
APIbuster Testing Framework

PEDRO FERREIRA DE SOUSA
novembro de 2022

Politécnico do Porto

Instituto Superior de Engenharia do Porto

APIbuster Testing Framework

Pedro Ferreira de Sousa

Master in Electrical and Computer Engineering
Major in Telecommunications

Departamento de Engenharia Eletrotécnica
Instituto Superior de Engenharia do Porto

November, 2022

This dissertation partially satisfies the requirements of the
Thesis/Dissertation course of the program Master in Electrical and Computer

Engineering, Major in Telecommunications.

Candidate: Pedro Ferreira de Sousa, No. 1120641, 1120641@isep.ipp.pt

Scientific Guidance: Maria Benedita Campos Neves Malheiro,
mbm@isep.ipp.pt

Company: INESC TEC
Advisor: Gonçalo Campos Gonçalves, gfcg@inesctec.pt

Departamento de Engenharia Eletrotécnica
Instituto Superior de Engenharia do Porto

Rua Dr. António Bernardino de Almeida, 431, 4200–072 Porto

November, 2022

Acknowledgements

I would like to thank Prof. Benedita Malheiro for her constant sharing of knowl-
edge, experience and prompt availability throughout the development of the project.
I would like to express my gratitude to Gonçalo Gonçalves for his support and advi-
sory. I would also like acknowledge José Ornelas for proposing the project. Special
thanks to INESC TEC for believing in me and receiving me so welcomingly and for
providing me with the resources to execute this project.

I could not have undertaken this journey without my mom and my girlfriend.
A special thanks to both, Ilídia and Maria João, for the patient and understanding
which you showed through the years, for always believing in me, and, at the same
time, for always pushing me to be a better version of myself.

Pedro Ferreira

Abstract

In recent years, not only the Service-Oriented Architecture (SOA) became a popular
paradigm for the development of distributed systems, but there has been significant
progress in terms of their testing. Nonetheless, the multiple testing platforms avail-
able fail to fulfil the specific requirements of the Moodbuster platform from Instituto
de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC) –
provide a systematic process to update the test knowledge, configure and test several
Representational State Transfer (REST) Application Programming Interface (API)
instances. Moreover, the solution should be implemented as another REST API.

The goal is to design, implement and test a platform dedicated to the testing of
REST API instances. This new testing platform should allow the addition of new
instances to test, the configuration and execution of sets of dedicated tests, as well
as, collect and store the results. Furthermore, it should support the updating of the
testing knowledge with new test categories and properties on a needs basis.

This dissertation describes the design, development and testing of APIbuster, a
platform dedicated to the testing of REST API instances, such as Moodbuster. The
approach relies on the creation and conversion of the test knowledge ontology into
the persistent data model followed by the deployment of the platform (REST API
and user dashboard) through a data modelling pipeline.

The APIbuster prototype was thoroughly and successfully tested considering the
functional, performance, load and usability dimensions. To validate the implemen-
tation, functional and performance tests were performed regarding each API call.
To ascertain the scalability of the platform, the load tests focused on the most de-
manding functionality. Finally, a standard usability questionnaire was distributed
among users to establish the usability score of the platform.

The results show that the data modelling pipeline supports the creation and
subsequent updating of the testing platform with new test attributes and classes.
The pipeline not only converts the testing knowledge ontology into the corresponding
persistent data model, but generates a fully operational testing platform instance.

Keywords: APIbuster, data modelling pipeline, REST API, SOA, testing platform.

i

Resumo

Nos últimos anos, o desenvolvimento de sistemas distribuídos do tipo Service-Oriented
Architecture (SOA) popularizou-se, tendo ocorrido significativos progressos em ter-
mos de testagem. Contudo, as múltiplas plataformas de testagem existentes não
satisfazem as necessidades específicas de testagem de projetos Application Program-
ming Interfaces (API) do tipo Representational State Transfer (REST) como o Mo-
odbuster do Instituto de Engenharia de Sistemas e Computadores, Tecnologia e
Ciência (INESC TEC). O INESC TEC necessita de um processo sistemático de
atualização, configuração e testagem de múltiplas instâncias API REST. Adicional-
mente, esta solução deverá ser implementada como mais uma API REST.

O objetivo é conceber, implementar e testar uma plataforma de testagem de ins-
tâncias API REST. Esta nova plataforma deverá permitir a adição de instâncias de
teste, configuração e execução de grupos de testes, assim como, obter e salvaguardar
os resultados. Deverá ainda viabilizar a atualização do conhecimento do domínio
mediante a especificação de novas categorias e atributos de teste.

Esta dissertação descreve a conceção, desenvolvimento e testagem da plataforma
APIbuster dedicada à testagem de instâncias API REST, como as do projecto Mo-
odbuster. A abordagem baseia-se na definição e conversão da ontologia de represen-
tação do conhecimento sobre a testagem de API REST no correspondente modelo
persistente de dados, seguida da criação da plataforma (REST API e portal do
utilizador) através de um processamento sequencial dedicado.

O protótipo da APIbuster foi testado detalhadamente com sucesso em relação
à funcionalidade, desempenho, carga e usabilidade. Foram efetuados testes funcio-
nais e de desempenho a cada chamada da API para validar a implementação. Para
determinar a escalabilidade da plataforma, os testes de carga focaram-se na funci-
onalidade mais exigente. Finalmente, o questionário de usabilidade foi distribuído
entre os utilizadores para definir a usabilidade da plataforma desenvolvida.

Os resultados mostram que o processamento sequencial desenvolvido suporta a
criação e a subsequente atualização, com novos atributos e categorias, da plataforma
de testagem. Este processo não converte apenas a ontologia no modelo de dados

iii

persistente, mas gera uma instância atualizada e operacional da plataforma.

Palavras-Chave: APIbuster, data modelling pipeline, REST API, SOA, testing
platform.

iv

Contents

List of Figures vii

List of Tables ix

Listings xi

List of Acronyms xiii

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 2
1.4 Document Structure . 2

2 Distributed Tests 3
2.1 Service-Oriented Architectures . 3
2.2 Software Tests . 4
2.3 Automated Test Frameworks . 5

2.3.1 Testing Framework Categories 6
2.3.2 Popular Testing Frameworks 7
2.3.3 Framework Comparison . 10

2.4 Summary . 10

3 Problem Statement and Proposed Solution 13
3.1 Problem Statement . 13
3.2 Requirements Specification . 14

3.2.1 Actors . 14
3.2.2 Functionalities . 14
3.2.3 Technical Requirements . 15

3.3 Proposed Solution . 16
3.3.1 Architecture . 16
3.3.2 Adopted Technologies . 17

3.4 Development Methodology . 17
3.5 Summary . 18

v

4 APIbuster Testing Platform 19
4.1 Data Modelling Pipeline . 19

4.1.1 APIbuster OWL . 19
Class Properties . 21
Class Associations . 22

4.1.2 APIbuster UML . 22
Protégé — Export to UML 23
Visual Paradigm — UML import 23

4.1.3 APIbuster ERD . 25
4.1.4 APIbuster ERD — DB . 26

4.2 API . 27
4.2.1 LoopBack 4 . 27

Datasource . 27
Models . 28
Repositories . 28
Controllers . 29

4.3 Portal — User Dashboard . 32
4.3.1 Vue.js . 32

4.4 Test Definition and Execution . 33
4.5 Summary . 34

5 APIbuster Testing 35
5.1 Pipeline Testing . 35
5.2 API Testing . 36

5.2.1 Functional and Performance Tests 36
5.2.2 Load Tests . 37
5.2.3 Usability Tests . 37

5.3 Summary . 38

6 Conclusion 39
6.1 Achievements . 39
6.2 Future Work . 40

References 41

Appendix A umlImport.sh 45

Appendix B dbImport.sh 49

Appendix C setupAPI.sh 53

Appendix D User Dashboard 57

vi

List of Figures

2.1 Steps for a better Test Automation Approach [6] 5
2.2 Most popular JavaScript back-end testing frameworks [14] 7

3.1 UML diagrams of the data modelling pipeline 16
3.2 APIbuster back-end and front-end 16
3.3 Gantt chart . 18

4.1 Ontology representation . 20
4.2 UML class diagram representation of the ontology 24
4.3 ERD representation of the ontology 26

D.1 APIbuster user dashboard: Home page 57
D.2 APIbuster user dashboard: API page 58
D.3 APIbuster user dashboard: Adding an API 58
D.4 APIbuster user dashboard: Updating an API 59
D.5 APIbuster user dashboard: Methods page 59
D.6 APIbuster user dashboard: Adding a Method 60
D.7 APIbuster user dashboard: Updating a Method 60
D.8 APIbuster user dashboard: Test Groups page 61
D.9 APIbuster user dashboard: Adding a Test Group 61
D.10 APIbuster user dashboard: Updating a Test Group 62
D.11 APIbuster user dashboard: Tests page 62
D.12 APIbuster user dashboard: Adding a Test 63
D.13 APIbuster user dashboard: Updating a Test 63
D.14 APIbuster user dashboard: Results of the latest Test 64

vii

List of Tables

3.1 Functionalities . 14

4.1 Ontology class definitions . 21
4.2 API methods . 30

5.1 Pipeline: functional and run-time results 35
5.2 API: functional and performance results 36
5.3 API: load results . 37

ix

Listings

4.1 datasourceConfig.json . 28
4.2 apiRepositoryConfig.json . 29
4.3 apiControllerConfig.json . 29
4.4 <testGroupName>_id<testGroupId>.test.js 33
A.1 umlImport.sh . 45
B.1 dbImport.sh . 49
C.1 setupAPI.sh . 53

xi

List of Acronyms

API Application Programming Interface

BDD Behaviour-Driven Development

CLI Command Line Interface

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

CSV Comma-Separated Values

DB Database

DDL Data Definition Language

DOM Document Object Model

E2E End-to-End

ECMA European Computer Manufacturers Association

EER Enhanced Entity Relationship Model

ERD Entity Relationship Diagram

ESM European Computer Manufacturers Association Script Modules

HTML HyperText Markup Language

INESC TEC Instituto de Engenharia de Sistemas e Computadores, Tecnologia e
Ciência

OWL Ontology Web Language

PDF Portable Document Format

QA Quality Assurance

RAM Random Access Memory

xiii

REST Representational State Transfer

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPA Single Page Applications

SUS System Usability Scale

TDD Test-Driven Development

UI User Interface

UML Unified Modelling Language

XMI eXtensible Markup Language Metadata Interchange

XML eXtensible Markup Language

xiv

Chapter 1

Introduction

This chapter provides a context to this dissertation along with the motivations that
led to its execution, expresses the goals that are expected to be achieved and a brief
description of this document structure.

