipeline inside the given pipeline

repository. This should include information such as the technology used, the processing type, the business context,

and any other characteristic that is pertinent for a search of the pipeline.

The second dimension pertains to the information associated with data that is consumed by the pipeline. This

includes the specification of each section the data is coming from in the data gateway, as well as the data model

of the data. Another key field to be noted is the filter field, which allows for data filtration, so data only relevant

to the pipeline is consumed. Lastly, it can be further expanded the dependency information by specifying a set of

pipelines that are needed to run before the specified pipeline can run. This allows for a pipeline hierarchy when

needed.

The final set of fields are directed to the output information, which can be a combination of data gateway,

context broker, and an external service. The data gateway output can be to a central data stage or a staging topic. If

both are specified, then it means that it will produce for both outputs. The context broker specification refers to an

entity that will be modified with updated information. Finally, the external service is anything that does not fit into

the first two categories. For readability and reusability purposes, the output information also contains the modified

fields for the data gateway and context broker.

An example implementation of this model in JSON format can be found in Listing 1

1 {

2 "id":"984" ,

3 "name ":" Example pipeline",

4 "description ":" This is an example pipeline. This field contains a description

of the processing",

5 "tags ":[

6 "example",

7 "beam",

8 "flink"

9],

10 "dependencies ":{

11 "dataStage ":[

12 "DS1"

13],

14 "stagingTopic ":[

15 "staging -topic -6"

16],

17 "dataFilter ":{

18 "data.type ":" AirQuality"

19 },

51

20 "pipeline ":[

21 982,

22 983

23],

24 "model ":[

25 {

26 "id":" DeviceMeasurement",

27 "minVersion ":"0.0.1" ,

28 "maxVersion ":"9.9.9"

29 }

30]

31 },

32 "output ":{

33 "dataGateway ":{

34 "model ":{

35 "id":" DeviceMeasurement",

36 "name ":" Device Measurement",

37 "version ":"1.0.0" ,

38 "link ":" https :// github.com/smart -data -models/dataModel.Device/tree/

master/DeviceMeasurement"

39 },

40 "dataStage ":"DS2",

41 "stagingTopic ":" staging -topic -8",

42 "documentation ":{

43 "changeType ":" Decoration",

44 "changedFields ":[

45 "data.quality.field.example"

46]

47 }

48 },

49 "contextBroker ":{

50 "entityName ":" Sensor",

51 "valueChanged ":[

52 "sensor.quality.field.example",

53 "sensor.air -quality.lastValue"

54]

55 },

56 "externalService ":{

57 "name ":" Alerting service",

58 "description ":" This example pipeline will call an alerting service if

the air quality is too bad."

59 }

52

60 }

61 }

Listing 1: Example pipeline model

5.3 The flow of data

Data pipelines are one of the most dynamic components in this architecture. This is because they are responsible

for moving the data across data stages and providing feedback to the context broker so that it can be correctly

contextualized.

Let’s assume that it exists two defined data stages, Data Stage 1 (DS1) which contains mostly raw data that

just arrived from an IoT environment, and another, called Data Stage 2 (DS2), which contains an enriched version

of the data that already has passed through some kind of filtration, enrichment or augmentation. In this particular

scenario, it’s possible to have multiple pipelines and pipeline systems that move the data from DS1 to DS2.

The simplest scenario of this transition is to declare a single pipeline that does some kind of transformation to

the data. This pipeline is sufficient to move the data from the first data stage to the second data stage. Let’s take

for example a pipeline that aggregates the energy consumption data every hour.

1 (...)

2 "dependencies ": {

3 "dataStage ": "DS1",

4 "filter ": {

5 "type": "EnergyReading"

6 }

7 }

8 (...)

9 "output ": {

10 "dataGateway ": {

11 "model": (...),

12 "datastage ": "DS2",

13 "documentation ": {

14 "changeType ": "Aggregation",

15 "changedFields ": [

16 "sum",

17 "timeRange"

18]

19 }

20 },

21 "contextBroker ": {

22 "entityName ": "EnergyReading",

23 "valueChanged ": "aggregations.consumedPerHour"

24 }

53

25 }

Listing 2: Energy reading aggregation pipeline

Figure 30: Energy reading accumulator data flow

The requirements of this pipeline would be that it needs to ingest data from the first data stage that contains

raw data. The data that it consumes needs to be of the type EnergyReading. Based on these requirements, data will

be filtrated by datastage and type of data. After the pipeline consumes the data it needs to keep a record of the state

of the EnergyReading of the hour. Once this processing is complete, the data is finally pushed to the next stage, in

the form of aggregation. This data flow is illustrated in Figure 30

Now taking on a more realistic and complex use case. As an example, let’s consider that a form of predictive

maintenance is being put in place to improve efficiency and lower downtime. It’s necessary the creation of a

pipeline system that consumes energy readings, air quality readings, temperature readings, and input and output

times of the machine. After this the pipeline system will assess if an alert must be given so it can notify if the

machine needs to be looked at.

First a pipeline that takes the input and output times of the machine and calculates the time that the machine

takes to produce an output will be created. After that a second pipeline needs to be constructed, that ingests the

previously calculated time, the energy readings, air quality readings around the machine, and temperature readings.

After consuming all of this data the pipeline will have to assess if predictive maintenance is required and generate

an event that specifies that. Finally, another pipeline will be put into place, that consumes the events produced by

the previous pipeline and sends an alert for each event that it receives.

The following pipelines are designed as follows:

1 (...)

2 "dependencies ": [

3 {

4 "dataStage ": "DS1",

5 "filter ": {

54

6 "type": "InputTime"

7 }

8 },

9 {

10 "datastage ": "DS1",

11 "filter ": {

12 "type": "OutputTime"

13 }

14 }

15]

16 (...)

