
Mapas Topológicos para Exploração
Robótica de Minas Subterrâneas Submersas

PEDRO MIGUEL SERRÃO DA VEIGA MARTINS
novembro de 2022



Politécnico do Porto

Instituto Superior de Engenharia do Porto

Topologic Maps for Robotic
Exploration of Underground Flooded

Mines

Pedro Martins

Master in Electrical and Computer Engineering
Specialization Area of Autonomous Systems

Departamento de Engenharia Eletrotécnica
Instituto Superior de Engenharia do Porto

November, 2022





This dissertation partially satisfies the requirements of the
Thesis/Dissertation course of the program Master in Electrical and Computer

Engineering, Specialization Area of Autonomous Systems.

Candidate: Pedro Martins, No. 1191201, 1191201@isep.ipp.pt

Scientific Guidance: Alfredo Martins, aom@isep.ipp.pt

Departamento de Engenharia Eletrotécnica
Instituto Superior de Engenharia do Porto

Rua Dr. António Bernardino de Almeida, 431, 4200–072 Porto

November, 2022





For my parents, Hélio and Anabela, and for my brother Carlos.



Abstract

The mapping of confined environments in mobile robotics is traditionally tackled
in dense occupancy maps, requiring large amounts of storage. For some use cases,
such as the exploration of flooded mines, the use of dense maps in processing slow
down processes like path generation. I introduce a method of generating topological
maps in constrained spaces such as mines. By taking a structure with fewer points,
traversal and storage of explored space can be made more efficient, avoiding com-
plex graphs generated by methods like RRT and it’s variants. It’s simpler structure
also allows for more intuitive human-machine interactions with it’s fewer points. I
also introduce an autonomous frontier-based exploration approach to generate the
topological map during exploration, taking advantage of it’s traversal to navigate
through known space. With this work, simulation tests show it is possible to success-
fully extract a simpler graph structure describing the topology during autonomous
exploration and that this structure is robust through explored regions.

Keywords: Topological maps, exploration, mobile robotics, autonomous systems,
underground.
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Resumo

O mapeamento de ambientes confinados em robótica móvel, é tradicionalmente abor-
dado em mapas densos de ocupação, necessitando de grandes quantidades de arma-
zenamento. Para certos casos, tal como a exploração de minas submersas, o uso de
mapas densos no processamento, atrasa processos como geração de caminhos. Uti-
lizando uma estrutura com menos pontos, a travessia e o armazenamento de espaço
explorado tornam-se mais eficientes, evitando grafos complexos gerados por métodos
como RRT e variantes. A sua estrutura mais simples permite também interações
homem-máquina com o seu número reduzido de pontos. Introduzo também uma
abordagem autónoma de exploração baseada em fronteiras, para gerar o mapa topo-
lógico durante a exploração, tirando vantagem da travessia do mesmo para navegar
por espaço conhecido. Com este trabalho, testes em simulação mostram ser possí-
vel extrair uma estrutura sob forma de grafo, descrevendo a topologia ao longo de
explorações autónomas e que esta estrutura é robusta para a travessia em regiões
exploradas.

Palavras-Chave: Mapas topológicos, exploração, robótica móvel, sistemas autó-
nomos, subterrâneo.
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Chapter 1

Introduction

Autonomous exploration and mapping has always had a major development focus,
in part due to the risks many environments may pose to humans, but also for the
convenience of offloading a task to a robotic platform. In complex scenarios, au-
tonomous navigation requires knowledge of the environment and tracking of already
visited areas. As such, many different efforts come from projects aimed at Search
and Rescue (SAR), and some from a safety and inspection standpoint.

An often overlooked problem of such systems, is the processing complexity and
difficulty that stems from the information density. One such case stems from the
density of a point cloud or an occupancy map, although the information is there,
the knowledge of what constitutes a corridor or an intersection for example, is left
to human interpretation. This often poses a problem in Three-Dimensional (3D)
maps, wherein projecting to a display, the closest walls obstruct view of the map,
interfering with the interpretation. Such problems and dependency on human input,
reveals a clear need of automation as such high level information could in turn be
used to aid in the exploration effort.

Topology is often used as a support for human location and navigation, using
the structure of the path (intersections or junctions) as local landmarks, rather
than global landmarks (known building or a monument) and often simplifying un-
interrupted winding paths as straights (roads). The same is even more necessary in
structured scenarios without many differentiating features like mines, where galleries
and shafts are usually made with the same width, and structures like supports are
often spaced equally along its length.

1



2 Chapter 1. Introduction

This work proposes the use of topological maps to aid in the process of exploring ,
traversing and interpreting the scenario. Much like how road maps are approximated
by lines with fixed thickness to aid in readability, a topological map could then
be used to aid in the interpretation of scenarios like complex mine structures by
approximating them to graphs.

1.1 Context

This work is result of a dissertation for Instituto Superior de Engenharia do Porto
(ISEP)’s Mestrado em Engenharia Electrotécnica e Computadores (MEEC), follow-
ing projects developed by Instituto de Engenharia de Sistemas e Computadores,
Tecnologia e Ciência (INESC-TEC)’s research group on robotics and autonomous
systems. In particular, major focus is placed on the UNderwater EXplorer for
flooded MINes (UNEXMIN) and it’s continuation project UNEXMIN UPscaling
(UNEXUP).

These projects funded by the European Union (EU), aim to map and explore
European flooded mines, a notoriously inaccessible environment requiring the the
use of Autonomous Underwater Vehicle (AUV)s.

UNEXMIN aimed to develop technologies to guarantee a sustainable supply
of non-energetic and non-agricultural raw materials, with the intent of reducing
dependency on importations. [1, 2]

UNEXUP aims to take the predecessor project and commercially deploy explo-
ration and mine mapping services. It intends to address the requirements of mining
companies, geological services and other stakeholders. With that in mind, the up-
scaling process will address the limitations detected in field missions as well as meet
the requirements from potential customers. [3]

While current methods allow for exploration and mapping, the information den-
sity often poses a major problem for constrained systems with limited resources. A
full 3D map from the resulting point cloud or a full pose graph quickly become im-
practical for autonomous navigation, and given the scenario, planning a path through
known space could take a noticeable processing time to perform on resource limited
systems.

Furthermore, should an operator ever need to interpret the map to intervene,
it would often result in interpreting a segment of raw sensor data rather than the
complete map. Such an approach could be changed using a high level criteria like
topology for the segmentation.

1.1.1 Flooded Mines

The scenarios this project focuses on are based around mine exploration and map-
ping, with projects like UNEXMIN [2] and UNEXUP [3] focusing on submerged and
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MineHeritage, which also creates interactive experiences like 3D maps of mines.

Structure

Underground mines are usually structured with efficiency of access in mind, planned
for fast entry and exit, both for safety and for extraction of materials. They can
sometimes extend kilometres and have multiple levels as described by the Subter-
ranean Challenge (SubT) Challenge [4].

As described in [5], mines usually have one or more shafts following the lode (ore
deposit embedded in a rock formation). As water can start to fill the shafts some
of them are sunk leveled to the nearest low ground for drainage, from where it can
be drained. From the shafts, access tunnels are dug out horizontally for ventilation
purposes (levels), for the same reason, it is not uncommon to find ventilation shafts
aside from the access shaft.

It is usually in the mining of the lode or stope where bigger changes in structure
occur, which depend on the quality or density of the lode and on the rock structure
and it’s minerals.

Ecton

One such example of the typical scenario is the Ecton mines in the United Kingdom
(UK), a historic copper mine believed to date back to the bronze age under 4000
years ago. [6] Being used extensively from the 17th to the 19th century, the mine is
now preserved for its historical significance. [7]

Since being abandoned and the pumps being stopped the mine has flooded to
river level. The layout of the mine above and below water can be seen in Figure 1.1.