1.1 Context

Software testing assesses whether the developed software meets client requirements.
Distributed systems are considerably more challenging to test than their standalone
counterparts since problems may occur due to code and network malfunctioning.
This is the case of Service-Oriented Architecture (SOA) projects, which rely on the
interaction between multiple nodes, called services, potentially located across the
network, to provide complex functionalities transparently to the end user.

The Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciên-
cia (INESC TEC) develops multiple Representational State Transfer (REST) SOA
projects that require ample testing. The number, diversity and complexity of these
projects at INESC TEC require the constant addition, (re)configuration and execu-
tion of multiple and different types of tests. Development and support teams are
normally small and team members change frequently, which makes development and
testing hard to coordinate. Since existing software testing tools do not provide a
solution to this problem, this project aims to design, develop and test a software test-
ing platform that supports the systematic definition, reconfiguration and execution
of REST API project tests.

1

2 Chapter 1. Introduction

1.2 Motivation

Firstly, there is the personal challenge to design an evolving testing platform to test
the multiple REST API of undergoing and future projects at INESC TEC.

Secondly, the design and implementation of such a large scale project constitutes
a unique learning and personal growth experience. Moreover, since experienced
software testers are highly sought professionals, this project provides an opportunity
to acquire knowledge and master a key technology.

Lastly, there is the personal contribution to the increase in software quality and
productivity of the development teams, both for active and new members, at INESC
TEC.

1.3 Goals

This dissertation has two main goals. The first goal is to create a data modelling
pipeline to easily create and update the test API. This allows the platform to accom-
modate new test categories and attributes seamlessly adapting itself to the evolving
needs of any particular project.

The second goal is to develop the corresponding Web testing platform prototype,
composed of a REST API and a user dashboard. This allows platform users to test
in real-time the REST API of undergoing projects and the development team to
adapt the platform for the testing of future projects.

1.4 Document Structure

The remaining five chapters of this dissertation are structured as follows:

• Chapter 2 provides a brief introduction to the context of this dissertation,
namely by addressing service-oriented architectures, software testing and au-
tomated test frameworks.

• Chapter 3 details the problem, the multiple requirements, the proposed solu-
tion, as well as, the work plan for the framework.

• Chapter 4 documents the solution development steps.

• Chapter 5 presents the multiple tests to which the platform was submitted as
well as the results.

• Chapter 6 summarises the accomplishments and proposes new features that
might be implemented in the future.

Chapter 2

Distributed Tests

This chapter introduces the concept and categories of distributed software tests along
with a brief comparison of multiple test frameworks.

2.1 Service-Oriented Architectures

Although there is no clear definition for a SOA, it can be described as a communi-
cation mediation paradigm for service consumers and providers in dynamic settings,
supporting the access to multiple services and functionalities [1, 2, 3]. This allows a
transparent data exchange between parties.

A distributed SOA architecture is an architectural model to deploy, combine and
use application components distributed through the Internet, as required. The key-
word is “service”, which means a precisely-defined, self-contained and independent
function from any other service (“black-box like structure”) [2, 4].

By offering different heterogeneous interfaces, interoperable distributed systems
provide connectivity between multiple services. The usage of distributed SOA ar-
chitectures provides to companies a more flexible method to build systems, helping
ensure the scalability of their businesses by creating a strong foundation and allow-
ing the expansion of their business logic in the future. A company is able to simply
create a new service and intertwine it with its existing platform [2] — a smooth
operation which, for any company, is crucial for building a strong reputation. For
any company, a smooth operation is a must to build a strong reputation. To make

3

4 Chapter 2. Distributed Tests

sure everything runs as intended, all services must be thoroughly tested beforehand.
There are several techniques and frameworks to perform software testing.

2.2 Software Tests

Software testing is achieved through dynamic verification and validation of the be-
haviour of a program based on a predetermined set of test cases, against an expected
behaviour [5].

Tests are performed throughout the whole software development and mainte-
nance phases, therefore software testing is regarded as a process embedded in the
software development process [5].

Testing activities are performed at different levels. Unit testing focuses on testing
specific units or components that were developed. Integration testing happens when
such units are integrated into a system. Last but not least, system testing is done
once the whole system is tested [5].

A testing technique can be introduced as a way of providing systematic guidelines
of designing test cases. The main purpose is to be as systematic as possible in
identifying the software behaviours that are being subjected to test.

Black-box tests are a kind of testing mechanism focused on the end-to-end system
using inputs and outputs.

White-box tests are tests which evaluate the internal sub-components of a system.
In other words, this is a technique based on information about how the software
was designed and implemented.

Defect-based tests are meant to uncover categories of likely or predefined faults.

Model-based tests are based on models such as Statecharts, Finite State Ma-
chines and others.

Acceptance tests are meant to emulate user experience. These tests give the
costumers confidence that the application has the required features and they
are functioning correctly.

Integration tests are based on a different unit which is responsible for supplying
the test cases, passing the parameters to the unit being tested, collecting results
and presenting them to the tester.

Unit tests focus on a single unit of a whole application in total isolation, usually,
a single class or function. Ideally, the tested component is free of side effects
so it is as easy to isolate and test as possible.

2.3. Automated Test Frameworks 5

This dissertation focuses mainly on Acceptance tests, Integration tests and Unit
tests. These are the tests most used to assess REST API instances. While Accep-
tance tests are mostly oriented towards customers, Integration and Unit tests are
essential for developers to have confidence on their software.

2.3 Automated Test Frameworks

An automated testing framework integrates a set of assumptions, concepts, practices
and libraries that provide support for automated software testing. The framework
helps developers and testers to write test code more efficiently while finding bugs
quicker. Moreover, they provide an improved test automation flow, ensuring that
all essential steps are included, as shown in Figure 2.1.

Figure 2.1: Steps for a better Test Automation Approach [6]

It is possible to divide Figure 2.1 into two main stages:

• Preparation — Evaluate the need to automate testing, define goals and pri-
orities, plan a strategy, select the right testing tools based on the project
requirements and decide which test cases to automate.

• Automation — Develop good quality test data, create automated tests resis-
tant to user interface changes, execute the developed automated tests, test
early and often with continuous integration and store the tests for future use.

This dissertation addresses the automation stage since it aims to design, develop
and deploy a testing platform for users to easily test, debug and maintain their
REST API.

6 Chapter 2. Distributed Tests

2.3.1 Testing Framework Categories

The most commonly used automated testing frameworks types include modular
testing, test libraries, keyword-driven testing, data-driven testing, hybrid automated
testing [7], test-driven [8], behaviour-driven [9] and ontology-based test modelling
[10], [11], [12], [13].

Modular Testing frameworks normally create small, independent and reusable
scripts for the applications being tested. The main drive is the modular pack-
aging of programming, where small scripts are combined together to form a
much bigger test case. This is the easiest framework to use and master, while
increasing the scalability of the automated tests [7].

Test Library frameworks are application-dependent. They break down the appli-
cation into procedures and functions and create dedicated modules and func-
tion library files for each application. Unlike modular testing, they do not rely
on scripts [7].

Keyword-Driven Testing frameworks are application-dependent. They require
data tables and keywords to manipulate the testing scripts in order for the
application and data to be tested. The functionality of the application is
written to a data table along with the execution steps for each intended test.
This sort of framework minimises the code volume required to implement a
large number of test cases, as the same tests can be reused with different data
tables, corresponding to different individual test cases [7].

Data-Driven Testing frameworks read the input and output data from data files
and then load them into variables. These variables are not only used to store
the input values but also output validation values. Throughout the testing
program, the script reads the data files and records the test status and infor-
mation. This type of framework is meant to reduce the number of test scripts
required to complete all test cases. Similarly to keyword-driven testing, very
little code is required to contemplate a large number of test cases [7].

Hybrid Automated Testing frameworks combine all or part of the aforemen-
tioned types, reinforcing their strengths and cancelling their weaknesses [7].

Test-Driven Development (TDD) frameworks are frequently used with Agile
Software Development and imply the usage of automatic testing tools. This
testing framework supports the creation of tests and provides a reliable pass/-
fail indication and repeated test running [8].

Behaviour-Driven Development (BDD) frameworks were derived from test-
driven development and are mainly focused on the system behaviour. The idea

2.3. Automated Test Frameworks 7

is to describe how the application should behave in a very simple user/business-
focused language [9]. By doing so, it helps even the non-technical users to easily
analyse and understand the tests.

Ontology-based Test Modelling frameworks explore ontologies to represent the
structure and relationships within the test knowledge [10, 11, 12, 13]. By de-
fault, ontologies are reusable within the same application domain. Considering
the testing of distributed Web services, the performed literature survey did not
find any reusable ontology.

The most popular testing paradigms nowadays are test-driven and behaviour-
driven development [8]. Ontology-based test modelling, although less popular, allows
for application domain re-usability which will prove useful when creating, or updat-
ing, domain knowledge. This work adopts both ontology-based test modelling and
behaviour-driven development frameworks.

2.3.2 Popular Testing Frameworks

Choosing a testing framework is an essential step when developing new Web projects.
Figure 2.2 compares eleven of the most popular back-end testing frameworks accord-
ing to usage since 2016 [14]. These include1:

Figure 2.2: Most popular JavaScript back-end testing frame-
works [14]

Jest 2 is used and recommended by Facebook and is officially supported by
React. Since it is a framework supported by a tech giant, it is inevitable that
when programmers run into problems, aside from official documentation, there
is a lot of support from fellow developers [15]. Jest has good performance, great
for continuous deployments; is compatible with other applications developed
in Angular, Node, Vue.js and other babel-based projects; has an extended

1The frameworks are identified by the corresponding colours in the list below.
2Jest — https://jestjs.io/

8 Chapter 2. Distributed Tests

API which will likely have most of the functionalities a developer requires;
and has an active development and community, which updates the framework
regularly. Unfortunately, Jest is a slow runner [15].