17 "output ": {

18 "dataGateway ": {

19 "model": (...),

20 "stagingTopic ": "predictiveMaintenance1 -staging1",

21 "documentation ": {

22 "changeType ": "Calculation",

23 "changedFields ": [

24 "timeToProduceOutput.avg",

25 "timeToProduceOutput.median",

26 "timeToProduceOutput.lastValue",

27 "timeToProduceOutput.max",

28 "timeToProduceOutput.min"

29]

30 }

31 },

32 "contextBroker ": {

33 "entityName ": "Machine",

34 "valueChanged ": [

35 "timeToProduceOutput.avg",

36 "timeToProduceOutput.median",

37 "timeToProduceOutput.lastValue",

38 "timeToProduceOutput.max",

39 "timeToProduceOutput.min"

40]

41 }

42 }

Listing 3: Time to produce output pipeline

1 (...)

2 "dependencies ": [

3 {

55

4 "stagingTopic ": "predictiveMaintenance1 -staging1"

5 },

6 {

7 "dataStage ": "DS1",

8 "filter ": {

9 "type": "EnergyReading"

10 }

11 },

12 {

13 "dataStage ": "DS1",

14 "filter ": {

15 "type": "TemperatureReading"

16 }

17 },

18 {

19 "dataStage ": "DS1",

20 "filter ": {

21 "type": "AirQualityReading"

22 }

23 }

24]

25 (...)

26 "output ": {

27 "dataGateway ": {

28 "model": "(...)",

29 "stagingTopic ": "predictiveMaintenance1 -staging2",

30 "dataStage ": "DS2"

31 "documentation ": {

32 "changeType ": "Filtration",

33 "changedFields ": [

34 "maintenance.isNeeded",

35 "maintenance.lastCalculated"

36]

37 }

38 },

39 "contextBroker ": {

40 "entityName ": "Machine",

41 "valueChanged ": [

42 "maintenance.isNeeded",

43 "maintenance.lastCalculated"

44]

45 }

56

46 }

Listing 4: Predictive maintenance pipeline

1 (...)

2 "dependencies ": [

3 {

4 "stagingTopic ": "predictiveMaintenance1 -staging2"

5 }

6]

7 (...)

8 "output ": {

9 "externalService ": {

10 "name": "email",

11 "description ": "Sends an email to a distribution list stating that a

machine needs to fixed. The email will contain the analysis made."

12 }

13 }

Listing 5: Email alert pipeline

1 (...)

2 "dependencies ": [

3 {

4 "stagingTopic ": "predictiveMaintenance1 -staging2"

5 }

6]

7 (...)

8 "output ": {

9 "externalService ": {

10 "name": "push -notification",

11 "description ": "Sends an notification to a set of devices stating that a

machine needs to fixed."

12 }

13 }

Listing 6: Push notification alert pipeline

In the model presented in Listing 3 represents the pipeline that is responsible for calculating the production

time of each machine. Basically, it will receive the input and output events of the machines and calculate the

difference between them for each one. This will deliver that information to the data gateway as well as the context

broker. For this reason the pipeline needs to consume two data sources and join them, as illustrated in the depen-

dencies block, starting in line 2. One of the datasources is the datastage DS1 that refers to the first data stage inside

the data gateway and filters the events only by InputTime. It comes from the first data stage DS1 but is filtered

instead by OutputTime.

57

The output section has two different specifications. Firstly, there is the data gateway, to which the calculations

are sent. The most peculiar difference in this pipeline as opposed to the previous ones is that the output is going

to the data gateway but not to a particular data stage. As the processing is being done by the pipeline system and

not by a single pipeline, this means that a single pipeline in a pipeline system is not capable of enhancing data

sufficiently to be promoted to the next data stage. Due to this requirement, pipelines within a pipeline system

output their results into a staging topic, as seen in Line 20. This staging topic will act as a buffer between pipelines

inside the same system, so that data can remain outside the data stage while it is being enhanced. This process

is inspired by the source-control branching model known as trunk-based development [140], in which developers

have working software in the main branch, called ”trunk”, and when something needs to be changed, a new branch

is created to host those changes, and finally when everything is working properly the created branch is merged

back into the trunk, keeping a single source of truth. Pipeline systems act much like developers in this scenario,

picking up data from the central source of truth, which is a data stage. They will iteratively make changes to the

data until it is merged back into the main data stage.

The same concept is applied to the next pipeline in the dataflow. The pipeline defined in Listing 4 will consume

from the previously mentioned staging topic with the calculated production time, as well as different data from the

first data stage, such as EnergyReadings, TemperatureReadings, and AirQualityReadings.

The pipeline will relate all of this data through the Machine reference that it contains. Then, it will determine

if the machine requires maintenance in the near future based on a set of criteria. Processing will mainly consist of

a complex filtration process to filter machines that require attention. After this filtration, the pipeline will output

its results to a newly created staging topic, so it can be picked up by upcoming pipelines, as well as the results of

the junction of all the machine properties to the next data stage DS2. A very critical note must be added in this

scenario, which is that this use case is intentionally taking on extra complexity to show how it can be handled by

the proposed architecture. In a real-life scenario, the predictive maintenance pipeline shown in Listing 4 would be

divided into at least two different pipelines: the first would join all the required machine properties and send them

forward into the next data stage, and the second pipeline would consume from that enriched state so it would only

need to be concerned with the filtering part of the process. This single responsibility model allows better pipeline

maintenance and readability, and thus sustainability and scalability.

The next two pipelines depicted in Listings 5 and 6 illustrate the usage of alerts in the data flow, that take in

the data that flows to the staging topic and send an email or a push notification to a set of actors.

The full data flow is illustrated in Figure 31

58

Figure 31: Predicitive maintenance pipeline system data flow

59

6 Conclusion

IIoT data management environments enclose many different challenges today. New patterns and technologies

emerge, bringing security concerns about the data held, rising the need to understand where the data came from

and how it affects the business. All these problems can be boiled down to an understanding of data and, more

specifically, its ever-evolving context.

It was presented and discussed an methodology that addresses these problems. Design of this system focuses

on iteratively enhancing data quality with decentralized components and centralized infrastructure. This provides

a data management reference system to contribute to the reliability of the data quality level within the Industry

4.0 paradigm. The presented architecture was born out of an iterative process of redesign based on state-of-the-

art architectures. Firstly the architecture was designed as a Data Lake divided by data sections to distribute the

data across maturity levels, being processed by multiple pipelines. The second iteration resulted in a metadata

management layer design on top of the existing Data Lake so data contextualization through semantics could be

achieved. During this iteration, pipelines were also extended to take advantage of this metadata layer. This was

so it could access the metadata defined and create a feedback with calculated metadata about data that was being

processed. The final iteration of the architecture resulted in the incorporation of the Data Mesh design pattern.