In May of 2019, the UNEXMIN conducted tests in the Deep Ecton mine using
its UX-1 robots, exploring the shafts and levels to the blockages. [8] The results of
the exploration showed archaeological evidence unseen since the mine’s flood, both
from the cameras as well as the resulting point cloud. [8]

Urgeiriça

Another testing place for the UNEXUP and now UNEXMIN projects is the Urgeriça
uranium mine, in Portugal. [9] Once considered one of the most important mineral
deposits in Europe its mining operations began in early 20th century and ceased in
1991. The mine has the approximate depth of 500 metres below ground level, and
stretches nearly 1 kilometre in length. [10]

It’s structure and general layout can be seen in Figure 1.2. The mine is described
as having murky waters, confined spaces and obstacles [10], making it a challenging
environment for autonomous exploration systems.
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Figure 1.1: Map of the Ecton mine, where the various shafts and
levels can be seen.

1.1.2 Robotic Platforms

Given the objective of exploring accessible space in structured scenarios, it’s 3D scan
coverage and mapping, the platforms are expected to be able to move in constrained
environments and scan its surroundings. Although not required, in cases where there
is a limited Field of View (FOV) of the range sensors, control over all Degress of
Freedom (DOF) is expected. One such case of a system that will not be taken into
account is a quadrotor with a range sensor facing downwards, since it won’t be able
to scan the ceiling of a structure. However a system with a quadrotor with a forward
facing range sensor with a wide FOV would be valid.

Below some existing platforms are described, which will be the main applica-
tion examples and use cases for the proposed project, together with the presented
scenarios they will be used as a basis for simulations and development.

UX-1

Developed as a solution to the UNEXMIN project, three robotic platforms UX-1a b
and c were created for the use in exploration and mapping of submerged mines. [2]

These platforms have a spherical shape as can be seen in Figure 1.3, with a
diameter of around 0,6 m and are made to stand a working depth of 500 m. [2] It’s
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Figure 1.2: Map of the Urgeiriça Mine in Viseu.

equiped with a Propulsion System (PS) consisting of eight thrusters in a cross man-
ifold configuration, giving the robot 5 DOF, as well as a variable pitch system that
shifts its Centre of Gravity (COG), to aid in long vertical movement and compensate
for buoyancy at different depths it also possesses a variable ballast system. [10]

For sensors and perception, each robot is capable of location, navigation and
mapping, using relative motion sensors, pressure, vision and Structured-Light Sen-
sors (SLS). [2]

Figure 1.3: A photograph of the UX-1 robotic platform. [11]
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UX-1 Neo

Built as an upscaling of the UX-1 the newer UX-1 Neo as can be seen in Figure 1.4,
was developed by the continuation project UNEXUP to improve many aspects of
its predecessor. Given the focus on commercialization it, many of the changes are
focused autonomy, ease of use and tetherless control. [3]

Figure 1.4: A photograph of the UX-1 Neo robotic platform. [12]

It was made modular, while also increasing maximum operational depth, it now
has 6 cameras and 6 SLS with increased baseline and has now full 6 DOF control
with the thrusters. [3]

EVA

Developed for the Viable Alternative Mine Operating System (¡VAMOS!), the EVA
[13] robotic platform was used and shown to be able to perform 3D scans of flooded
inland mines.

Its available sensors consist of a multibeam, a 3D sonar, a scanning sonar,
cameras, SLS, a Doppler Velocity Logger (DVL), an Inertial Navigation System
(INS), and pressure [13], and enable it to navigate and explore the scenario both
autonomously and remotely.

It could be further adapted for use in more structured scenarios such as flooded
underground mines but being limited by its dimensions and range of movement.

IRIS

Aiming to reduce and prevent maritime litter, the NetTag project was created, and
with it the IRIS platform, aiming to use the projects’ acoustic tags with unique
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identification of lost fishing equipment to retrieve them. [14]

Figure 1.5: IRIS robotic platform [14].

The platform possesses 2 cameras with associated lights, an arm, an acoustic tag
receptor, an INS and a DVL. An Ultra-Short BaseLine (USBL) and scanning sonars
can be added. [14]

IRIS is more limited in its sensors quantity but its modularity allows its sensors
to be swapped and new sensors to be added depending on its mission. One such
example could be the addition of structured light projectors to add 3D scanning
capabilities to its cameras.

Due to it’s smaller size compared to EVA, it is able to explore scenarios with
smaller space constraints.

1.2 Objectives

With this in mind, a major part of this project will be integrating a topological
map into state of the art exploration systems. Keeping the existing results and
advantages of existing systems, and adding to it the properties of topological maps,
and it’s simplicity, could result in a shorter exploration time through explored space,
with shorter processing time.

It is imperative that the resulting graph is not dense, in the sense that nodes
should not be closely together, facilitating display and interpretation of the results.
Should it be too dense, it would approximate the results from already existing meth-
ods, lowering it’s impact.

Given the potential of a simpler graph structure, by nature, it can be used to store
or group collected data. By storing inside the nodes, information aside from position
like: 1) points of interest; 2) neighbouring point clouds; 3) or images of interest;
processed data can be accessed using graph adjacency, aside from common geometric
criteria such as proximity. This results in a powerful way to store information on
the map, that can be exploited for faster querying operations. To achieve this, the
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graph structure should allow for information to be associated, either by providing
an identification to the nodes, or by a flexible data structure.

Keeping these ideas in mind, the success of this work relies on the following key
aspects:

• The extraction of the environment’s topology;

• The structure containing topological information is smaller than the corre-
sponding point cloud;

• It allows the use graph traversal algorithms in the scenario;

• The project can be integrated to existing robotic systems.

1.3 Outline

This work is structured in 6 chapters, accompanying the development and imple-
mentation, while giving a background on the decisions and choices.

To begin with, in this first chapter an introduction, as well as a contextualiza-
tion behind the work is described, including its scenarios and objectives, presenting
necessities and motivation behind the project.

For the second chapter, the state of the art will be presented with existing work
on autonomous exploration, topological maps for autonomous systems as well as
relevant works in different areas of research, keeping into account it’s pros and cons.

In the third chapter the system architecture is presented, describing the expected
system architecture, as well as the architecture of the developed system and it’s
interfaces.

Chapter seven presents the implementation, describing choices taken, giving a
critic view on what can be improved and what might not be ideal.

The next chapter presents and analyzes results of the implementation, taking
into account the requirements and objectives of the system.

To conclude, we have chapter six giving an overview of the project taking into
account its results, presenting shortcomings and future work.



Chapter 2

State of the Art

2.1 Challenges

2.1.1 DARPA Subterranean Challenge

Funded by the United States of America (USA)’s Defence Advanced Research Projects
Agency (DARPA), the SubT was held until 2021. Its aim was to "develop innova-
tive technologies that would augment operations underground", by exploring "new
approaches to rapidly map, navigate, search and exploit complex underground en-
vironments" [15].

The challenge consisted of two competitions, one where teams used "virtual mod-
els of systems, environments and terrain", named Virtual Competition, and the other
where the teams competed using "physical systems" on "physical, representative
courses". [4, 15]

Contestants were tested in three different scenarios such as: 1) tunnel systems,
"extending many kilometres" and containing "constrained passages, vertical shafts
and multiple levels", akin to subterranean mines; 2) urban underground systems,
that can "have complex layouts with multiple stories" and can "span several city
blocks"; and 3) cave networks, which are often composed of "irregular geological
structures, with both constrained passages and large caverns". [4, 15]

The challenge resulted in many methods for autonomous exploration for different
robotic platforms with varying characteristics, including quadruped and Unmanned

9
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Figure 2.1: DARPA SubT Infographic, showing concepts of the sce-
narios posed on the different challenges. [15]

Aerial Vehicle (UAV)s. Some of the methods used by the teams will be described
further ahead, as some of the requirements very much align with those of this project.