Mocha 3 provides developers with just the base test structure. Designed origi-
nally to work with Node, it is now capable of working with a larger range of
frameworks (Angular, React, Vue) with some configuration. The most pop-
ular assertion library used with Mocha is Chai4, but Assert, Should.js and
Better-assert can also be used [15]. Mocha is very lightweight and simple;
has a flexible configuration since there are a lot of libraries that can be used;
and is compatible with European Computer Manufacturers Association Script
Modules (ESM). Developers using Mocha have a harder time setting up the
framework since multiple libraries need to be configured. Some inconsistencies
can potentially happen due to the utilised plugins. Mocha’s documentation is
known to be weak [15].

Storybook 5 is more of a UI testing tool. It provides an isolated testing envi-
ronment to test various components. Although Storybook is listed as one of
the most popular back-end testing frameworks it is very hard to compare it to
other frameworks.

Cypress 6 runs entirely through a browser (Chrome, Firefox and Edge). It is
commonly know for its End-to-End (E2E) testing capabilities. Pre-defined
user behaviours can be followed through this tool and reports are given for
potential differences upon each deployment [15]. Cypress uses E2E testing;
has timeline snapshot testing allowing developers or Quality Assurance (QA)
testers to review specific timelines; is steady and dependable, compared to
other frameworks; has a rich documentation; and is fast, normally around
20 ms. Unfortunately, Cypress can only run tests in a single browser [15].

Jasmine 7 is a famous BDD tool. It is not exclusively a JavaScript testing tool
since it can also be used with other programming languages such as Ruby
or Python [15]. Jasmine has a straightforward API, with clean and easy to
understand syntax, and has internal assertion libraries. Jasmine creates a lot
of test globals, which might be a downside on specific scenarios. Async testing
is hard to achieve with Jasmine [15].

3Mocha — https://mochajs.org/
4Chai — https://www.chaijs.com/
5Storybook — https://storybook.js.org/
6Cypress — https://www.cypress.io/
7Jasmine — https://jasmine.github.io/index.html

2.3. Automated Test Frameworks 9

Puppeteer 8 is a Node library created by Chrome’s Development Team. It is a
testing framework that enables users to test chrome pages. It allows users to
simulate actions done in a Chrome browser. Some of the most popular usage
of this application is to: generate screenshots and Portable Document Format
(PDF) from web pages, keyboard input simulation and form submissions and
testing chrome extensions [15]. Being a headless but full-fledged browser, it’s
an ideal choice when testing Single Page Applications (SPA) [15].

React Testing Library 9 is not a test runner like Jest. Actually, they can be
used simultaneously. React Testing Library is a set of tools and functions
which help with Document Object Model (DOM) access and various actions
performed on them. Rendering components into Virtual DOM, searching and
interacting with it [15]. React Testing Library is recommended by React Team
and provides great documentation; is lightweight and written to test React
applications; and has seen an increase in popularity, so it is bound to have
community support. React Testing Library provides no shallow testing, when
rendering components with an increased amount of children it does not allow
to skip rendering portions of those children, which may increase testing times
[15].

WebdriverIO 10 is an automation framework for Web and mobile applications.
It allows users to create scalable and stable test suites. The ability to allow
hybrid testing, native mobile apps, native desktop apps and Web apps is what
distinguishes this framework from the others mentioned [15]. WebdriverIO is
multi-platform testing framework compatible with other assertion libraries and
frameworks, such as, Mocha, Jasmine and Cucumber, and is simple and fast.
Being hard to debug and its poor documentation are the only disadvantages
of using WebdriverIO [15].

Playwright 11 is another automation framework best used for E2E testing. It
was built and maintained by Microsoft and is able to run across multiple
browser engines - Chromium, Webkit and Firefox [15]. Playwright is backed
by a trusted company; supports multiple languages, such as JavaScript, Java,
Python, and .NET C#; can be used by other testing frameworks such as Mocha,
Jest and Jasmine; allows multiple browser testing; and can emulate mobile
devices, geolocation and permissions. It is, unfortunately, in its early stages,
which means community support is still lacking, and does not support real
devices when doing mobile devices testing, only virtual mobile devices [15].

8Puppeteer — https://pptr.dev/
9React Testing Library — https://testing-library.com

10WebdriverIO — https://webdriver.io/
11Playwright — https://playwright.dev/

10 Chapter 2. Distributed Tests

AVA 12 is a test runner and takes advantage of JavaScript’s async nature to run
tests concurrently, increasing performance. It has a very simple API and snap-
shot testing, which allows users to know when their application’s UI changes
unexpectedly. AVA does not allow users to group tests and has no built-in
mocking, but it can be added using Sinnon.js [15].

Vitest 13 was made by the same team that developed Vite. It is a native test
runner that provides a compatible DOM that allows developers to use it as
a replacement to Jest in most projects. Vitest is optimised for performance
and uses Worker threads to run as much as possible in parallel. Vitest’s in-
tends to become the best Test Runner choice for Vite projects [15]. Vitest is
multi-threaded, has native ESM and TypeScript support, and in-source test-
ing, since it provides a way to run tests within user’s source code along with
the implementation, similar to Rust’s module tests. Vitest is still in an early
adoption phase, which means community support is still reduced [15].

2.3.3 Framework Comparison

After analysing multiple test frameworks, it is not possible to clearly choose the best
one in this group.

Each framework has its strong and weak points. Most provide the essential for
testing, which is a testing environment paired together with mechanisms that ensure
that given x, y values are always returned.

Jest, or other framework with big communities, are a strong choice for a first
approach to software testing. Having help from other testers through forums will
fasten the testing development. But if a user requires a broader API that might
contain unique features, then Mocha is a smart choice, since it is largely extensible.
For E2E testing, the best frameworks should be Cypress, Puppeteer or Playwright.

For this project, Mocha will be the chosen framework along with Chai, which
is one of the supported assertion libraries. Being the most extensible framework
is a big factor since it provides more options for developing. Furthermore, since it
is already used in the API development framework of some existing INESC TEC
projects, it allows for a cleaner integration with these projects.

2.4 Summary

This dissertation focuses on the automation stage and considers Acceptance tests,
Integration tests and Unit tests. Moreover, it adopts the ontology-based test mod-
elling technique and behaviour-driven testing frameworks. Ontologies specify the

12AVA — https://github.com/avajs/ava
13Vitest — https://vitest.dev/

2.4. Summary 11

structure of a knowledge domain and, as such, are reusable within the same appli-
cation domain. Behaviour-driven testing ensures the widest compatability between
frameworks. For this project, the test knowledge ontology will be created and the
selected testing framework was Mocha.

The next chapter will present the problem as well as the proposed solution.

Chapter 3

Problem Statement and
Proposed Solution

This chapter presents the problem and solution requirements followed by the proposed
design and development solution and the work plan.

3.1 Problem Statement

The stable operation of a distributed environment/network requires that all com-
ponents work faultlessly. As such, proper testing needs to be made on a regular
basis. Although multiple testing frameworks exist, none provide a systematic and
automated way to test several REST Web service API instances that can be imple-
mented as a service of a working SOA project.

This problem was identified within the Moodbuster INESC TEC project [16].
Moodbuster is a research platform that allows researchers and practitioners to create
and conduct online interventions regarding different psychological problems, such as
depression or anxiety disorders. On one hand, it allows patients to communicate
and provide live mood updates to therapists. On the other hand, therapists can,
based on the incoming data, manage patient treatments and chat with patients. To
do so, Moodbuster combines multiple Web portals and mobile applications (iOS and
Android) into a multiplatform project, exposing multiple REST API instances.

Considering the size and complexity of Moodbuster, multiple and constant tests
need to be performed. Since the assigned development team is small, it becomes

13

14 Chapter 3. Problem Statement and Proposed Solution

hard to coordinate development with testing deadlines. The implementation of a
testing platform capable of reliably building tests for multiple API would improve
considerably the work flow while maintaining the high quality standard associated
with INESC TEC projects.

The goal of this dissertation is then to design, develop and deploy a platform
prototype, composed of a test API and corresponding user dashboard portal, to test
multiple REST API instances as services.

3.2 Requirements Specification

The solution needs to meet functional and technical requirements. The actors that
will be using the framework, the required framework functionalities and the set of
technologies already in use in Moodbuster were identified.

3.2.1 Actors

This project encompasses two different types of users:

• End User — represents the project partners that will employ the application;

• Support Team Member — represents the members of the platform develop-
ment/support team, normally supported by INESC TEC developers.

The support team member integrates the end user functionalities as well the
implementation, modification and stability testing of new functionalities regarding
the contemplated REST API.

3.2.2 Functionalities
The new framework should be implement the functionalities listed in Table 3.1
considering both actors.

Table 3.1: Functionalities

Functionality Actor

1 Add, modify, delete a new API instance.
End User
Support Team Member

2 Add, modify, delete a new Method instance for an API.
End User
Support Team Member

3
Add all Methods of a REST API using a “.json” OpenAPI
format file.

End User
Support Team Member

4 Add, modify, delete a new Test Group instance for a Method.
End User
Support Team Member

5 Add, modify, delete a new Test instance for a Test Group.
End User
Support Team Member

3.2. Requirements Specification 15

. . . continued
Functionality Actor

6 Run Tests from a Test Group and show Result.
End User
Support Team Member

7 Run Test and show Result.
End User
Support Team Member

8 Show latest Results from Tests of a Test Group.
End User
Support Team Member

9 Show latest Results from a Test.
End User
Support Team Member

10 Create/Update the local copy of the APIbuster platform. Support Team Member

Both the End User and the Support Team Member interact with the framework
to add, modify or delete REST API, methods, test groups or tests at will, as well as
running and collecting the results of the created tests. The Support Team Member
needs, in addition, to be able to create, update and deploy a local copy of the
framework, allowing changes to both the testing API and portal.

3.2.3 Technical Requirements

Since Moodbuster uses a specific set of software and hardware technologies, the
proposed solution should reuse them to reduce the learning curve and ensure the
control over the development, deployment and usage of the new platform.

Moodbuster adopts the following Web development frameworks:

• LoopBack 4 — an open-source framework for creating dynamic REST API
[17];

• Vue.js — an open-source JavaScript framework for front-end Web design de-
velopment [18];

• PostgreSQL — an open-source relational database management system [19].