This pattern takes advantage of treating data as a product, allowing for increased focus on data quality, reusability,

and interoperability.

FAIR data design principles are used to address observability challenges to achieve value-added data gover-

nance within IIoT real-time environments. In a data observability context, smart data models along with SAO

ontologies are essential aspects of schema categories.

This methodology has proven that higher data quality can be achieved if the data management tool is built with

data observability and context through semantics at the core of the design. Each component in the methodology

plays a critical part in the overall system. The tecnhologies chosen for these components present state-of-the-art

capabilities and are at the forefront of the respective fields.

The results of this research work are to be incorporated into a reference methodology for the development of

data quality oriented big data architectures in industry.

6.1 Future work

Considering the development made in the work there are aspects that could be extended to improve the relavancy

of this work.

The data ontolgy used can be further extended with other smart data models. Smart Energy can be used to

extend the energy aspect of the environment, creating further device and manufactoring contextualization. Smart

Environment can also be added to the ontolgy to the extend the data with waste management categories, as well

as weather and water quality. Lastly, Smart Robotics might serve the purpose of describing robotics capabilities in

some manufacturers.

Pipeline templates also can be extended to have a required schema, so they can be commonly shared across

the platform. After that, those pipelines can be hosted in a repository that the users have access to, to search for

existing pipelines in order to reuse them in new use cases.

60

The further developments for this project will also involve better interface and system interaction. The first

suggestion should be the implementation of a form that would improve the way that metadata is entered for context

broker entities, instead of the current HTTP requests that are required. Second, an important interface improve-

ment should be a better data discoverability tool on top of the context broker that uses its , creating a middle

component between the user and the context broker, facilitating communication between them. Lastly, this work

aims to create an interface that takes in defined pipeline templates from the aforementioned repository and creates

a parameterizable pipeline system. This task could be performed by users that do not have knowledge of pipeline

creation, improving the way that data can be used and its delivery time.

61

References

[1] Simio, “Simio’s 8 reasons to adopt industry 4.0.” [Online]. Available: https://www.prnewswire.com/

news-releases/simios-8-reasons-to-adopt-industry-4-0--300629039.html

[2] I. Sainz, “Diseñar para divergencias y convergencias. enfoques del dcg para los procesos de lectura por

placer en la red,” Exploraciones, intercambios y relaciones entre el diseño y la tecnologı́a, pp. 57–79, 2019.

[Online]. Available: http://zaloamati.azc.uam.mx/handle/11191/6874

[3] B. Moses, “The rise of data observability: Architecting the future of data trust,” in Proceedings of

the Fifteenth ACM International Conference on Web Search and Data Mining, ser. WSDM ’22. New

York, NY, USA: Association for Computing Machinery, 2022, p. 1657. [Online]. Available:

https://doi.org/10.1145/3488560.3510007

[4] “What is a data warehouse? — ibm.” [Online]. Available: https://www.ibm.com/cloud/learn/

data-warehouse

[5] “What is a lakehouse? - the databricks blog.” [Online]. Available: https://www.databricks.com/blog/2020/

01/30/what-is-a-data-lakehouse.html

[6] N. Yuhanna, “Big data fabric drives innovation and growth — forrester,” 2016. [Online]. Available:

https://www.forrester.com/report/Big-Data-Fabric-Drives-Innovation-And-Growth/RES129473

[7] Z. Dehghani, “Data mesh principles and logical architecture,” 2020. [Online]. Available: https:

//martinfowler.com/articles/data-mesh-principles.html

[8] A. Karkouch, H. Mousannif, H. A. Moatassime, and T. Noel, “Data quality in internet of things: A state-of-

the-art survey,” Journal of Network and Computer Applications, vol. 73, pp. 57–81, 9 2016.

[9] “What is apache kafka? how it works, benefits challenges.” [Online]. Available: https:

//www.qlik.com/us/streaming-data/apache-kafka

[10] “Apache flink: Stateful computations over data streams.” [Online]. Available: https://flink.apache.org/

[11] Cloudera, “Using watermark in flink — cdp private cloud.” [Online]. Available: https://docs.cloudera.com/

csa/1.2.0/flink-overview/topics/csa-watermark.html?

[12] “Cluster mode overview - spark 3.3.0 documentation.” [Online]. Available: https://spark.apache.org/docs/

latest/cluster-overview.html

[13] M. Walker, “Apache beam - create data processing pipelines - datasciencecentral.com,” 2016. [Online].

Available: https://www.datasciencecentral.com/apache-beam-create-data-processing-pipelines/

[14] “Druid — database for modern analytics applications.” [Online]. Available: https://druid.apache.org/

[15] A. Mungekar, “Data storage and management project,” 2 2019. [Online]. Available: https:

//www.researchgate.net/publication/330841309 Data Storage and Management Project

62

https://www.prnewswire.com/news-releases/simios-8-reasons-to-adopt-industry-4-0--300629039.html
https://www.prnewswire.com/news-releases/simios-8-reasons-to-adopt-industry-4-0--300629039.html
http://zaloamati.azc.uam.mx/handle/11191/6874
https://doi.org/10.1145/3488560.3510007
https://www.ibm.com/cloud/learn/data-warehouse
https://www.ibm.com/cloud/learn/data-warehouse
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.forrester.com/report/Big-Data-Fabric-Drives-Innovation-And-Growth/RES129473
https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/articles/data-mesh-principles.html
https://www.qlik.com/us/streaming-data/apache-kafka
https://www.qlik.com/us/streaming-data/apache-kafka
https://flink.apache.org/
https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-watermark.html?
https://docs.cloudera.com/csa/1.2.0/flink-overview/topics/csa-watermark.html?
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://www.datasciencecentral.com/apache-beam-create-data-processing-pipelines/
https://druid.apache.org/
https://www.researchgate.net/publication/330841309_Data_Storage_and_Management_Project
https://www.researchgate.net/publication/330841309_Data_Storage_and_Management_Project

[16] “What is a data lake?” [Online]. Available: https://aws.amazon.com/big-data/datalakes-and-analytics/

what-is-a-data-lake/

[17] IBM, “What is hdfs? apache hadoop distributed file system.” [Online]. Available: https:

//www.ibm.com/topics/hdfs

[18] A. Web Services. [Online]. Available: https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.

html

[19] Y. E. Oktian, E. N. Witanto, and S.-G. Lee, “A conceptual architecture in decentralizing computing, storage,

and networking aspect of iot infrastructure,” IoT, vol. 2, pp. 205–221, 3 2021.