2.1.2 UNEXMIN and UNEXUP

As previously described, UNEXMIN’s developments were aimed towards guarantee-
ing sustainable supplies of raw materials by developing towards providing surveying
and exploration technologies, evaluating abandoned mines for their mineral poten-
tial. [2]

In the end, the project resulted in three similar robotic platforms capable of
autonomous operation navigation and mapping of flooded mines. [11]

The continuation project UNEXUP takes all the previous successes of its pre-
decessor and improves upon them, and focuses on launching its technologies to the
market. [12]

Some key upgrades include better range and depth, its hardware and improved
data acquisition management and processing. [12]

2.2 Mapping

2.2.1 Occupancy Map

One of the earliest implementations of occupancy mapping in autonomous systems
is described in [16], where the author utilized range sensors to iterativelly update
voxels in a grid as void or full.
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This simple algorithm uses a depth image and checks voxels in the scope of the
sensor which are not yet marked void [16]. For each checked voxel, all of its eight
vertices are compared to the pixel in the image and if their distance is smaller than
the range measured, they are marked void [16]. However if the range of the vertices
intersects the maximum distance, it is marked as full [16].

2.2.2 Octree

Octrees are a hierarchical tree-based data structure which subdivides the space into
volumes, with each recursively subdividing in eight sub-volumes until a set depth or
voxel size, which determines the resolution of the map.

It has been shown to be very efficient in storage and ray tracing operations
[17]. And have the capability to be compressed, removing redundant information.
One example of compression can be thought of as pruning the leaf nodes of a fully
occupied or free parent node, effectively removing an exponential number of nodes
depending on the pruning.

The nodes of theses trees can be used to store a value, for example colors, or
occupancy with a boolean.

2.2.3 Octomap

Octomaps are a probabilistic 3D mapping framework implemented in C++, which
maps free, occupied and unmapped (unkown) areas probabilistically, with an efficient
use of memory and in runtime [18].

The framework uses octrees, with the nodes storing a probabilistic value, inte-
grated from sensor readings’ noise and uncertainty. More complex values can still
be stored, such as color, ambient temperature, terrain information, etc.

The framework also possesses an extension which maintains a collection of sub-
maps in a tree-structure, this is of high interest for future projects, as sub-maps can
be associated with the topological map to efficiently store and even perform culling
of far-off regions.

Every range measurement is integrated using an implementation of ray-casting,
this iterates over every voxel in a line, setting them as free, and the observed obstacles
as occupied. A maximum range can be set, integrating readings even when there
are no readings as free space.

Furthermore, the framework possibilitates compact storage of the maps for later
use, for scenarios as described by the author, like a setup phase where a map is
generated to be later used by mobile robots.
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Figure 2.2: Octomap Visualization of the New College dataset. [18]

2.2.4 Voxblox

Another framework which attempts to solve the occupancy mapping in autonomous
mobile systems is VoxBlox [19]. It focuses on generating maps in real-time, for local
planning, which finds a path through newly-explored or dynamic terrain, while also
providing a human-readable representation of the environment.

It differs from other mapping methodologies by incrementally building Euclidean
Signed Distance Field (ESDF). ESDFs are a voxel grid where each point stores its
distance to the nearest obstacle.

On the other hand Truncated Signed Distance Field (TSDF) are faster to con-
struct, filter out sensor noise, and can be used to create meshes with sub-voxel
resolution. They use the projective distance along a ray from the sensor to the
measured surface within a truncation radius around the surface boundary.

What Voxblox does is incrementaly build ESDFs from TSDFs, which results
in a faster map building than Octomaps. Successive readings are merged into the
TSDF by performing raycasts once per end voxel, speeding up cases where multiple
sensor readings end in the same voxel. This provides a speedup relative to the naive
raycasting approach.

2.2.5 Topological Maps

Topological Maps constitute representations of the robot’s environment using graphs,
as [21] describes, their nodes represent distinct situations, places or landmarks, and
are connected if a direct path exists between them. These maps can be built on top
of grid maps but as can be seen in [21–23], are usually done offline using a complete
map, and in a 2D environment.
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Figure 2.3: Voxblox example mesh generated onboard the aerial ve-
hicle on the left. [20]

Both these methods use Voronoi diagrams as a basis [21,22], which are generated
using Delaunay triangulation [23]. In short, it involves a partitioning of the envi-
ronment into regions, from which nodes in the graph are chosen, and subsequently
its edges.

Another method addressing 3D topological map generation is described in [24],
using a visual Simultaneous Location and Mapping (SLAM) map as it’s input and
downsampling it into a voxel occupancy map. Similarly to previous methods, it
relies on triangulation of landmarks to segment the environment, and utilizes the
convex hull of clusters and operations on said clusters, to generate the resulting
graph.

Figure 2.4: Topomap’s test results with SLAM maps (left) and it’s
corresponding topological maps (right). [24]

One suggested method of generating such maps is described in [25] using visual
landmarks and geometric constraints a conceptual grouping is generated. With these
features a graph is generated representing relations between each obtained image and
using metrics evaluating visual features as well as said geometric constraints. The
result as can be seen in Figure 2.5, gives a very solid grouping keeping each room
as an individual group.
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Figure 2.5: Result of conceptual grouping with a bird’s eye view of
the environment with each location where an image was taken where

each group is represented by a different symbol. [25]

2.2.6 Skeletonization

Another problem with similar characteristics used in different scenarios and indus-
tries are the skeletonization of structures. Skeletons are abstractions which as de-
scribed in [26] facilitate shape understanding and manipulation. These structures
closely represent the topologogy of objects and the strategies involved can be adapted
to meet the project’s requirements.

A common use for these structures is in modeling trees as presented in [27], with
applications in extracting these skeletons from 3D scans to reconstruct its model
described in [28].

Tree Skeletonization

The method in [28] which will be summarized here assumes and exploits the cylin-
drical structure of the tree and its branches to extract a skeleton and later refining
it.

The skeletonization starts with a point cloud and and voxelizes it using an octree,
downsampling data and making it more robust to noise and varying density of the
point cloud. Points are then extracted using L1-medians of the octree, and the
skeleton’s transitions are estimated using a k-nearest neighbour graph.

To recenter points on the structure the authors describe an optimization method
called Cylindrical Prior Constraint (CPC) which assumes points in a section all lie
in a cylinder, as such the middle point should lie in its centre of symmetry. With
this, it iterativelly minimizes the sum of euclidian distances from the median to
the local points and their weighted variance. The result is robust to differences in
density and incomplete datasets.

The resulting skeleton although capturing the topology of the structure, possesses
unexpected vertices and edges, focusing especially on the branching regions. Using
geodesic distances to the root, the structure is separated into clusters in a top-down
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order (from leaves to the root), it then detects clusters containing branches and
refines their positions.

The results show smooth topological representations of trees with well centred
skeleton points and joints, even in noisy and partly occluded data. The skeleton as
described, can be used to reconstruct the structural model of the tree.

2.3 Planning

2.3.1 Rapidly-Exploring Random Trees

Rapidly-exploring Random Tree (RRT) is a sampling algorithm which can be used
for path generation in both holonomic and nonholonomic systems [29]. By randomly
sampling the state space, a tree is generated from the current configuration to the
target one. [29]

As the algorithm is probabilistically complete [29], and has been used in many
applications [30], it’s a solid choice for mobile robotics in unknown environments.

RRTs are an algorithm which samples the configuration space X = {Xfree,

Xoccupied, Xunknown}, X being the set of configurations. The algorithm returns a
tree structure T where all the vertices and edges lie in Xfree.

The algorithm assumes a initial state xi ∈ Xfree which will be assumed as the
starting configuration and a target state xt from which a target region Xt is defined
and used as a stopping condition.

A state transition function f(x, u) takes into account non-holonomic constraints
of the system, for holonomic planning f(x, u) = u, and is used to define a function
NEW_STATE(x, u, ∆t) which returns a new state given an initial state, a time
step and input.

With that, the resulting algorithm for the generic RRT T with K samples is
given by the Algorithm 1.