The platform should allow 10 to 15 connections to be made concurrently. Devel-
opment teams are small, two to three programmers, and partners are also, normally,
comprised of the same number of users. As such, by assuring that the platform
holds about double the amount of maximum expected connections, a proper and
fluid usability of the platform is preserved.

Considering these requirements, the physical platform should have a standard 6
core processor with 8 GB of Random Access Memory (RAM).

The next section takes into consideration all the project requirements and pro-
vides a solution to the problem capable of fully answering the different functionali-
ties.

16 Chapter 3. Problem Statement and Proposed Solution

3.3 Proposed Solution

The proposed testing framework, called APIbuster, supports the refinement of the
test knowledge, the addition of new REST API instances to test, the creation and
execution of multiple test entries as well as the collection and storage of the results.
This chapter provides an overview of the solution. Chapter 4 specifies to great extent
each phase of development.

3.3.1 Architecture

The designed APIbuster testing platform integrates three main components (Figures
3.1 and 3.2):

1. Data modelling pipeline — the processing pipeline that generates the entity
relationship data model from the test domain ontology;

2. APIbuster — the testing API (also implemented as REST Web service);

3. Portal — the APIbuster user dashboard.

Figure 3.1: UML diagrams of the data modelling pipeline

Figure 3.2: APIbuster back-end and front-end

The input of the data modelling pipeline is the test domain knowledge ontology
and the output is the data model of the testing platform. To this end, the created
Ontology Web Language (OWL) file, which models the test domain knowledge, fol-
lows a set of sequential transformations to obtain the Enhanced Entity Relationship
Model (EER) data diagram. This is achieved, as shown in Figure 3.1, by converting
from OWL into Unified Modelling Language (UML), UML into an Entity Relation-
ship Diagram (ERD) and, lastly, ERD into an usable EER. This semi-automated

3.4. Development Methodology 17

pipeline allows the refinement of the test knowledge ontology and, consequently, of
the data model, by adding new classes, e.g., new test categories, and new class prop-
erties for existing classes, e.g., new test attributes, but will not support changes to
class properties previously created.

The persistent data model of the APIbuster platform corresponds to the resulting
EER data model. Once the APIbuster component is deployed, the users can interact
with the platform, i.e., add new API instances to test, define the corresponding test
suite and collect the results, using the APIbuster user dashboard portal component.

3.3.2 Adopted Technologies

Taking the project requirements in consideration, it is possible to choose an appro-
priate set of development technologies. The creation of the ontology adopts Protégé,
an open source ontology editor and framework for building systems [20]. The data
modelling pipeline partially relies on the Visual Paradigm modelling tool [21].

The selected Web service development technologies are based on those already
in use in the Moodbuster platform. These include Loopback 4 as back-end (API)
and Vue.js as front-end (portal) development frameworks. The chosen relational
database server to store the platform’s database is PostgreSQL database manage-
ment system.

3.4 Development Methodology

Since the implementation of the whole project relies solely on one person no standard
development methodology, such as SCRUM, Agile or DevOps, was followed.

In this case, a “trial-by-error” approach was adopted regarding the creation of
the pipeline. It’s already planned that various iterations of the OWL file will be
made since there might be errors and updates needed. Creating a pipeline will
make changes faster, stabler and, at the same time, allow for a more structured
architecture.

Using this method will also allow for an API creation process based on an ontol-
ogy to be made capable of creating any type of API that follows the same method-
ologies and utilises the same technologies as the proposed solution.

The Gantt chart of the project development is presented in Figure 3.3. It com-
prises the following tasks:

T1 Creation of the test domain ontology [1st to 8th week];

T2 Development of the data modelling pipeline and creation of the persistent
database compliant with the test domain ontology [8th to 14th week];

T3 Development of the testing API (APIbuster) which interacts with the persistent
test database [14th to 18th week];

18 Chapter 3. Problem Statement and Proposed Solution

Week: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T1

T2

T3

T4

T5

T6

T7

Figure 3.3: Gantt chart

T4 Development of the APIbuster Web portal for users to interact with the plat-
form [16th to 20th week];

T5 APIbuster testing [20th to 22th week];

T6 Writing of the dissertation [1st to 24th week];

T7 Development of the dissertation PowerPoint presentation [23th to 24th week].

3.5 Summary

The designed testing platform is compliant with the adopted test domain ontology
and supports multiple API testing. Moreover, end users and support team members
can interact with the platform through a Web dashboard.

The following chapter details the development of the APIbuster testing platform.

Chapter 4

APIbuster Testing Platform

This chapter documents and details the development of the APIbuster platform pro-
totype.

4.1 Data Modelling Pipeline

As seen in Chapter 3, the APIbuster platform is divided into three major compo-
nents. The data modelling pipeline is the first and most complex one since its role
is to create the database model for the whole framework.

The data modelling pipeline implements a series of data transformations that
converts the created OWL file, through UML and ERD, to the desired EER model.
These transformations rely on two tools and two dedicated scripts:

1. OWL file — generated by Protégé;

2. UML class diagram file — produced by “umlImport.sh” (Appendix A) and
Visual Paradigm;

3. ERD — produced by Visual Paradigm;

4. EER — produced by Visual Paradigm and “dbImport.sh” (Appendix B).

4.1.1 APIbuster OWL

Unlike existing test frameworks, the APIbuster test framework revolves around an
ontology to support the systematic knowledge update process. This allows for a

19

20 Chapter 4. APIbuster Testing Platform

better scalability and provides users with a simpler and robust development and
update pipeline.

The framework’s ontology was created with Protégé. Protégé is an ontology
editor and framework for building intelligent systems created by Stanford [20]. The
ontologies can be generated using the OWL, which is a Semantic Web language
designed to represent rich and complex knowledge about things, groups of things,
and relations between things1.

The APIbuster OWL ontology defines a tree comprising a set of nodes and leafs
corresponding to classes with and without sub-classes, as shown in Figure 4.1. On
the one hand, the conversion of OWL nodes into the UML class diagram, creates all
child classes as generalisations of the parent class, i.e., a single UML class component
is created for the parent class with each property being the fusion of all its child
class properties. On the other hand, the conversion of OWL leafs result in UML
classes without child relationships.

Figure 4.1: Ontology representation

By analysing Figure 4.1 it is easy to identify the classes representation category.
The leaf classes are:

• API — representing a REST API web app instance to be tested;

• Method — representing a REST API method used to consult, create, modify
or delete instances from the DB (GET, POST, PATCH, PUT and DEL);

• Test_Group — representing a test group instance for a specific method;
1OWL W3C — https://www.w3.org/OWL/

4.1. Data Modelling Pipeline 21

• Test — representing a test instance for a specific test group;

• Test_Result — representing a test result instance for a specific test;

• Result_Type — representing one of the three result types (pass, failure or
pending).

The following classes have sub-classes (are created as generalisations of the class
“Test”):

• Functional_Test — representing a functional test instance;

– Acceptance_Test — representing an acceptance test instance;

– Integration_Test — representing an integration test instance;

– Unit_Test — representing a unit test instance;

• Non_Functional_Test — representing a non-functional test instance;

– Performance_Test — representing a performance test instance.

Each class has its own class properties and associations. Both components are
important to establish a proper UML class representation. They later translate into
UML attributes and relationships.

Class Properties

Creating class properties is achieved through the usage of “Data Properties”. A
property is created and then assigned to a class by simply designating the domain
and range. Domain represents the class to which the created data property belongs
and range is the data type: int, number, date time, string, etc. A list of each class’s
properties can be analysed in Table 4.1.

Table 4.1: Ontology class definitions

Class Data Properties Object Properties

API
api_name: string
api_domain: string
api_type: string

hasMethods

Method

method_body: string
method_header: string
method_name: string
method_route: string
method_type: string

hasTestGroups

22 Chapter 4. APIbuster Testing Platform

. . . continued
Class Data Properties Object Properties

Test_Group

test_group_name: string
test_group_duration: int
test_group_start: string
test_group_end: string

hasTests

Test

test_name: string
test_body: string
test_expect: string
test_type: string

hasTestResults

Test_Result

result_title: string
result_date: string
result_duration: string
result_error: string
result_speed: string

Test_Type type_name: string hasResultTypes
Functional_Test
Non_Functional_Test
Acceptance_Test
Integration_Test
Unit_Test
Performance_Test

Class Associations

Protégé allows the creation of associations between classes through the usage of “Ob-
ject Properties”. The associations between classes was created using this approach.
The list of class associations is displayed in Table 4.1.

For example, the object property “hasMethods” has “API” as domain and “Method”
as range. This means that the “API” class has, as object properties, a group “has-
Methods” of “Method” class.

To complete the association, this object property must be added as a sub-class
of the domain class and assigned a quantitative declaration (some, min, max) as
well as the connective range, in this case “Method”. This later assures the one to
many (with 0..* multiplicity) associations and relationships between classes in the
UML and ERD, respectively.

4.1.2 APIbuster UML

According to Figure 3.1, the first conversion transforms the OWL ontology file into
a UML class diagram. This transformation is, unfortunately, impossible to perform
with the available tools. This section elaborates on the steps necessary to obtain a
faithful UML class diagram representation of the original OWL file.

4.1. Data Modelling Pipeline 23

Protégé — Export to UML

The Protégé wiki refers a couple of export2 and back-end3 plugins. From the avail-
able list, only three candidates meet the requirements of the project’s pipeline:

• OWL2RDB4 — transforms an OWL2 ontology into a relational database;

• XMI Backend5 — exports OWL files into XMI files;

• UML Backend6 — exports OWL files into UML files.

Although with some limitations, only the back-end solutions worked after ample
tests. Moreover, since the XMI and UML back-end plugins are only compatible with
Protégé 3.4, the project adopted this older version. Using the installed plugins, it is
then possible to export the ontology file into an UML class representation.

Visual Paradigm — UML import

Although it is then possible to import the file to Visual Paradigm, if no changes are
made, some errors occur.

The provided file is indeed a converted UML representation of the ontology, but
three different errors need to be prevented.

In the first place, the file, even though it is a converted UML file, is exported
without an extension. If the UML extension is not added to the file, Visual Paradigm
won’t even recognise the file as an acceptable UML file.