[20] M. Xu, J. M. David, and S. H. Kim, “The fourth industrial revolution: Opportunities and

challenges,” International Journal of Financial Research, vol. 9, 2018. [Online]. Available: http:

//ijfr.sciedupress.comURL:https://doi.org/10.5430/ijfr.v9n2p90

[21] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial internet of things (iiot): An analysis

framework,” Computers in Industry, vol. 101, pp. 1–12, 10 2018.

[22] V. Reports, “Industrial internet of things (iiot) market is projected to reach usd 102460 million by 2028 at a

cagr of 5.3% - valuates reports,” 2022. [Online]. Available: https://www.prnewswire.com/in/news-releases/

industrial-internet-of-things-iiot-market-is-projected-to-reach-usd-102460-million-by-2028-at-a-cagr-of-5-3-valuates-reports-840749744.

html

[23] N. N. Misra, Y. Dixit, A. Al-Mallahi, M. S. Bhullar, R. Upadhyay, and A. Martynenko, “Iot, big data and

artificial intelligence in agriculture and food industry,” IEEE Internet of Things Journal, pp. 1–1, 5 2020.

[24] C. Liu, P. Nitschke, S. P. Williams, and D. Zowghi, “Data quality and the internet of things,” Computing,

vol. 102, pp. 573–599, 2 2020.

[25] P. Ambika, “Machine learning and deep learning algorithms on the industrial internet of things (iiot),”

Advances in Computers, vol. 117, pp. 321–338, 1 2020.

[26] E. Adi, A. Anwar, Z. Baig, S. Zeadally, E. Adi, A. Anwar, Z. Baig, and S. Zeadally, “Machine learning and

data analytics for the iot,” 2020.

[27] B. Inmon, Data Lake Architecture: Designing the Data Lake and Avoiding the Garbage Dump, 1st ed.

Denville, NJ, USA: Technics Publications, LLC, 2016.

[28] J. Byabazaire, G. O’hare, and D. Delaney, “Data quality and trust: Review of challenges and opportunities

for data sharing in iot,” Electronics (Switzerland), vol. 9, pp. 1–22, 12 2020.

[29] Y. B. Lin, Y. W. Lin, J. Y. Lin, and H. N. Hung, “Sensortalk: An iot device failure detection and calibration

mechanism for smart farming,” Sensors (Switzerland), vol. 19, 11 2019.

[30] P. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa, “Idea: A system for efficient failure management in

smart iot environments *,” 2016. [Online]. Available: http://dx.doi.org/10.1145/2906388.2906406

63

https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://www.ibm.com/topics/hdfs
https://www.ibm.com/topics/hdfs
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
http://ijfr.sciedupress.comURL:https://doi.org/10.5430/ijfr.v9n2p90
http://ijfr.sciedupress.comURL:https://doi.org/10.5430/ijfr.v9n2p90
https://www.prnewswire.com/in/news-releases/industrial-internet-of-things-iiot-market-is-projected-to-reach-usd-102460-million-by-2028-at-a-cagr-of-5-3-valuates-reports-840749744.html
https://www.prnewswire.com/in/news-releases/industrial-internet-of-things-iiot-market-is-projected-to-reach-usd-102460-million-by-2028-at-a-cagr-of-5-3-valuates-reports-840749744.html
https://www.prnewswire.com/in/news-releases/industrial-internet-of-things-iiot-market-is-projected-to-reach-usd-102460-million-by-2028-at-a-cagr-of-5-3-valuates-reports-840749744.html
http://dx.doi.org/10.1145/2906388.2906406

[31] S. Shankar and A. G. Parameswaran, “Towards observability for production machine learning pipelines,”

2021.

[32] I. Lee, “The internet of things for enterprises: An ecosystem, architecture, and iot service business model,”

Internet of Things, vol. 7, p. 100078, 2019.

[33] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of things (iot) for next-generation

smart systems: A review of current challenges, future trends and prospects for emerging 5g-iot scenarios,”

IEEE Access, vol. 8, pp. 23 022–23 040, 2020.

[34] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer Networks, vol. 54, pp.

2787–2805, 10 2010.

[35] M. Abdel-Basset, G. Manogaran, and M. Mohamed, “Internet of things (iot) and its impact on supply

chain: A framework for building smart, secure and efficient systems,” Future Generation Computer

Systems, 2018. [Online]. Available: https://doi.org/10.1016/j.future.2018.04.051.

[36] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review of machine learning and iot in

smart transportation,” Future Internet 2019, Vol. 11, Page 94, vol. 11, p. 94, 4 2019. [Online]. Available:

https://www.mdpi.com/1999-5903/11/4/94/htmhttps://www.mdpi.com/1999-5903/11/4/94

[37] S. Adhya, D. Saha, A. Das, J. Jana, and H. Saha, “An iot based smart solar photovoltaic remote monitoring

and control unit,” 2016 2nd International Conference on Control, Instrumentation, Energy and Communi-

cation, CIEC 2016, pp. 432–436, 7 2016.

[38] V. Loia, A. Tommasetti, H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,

M. Shafie-Khah, and P. Siano, “Iot-based smart cities: a survey,” 2016. [Online]. Available:

https://www.researchgate.net/publication/301790173

[39] S. Selvaraj and S. Sundaravaradhan, “Challenges and opportunities in iot healthcare systems: a

systematic review,” SN Applied Sciences, vol. 2, pp. 1–8, 1 2020. [Online]. Available: https:

//link.springer.com/article/10.1007/s42452-019-1925-y

[40] L. S. Vailshery, “Iot connected devices worldwide 2019-2030 — statista,” 2022. [Online]. Available:

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[41] J. Delsing, J. Eliasson, J. V. Deventer, H. Derhamy, and P. Varga, “Enabling iot automation using local

clouds,” 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, pp. 502–507, 2 2017.