Algorithm 1 Generic RRT algorithm.
1: function GENERATE_RRT(xi, K, ∆t)
2: T .add_vertex(xi)
3: for k = 1 to K do
4: xrand ← RANDOM_STATE()
5: xnear ← NEAREST_NEIGHBOR(xrand, T )
6: u← SELECT_INPUT(xrand, xnear)
7: xnew ← NEW_STATE(xnear, u, ∆t)
8: T .add_vertex(xnew)
9: T .add_edge(xnear, xnew, u)

10: end for
11: return T
12: end function
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In many cases however, the generated RRT doesn’t have constraints, and doesn’t
need to take into account the underlying system, for example to quickly sample
reachable space in holonomic systems. For such cases, the generic algorithm can be
simplified.

Most path finding algorithms might quickly arrive at a state with LOS to the tar-
get, in such cases, a purely random state will not be the fastest converging method.
One trick to bias the sampling towards the target, is to set some of the states as the
target, this can be done and parameterized in many ways, one such example is by
using a probabilistic approach as shown in Algorithm 2.

Algorithm 2 Biased Random State Generator
1: function BIASED_RANDOM_STATE(prob, xtarget)
2: if (random() mod prob) = 0 then
3: xnew ← xtarget

4: else
5: xnew ← RANDOM_STATE()
6: end if
7: return xnew

8: end function

On its own, RRTs aren’t asymptotically optimal as they don’t converge towards
the optimal solution, for that reason, many variants have been developed, most
notably the RRT*. [30]

2.4 RRT*

By introducing graph optimization to the tree, RRT* results in shorter and straighter
lines.

Based on the A* graph search algorithm, RRT* starts by randomly sampling
the space, much like the RRT, but also checks all adjacent states for reachability
and removes edges that are not part of the shortest path to the root [30]. Although
not explicitly RRT or a variant, [31] uses a similar graph sampling method and
optimization to generate maps for path planning, resulting in the GBPlanner which
will be discussed ahead.

This algorithm may not fit all needs as in some cases it may be used as an
indiscriminate search rather than optimization problem. One such example is the
search of frontiers which doesn’t require the storage of relations between the vertices
of the tree, but only the frontiers crossed.

Its generic algorithm can be seen in the Algorithm 3.
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Algorithm 3 Generic RRT*.
1: function GENERATE_RRT_STAR(xi, K, ∆t)
2: T .add_vertex(xi)
3: for k = 1 to K do
4: xrand ← RANDOM_STATE()
5: xnearest ← NEAREST_NEIGHBOR(xrand, T )
6: u← SELECT_INPUT(xrand, xnear)
7: xmin ← xnearest

8: Xnear ← NEAR(T , xnew)
9: T .add_vertex(xnew)

10: cmin ← Cost(xnearest) + Cost( Line(xnearest, xnew) )
11: for each xnear ∈ Xnear do
12: if Cost(xnear) + Cost( Line(xnear, xnew) ) < cmin then
13: xmin ← xnear

14: cmin ← Cost(xnear) + Cost( Line(xnear, xnew) )
15: end if
16: end for
17: T .add_edge(xmin, xnew)
18: for each xnear ∈ Xnear do
19: if Cost(xnew) + Cost( Line(xnew, xnear) ) < Cost(xnear) then
20: xparent ← T .Parent(xnear)
21: T .remove_edge(xparent, xnear)
22: T .add_edge(xnew, xnear)
23: end if
24: end for
25: end for
26: return T
27: end function
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2.4.1 Frontier-Based Exploration

The use of frontiers in autonomous exploration was introduced in 1997 by [32] who
defined frontiers as the region in the border between known free space and unknown
space. The core principle behind frontier-based exploration is simple, and as said
in [32], "To gain the most new information about the world, move to the boundary
between open space and uncharted territory".

Using an evidence grid which consists of an occupancy grid with associated occu-
pancy probability as a map generated from a range based sensor like the laser-limited
sonar used by the author. The resulting map goes through a process "analogous to
edge detection and region extraction", to label open cells adjacent to unknown cells
as frontier edge cells. Only frontier regions larger than a given size will be considered
a frontier, the size being relative to the robot’s dimensions checking if it’s reachable.
This process can be visualized in the Figure 2.6. [32]

Figure 2.6: Frontier Generation: evidence grid (left), frontier edge
segments (middle) and frontier regions (right). [32]

With the frontiers detected, a path planner would explore the nearest accessible
frontier and dynamically update the evidence grid. Dynamic obstacle avoidance is
still possible using this method, since while the frontier point is fixed, the path can
be adapted as necessary making sure now unreachable frontiers are removed.

2.4.2 GBPlanner

A proposed method for exploring the subterranean environments described by the
SubT challenge comes in the form of a Graph-Based PathPlanner (GBPlanner), de-
veloped by the winning team CollaborativE walking & flying RoBots for autonomous
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ExploRation in Underground Settings (CERBERUS), a collaboration between mul-
tiple institutions and resulting in many open-source packages.

This approach separates the planning between two searches, a local exploration
planner that focuses around the robot’s pose, and a global one which explores glob-
ally inside explored space. [31]

The local planner builds upon the rapidly exploring random graph, expanding the
graph around a given bounding box centred on the robot’s pose, similarly to RRT*,
it searches for the nearest neighbors of the new sample, and creates a transition if
it passes a collision test, unlike RRTs however, given its graph structure, vertices
can have more than two transitions. To traverse the graph, the Dijkstra’s algorithm
is used on the local graph from the root node, returning only the minimum length
paths. A best path is selected from the root of the local map to the vertex with the
highest exploration gain. This gain was calculated simulating a sensor measurement
at the vertices and getting the volume that a range sensor would read (volumetric
gain), and other parameters such as the euclidean distance along the path. [31]

The global planner starts from the minimum length paths of the local planner,
and chooses the "principal" paths, consisting of the longest to add to it’s graph. It’s
leaf nodes will be assumed as possible frontiers, and periodically the volumetric gain
of these nodes is recalculated, updating the list of preferred frontiers. The planner
also periodically calculates Dijkstra’s algorithm to find the shortest paths from the
current location to potential frontiers, as well as from all the potential paths towards
home, whenever the local planner cannot build any informative path. A path home
is also calculated continuously in the same way, and uses this path when it needs to
return home. [31]

Each path generated is passed through an improvement step, pruning short edges
caused by the random sampling, and moving the vertices further away from obsta-
cles, returning a safer and smoother path. [31]

This method is of especially great interest to this project, given similarity of the
global graph and its use to define a more general topology of the environment, it
however remains very dense in structure.

2.5 Simulation Environments

Some work has already been done developing a simulation environment [33, 34] for
the UNEXMIN project, it presented many advantages and disadvantages over many
different simulators, namely GAZEBO [35], UnderWater SIMulator (UWSim) [36]
and Modular Open Robots Simulation Engine (MORSE) [37].
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Figure 2.7: GBPlanner planning visualization. In (b) are two visual-
izations of the local planner graphs in positions 1 and 2. In (a) is a
visualization of the global planner graph, showing also position 3 in

a dead-end and home in H. [31]

2.5.1 GAZEBO

One existing solution for robotic simulators comes in the form of Gazebo, a project
designed to reproduce dynamic scenarios, simulating both the robots’ and objects’
dynamics properties in the scene. [35]

Gazebo comes already packaged with the current Robot Operating System (ROS)
distributions, containing already documentation and examples created by the com-
munity. Many resources are shared and competitions are held using Gazebo as their
environment, with examples such as the previously mentioned SubT [4,15].

By default it uses an ODE fork for its physics simulation, however it supports
others, such as Bullet. The simulator includes some robotic models and sensors, but
can be further expanded using it’s plugin system, making it possible to develop a
model for non existent sensors, as has already been described in [34] and [38].

2.5.2 MORSE

Another simulation option is the MORSE which was developed as a simulator at
the system level rather than a highly specialized simulator [37], which gives more
attention to the sensors’ accuracy .