Secondly, since there is no property in Protégé that directly correlates to an
association’s navigability, the UML back-end plugin automatically sets it to false.
This later prevents the pipeline from generating relationships properly on the ERD.

Lastly, there is no option to forcefully omit the full name of each class, object
or data property. Protégé automatically gives each project property a full name7

instead of a relative one. If no changes are done, when importing the UML file,
property names won’t be properly interpreted in Visual Paradigm.

All three issues are solved through the usage of the implemented bash script,
“umlImport.sh” (Appendix A), as shown in Figure 3.1. This script appends the
UML extension to the ontology exported file, substitutes the full property names
for their relative names and changes all navigability values to true, since all created
associations allow it.

2Protégé Export — https://protegewiki.stanford.edu/wiki/Category:Export
3Protégé Backend — https://protegewiki.stanford.edu/wiki/Category:Backend
4OWL2RDB — https://protegewiki.stanford.edu/wiki/OWL2ToRDB
5XMI Backend — https://protegewiki.stanford.edu/wiki/XMI-Backend
6UML Backend — https://protegewiki.stanford.edu/wiki/UML-Backend
7http://semanticweb.org/{user}/ontologies/{projectname}#{propertyname}

24 Chapter 4. APIbuster Testing Platform

Fi
gu

re
4.

2:
U

M
L

cl
as

s
di

ag
ra

m
re

pr
es

en
ta

tio
n

of
th

e
on

to
lo

gy

4.1. Data Modelling Pipeline 25

The UML file is then imported to Visual Paradigm, which is also achieved
through the script since Visual Paradigm has a Command Line Interface (CLI)
that allows the import and export of files to a project8. This last step can only be
achieved if the project is previously created in Visual Paradigm and is not an open
project.

Unfortunately, some steps cannot be fully automated since Visual Paradigm
CLI doesn’t have a function that allows automatic diagram creation. A new class
diagram is then created, manually, as shown in Figure 4.2, by simply dragging all the
imported classes to the working area of a “Class Diagram”. Each block represents
a class, associations are all one to many (with 0..* multiplicity), represented by the
lines linking each class, and arrows represent the generalisations.

The script still creates an empty DB in PostegreSQL server, which needs to be
previously installed, so that it is later possible to import the DB file created by
Visual Paradigm.

4.1.3 APIbuster ERD

Following Figure 3.1 data modelling pipeline representation, the next conversion is
made from UML to ERD.

Unfortunately, this entire process needs to be fully manual since there are no
available CLI functions to help with this step’s automation.

Assigning “ORM Persistable” stereotype to all classes, in the UML diagram, is a
requirement for this conversion. Visual Paradigm has a function called “Synchronize
to Entity Relationship Diagram” under “Tools” -> “Hibernate” window option which
only works if correctly set up. Without the “ORM Persistable” stereotype this
synchronisation would fail as it would not recognise the different classes to convert.

After synchronising the UML into ERD, a new diagram is created, as shown
in Figure 4.3. This synchronisation will create all foreign keys and relationships
between entities according to the associations previously created. That is why all
“ID” properties were automatically added to each entity.

In this case, several tables were grouped into a single table since their respective
UML classes all generalise to the same superclass. All their properties are condensed
in Test table and a “Discriminator” property is automatically created.

The class properties, which are represented as a tree in the ontology class (Table
4.1), had no object or data properties. Moreover, during the ontology creation phase,
all classes are used to create the ERD.

8Visual Paradigm CLI import — https://www.visual-paradigm.com/support/documents/vp
userguide/124/255/7348_exportingand.html

26 Chapter 4. APIbuster Testing Platform

Figure 4.3: ERD representation of the ontology

4.1.4 APIbuster ERD — DB

The last conversion of the pipeline is made after achieving a correct ERD represen-
tation.

Visual Paradigm also allows DB creation based on ERD, which, unfortunately,
is also a semi-automated process. Database configurations cannot be automated,
but Visual Paradigm also allows database export through the CLI9.

The first step is the “Database Configuration” under “Tools” -> “DB” window
option. This is the step that Visual Paradigm CLI doesn’t allow to do automatically.
Setting up the configuration for the type of DB the user is utilising can be made
through a driver file or manually. To establish a connection, both cases require:

• hostname;

• port;

• database name;

• user;

• password.
9Visual Paradigm CLI database export — https://www.visual-paradigm.com/support/docu

ments/vpuserguide/124/255/7350_generatingor.html

4.2. API 27

Using a second script, “dbImport.sh” (Appendix B), represented in Figure 3.1,
a Data Definition Language (DDL) file containing the database schema is gener-
ated and the previously created PostgreSQL database is now populated with all
tables by importing it to the PostgreSQL server. This can be done using the CLI
functionalities that PostgreSQL provides.

Before importing the DDL file, the script still updates the table creation com-
mands so it allows every table to cascade delete simply by adding “ON DELETE
CASCADE” to the end of the each table creation query. This means that when
deleting a parent instance, all child instances will also be removed.

After finishing this procedure, all the conversions are completed and a correct
PostgreSQL database is built from the initial ontology file.

4.2 API

With a working pipeline capable of creating and updating the database, an API
capable of managing that information can be created. For this outcome, the used
framework to quickly create a Web REST API was LoopBack 4.

4.2.1 LoopBack 4

LoopBack 4 is a highly extensible, open-source Node.js and TypeScript framework
based on Express. It enables developers to quickly create API and microservices
composed from back-end systems such as databases and Simple Object Access Pro-
tocol (SOAP) or REST services [17]. This framework was chosen since it was re-
quired for the new platform to be produced on a similar web developing framework
as other projects at INESC TEC, such as the Moodbuster project. There was also
extensive knowledge on how to build a project through it and the fact that it uses
Mocha internally as a test framework was also an advantage. This expedites the
development process allowing for a more reliable product.

Loopback 4 has some CLI functionalities that allow users to quickly create
projects, add datasources, models, repositories, relations and create controllers.
Some of these commands were utilised in the third script, “setupAPI.sh” (Appendix
C), in order to further automate the process. Unfortunately, there are some in-
puts that require manual input since Loopback 4 is still being updated nowadays
and it’s functionalities are still being renewed. Even though some CLI options are
documented, they are partially usable or not usable at all.

Datasource

The script creates the datasource that will be used by the API. In this case, creates
a connection between the API and the DB. To automate this, using a config file as

28 Chapter 4. APIbuster Testing Platform

stated in the documentation10,11, a “datasourceConfig.json” file was developed.

1 {
2 "name ": " postgres ",
3 " connector ": " postgresql ",
4 "url ": "",
5 "host ": " localhost ",
6 "port ": 5432 ,
7 "user ": " postgres ",
8 " password ": "<PASSWORD >",
9 " database ": " APIbusterDB "

10 }

Listing 4.1: datasourceConfig.json

In this case, the previously created and populated PostgresSQL database, called
“APIbusterDB” is connected to the API.

Loopback 4 will interpret this new datasource as “postgres” and will establish
a connection to it using the “postgresql” connector. It has no url since the DB
is hosted on the same machine as the created API, which means the host name is
“localhost” and the port 5432. To finish the connection a user connection needs
to be established to the database named “APIbusterDB”. In this case, the user
“postgres” and password “<PASSWORD>” will be used. “<PASSWORD>” is
only a placeholder for the real password.

Models

The Loopback 4 CLI also allows model creation based on the “discover” command12.
This command, using “postgres” datasource connection, automatically creates mod-
els based on available database tables. It creates a model file, with all data proper-
ties, foreign keys and relations for each table.

This option requires the user to manually input the “camelCase” option since it
can’t be skipped through command options.

Repositories

Contrary to models creation, this step is fully automated and requires no manual
input from the user. A configuration file was made according to documentation13.
All repository config files are inside the “configFiles/repositories” folder.

10LoopBack4 datasource — https://loopback.io/doc/en/lb4/DataSource-generator.html
11LoopBack4 datasource configuration — https://loopback.io/doc/en/lb4/PostgreSQL-con

nector.html#connection-pool-settings
12LoopBack4 model discover — https://loopback.io/doc/en/lb4/Discovering-models.html
13LoopBack4 repository — https://loopback.io/doc/en/lb4/Repository-generator.html

4.2. API 29

1 {
2 "name ": "Api",
3 " datasource ": " postgres ",
4 "model ": "Api",
5 "id": "id",
6 " repositoryBaseClass ": " DefaultCrudRepository "
7 }

Listing 4.2: apiRepositoryConfig.json

Each repository has it’s own configuration file. In this example, Loopback 4
creates a new repository named “Api” that uses the previously created “postgres”
datasource and model “Api”. It is also provided the id attribute, “id”, and it is also
defined the type of repository to be created. In this case, a “DefaultCrudRepository”.

Controllers

This last step also requires no manual input as Loopback 4 proceeds as intended dur-
ing controller creation. An example of a controller configuration file isn’t provided
in the controller page, but a configuration representation was found in Loopback 4
GitHub forums14.

1 {
2 "name ": "api",
3 " modelName ": "Api",
4 " controllerType ": "REST Controller with CRUD functions ",
5 " repositoryName ": " ApiRepository ",
6 " idType ": " number ",
7 " httpPathName ": "/ apis"
8 }

Listing 4.3: apiControllerConfig.json

Each controller has it’s own configuration file. In this example, Loopback 4 cre-
ates a new controller named “api” and based on model “Api”. It is a “REST Con-
troller with CRUD functions”, meaning it is a controller with basic GET, POST,
PUT, PATCH, DEL functions. It uses the “ApiRepository” previously created, its
idType is a “number” and the base httpPathName is set to “/apis”.

Loopback 4 automatic controller creation only implements standard Create,
Read, Update and Delete (CRUD) methods as shown in Table 4.2.