[42] A. Kanawaday and A. Sane, “Machine learning for predictive maintenance of industrial machines using

iot sensor data,” Proceedings of the IEEE International Conference on Software Engineering and Service

Sciences, ICSESS, vol. 2017-November, pp. 87–90, 4 2018.

[43] M. Mohammadi, G. S. Member, A. Al-Fuqaha, S. Member, S. Sorour, and M. Guizani, “Deep learning for

iot big data and streaming analytics: A survey,” 2018.

64

https://doi.org/10.1016/j.future.2018.04.051.
https://www.mdpi.com/1999-5903/11/4/94/htm https://www.mdpi.com/1999-5903/11/4/94
https://www.researchgate.net/publication/301790173
https://link.springer.com/article/10.1007/s42452-019-1925-y
https://link.springer.com/article/10.1007/s42452-019-1925-y
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[44] M. Samaniego, U. Jamsrandorj, and R. Deters, “Blockchain as a service for iot,” in 2016 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016, pp.

433–436.

[45] M. Hu, X. Luo, J. Chen, Y. C. Lee, Y. Zhou, and D. Wu, “Virtual reality: A survey of enabling technologies

and its applications in iot,” Journal of Network and Computer Applications, vol. 178, p. 102970, 2021.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S1084804520304215

[46] S. Li, L. D. Xu, and S. Zhao, “5g internet of things: A survey,” Journal of Industrial Information

Integration, vol. 10, pp. 1–9, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S2452414X18300037

[47] A. Dorri, R. Jurdak, P. Gauravaram, and S. S. Kanhere, “Blockchain for iot security and privacy:

The case study of a smart home cryptanalysis of hash functions view project hybrid ensemble

learning for triggering of gps in long-term tracking applications view project see profile blockchain

for iot security and privacy: The case study of a smart home,” 2017. [Online]. Available:

https://www.researchgate.net/publication/312218574

[48] P. C. Amogh, G. Veeramachaneni, A. K. Rangisetti, B. R. Tamma, and A. A. Franklin, “A cloud native

solution for dynamic auto scaling of mme in lte,” in 2017 IEEE 28th Annual International Symposium on

Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–7.

[49] A. Haleem, M. Javaid, R. P. Singh, S. Rab, and R. Suman, “Hyperautomation for the enhancement

of automation in industries,” Sensors International, vol. 2, p. 100124, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2666351121000450

[50] BMBF, “Industrie 4.0 - bmbf.” [Online]. Available: https://www.bmbf.de/bmbf/de/forschung/

digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0

[51] C. Wagner, J. Grothoff, U. Epple, R. Drath, S. Malakuti, S. Grüner, M. Hoffmeister, and P. Zimermann,

“The role of the industry 4.0 asset administration shell and the digital twin during the life cycle of a plant,”

IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, pp. 1–8, 6 2017.

[52] Y. Tan, S. Takakuwa, W. . Yang, Y. . Tan, K. . Yoshida, and S. Takakuwa, “Digital twin-driven

simulation for a cyber-physical system in industry 4.0 business process management project view project

manufacturing simulation project view project digital twin-driven simulation for a cyber-physical system

in industry 4.0,” 2018. [Online]. Available: https://www.researchgate.net/publication/329043686

[53] C. Semeraro, M. Lezoche, H. Panetto, and M. Dassisti, “Digital twin paradigm: A systematic literature

review,” Computers in Industry, vol. 130, p. 103469, 9 2021.

[54] H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Business

Information Systems Engineering 2014 6:4, vol. 6, pp. 239–242, 6 2014. [Online]. Available:

https://link.springer.com/article/10.1007/s12599-014-0334-4

65

https://www.sciencedirect.com/science/article/pii/S1084804520304215
https://www.sciencedirect.com/science/article/pii/S2452414X18300037
https://www.sciencedirect.com/science/article/pii/S2452414X18300037
https://www.researchgate.net/publication/312218574
https://www.sciencedirect.com/science/article/pii/S2666351121000450
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0
https://www.researchgate.net/publication/329043686
https://link.springer.com/article/10.1007/s12599-014-0334-4

[55] J. Conway, “The industrial internet of things: An evolution to a smart manufacturing enterprise,” 2015.

[56] R.-T. Innovations, “Frequently asked questions (faq) industrial internet of things what is the industrial

internet of things? how is it different from the internet of things?” 2015. [Online]. Available:

http://www.iiconsortium.org/.

[57] F. X. Diebold, “Pier working paper 13-003 by a personal perspective on the origin (s) and development of

“ big data ”: The phenomenon , the term , and the discipline ,” 2012.

[58] M. Cox and D. Ellsworth, “Application-controled demand paging for out of core visualization,” Cox CON-

FERENCE, 1997.

[59] G. Press. (2013) A very short history of big data. [Online]. Available: https://www.forbes.com/sites/

gilpress/2013/05/09/a-very-short-history-of-big-data/#7294b9265a18

[60] A. Gandomi and M. Haider, “International journal of information management beyond the hype : Big

data concepts , methods , and analytics,” International Journal of Information Management, vol. 35, pp.

137–144, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007

[61] N. Miloslavskaya and A. Tolstoy, “Big data , fast data and data lake concepts 2 big data concept,” vol. 88,

pp. 300–305, 2016.

[62] D. Laney, “3d data management: Controlling data volume, velocity, and variety.” 2001.

[63] N. Golov and L. Rönnbäck, “Computer standards & interfaces big data normalization for massively parallel

processing databases,” Computer Standards & Interfaces, vol. 54, pp. 86–93, 2017. [Online]. Available:

http://dx.doi.org/10.1016/j.csi.2017.01.009

[64] J. Desjardins, “How much data is generated each day? — world economic forum,” p. 1, 2019. [Online].

Available: https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/

[65] S. Axryd. (2019) Why 85% of big data projects fail — digital news asia. [Online]. Available:

https://www.digitalnewsasia.com/insights/why-85-big-data-projects-fail

[66] J. Hipp, U. Güntzer, and U. Grimmer, “Data quality mining - making a virtue of necessity,” 01 2001.