The MORSE simulator uses Blender and its game engine to simulate environ-
ments [37], right away, the Blender game engine uses Bullet physics simulation, giv-
ing it a solid dynamic system simulation, fused with Blender’s graphics and visual
characteristics.

It comes with many sensors, actuators and robotic bases, and further can be
added. The simulation being set up using python, scenes, robots and its sensors
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Figure 2.8: Simulation Environment in Gazebo used for the UN-
EXMIN project. [34]

and actuators are developed using scripts, while the physics and 3D rendering are
handled separately [39].

2.6 Centering

A centering algorithm is helpful for obtaining a point far away from constrained
passages. It can be used as an obstacle avoidance by getting a safest position, or be
used to estimate a skeleton of a structure.

There exist already some methods and algorithms to estimate skeletons in trees
by exploiting symmetries in the underlying structure [40]. By switching to an op-
timization problem, minimizing the average distance to neighbouring points, and
geometric constraints, in this case equal-distance. This method can be viewed as
c = arg minc

∑m
i=1 ||c−xi||+ λσ2 with c being the estimated centre point, xi a point

in the region, σ2 the variance of the distance to the centre and λ its gain or weight.
To solve this problem one can use many methods, such as gradient descent, par-

ticle swarm, even brute-force using methods similar to computer vision and calculate
many samples in the region of interest, picking the one with best score.

2.7 Graphs

There are two main ways to store graphs, either through adjacency matrices, which
for undirected graphs can be simplified with an upper diagonal matrix, or as adja-
cency lists, which don’t store non existent edges [41].

Adjacency matrices have an advantage where some problems can be solved using
matrix operations which are known to be parallelized [42]. Each line and column
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represents a vertex of the graph and their intersection the corresponding edge, having
a 0 when there are no edges or N representing the number of edges [41,42].

They however are not very memory efficient, given that they store every possible
transition, including those that don’t exist, resulting in a theoretical efficiency of
O(n2) for storage, O(1) in traversal [42], O(n2) when changing the number of vertices
and O(1) when editing edges, where n = numberofvertices.

0 1 2 3


0 0 1 1 1
1 1 0 1 0
2 1 1 0 0
3 1 0 0 0

Figure 2.9: Example of an adjacency matrix

Adjacency lists, contrary to adjacency matrices, do not represent non-existent
transitions, being more efficient in storage for high number of vertices and edges.

They are represented by a vertex list, where each vertex has a list of tran-
sitions. This gives it a theoretical efficiency of O(n + t) for storage [42], with
t = numberofadjacentvertices, increasing with the number of vertices and edges.
Its traversal is slower, given that it’s necessary to iterate over every transition of the
vertex, resulting in O(t) [42].

The addition of vertices is more efficient, since only an item needs to be added
to the list resulting in O(1) efficiency. The removal needs a check in all vertices and
transitions, to remove transitions to the deleted vertex, this results in an efficiency
of O(n× t).

Figure 2.10: Example of an adjacency list. Left and vertically a list
of vertices, pointing to vertices that it creates edges to on the right.

2.8 Dijkstra Algorithm

A common incentive over the use of graphs are the existing methods to perform high
level operations. One such case is the computation of the shortest path to a target.
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Many methods and algorithms exist to solve this problem, trading off between the
quality of the solution and its computation time. Dijkstra is an algorithm that
returns the shortest path on a weighed directed graph, when weights are non-negative
[41].

It’s use ranges all branches of robotics and computation, although it is widely
used, it’s not always the right choice for all problems, since it uses a greedy approach
[41,42] it’s usually one of the slowest methods. Nevertheless for graphs with a small
amount of edges such is the case in some topological maps, or tree-like structures
it’s downsides are mostly offset by it’s quality.

The algorithm works by keeping a set of vertices and their shortest path weights
to the source, and repeatedly selecting vertices adjacent to those already weighted
with the shortest estimated path, and adds them to the set [41]. At the end the
graph has all vertices labeled with the shortest path, and all that’s needed is to
traverse from the target vertex to it’s adjacent vertex with smallest label.

One way to implement it using min-priority queues, as described in [41], and
visible in the Algorithm 4 assumes a weighted graph G(V, E) with a set V of vertices
and a set E of non-negative edges (u, v) with weights w(u, v). It initializes the
vertices’ shortest path estimate d and predecessor vertex π, the set S to the empty
set and the set of vertices not in Q = V − S that starts with all the vertices of the
graph V . Iteratively Q = V − S will be kept a constant, taking a vertex u, which
is the shortest path estimate of any vertex, from Q and adding it to the set S. All
vertices from edges leaving u are then relaxed, therefore updating the estimate v.d

and the predecessor v.π if their shortest paths pass through u. The answer is then
got following the shortest path from the ending node to the start.
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Algorithm 4 Dijkstra
1: function Dijkstra(G, w, s)
2: for each v ∈ G.V do ▷ Initialization of the single-source
3: v.d←∞
4: v.π ← NIL
5: end for
6: s.d← ∅
7: S ← 0
8: Q← G.V
9: while Q ̸= ∅ do

10: u← Q.extract_min() ▷ Min-priority queue
11: S ← S ∪ {u}
12: for each v ∈ G.Adj(u) do ▷ Relaxation
13: if v.d > u.d + w(u, v) then
14: v.d← u.d + w(u, v)
15: v.π ← u
16: end if
17: end for
18: end while
19: return G
20: end function
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System Architecture

A system was projected as a set of processing blocks, each solving a different problem.
The planned system in Figure 3.1 will take as input the point cloud generated
from range sensors, which could come from SLS, sonar, lidar, stereo vision or a
combination of sensors. Added to that it will be assumed that the localization
problem is solved, and as such will be used as ground truth.

All input clouds will be pre-processed, mainly focusing on downsampling and
efficient storage in a global point cloud of the known environment. This stage is
made using a system like a voxel grid, an octomap [18] or voxblox [19], all of them
already take into account the input sensor model, and integrate sensor readings,
forming a volumetric map.

A topological map server manages its graph and its interfaces, here some func-
tions will be provided, like the traversal between two nodes. From this server, points
of interest will be detected, generating the topological map, and Line of Sight (LOS)
checks will be performed for cycle closure.

From there, the exploration is done by extracting frontiers from the grid map,
assuming them as potential targets, followed by a path planner that would take into
account both the existing topological map for long ranges, and sample a path from
known map points to the targeted position.

One other processing block dedicated to control and obstacle avoidance will be
used as the interface between the actuators and the planner, this block will be the
most platform dependent. Collision prevention measures will however be expected
as a fail-safe should any other system fail.

25
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(in bold).
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As shown in Figure 3.2, this project will use range measurements from the robotic
system via point clouds, which are processed into an occupancy map. The robotic
system is assumed to be the pairing of robotic platforms and their operational en-
vironments.

Using the occupancy, topology will be extracted by detecting its features, storing
regions of interest as components in a graph. The graph has the added benefit of
being faster and repeatable for path generation through explored scenarios using
graph traversal algorithms, and as such it is used in conjunction with the planner
for more robust traversal.

A planner then uses the graph and the frontiers or points of interest, to generate
a path through the scenario, while using other sampling based methods, taking
advantage when possible of the known topology to create quick and safe waypoints.
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Figure 3.2: Developed System Architecture
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Implementation

4.1 Development Environment

4.1.1 Software Choices

ROS

For middleware the ROS [43] was chosen, along with its various available develop-
ment tools and environments, it’s already used in many relevant projects [31, 33],
and has many examples of usage and documented modules by the community.

ROS operates in a graph like structure [43], containing nodes where the process-
ing is held, and peer-to-peer messages are passed between them.

These messages are data structures which include basic data types (integers,
floating points, booleans, etc.), and can have arrays of said types. Nodes send or
receive using topics, with nodes subscribed to a topic receiving messages that other
nodes published to it asynchronously.