14LoopBack4 GitHub forum controllers — https://github.com/loopbackio/loopback-next/
issues/1844

30 Chapter 4. APIbuster Testing Platform

Table 4.2: API methods

Controller Method Request Input Output
API GET ‘/apis’ Array of API in-

stances
API GET ‘/apis/count’ Number of API in-

stances
API GET ‘/apis/id’ Object representing a

specific API instance
API POST ‘/apis’ Object representing

API instance to cre-
ate

Object representing
the created API in-
stance

API PUT ‘/apis/id’ Object representing
API instance proper-
ties to update

Object representing
the modified API in-
stance

API PATCH ‘/apis/id’ Object representing
API instance proper-
ties to update

API DELETE ‘/apis/id’
Methods GET ‘/methods’ Array of Methods in-

stances
Methods GET ‘/methods/count’ Number of Methods

instances
Methods GET ‘/methods/id’ Object representing a

specific Methods in-
stance

Methods POST ‘/methods’ Object representing
Methods instance to
create instance

Methods PUT ‘/methods/id’ Object representing
Methods instance
properties to update

Object representing
the modified Meth-
ods instance

Methods PATCH ‘/methods/id’ Object representing
Methods instance
properties to update

Methods DELETE ‘/methods/id’
Test Groups GET ‘/test-groups’ Array of Test Groups

instances
Test Groups GET ‘/test-groups/count’ Number of Test

Groups instances
Test Groups GET ‘/test-groups/id’ Object representing a

specific Test Groups
instance

Test Groups POST ‘/test-groups’ Object representing
Test Groups instance
to create

Object representing
the created Test
Groups instance

Test Groups PUT ‘/test-groups/id’ Object representing
Test Group instance
properties to update

Object representing
the modified Test
Groups instance

4.2. API 31

. . . continued
Controller Method Request Input Output
Test Groups PATCH ‘/test-groups/id’ Object representing

Test Group instance
properties to update

Test Groups DELETE ‘/test-groups/id’
Tests GET ‘/tests’ Array of Tests in-

stances
Tests GET ‘/tests/count’ Number of Tests in-

stances
Tests GET ‘/tests/id’ Object representing

a specific Tests in-
stance

Tests POST ‘/tests’ Object representing
Tests instance to cre-
ate

Object representing
the created Tests in-
stance

Tests PUT ‘/tests/id’ Object representing
Tests instance prop-
erties to update

Object representing
the modified Tests
instance

Tests PATCH ‘/tests/id’ Object representing
Tests instance prop-
erties to update

Tests DELETE ‘/tests/id’
Test Results GET ‘/test-results’ Array of Test Results

instances
Test Results GET ‘/test-results/count’ Number of Test Re-

sults instances
Test Results GET ‘/test-results/id’ Object representing a

specific Test Results
instance

Test Results POST ‘/test-results’ Object representing
Test Results instance
to create

Object representing
the created Test Re-
sults instance

Test Results PUT ‘/test-results/id’ Object representing
Test Results instance
properties to update

Object representing
the modified Test Re-
sults instance

Test Results PATCH ‘/test-results/id’ Object representing
Test Results instance
properties to update

Test Results DELETE ‘/test-results/id’
Result Types GET ‘/result-types’ Array of Result

Types instances
Result Types GET ‘/result-types/count’ Number of Result

Types instances
Result Types GET ‘/result-types/id’ Object representing a

specific Result Types
instance

32 Chapter 4. APIbuster Testing Platform

. . . continued
Controller Method Request Input Output
Result Types POST ‘/result-types’ Object represent-

ing Result Types
instance to create

Object representing
the created Result
Types instance

Result Types PUT ‘/result-types/id’ Object representing
Result Type instance
properties to update

Object representing
the modified Result
Types instance

Result Types PATCH ‘/result-types/id’ Object representing
Result Type instance
properties to update

Result Types DELETE ‘/result-types/id’

For this project some extra methods were developed:

• apiMethods — returns an array of methods created for a specific API instance
through an uploaded “openapi.json” file;

• runTestgroup — returns an array of test results from a test group’s tests after
running all test group’s tests;

• runTest — returns a test result for a specific test after running it;

• latest — returns the latest test result for a specific test;

• findLatestResults — returns an array of the latest test results for a test group’s
tests.

Since the logic behind the implementation can’t be automatically generated, all
these methods had to be manually implemented and added to the API.

4.3 Portal — User Dashboard

The portal was created as a way for the different actors to interact with the created
API. The users require an UI that allows them to view, create, modify and delete
new API, methods, test groups and tests.

Taking into consideration all the solution requirements mentioned in Chapter 3,
the chosen framework to create this portal was Vue.js.

4.3.1 Vue.js

Vue was chosen for its approachability, performance and versatility. The platform is
designed to work with both JavaScript and TypeScript15. Built on top of standard
HTML, Cascading Style Sheets (CSS) and JavaScript and has an intuitive API and

15Vue.js languages — https://vuejs.org/about/faq.html#should-i-use-javascript-or-typ
escript-with-vue

4.4. Test Definition and Execution 33

world-class documentation, rarely requires manual optimisation and it is incredibly
scalable [18].

Vue is also a framework previously and currently used by some INESC TEC’s
projects, such as Moodbuster. Re-utilising this technology when producing a plat-
form would reduce the learning curve normally needed when engaging with a new
front-end framework.

The portal (Appendix C) presents four inter-linked views:

• API page — visualisation, creation, modification and deletion of API instances;

• Methods page — visualisation, creation, modification and deletion of method
instances of a given API;

• Test Groups page — visualisation, creation, modification and deletion of test
groups instances. Also allows for test group testing and visualisation of the
latest test results of a given test group;

• Tests page — visualisation, creation, modification and deletion of test in-
stances of a given test group. Also allows for specific test instance testing and
visualisation of its latest test result.

4.4 Test Definition and Execution

Each test result is obtained either through “runTestgroup” or “runTest” methods.
Either method is divided in four separate steps:

Test file building - in this step a test file, based on the “API”, “Methods”, “Test
Groups” and “Tests” instances, is built containing, two “describe” statements
(which describe the test suite), and one, or multiple, “it” statements (which
represent the various tests to be executed).

1 describe (’<methodName > tests ’, async () => {
2 describe (’< testGroupName > tests ’, async () => {
3 it(’<testName >’, async () => {
4 <testBody >
5 const res = await axios.<methodType >("< apiDomain ><

methodRoute >");
6 <testExpected >
7 });
8 });

Listing 4.4: <testGroupName>_id<testGroupId>.test.js

34 Chapter 4. APIbuster Testing Platform

Running test file - both methods utilise Mocha’s CLI to run the created test files.
Results are output to a “.json” file unique to each test group/test run.

Test result instances creation - based on the output file, new test result in-
stances are created.

File deletion and values returned - after each instance is created, “.json” files
are deleted and the new created test result values are returned to the user.

4.5 Summary

Throughout this chapter a detailed explanation of the multiple components of the
project was presented. It was possible to implement a trustworthy data modelling
pipeline capable of transforming an ordinary ontology file into a enhanced entity
relationship model, allowing users to create a DB based on their ontology files.

A detailed description of the creation process of the API was shown, where a full
list of the API methods was provided, and a brief explanation was given about the
main features of the dashboard.

Upon the completion of the APIbuster prototype, a series of tests are to be
made. Functional tests on every used API call, load tests on the “heaviest” call and
performance tests on the system usability. By testing the system it will be possible
to unveil any problems that might be undiscovered so far, while showing how stable
the prototype actually is.

Chapter 5

APIbuster Testing

This chapter documents and details the functional, load and performance test results
for the APIbuster platform.

5.1 Pipeline Testing

The data modelling pipeline was tested in a computer with a 6 core Central Pro-
cessing Unit (CPU) and 16 GB RAM. The experiment consisted on the updating of
the data model of the API. Table 5.1 presents the functional and run-time results.

Table 5.1: Pipeline: functional and run-time results

Functionality Step Result Run-time (ms)

Create/Update the local copy of the APIbuster
platform

umlImport.sh Pass 354
VP Editing Pass 22 000
dbImport.sh Pass 647

Each step of the pipeline was tested separately. The first step involves converting
APIbuster’s OWL file into a UML, using “umlImport.sh” (Appendix A), and took
less than 0.4 s. The second step was the slowest step to be completed since it is a
manual conversion, done through Visual Paradigm. It produces an ERD from the
UML generated by the “umlImport.sh” script. This step took approximately 22 s,
but this value may vary not only from user to user but depend on the dimension
of the updated ontology. Lastly, the “dbImport.sh” (Appendix B) script, creates
or updates the DB model and, consequently, the API. This automated step took
around 0.7 s.

35

36 Chapter 5. APIbuster Testing

This functional test clearly shows the run-time difference between automated
and manual steps, i.e., between the duration of steps 1 and 3 and step 2.

5.2 API Testing

In order to achieve a robust and trustworthy application, tests to the framework
need to be made. Three different types of tests were made using different platforms
and/or techniques. Functional and performance tests were implemented with the aid
of Postman [22], load tests were made using Apache JMeter [23] and usability tests
through the System Usability Scale (SUS) [24] questionnaire. This tests were made
using Moodbuster as the test target and all tests were conducted using a computer
with a 6-core CPU and 16 GB RAM.

The server hosting APIbuster has the following computational infrastructure:

• 6-core CPU;

• 8 GB RAM.

5.2.1 Functional and Performance Tests

These tests were repeated ten times using Postman to determine the average and
standard deviation of the exchanged data (B) and time response (ms) of each func-
tionality listed in Table 3.1. The results were calculated with Calculator.tech1 and
can be observed in Table 5.2.

Table 5.2: API: functional and performance results

Functionality Method Result Size (B)
Latency (ms)

µ σ

Obtain a list of all API instances GET Pass 590 22.40 1.26
Obtain a list of all Methods of an API GET Pass 515 25.60 1.17
Obtain a list of all Test Groups of a Method GET Pass 567 20.00 0.94
Obtain a list of all Tests of a Test Group GET Pass 574 23.70 3.30
Create an API POST Pass 465 21.30 4.08
Create a Method POST Pass 521 21.90 0.99
Create a Test Group POST Pass 450 22.20 1.29
Create a Test POST Pass 550 23.80 2.61
Update an API PATCH Pass 347 120.10 66.55
Update a Method PATCH Pass 347 96.70 30.62
Update a Test Group PATCH Pass 347 83.50 80.25
Update a Test PATCH Pass 347 94.70 26.45
Delete an API DELETE Pass 347 131.90 82.24
Delete a Method DELETE Pass 347 88.40 37.91
Delete a Test Group DELETE Pass 347 108.00 24.93

1Calculator — https://www.calculators.tech/variance-calculator

5.2. API Testing 37

. . . continued

Functionality Method Result Size (B)
Latency (ms)

µ σ

Delete a Test DELETE Pass 347 103.90 16.94
Run a Test GET Pass 542 465.50 20.17
Run a Test Group GET Pass 748 470.60 18.24
Obtain latest test results GET Pass 748 23.60 2.95

The results show that “GET” and “POST” requests have the lowest latency, for
both mean and variance. Exceptions are the API calls that execute and return test
results. The latter present the highest latency, making them interesting targets for
load testing.