[67] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula, S. Mujumdar, S. Afzal, R. S. Mittal,

and V. Munigala, “Overview and importance of data quality for machine learning tasks,” 2020. [Online].

Available: https://doi.org/10.1145/3394486.3406477

[68] L. Berti-Equille, “Measuring and modelling data quality for quality-awareness in data mining

urban data analytics view project data mining view project,” 2007. [Online]. Available: https:

//www.researchgate.net/publication/226642874

[69] L. Sebastian-Coleman, Measuring data quality for ongoing improvement: A data quality assessment frame-

work, L. Sebastian-Coleman, Ed. Elsevier, 1 2013.

66

http://www.iiconsortium.org/.
https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/#7294b9265a18
https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/#7294b9265a18
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://dx.doi.org/10.1016/j.csi.2017.01.009
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.digitalnewsasia.com/insights/why-85-big-data-projects-fail
https://doi.org/10.1145/3394486.3406477
https://www.researchgate.net/publication/226642874
https://www.researchgate.net/publication/226642874

[70] IBM, “Internet of things architecture: Reference diagram - ibm cloud architecture center,” 2022. [Online].

Available: https://www.ibm.com/cloud/architecture/architectures/iotArchitecture/reference-architecture/

[71] M. Cosner, “Azure iot reference architecture - azure reference architectures — microsoft docs,” 2022.

[Online]. Available: https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/iot

[72] Z. Dehghani, “How to move beyond a monolithic data lake to a distributed data mesh,” 5 2019. [Online].

Available: https://martinfowler.com/articles/data-monolith-to-mesh.html

[73] B. Diène, J. J. P. C. Rodrigues, O. Diallo, E. L. Hadji, M. Ndoye, and V. V. Korotaev, “Data management

techniques for internet of things,” 2019. [Online]. Available: https://doi.org/10.1016/j.ymssp.2019.106564

[74] P. Edastama, A. Dudhat, and G. Maulani, “Use of data warehouse and data mining for academic data; a

case study at a national university,” International Journal of Cyber and IT Service Management (IJCITSM),

vol. 1, pp. 206–215, 2021. [Online]. Available: https://iiast-journal.org/ijcitsm/index.php/IJCITSM/article/

view/55

[75] A. Konikov, E. Kulikova, and O. Stifeeva, “Research of the possibilities of application of the data warehouse

in the construction area,” 2018. [Online]. Available: https://doi.org/10.1051/matecconf/201825103062

[76] N. Garcelon, A. Neuraz, R. Salomon, H. Faour, V. Benoit, A. Delapalme, A. Munnich, A. Burgun, and

B. Rance, “A clinician friendly data warehouse oriented toward narrative reports: Dr. warehouse,” Journal

of Biomedical Informatics, vol. 80, pp. 52–63, 4 2018.

[77] M. Derakhshannia, C. Gervet, H. Hajj-Hassan, A. Laurent, and A. Martin, “Life and death of data in data

lakes: Preserving data usability and responsible governance,” vol. 11938 Lncs. Springer, 2019, pp. 302–

309.

[78] P. Sawadogo and J. Darmont, “On data lake architectures and metadata management,” Journal of Intelligent

Information Systems, vol. 56, pp. 97–120, 2 2021. [Online]. Available: https://arxiv.org/pdf/2107.11152.pdf

[79] E. A. Evans, E. Delorme, K. D. Cyr, and K. H. Geissler, “The massachusetts public health data warehouse

and the opioid epidemic: A qualitative study of perceived strengths and limitations for advancing research,”

Preventive Medicine Reports, vol. 28, p. 101847, 8 2022.

[80] thoughtworks, “Enterprise data warehouse — technology radar — thoughtworks,” 2014. [Online].

Available: https://www.thoughtworks.com/radar/platforms/enterprise-data-warehouse

[81] J. S. R. No, “Warehouse data system analysis pt. kanaan global indonesia 1 st tino feri efendi, 2 nd mutiya

krisanty 12 institut teknologi bisnis aas indonesia surakarta,” International Journal of Computer and

Information System (IJCIS) Peer Reviewed-International Journal, vol. 01, pp. 2745–9659, 2020. [Online].

Available: https://ijcis.net/index.php/ijcis/index

[82] I. Terrizzano, P. Schwarz, M. Roth, J. E. Colino, and S. Jose, “Data wrangling : The challenging journey

from the wild to the lake,” 2015.

67

https://www.ibm.com/cloud/architecture/architectures/iotArchitecture/reference-architecture/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://doi.org/10.1016/j.ymssp.2019.106564
https://iiast-journal.org/ijcitsm/index.php/IJCITSM/article/view/55
https://iiast-journal.org/ijcitsm/index.php/IJCITSM/article/view/55
https://doi.org/10.1051/matecconf/201825103062
https://arxiv.org/pdf/2107.11152.pdf
https://www.thoughtworks.com/radar/platforms/enterprise-data-warehouse
https://ijcis.net/index.php/ijcis/index

[83] A. Alserafi and A. Abell, “Towards information profiling : Data lake content metadata management,” 2016.

[84] B. Sharma, Architecting Data Lakes: Data Management Architectures for Advanced Business Use Cases

Ben, 2018.

[85] M. Armbrust, A. Ghodsi, R. Xin, M. Zaharia, and U. Berkeley, “Lakehouse: A new generation of open

platforms that unify data warehousing and advanced analytics,” 2021.

[86] N. Yuhanna and B. Szekely, “Ty — forrester surfacing insights in a data fabric with knowledge graph,”

2021.

[87] “What is a data fabric? — ibm,” 2022. [Online]. Available: https://www.ibm.com/topics/data-fabric

[88] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2004.

[89] I. A. Machado, C. Costa, and M. Y. Santos, “Data mesh: Concepts and principles of a paradigm shift in data

architectures,” Procedia Computer Science, vol. 196, pp. 263–271, 2021.