This publisher/receiver relationship provides advantages wherein many subscribers
can read data published in a topic, and many publishers can publish to the same
topic.

For synchronous requirements another method called a service waits for a request
to send a response, this way even use cases requiring synchronous communication
are accounted for.

The modularity provided by this structure means that topics using standardized
messages, support the development of different modules with similar functionality,

29
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e.g. a node which subscribes to raw sensor data and pre-processes it and publishes
to another topic, can be changed with another pre-processing block without a need
to change any other part of the system.

4.1.2 Simulation

Although some of the existing simulators have already been developed [34], some
differences in requirements for the exist, while the previously mentioned aims for
visual and dynamical accuracy, this project assumes some problems such as control
and sensor preprocessing as solved and focuses instead on taking that data and
testing its traversal and mapping capabilities. This means that visual fidelity, sensor
accuracy and noise simulations, are not the main focus and can be sacrificed over
other requirements such as low footprint and ease of use and setup.

Testing and use of the Gazebo simulation of the UNEXMIN platforms quickly
revealed that it was computationally intensive resulting in a big chunk of resources
which could be used by the developed systems. This posed a need to simplify
the model or alternatively use a different environment trading simulation models’
accuracy for faster processing and lower resource usage. Many features such as visual
fidelity, noise models, and complex buoyancy and hydrodynamic simulations, can be
swapped for approximations.

Although no simulator has been developed using MORSE for the UX-1 platforms,
one can be quickly created, collectives of range sensors like laser scanners and sonars
can be simulated and approximated by depth cameras, allowing for configuration
using resolution, max range, and FOV. Actuators can also be grouped into a single
actuator which changes all degrees of freedom, removing the need to use a complete
controller to orchestrate the system. Furthermore, localization and pose estimation
can be parameterized by noise and drift, simulating the collective sensor fusion drift
rather than each of their parts.

For those reasons, MORSE was chosen as the simulator to be used while de-
veloping the project, being easily changed and customized, and being less resource
intensive than the existing GAZEBO simulation.

4.1.3 Visualization

Given the need to visualize the topological map and the system’s operations, a visual
interface is required not only for the end solution, but also for development. This
will result as the main feedback to the user or operator, since the use of the raw data
such as graphs, or point clouds takes more effort to validate than visual inspection.
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RVIZ

With this in mind, the visualization system ROS RVIZ was chosen for this project.
This tool comes packaged by default in most ROS distributions, and it is well doc-
umented, and full of examples. ROS and RVIZ already have many visualization
primitives which can be used to display lines and point clouds, for example some of
which don’t need any additional processing. This makes integration into a system
which already uses RVIZ easy to understand and adapt for projects which use ROS.

4.2 Occupancy Map

An important part of this project is the generation and storage of the occupancy
map, given it’s a 3D scenario, they become bigger problems to tackle, the growth
of the added dimension exponentially increases its requirements. Another challenge
it poses is that the scene cannot easily be mapped to Two-Dimensional (2D) like in
Two-and-a-half-Dimensional (2.5D) scenarios, most commonly height maps which
only store the occupied depth and assume everything above as free and anything
below is ignored or assumed occupied.

Octomap has already a wide use by the community, with many examples and
feedback, as well as an in-depth documentation in Doxygen, and example code in
the source. Furthermore it already has a ROS implementation which provides the
necessary functionality to get started and being open-source, can be adapted if
needed.

Tests performed using this system however posed problems with its ROS imple-
mentation, even affecting the robot’s control [9], which points to Central Processing
Unit (CPU) usage. This doesn’t however necessarily invalidate it’s use as the imple-
mentation can be adapted to mitigate this issue and can even be used as a placeholder
during prototyping until a more viable method is found.

With its benefits, Voxblox is a strong option, being faster than Octomaps, pro-
viding more accurate occupancy maps and returning a mesh of the environment.
However, being more recent, less implementation examples exist in the community
when compared to the Octomap, and more time would be needed searching docu-
mentation and testing during development, making for slower prototyping.

Because of the resources available, Octomap was chosen over Voxlbox, and al-
though they have their differences, the work done with Octomap can be adapted to
Voxblox since the functions used like ray tracing are implemented in both frame-
works.
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4.3 Topological Map

4.3.1 Graph

To implement the graph, prioritizing lower memory usage, an adjacency list was
chosen and assuming the linear growth of traversal time as an acceptable trade-off.
For this reason a structure was created to store the nodes and transitions.

The developed object uses an unordered map to associate each node to an unique
identifier. Unordered maps already implemented in standard libraries, optimize
querying using hash functions.

The nodes are made simple and hold the necessary data, be it position of the
node, color in colored graphs, weights or even a pointer to a local point cloud if
necessary. Transitions are defined as a vector of identifiers to adjacent nodes, to
access them, that identifier can be used in conjunction with the unordered map to
quickly query.

All the necessary functions are defined along with the created structure, and can
be adapted in accordance to the needs of the project. Aside from the usual functions
to create, remove or change nodes and transitions, some additional ones were created,
namely a function to estimate the distance to a transition and a function to traverse
the graph.

Distance to Transitions

The computation of the euclidean distance to a transition takes into account the
positions of the adjacent nodes and calculates the closest point to the target position.

To note that for optimization reasons the distance squared can be used in tasks
such as getting the minimum distance this avoids the computation of the square
root.

To calculate the the distance to the closest point in the transition, first this
point must be calculated. This point is located in the normal of the line created by
the transition which intersects the current position. Assuming T1, T2, P and M as
the two transition points, the current position and nearest point in the transition
respectively, we can use the dot product between T1T2 and PM , which should be 0
since they are perpendicular, resulting in:

(P −M) · (T2 − T1) = 0 (4.1)

By defining the line between T1 and T2, we can also define the point M as a
transformation from one point and a scaled vector:

M = T1 + u(T2 − T1) (4.2)

Substituting M in equation 4.1 by 4.2, we obtain:
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[P − T1 − u(T2 − T1)] · (T2 − T1) = 0 (4.3)

And solving u, we get:

u = (Px − T1x)(T2x − T1x) + (Py − T1y)(T2y − T1y) + (Pz − T1z)(T2z − T1z)
||T2 − T1||2

(4.4)

Again, it can be noted that if we already work with squared vector norms to
avoid square roots, the denominator requires one less operation since the square
root cancels out the square.

To check if the projected M lies inside the line segment T1T2, the condition
0 ≥ u ≥ 1 can be used to validate if it lies within its boundaries.

The resulting point M can then be calculated using the equation 4.2 as:

M =


T1x + u(T2x − T1x)
T1y + u(T2y − T1y)
T1z + u(T2z − T1z)

 (4.5)

Lastly, the squared euclidean distance is calculated, resulting in:

||P2 − P1||2 = (P2x − P1x)2 + (P2y − P1y)2 + (P2z − P1z)2 (4.6)

Traversal

The traversal of the graph was done using Dijkstra algorithm over the whole topo-
logical graph. To possibilitate adaptation to different scenarios, the weights weren’t
generated alongside the graph, but as cost function which can be changed depending
on needs. This was done for cases where not only purely geometric factors impact
the weight but also sequential, one such example is valuing going straight over harsh
corners.

With this in mind to calculate weights the square norm between two nodes was
used, although it might not always be the ideal method, it works well on most.

Other methods considered for weighting transitions, included estimated traversal
time, momentum changes or even energy usage. As most of these methods require
a known robot model, they were assumed to be less of a priority over the scope of
the project.

4.3.2 Feature Detection

One very important part of this work relies on the detection of topological features.
As described before many different kinds of features exist, and with them many
methods to estimate them.
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The features and the corresponding detection methods used and considered for
this project will be described below.

Openings

Using the generated 3D maps, open spaces can be detected checking if the cross-
section is wider than a threshold using a plane perpendicular to the displacement s

from the nearest node.
The cross-section can be approximated using ray casting, by casting many rays

in the current position and perpendicular to the displacement, the resulting polygon
approaches its cross-section, with the accuracy increasing with the number of equally
spaced rays.