5.2.2 Load Tests

Table 5.2 shows that the most demanding API call (largest data exchange and
latency) occurs when the user runs a group of tests. To evaluate the impact of this
worst case on the server load, Apache JMeter was configured to make 10, 100 and
1000 concurrent test group requests. Table 5.3 holds the results.

As expected, the average latency increases considerably with the number of con-
current requests. When compared with the average latency of a single request in
Table 5.2 (470.60 ms), the results in Table 5.3 are 12 % higher with 10 requests, al-
most three times higher with 100 requests and forty times higher with 1000 requests.

Nonetheless, these latency results comply with the requirements of the project,
which stated that it should allow between 10 to 15 concurrent users. In this case,
the latency will be above 0.50 s and below 1.80 s, which is acceptable.

Table 5.3: API: load results

Requests Functionality Method Results Size (B)
Latency (ms)

µ σ

10 Run a test group GET 10 749 528.30 51.50
100 Run a test group GET 100 749 1779.10 245.58
1000 Run a test group GET 1000 749 10 810.58 4631.82

5.2.3 Usability Tests

To test the usability of the APIbuster platform, a Google form2 was elaborated
according to the SUS model [24]. This defines a usability scale that allows anyone
to quickly evaluate a system’s usability.

The form implements a ten-question template the user can adapt to suit the
application under test. Participants will rank each question from one to five based
on how much they agree with the statement they are reading. Five means they agree
completely, one that they disagree vehemently [24].

2Google forms — https://www.google.com/forms/about/

38 Chapter 5. APIbuster Testing

1. “I think that I would like to use this system frequently”;

2. “I found the system unnecessarily complex”;

3. “I thought the system was easy to use”;

4. “I think that I would need the support of a technical person to be able to use
this system”;

5. “I found the various functions in this system were well integrated”;

6. “I thought there was too much inconsistency in this system”;

7. “I would imagine that most people would learn to use this system very quickly”;

8. “I found the system very cumbersome to use”;

9. “I felt very confident using the system”;

10. “I needed to learn a lot of things before I could get going with this system”.

SUS is scored from 0 — 100 and the average score is around 68 points. An
overview of how the scores are measured:

• 80.3 or higher is an A. Users enjoy the platform and will recommend it;

• 68 or thereabouts leads to a C. The platform corresponds to expectations but
could improve;

• 51 or under represents an F. Usability should be the priority for now.

The scores of odd and even questions are calculated differently. One point is
removed from the score of each odd question, whereas five points are subtracted
from the score of each even question. The resulting values are then added and the
sum multiplied by 2.5.

Only five participants completed the form. Nonetheless, based on the available
data, APIbuster achieved a score of 85 — grade A. This means that the respondents
consider the platform user-friendly and useful.

5.3 Summary

The platform is fully operational. Every functional test worked without issues and
with acceptable performance. The server is able to answer multiple concurrent
requests as required without losing functionality. Lastly, the users seem to appreciate
the navigability and the functionalities of the platform.

Chapter 6

Conclusion

This chapter contains the closing arguments to the dissertation.

6.1 Achievements

The APIbuster prototype answers the problem stated in Chapter 3. The designed
solution was successfully implemented and tested without major setbacks. The
implementation adopts the Web development technologies already used at INESC
TEC, such as Loopback 4, PostgreSQL and Vue.js, and state-of-the-art modelling
tools like Protégé and Visual Paradigm.

The data modelling pipeline starts with the creation of the test knowledge on-
tology and ends, after multiple conversions, with the persistent data model of the
APIbuster DB. This approach partially automates the creation and update of the
persistent data model based on the domain’s knowledge ontology. Since Protégé and
Visual Paradigm lack the tools to fully automate this pipeline, two additional dedi-
cated scripts, presented in Appendix A and Appendix B, were developed to provide
the missing functionalities.

The automation of the API development process was straightforward. Loop-
back 4 has a CLI that allows users to quickly create a working REST API based on
a persistent data model. These steps are described in Chapter 4. Additional API
calls were created taking into consideration the project’s aim and specifications. The

39

40 Chapter 6. Conclusion

integrated testing framework relies on Loopback 4, Mocha1 and Chai2 to perform
tests and collect results.

The user dashboard, created using Vue.js, provides all users with a UI to interact
with the APIbuster platform. This simple portal implements the functionalities
listed in Table 3.1.

Based on the test results shown in Chapter 5, APIbuster complies with the
identified project requirements. Functional, performance, load and usability tests
were successfully performed.

6.2 Future Work

APIbuster can be refined in multiple fronts and even additional research could prob-
ably be made in order to further automate the data modelling pipeline.

As it stands, APIbuster is mainly for developers since it assumes users already
know how to create software tests, specially using Mocha and Chai assertion library.
A login system capable of separating users and their API tests was not created. This
would prove useful in the future to prevent unauthorised users from making changes
to the created test cases. Since multiple partners could use the API, it is essential
to guarantee the safety of their tests.

Another possible addition to the project is to provide code snippets to auto-
matically define new tests. This would allow users not familiarised with the testing
framework to learn quicker and create more complex tests faster.

The updating of the test knowledge ontology does not support modifying existing
class properties. This could be solved by developing new scripts. These scripts
would need to export the affected class instance data to a Comma-Separated Values
(CSV) file, reuse the existing scripts to update the DB model, alter the contents of
the CSV file according to the class property changes, and import the data back into
the respective table.

Finally, to fully automate the data modelling pipeline there is the need to auto-
matically convert from XMI, the format of the UML file, to DDL, the format of the
ERD database model schema. This possibility is currently being investigated.

1Mocha — https://mochajs.org/
2Chai — https://www.chaijs.com/

References

[1] S.-W. Chen, Y.-T. Tseng, and T.-Y. Lai, “The design of an ontology-based
service-oriented architecture framework for traditional chinese medicine health-
care,” in 2012 IEEE 14th International Conference on e-Health Networking,
Applications and Services (Healthcom), pp. 353–356, 2012. [Cited on page 3]

[2] N. Josuttis, SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, 2007. [Cited on page 3]

[3] A. Kumar, A. K. Pandey, and M. Singh, “A novel testing framework for soa
based services,” in International Conference for Convergence for Technology-
2014, pp. 1–4, 2014. [Cited on page 3]

[4] OpenGroup, “SOA source book - what is SOA?.” https://collaboration.

opengroup.org/projects/soa-book/pages.php?action=show&ggid=1314.
Last accessed: 2021-08-21. [Cited on page 3]

[5] E. Souza, R. Falbo, and N. Vijaykumar, “Using ontology patterns for building
a reference software testing ontology,” in 2013 17th IEEE International En-
terprise Distributed Object Computing Conference Workshops, pp. 21–30, 2013.
[Cited on page 4]

[6] TestingXperts, “Trending.” https://www.testingxperts.com/blog/test-a

utomation-frameworks. Last accessed: 2021-08-21. [Cited on pages vii and 5]

[7] Z. Sun, Y. Zhang, and Y. Yan, “A web testing platform based on hybrid auto-
mated testing framework,” in 2019 IEEE 4th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), vol. 1, pp. 689–692,
2019. [Cited on page 6]

[8] X. Wang and P. Xu, “Build an auto testing framework based on selenium and fit-
nesse,” in 2009 International Conference on Information Technology and Com-
puter Science, vol. 2, pp. 436–439, July 2009. [Cited on pages 6 and 7]

[9] Tricentis Staff, “What is BDD (Behavior-Driven Development)?.” https://ww

w.tricentis.com/blog/bdd-behavior-driven-development, 2022. Last
accessed: 2022-10-12. [Cited on pages 6 and 7]

41

42 REFERENCES

[10] A. Freitas and R. Vieira, “An ontology for guiding performance testing,” in
2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 400–407, Aug 2014.
[Cited on pages 6 and 7]

[11] M. El Hassan Charaf and M. Bergannou, “An ontology-based approach for mod-
eling the distributed test issues,” in 2018 International Conference on Electron-
ics, Control, Optimization and Computer Science (ICECOCS), pp. 1–6, Dec
2018. [Cited on pages 6 and 7]

[12] K. Jayashree, “Trapping runtime faults from web service fault ontology,” Jour-
nal of Computational and Theoretical Nanoscience, vol. 17, no. 8, pp. 3759–
3764, 2020. [Cited on pages 6 and 7]

[13] G. Tebes, L. Olsina, D. Peppino, and P. Becker, “Specifying and analyzing
a software testing ontology at the top-domain ontological level,” Journal of
Computer Science & Technology, vol. 21, pp. 126–145, 2021. [Cited on pages 6

and 7]

[14] S. Greif, “Testing.” https://2021.stateofjs.com/en-US/libraries/testin

g/, 2022. Last accessed: 2022-10-18. [Cited on pages vii and 7]

[15] M. Taleb, “JavaScript unit testing frameworks in 2022: A comparison.” https:

//raygun.com/blog/javascript-unit-testing-frameworks/, 2022. Last
accessed: 2022-10-18. [Cited on pages 7, 8, 9, and 10]

[16] INESC TEC, “Moodbuster 2.0.” https://moodbuster2.inesctec.pt/, 2022.
Last accessed: 2022-10-16. [Cited on page 13]

[17] LoopBack, “Loopback 4.” https://loopback.io/doc/en/lb4/, 2022. Last
accessed: 2022-06-18. [Cited on pages 15 and 27]

[18] E. You, “Vue.js - the progressive JavaScript framework.” https://vuejs.org/,
2014. Last accessed: 2022-06-18. [Cited on pages 15 and 33]

[19] The PostgreSQL Global Development Group, “PostgreSQL: The world’s most
advanced open source relational database.” https://postgresql.org/, 2022.
Last accessed: 2022-06-18. [Cited on page 15]

[20] Protégé, “The protégé project: A look back and a look forward.” https://prot

ege.stanford.edu/, 2015. Last accessed: 2022-06-18. [Cited on pages 17 and 20]