[90] R. V. Zicari, “Big data: Challenges and opportunities,” 2014. [Online]. Available: http://odbms.org/

wp-content/uploads/2013/07/Big-Data.Zicari.pdf

[91] M. D. Wilkinson, “Comment: The fair guiding principles for scientific data management and stewardship,”

2016. [Online]. Available: http://figshare.com

[92] A. Alserafi and A. Abell, “Towards information profiling : Data lake content metadata management.”

[93] L. Zhang, D. Jeong, S. Lee, E. Al-Masri, C.-H. Chen, A. Souri, and O. Kotevska, “Data quality management

in the internet of things,” Sensors 2021, Vol. 21, Page 5834, vol. 21, p. 5834, 8 2021. [Online]. Available:

https://www.mdpi.com/1424-8220/21/17/5834/htmhttps://www.mdpi.com/1424-8220/21/17/5834

[94] C. Liu, P. Nitschke, S. P. Williams, and D. Zowghi, “Data quality and the internet of things,” Computing,

vol. 102, pp. 573–599, 2 2020.

[95] S. Kim, R. P. D. Castillo, I. Caballero, J. Lee, C. Lee, D. Lee, S. Lee, and A. Mate, “Extending data quality

management for smart connected product operations,” IEEE Access, vol. 7, pp. 144 663–144 678, 2019.

[96] D. Hoyle, ISO 9000 Quality Systems Handbook-updated for the ISO 9001: 2015 standard: Increasing

the Quality of an Organization’s Outputs. Taylor & Francis, 2017. [Online]. Available: https:

//books.google.ie/books?id=vkwrDwAAQBAJ

[97] J. M. Juran and A. B. Godfrey, Juran’s quality handbook, ser. Juran’s quality handbook, 5e. McGraw

Hill, 1999. [Online]. Available: http://books.google.de/books?id=beVTAAAAMAAJ

[98] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality means to data consumers,” Source:

Journal of Management Information Systems, vol. 12, pp. 5–33, 1996.

68

https://www.ibm.com/topics/data-fabric
http://odbms.org/wp-content/uploads/2013/07/Big-Data.Zicari.pdf
http://odbms.org/wp-content/uploads/2013/07/Big-Data.Zicari.pdf
http://figshare.com
https://www.mdpi.com/1424-8220/21/17/5834/htm https://www.mdpi.com/1424-8220/21/17/5834
https://books.google.ie/books?id=vkwrDwAAQBAJ
https://books.google.ie/books?id=vkwrDwAAQBAJ
http://books.google.de/books?id=beVTAAAAMAAJ

[99] L. Cai and Y. Zhu, “The challenges of data quality and data quality assessment in the big data era,”

Data Science Journal, vol. 14, 5 2015. [Online]. Available: http://datascience.codata.org/articles/10.5334/

dsj-2015-002/

[100] P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-Mauroux, E. Damiani, M. V. Keulen,

A. Mazak, M. Keulen, J. Mustafa, G. Santucci, K.-U. Sattler, M. Scannapieco, M. Wimmer,

R. Wrembel, and F. Zaraket, “Big data semantics,” Journal on Data Semantics, 2018. [Online]. Available:

https://doi.org/10.1007/s13740-018-0086-2

[101] J. Bahrke and C. Manoury, “Data act: measures for a fair and innovative data economy,” 2 2022. [Online].

Available: https://ec.europa.eu/commission/presscorner/detail/en/ip 22 1113

[102] Fiware, “Fiware-orion.” [Online]. Available: https://fiware-orion.readthedocs.io/en/master/

[103] “About fiware — fiware.” [Online]. Available: https://www.fiware.org/about-us/

[104] F. Viola, F. Antoniazzi, C. Aguzzi, C. Kamienski, and L. Roffia, “Mapping the ngsi-ld context model on

top of a sparql event processing architecture: Implementation guideliness,” Conference of Open Innovation

Association, FRUCT, vol. 2019-April, pp. 493–501, 5 2019.

[105] Y. Tolcha, A. Kassahun, T. Montanaro, D. Conzon, G. Schwering, J. Maselyne, and D. Kim, “Towards

interoperability of entity-based and event-based iot platforms: The case of ngsi and epcis standards,” IEEE

Access, vol. 9, pp. 49 868–49 880, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9388690

[106] “Faqs – smart data models.” [Online]. Available: https://smartdatamodels.org/index.php/faqs/

[107] “Smart data models.” [Online]. Available: https://github.com/smart-data-models

[108] N. Garg, Apache Kafka, T. Gaitonde, S. Mukherjee, A. Nair, K. Pai, A. Paiva, and A. Shetty, Eds., 2013.

[109] H. Wu, Z. Shang, and K. Wolter, “Performance prediction for the apache kafka messaging system,” Pro-

ceedings - 21st IEEE International Conference on High Performance Computing and Communications, 17th

IEEE International Conference on Smart City and 5th IEEE International Conference on Data Science and

Systems, HPCC/SmartCity/DSS 2019, pp. 154–161, 8 2019.

[110] J. Kreps, L. Corp, N. Narkhede, and J. Rao, “Kafka: a distributed messaging system for log processing,”

2011.

[111] G. Cugola and A. Margara, “Processing flows of information,” ACM Computing Surveys (CSUR), vol. 44,

6 2012. [Online]. Available: https://dl.acm.org/doi/10.1145/2187671.2187677

[112] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based activity recognition: A

survey,” Pattern Recognition Letters, vol. 119, pp. 3–11, 3 2019.

[113] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, “Lambda architecture for cost-effective batch

and speed big data processing,” Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big

Data 2015, pp. 2785–2792, 12 2015.

69

http://datascience.codata.org/articles/10.5334/dsj-2015-002/
http://datascience.codata.org/articles/10.5334/dsj-2015-002/
https://doi.org/10.1007/s13740-018-0086-2
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1113
https://fiware-orion.readthedocs.io/en/master/
https://www.fiware.org/about-us/
https://ieeexplore.ieee.org/document/9388690
https://smartdatamodels.org/index.php/faqs/
https://github.com/smart-data-models
https://dl.acm.org/doi/10.1145/2187671.2187677

[114] O.-C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernández, “Spark versus flink: Understanding

performance in big data analytics frameworks spark versus flink: Understanding performance in big data

analytics frameworks spark versus flink: Understanding performance in big data analytics frameworks,”

2016. [Online]. Available: https://hal.inria.fr/hal-01347638v2

[115] E. Nazari, M. H. Shahriari, and H. Tabesh, “Bigdata analysis in healthcare: Apache hadoop , apache spark

and apache flink,” Frontiers in Health Informatics, vol. 8, p. 14, 7 2019. [Online]. Available: www.ijmi.ir

[116] A. Sharma, D. Puri, M. Kumar, and G. Soni, “Implementation and comparison of big data analysis on

large dataset using spark and flink,” Lecture Notes in Electrical Engineering, vol. 828, pp. 385–394, 2022.