This method also allows the estimation of the COG of the resulting polygon, by
averaging pairs of non coincident co-linear ray hits.

Figure 4.1: Opening Detection—the plane perpendicular to the dis-
placement s between the nearest node and the current position x in
yellow shown in a), and co-planar rays in yellow shown, with the rays

that cross a threshold dmax displayed as a red circle in b).

The position where a graph node can be placed will lie in the line between the
previous traversed node and the current position, ahead of the current point. If
ahead of the position, an obstacle exists, another method will be used and isn’t
taken care in this system otherwise, two other different methods exist to choose a
position.

Out of these methods the simpler one is achieved by applying a fixed offset to the
current position, making a node always a fixed distance from the current position.
The other more complex and computationally intensive method uses consecutive
positions ahead to find the end of the closing, and place the node in the point
in the middle of the first opening detection and the last one. The offset method
however is more efficient and produces sufficiently good results without the added
computational cost of the subsequent ray casts so it will be preferred.
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Figure 4.2: Estimation of COG—the plane perpendicular to the dis-
placement s is calculated as seen in a), the COG is iterativelly esti-
mated with pairs of colinear points with each iteration slowly con-

verging towards an approximation shown in b) and c).

Obstacles

Obstacle detection is the simplest method of detecting features being used, and
can be achieved with a ray cast from the current position in the direction of the
movement from the previous node.

Preferably this method has a maximum distance threshold from the previous
node to the current position, to better centre the node in the structure, confirming
the surrounding region has already been observed before attempting to centre.

The resulting node can then be placed by applying an offset to the distance to
the obstacle. Said offset should take into account two factors, the dimensions of the
platform and/or the dimensions of the scenario, be it average radius of mine galleries
or any other metric, making sure intersections do not intersect the scenario.

It should however be emphasized that the resolution of the map strongly in-
fluences both the accuracy of the cross-sections’ COG, and distances to obstacles,
being maps with higher resolutions being preferred when raw sensor readings cannot
be used.

Cycle Closure

For cycle closure we can take advantage of the occupation map. The scenarios where
we verify that a transition between two nodes exists, is when they have LOS. This
can be simply checked by casting a ray from one node to the other and if there is
no collision to an obstacle or unknown space, a transition can be assumed to exist.

As most occupation maps already include a ray cast function and most are aware
of unknown space, it is possible to check for a collision if the last position of the ray
with max length is equal to the distance between the nodes.
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Figure 4.3: Obstacle detection—When farther than a threshold to
the nearest node, a ray is cast from the current position x in the
direction of the displacement s, a new node is placed at the minimum

safe distance dmin allowed to obstacles.

System Flow

Using the features described above, we can create a topological feature detection
system by managing and joining the various processes, avoiding ambiguity and un-
predictability.

The system flow represented in Figure 4.4 begins with the creation of the first
node, that node should ideally be initialized with the initial position of the mission.

The system then waits for an update in either the odometry or the occupation
map before starting a new iteration, since there’s no need to keep iterating if there
are no significant changes.

With the received information it updates the current node to the nearest graph
node using euclidean distance and LOS.

It then checks for topological features, attempting to centre the current position
in the map and in the process checking for openings. After centering, obstacles are
checked, casting a ray in the direction of movement.

A node is created if it’s not near a transition or node. In case it hit an obstacle,
it will create a node between the wall and itself. If no obstacle exists, and an opening
was found, a node is created slightly ahead of its position.

4.4 Exploration

The exploration part will take care of covering the scenario and acquire the necessary
sensor readings to generate an occupancy map and obtain the necessary features for
the topological graph.

With this in mind, exploration can be divided in two sub problems, the gener-
ation of a frontier, which will return regions that have yet to be explored, it will
give points which are yet to be covered, and the other problem, the mission plan,
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focusing on picking frontier of interest and navigation through already covered space
to reach said regions.

4.4.1 Frontier Generation

As previously described, frontiers are situated in the transition between known free
space and unknown space, this however is computational dense for 3D environments
and requires a sampling method avoiding a check over the whole grid.

While it is possible to sample only the recently updated nodes using some oc-
cupation maps, it is still very dense, prone to noise in the map with some frontiers
generated not being reachable and the vast majority of samples will be regions of
known free space rather than frontiers. For this reason the chosen method involves
a random sampling of the map using an implementation of RRT. This way a fron-
tier can be detected whenever a new sample crosses into unknown space without
colliding with an obstacle.

Concretely, being F = f0, f1, ..., fn the set containing all frontier points and
S = {s0, s1, ..., sn} the set containing all the n samples, the initial sample s0 is
set to the current position of the robotic platform according to odometry. Each
iteration a new sample snew is generated and its nearest neighbour sneighbour =
nearest_neighbour(S, snew) is calculated, and its position changed to a fixed dis-
tance d away from sneighbour, achieved by transforming the vector between snew and
sneighbour such that:

snew = sneighbour + snew − sneighbour

|snew − sneighbour|
× d (4.7)

It is then followed by a ray casting between sneighbour and snew, should the ray
reach its destination without collision, the sample is added to the set S = {S, snew}
otherwise, the point where the ray stopped scollision is checked, if it lies in an occupied
region the iteration ends, but if it doesn’t then the point is considered a frontier and
added to the set F = {F, scollision}.

The resulting frontier set is usually very dense so a down-sampling is applied,
removing duplicate points, and reducing the number of points significantly.

Another process then further reduces the number of frontiers by removing points
too close to obstacles, described further ahead, this removes frontiers from situations
like narrow openings where the platform wouldn’t fit and small noise which results
in single points in a wall being falsely labeled as adjacent to unknown space.

This is achieved using two methods, first a voxelization process which removes
duplicates and effectively down-samples the number of points. And another process
which samples a region around each frontier for obstacles, checking the occupation
map.
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Every iteration, frontiers that have been explored need to be removed, this is
achieved by checking if every frontier point is still adjacent to unknown space by
sampling over neighbouring nodes of the occupation map.

4.4.2 Planning

The planner, which will be described in this section, is composed of multiple sub
processes. These processes consist of picking a frontier, obstacle avoidance and path
generation to the frontier.

Starting from the frontier choice, picking a frontier point highly impacts the ex-
ploration time, since ideally you go to each place the least amount of times possible.

To solve this, the frontier point picked is the closest reachable, which makes sure
the current space is explored before going to the next. The point is picked using the
nearest-neighbour method, although it’s a fast method it’s not necessarily optimal,
however it quickly picks a good enough point.

After the target point is selected, a path is generated towards the closest topo-
logical node, given that the topological graph quickly calculates the shortest path
on the explored space.

The topological graph node to reach, are usually be the nearest, or the last
explored, however some edge cases occur if these assumptions are taken, depending
on the scenario the nearest node may not have LOS and require a longer path.
For this reason, two different approaches were thought up, nearest-neighbour into
RRT*, which should be quick to converge and optimize, and an RRT* towards the
closest converging graph node, which in some circumstances could converge towards
a farther node in some complex scenarios. This problem is mitigated in scenarios
where the passages are narrow and the topological graph generates nodes frequently,
such as the typical underground mine.

The RRT* as described previously in the Algorithm 3, takes into account the
same parameters, but the implementations from here on forth also assume another
stopping condition since we don’t want to stop before reaching the target topological
node.

Having reached a graph node, the next step is to traverse the graph towards the
target, this can be done using Dijkstra as described in Algorithm 4, returning the
shortest path between two nodes.

The target is picked in much the same way as the first one, either by nearest-
neighbour or using a RRT* to the target frontier point.

4.4.3 Obstacle Detection

Another critical point is avoiding collisions in unknown scenarios, that is, keeping a
distance from obstacles like walls and unknown space. Depending on the dimensions
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of the occupancy map and the robotic platform, sampling the entire region around
can be slow and inefficient, as such various rays are cast from the current position
in various directions.