[21] Visual Paradigm, “Visual paradigm.” https://www.visual-paradigm.com/,
2022. Last accessed: 2022-06-18. [Cited on page 17]

REFERENCES 43

[22] Postman, “Postman API platform | sign up for free.” https://www.postman.

com/, 2022. Last accessed: 2022-10-18. [Cited on page 36]

[23] Apache, “Apache JMeter™.” https://jmeter.apache.org/, 2022. Last
accessed: 2022-10-18. [Cited on page 36]

[24] N. Thomas, “How to use the system usability scale (SUS) to evaluate the us-
ability of your website.” https://usabilitygeek.com/how-to-use-the-sys

tem-usability-scale-sus-to-evaluate-the-usability-of-your-websi

te/, 2022. Last accessed: 2022-10-18. [Cited on pages 36 and 37]

Appendix A

umlImport.sh

1 #!/ usr/bin/env bash
2 source " config "
3

4 set -e
5

6 usage () {
7 echo -e "
8 $0 usage:
9 -c

10 Creates ’.uml ’ file.
11 -u
12 Updates ’.uml file ’.
13 -h
14 Display help."
15 }
16

17 while getopts ":cuh" arg; do
18 case $arg in
19 c)
20 create =true
21 ;;
22 u)
23 update =true
24 ;;
25 h | *)

45

46 Appendix A. umlImport.sh

26 usage
27 ;;
28 esac
29 done
30

31 info () {
32 msg="\e\n [1;33;44 m ===> $1 \e[0m"
33 ["$2" != " nobreak "] && msg="${msg }\n"
34 echo -n -e $msg
35 }
36

37 # check for single option usage
38 [$# -eq 0] && usage
39 ([-n " $create "] || [-n " $update "]) && [$# -gt 2] || \
40 ([-z " $create "] && [-z " $update "]) && [$# -gt 1] && \
41 info "You must use a single option . Use -h for more information ."

&& exit 0
42

43 # Create function
44 create () {
45 info " Creating file .."
46

47 # change file name
48 echo -e "File: "$file
49 mv $file $uml
50

51 echo -e "UML: "$uml
52

53 # change class paths to relative path
54 sed -i "s/ $pathName / $empty /" $uml
55 sed -i "s/ $navigableFalse / $navigableTrue /" $uml
56

57 info " Changes applied to $uml."
58

59 # imports file to Visual Paradigm
60 cd "C:\ Program Files\ Visual Paradigm 16.3\ scripts "
61

62 info " Importing .uml to APIbuster project ."
63

64 ImportXMI .bat -project $project -file $filePath
65

66 # creates PostgreSQL DB if doesn ’t exists
67 cd "C:\ Program Files\ PostgreSQL \14\ bin"
68

69

70 # print time in nanoseconds
71 echo "In case DB already exists "
72

73 PGPASSWORD =admin createdb -U postgres APIbusterDB

Appendix A. umlImport.sh 47

74 }
75

76 # Update function
77 update () {
78 info " Updating files .."
79

80 # change file name
81 echo -e "File: "$file
82 mv $file $uml
83

84 echo -e "UML: "$uml
85

86 # change class paths to relative path
87 sed -i "s/ $pathName / $empty /" $uml
88 sed -i "s/ $navigableFalse / $navigableTrue /" $uml
89

90 info " Changes applied to $uml."
91

92 # imports file to Visual Paradigm
93 cd "C:\ Program Files\ Visual Paradigm 16.3\ scripts "
94

95 info " Importing .uml to APIbuster project ."
96

97 ImportXMI .bat -project $project -file $filePath
98 }
99

100 # Delete function
101 delete () {
102 info " Deleting files .."
103 echo -e "\e[1;31 mIf directories exist , they will be removed and

files will be permanently lost."
104 echo -e "Press any key to proceed \t(Ctrl+C to cancel)\n"
105 read -n 1 -s -r
106

107 deleteDirs
108 }
109

110 # Running the scripted functions
111 if [$create]; then create ;
112 elif [$update]; then update ; fi

Listing A.1: umlImport.sh

Appendix B

dbImport.sh

1 #!/ usr/bin/env bash
2 source " config "
3

4 set -e
5

6 usage () {
7 echo -e "
8 $0 usage:
9 -c

10 Creates ’.uml ’ file.
11 -u
12 Updates ’.uml file ’.
13 -h
14 Display help."
15 }
16

17 while getopts ":cuh" arg; do
18 case $arg in
19 c)
20 create =true
21 ;;
22 u)
23 update =true
24 ;;
25 h | *)

49

50 Appendix B. dbImport.sh

26 usage
27 ;;
28 esac
29 done
30

31 info () {
32 msg="\e\n [1;33;44 m ===> $1 \e[0m"
33 ["$2" != " nobreak "] && msg="${msg }\n"
34 echo -n -e $msg
35 }
36

37 # check for single option usage
38 [$# -eq 0] && usage
39 ([-n " $create "] || [-n " $update "]) && [$# -gt 2] || \
40 ([-z " $create "] && [-z " $update "]) && [$# -gt 1] && \
41 info "You must use a single option . Use -h for more information ."

&& exit 0
42

43 changeddl () {
44 # add ON DELETE CASCADE
45 sed -i "/REF .*(ID);/ s/;$/ ON DELETE CASCADE ;/" $ddlFile
46

47 info " Importing to DB.."
48

49 # creates tables
50 cd "C:\ Program Files\ PostgreSQL \14\ bin"
51

52 PGPASSWORD =admin psql -U postgres -d APIbusterDB -f $ddl
53

54 echo -e "Done .."
55 }
56

57 # Create function
58 create () {
59 info " Creating DDL .."
60

61 # saves current folder
62 currentFolder =$(pwd)
63

64 # updates DDL file
65 cd "C:\ Program Files\ Visual Paradigm 16.3\ scripts "
66 GenerateORM .bat -project $project -out $currentFolder -code -ddl

Create
67 cd $currentFolder
68

69 echo -e "Done .."
70

71 changeddl
72 }

Appendix B. dbImport.sh 51

73

74 # Update function
75 update () {
76 info " Updating DDL .."
77

78 # saves current folder
79 currentFolder =$(pwd)
80

81 # updates DDL file
82 cd "C:\ Program Files\ Visual Paradigm 16.3\ scripts "
83 GenerateORM .bat -project $project -out $currentFolder -code -ddl

Update
84 cd $currentFolder
85

86 echo -e "Done .."
87

88 changeddl
89 }
90

91 # Running the scripted functions
92 if [$create]; then create ;
93 elif [$update]; then update ; fi

Listing B.1: dbImport.sh

Appendix C

setupAPI.sh

1 #!/ usr/bin/env bash
2 source " config "
3

4 set -e
5

6 usage () {
7 echo -e "
8 $0 usage:
9 -c

10 Creates ’.uml ’ file.
11 -h
12 Display help ."
13 }
14

15 while getopts ":ch" arg; do
16 case $arg in
17 c)
18 create =true
19 ;;
20 h | *)
21 usage
22 ;;
23 esac
24 done
25

53

54 Appendix C. setupAPI.sh

26 info () {
27 msg ="\e\n [1;33;44 m ===> $1 \e[0m"
28 ["$2" != " nobreak "] && msg ="${msg }\n"
29 echo -n -e $msg
30 }
31

32 # check for single option usage
33 [$# -eq 0] && usage
34 ([-n " $create "] || [-n " $update "]) && [$# -gt 2] || \
35 ([-z " $create "] && [-z " $update "]) && [$# -gt 1] && \
36 info "You must use a single option . Use -h for more information ."

&& exit 0
37

38 API () {
39 # create datasource for API
40 info " Creating datasource .."
41

42 cd "/c/Users/ Jackfr0stt / Desktop / APIbuster /APIbuster -API"
43

44 # lb4 datasources
45 cd configFiles / datasources
46 repositoryConfigFiles =$(ls)
47 cd ../..
48

49 for datasourceConfig in $datasourceConfigFiles ; do
50 lb4 datasource --config stdin < configFiles / datasources /

$datasourceConfig
51 done
52

53 npm run build
54

55 echo -e "Done .."
56

57 # discover models
58 info " Setting up models , repositories and controllers .."
59

60 # models
61 lb4 discover --dataSource $dataSource --schema public --all --

optionalId --relations
62

63 # repositories
64 cd configFiles / repositories
65 repositoryConfigFiles =$(ls)
66 cd ../..
67

68 for repositoryConfig in $repositoryConfigFiles ; do
69 lb4 repository --config stdin < configFiles / repositories /

$repositoryConfig
70 done

Appendix C. setupAPI.sh 55

71

72 # controllers
73 cd configFiles / controllers
74 controllerConfigFiles =$(ls)
75 cd ../..
76

77 # remove existent controller files
78 cd src/ controllers
79 rm *
80 cd ../..
81

82 for controllerConfig in $controllerConfigFiles ; do
83 lb4 controller --config stdin < configFiles / controllers /

$controllerConfig
84 done
85

86 echo -e "Done .."
87

88 info " Starting API .."
89 npm start
90 }
91

92 # Running the scripted functions
93 if [$create]; then API; fi

Listing C.1: setupAPI.sh

Appendix D

User Dashboard

Figure D.1: APIbuster user dashboard: Home page

57

58 Appendix D. User Dashboard

Figure D.2: APIbuster user dashboard: API page

Figure D.3: APIbuster user dashboard: Adding an API

Appendix D. User Dashboard 59

Figure D.4: APIbuster user dashboard: Updating an API

Figure D.5: APIbuster user dashboard: Methods page

60 Appendix D. User Dashboard

Figure D.6: APIbuster user dashboard: Adding a Method

Figure D.7: APIbuster user dashboard: Updating a Method

Appendix D. User Dashboard 61

Figure D.8: APIbuster user dashboard: Test Groups page

Figure D.9: APIbuster user dashboard: Adding a Test Group

62 Appendix D. User Dashboard

Figure D.10: APIbuster user dashboard: Updating a Test Group

Figure D.11: APIbuster user dashboard: Tests page

Appendix D. User Dashboard 63

Figure D.12: APIbuster user dashboard: Adding a Test

Figure D.13: APIbuster user dashboard: Updating a Test

64 Appendix D. User Dashboard

Figure D.14: APIbuster user dashboard: Results of the latest Test