[Online]. Available: https://link.springer.com/chapter/10.1007/978-981-16-7985-8 40

[117] D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a, and F. Herrera, “A comparison on scalability for batch big

data processing on apache spark and apache flink,” Big Data Analytics, vol. 2, 12 2017.

[118] I. S. Bongo, “Universidade da beira interior engenharia avaliação de desempenho das plataformas apache

hadoop, apache spark e apache flink usando o benchmark hibench-master 7,” 2019.

[119] P. Carbone, A. Katsifodimos, Kth, S. Sweden, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,

“Apache flink™: Stream and batch processing in a single engine,” 2015. [Online]. Available:

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198940

[120] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández, F. Fernández-Moctezuma, R. Lax,

S. Mcveety, D. Mills, F. Perry, E. Schmidt, and S. W. Google, “The dataflow model: A practical approach to

balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing,” 2015.

[121] P. Carbone, A. Katsifodimos, Kth, S. Sweden, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “State

management in apache flink,” Proceedings of the VLDB Endowment, vol. 10, pp. 1718–1729, 8 2017.

[Online]. Available: https://dl.acm.org/doi/10.14778/3137765.3137777

[122] “Apache spark™ - unified engine for large-scale data analytics.” [Online]. Available: https:

//spark.apache.org/

[123] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data analytics on apache spark,”

International Journal of Data Science and Analytics, vol. 1, pp. 145–164, 11 2016. [Online]. Available:

https://link.springer.com/article/10.1007/s41060-016-0027-9

[124] B. Bengfort and J. Kim, Data Analytics with Hadoop. O’Reilly Media, Inc., 6 2016. [Online]. Available:

https://www.oreilly.com/library/view/data-analytics-with/9781491913734/

[125] “Apache beam.” [Online]. Available: https://beam.apache.org/

[126] S. Li, P. Gerver, J. Macmillan, D. Debrunner, W. Marshall, and K.-L. Wu, “Challenges and experiences

in building an efficient apache beam runner for ibm streams,” vol. 11, pp. 1742–1754, 2018. [Online].

Available: https://doi.org/10.14778/3229863.3229864

70

https://hal.inria.fr/hal-01347638v2
www.ijmi.ir
https://link.springer.com/chapter/10.1007/978-981-16-7985-8_40
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198940
https://dl.acm.org/doi/10.14778/3137765.3137777
https://spark.apache.org/
https://spark.apache.org/
https://link.springer.com/article/10.1007/s41060-016-0027-9
https://www.oreilly.com/library/view/data-analytics-with/9781491913734/
https://beam.apache.org/
https://doi.org/10.14778/3229863.3229864

[127] “Apache apex.” [Online]. Available: https://apex.apache.org/

[128] “Dataflow — google cloud.” [Online]. Available: https://cloud.google.com/dataflow

[129] “Apache gearpump (incubating): Overview.” [Online]. Available: http://gearpump.github.io/overview.html

[130] “Apache hadoop.” [Online]. Available: https://hadoop.apache.org/

[131] “alibaba/jstorm: Enterprise stream process engine.” [Online]. Available: https://github.com/alibaba/jstorm

[132] “Ibm streams - overview - portugal — ibm.” [Online]. Available: https://www.ibm.com/pt-en/cloud/

streaming-analytics

[133] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli, “Druid: A real-time analytical data

store,” Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 157–168,

2014.

[134] F. Yang, G. Merlino, and X. Léauté, “The radstack: Open source lambda architecture for interactive analyt-

ics.”

[135] A. Chauhan, “Ijert-a review on various aspects of mongodb databases a review on various aspects of

mongodb databases,” IJERT Journal International Journal of Engineering Research and Technology, 2019.

[Online]. Available: www.ijert.org

[136] “Mongodb kafka connector — mongodb kafka connector.” [Online]. Available: https://www.mongodb.

com/docs/kafka-connector/current/

[137] S. Kolozali, M. Bermudez, and P. Barnaghi, “Stream annotation ontology,” 5 2016. [Online]. Available:

http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao

[138] M. Fischer, T. Iggena, and D. Kümper, “Quality ontology,” 2016. [Online]. Available: https:

//mobcom.ecs.hs-osnabrueck.de/cp quality/#StreamAnalysis

[139] “Api walkthrough (v2) - fiware-orion.” [Online]. Available: https://fiware-orion.readthedocs.io/en/1.15.0/

user/walkthrough apiv2/index.html

[140] P. Hammant, “Introduction,” 2017. [Online]. Available: https://trunkbaseddevelopment.com/

#one-line-summary

71

https://apex.apache.org/
https://cloud.google.com/dataflow
http://gearpump.github.io/overview.html
https://hadoop.apache.org/
https://github.com/alibaba/jstorm
https://www.ibm.com/pt-en/cloud/streaming-analytics
https://www.ibm.com/pt-en/cloud/streaming-analytics
www.ijert.org
https://www.mongodb.com/docs/kafka-connector/current/
https://www.mongodb.com/docs/kafka-connector/current/
http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao
https://mobcom.ecs.hs-osnabrueck.de/cp_quality/#StreamAnalysis
https://mobcom.ecs.hs-osnabrueck.de/cp_quality/#StreamAnalysis
https://fiware-orion.readthedocs.io/en/1.15.0/user/walkthrough_apiv2/index.html
https://fiware-orion.readthedocs.io/en/1.15.0/user/walkthrough_apiv2/index.html
https://trunkbaseddevelopment.com/#one-line-summary
https://trunkbaseddevelopment.com/#one-line-summary