For this project the directions the rays are cast form a tessellated octahedron
with its vertices aligned to the axis of the world, exploiting geometry in subter-
ranean mines where the shafts are mostly perpendicular to the gravitational pull.
The number of subdivisions for the tessellation heavily impacts processing time and
number of samples, growing exponentially.

In some cases however, the sampling region is small enough or it’s critical that
it’s sampled, one such example are collision detections for the RRT and frontiers,
where for each sample, if an unknown or an occupied voxel lies in that region, the
sample is discarded. For such a case voxels are selected around a radius.

These operations can very efficiently be optimized, firstly by keeping a lookup
table stored in cache, and secondly because ray-casts often sample the same point
multiple times when sampling near the source.

With the returned information the control system can be adapted to avoid ob-
stacles detected in the map. The way this was achieved in this project was using a
force field repulsing from the occupied and unknown space, using the sampling above
mentioned, the resulting force can be achieved from the sum of all the inverted rays
squared. This resulting force can in turn be used to avoid the nearest obstacles and
tuned with a gain to effectively navigate through safe space.
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Create initial vertex

Update current node

[odometry/occupancy updated]

[no updates]

Estimate centreCheck for obstacles

[near transition]

Create Node

[far from transition]

[found obstacle]

[no obstacle]

[found opening]

[no opening]

Figure 4.4: Topological node creation flow chart.
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Results

To test the system, the resulting scan from a previous mission in a real scenario
with some added adaptations for non-existent scenarios such as caves was used. The
existing mesh was then adapted closing off openings, avoiding erroneous scans such
as scans that go through walls resulting from rendering issues with the normals on
the opposite side of a surface.

The AUV performs scans of the scenario in the movement direction, never trav-
elling blindly towards unknown space. The course starts in a vertical mine shaft,
that connects to a crossing with four exits, two of them form a loop, one leads to
a dead-end and the other connects to a cave generated to simulate great openings.
The whole simulation, the roscore and the nodes were run in an Intel i7-8550U with
8GB of Random Access Memory (RAM).

5.1 Exploration

The generated frontiers during exploration through the test environment creates a
small amount of points and correctly removes them after explored. After all the
tests, all explorations ended with full coverage and no frontiers.

Obstacle avoidance during exploration yielded satisfying results, causing no col-
lisions and never interrupting the traversal.

The generation time remained fairly consistent throughout the navigation being
slightly slower when traversal is required, compared to simple LOS path generation.
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Figure 5.1: Frontiers generated represented as white cubes in a local
map with obstacles in green.

5.2 Path Planning

As can be seen in Figure 5.2, Generated RRT* resulted in a quick and smooth path
through already already explored scenario, and approaches the ideal path towards
a waypoint around a 90º bend.

It can be observed that RRT* with few iterations is sufficient for such distances
around obstacles, making them very capable in these scenarios where a partial oc-
cupancy map exists.

The graph traversal through extracted topological maps as can be seen in Figure
5.3, shows the successful pairing of the RRT* towards the nearest node, followed by
the shortest path towards the node nearest to the target frontier and another RRT*
closing the path.

It however also poses an edge case wherein two generated nodes do not have
LOS caused by the inconsistent placement of a topological node after its detection,
making the graph traversal not the shortest known path through the scenario.

5.3 Topological Map

The resulting tests, no topological transitions crossed the scenario, making the result
a good map for navigation through the scenario, and it’s structure closely resembles
the topology.
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Figure 5.2: RRT* path generation from the robotic platform towards
the purple waypoint, with initial samples connected by the edges in

red, and the optimized path in green.

Observations during tests showed that the graph server which interfaces with
the octomap directly used a full CPU core, while obstacle detection service used
throughout most other nodes stayed at half a core. Other functions like frontier
generation and planning combined, stayed well below half core usage and can still
be parameterized to fit resources available.

Octomap’s resource usage has previously been identified as a possible weak link
in the processing pipeline, even at different resolutions. However, as the obstacle
detection, avoidance as well as mapping can be merged using ESDF maps for less
processor usage, it shows that the system can be further optimized.

Multiple complete explorations of the set scenario took on average 30 minutes.
Variations of up to 5 minutes have been verified between tests, result of the sampling-
based methods used.

As can be observed from the results in Figure 5.4, and as expected, larger open-
ings increase point density, and generate a large unnecessary graph. This is caused
by detecting an opening in multiple places inside the same opening, while ideally
these points would be merged in their centre.

However, checking Figure 5.5, it can be verified that the number of topological
nodes remains much lower compared to the occupancy map.

However running the multiple tests showed that the final graph node positions
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Figure 5.3: Example traversal in green through the graph to reach a
frontier represented as white cubes

are not deterministic and change for each run, as well as its density, this is derived
from the sampling methods to centre points, as well as the way points are selected
in crossings or openings.

Ideally the preferred method to pick final node positions would be probabilistic
and incrementally optimized by finding local minima away from nearby obstacles,
this however should not be used every iteration as it computationally expensive.

For better visibility a simple teleoperated test was ran, generating a smaller
amount of topological nodes and a smaller manageable graph shown below in Figure
5.6 and it’s accompanying Comma Separated Values (CSV) file, File 5.1.

1 %id ,pos_x ,pos_y ,pos_z , transitions
2 4 ,0.100000 ,6.575000 , -4.825000 ,1
3 3 , -3.638954 ,0.005809 , -4.804358 ,1
4 2 ,3.581909 ,0.195561 , -4.933206 ,1
5 0 ,0.000000 ,0.000000 ,0.000000 ,1
6 1 , -0.168364 ,0.098206 , -4.049659 ,0 ,2 ,3 ,4

File 5.1: Resulting graph CSV file.
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Figure 5.4: The resulting topological graph with nodes represented
as blue squares and its transitions as red lines.

Figure 5.5: Point (representing voxel centres) and topological map
node count over the duration of a test.
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1

0

23

4
Figure 5.6: Small graph generated from a teleoperated mission (left),
and extracted topology representation as a graph (right), IDs may

not align with output received from autonomous control.
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Conclusions and Future Work

In this work, a new approach towards feature-based 3D topology extraction is pro-
posed for use in autonomous robotic subterranean mine exploration. It was shown
that using ray casting approaches, it is possible to identify topological features in
underground mines, which can in turn be used to generate a graph containing the
topology.

It was also verified that the proposed method can be integrated in AUVs and used
alongside frontier-based exploration to autonomously explore a scenario, simplifying
navigation through explored space with graph traversal algorithms.

As seen from the results, the main objectives of the project were met, having
successfully generated a topological representation of the environment in a graph
structure. The resulting graph is modular and can be expanded in the future to
segment the scenario, storing association to sensor readings and point clouds to
perform culling of non visible scenes for further optimization.

Accompanying this, a RVIZ interface is possible using the published markers for
the graph nodes and transitions. This interface further possibilitates high level user
input, via placement of waypoints in a transition or a vertex, making it simpler and
intuitive to revisit explored regions.

Furthermore, exploration of virtual scenarios was held completely autonomously,
requiring no human input to cover and scan the whole scene. With this an easier
usage of a robotic platform is possible removing the requirement for complex and
resource consuming AUV operator training.

47
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The modular nature of ROS, makes this project easily adaptable and imple-
mentable in existing platforms as long as they have localization, range sensors and
run on the same middleware.

Future work as described before would pick up on this project and improve it in
either of its key areas ideally making its node placement deterministic.

Work can be done on optimizing the occupancy map, one suggestion being to test
alternatives, with one of high interest being voxblox. Voxblox provides some great
benefits when it comes to resource usage, requiring less time for each sensor reading
integration, and providing ESDFs which further simplify and remove processing.

Furthermore with this work being tested in a simulation environment, it lacks
validation in real scenarios and on real hardware where processing power may be
limiting and is often already taken by other on-board processing.
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