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Abstract—In this article, a cost optimization problem in local
energy markets is analyzed considering fixed-term flexibility
contracts between the DSO and aggregators. In this market
structure, the DSO procures flexibility while aggregators of dif-
ferent types (e.g., conventional demand response or thermo-load
aggregators) offer the service. We solve the proposed model using
evolutionary algorithms based on the well-known differential
evolution (DE). First, a parameter-tuning analysis is done to
assess the impact of the DE parameters on the quality of solutions
to the problem. Later, after finding the best set of parameters
for the ”tuned” DE strategies, we compare their performance
with other self-adaptive parameter algorithms, namely the HyDE,
HyDE-DF, and vortex search algorithms. Results show that with
the identification of the best set of parameters to be used for
each strategy, the tuned DE versions lead to better results than
the other tested EAs. Overall, the algorithms are able to find
near-optimal solutions to the problem and can be considered an
alternative solver for more complex instances of the model.

I. INTRODUCTION

The increased use of renewable energy sources (RES) has

a fundamental role in the search for a more sustainable world.

The European Union (EU) expects, through its objectives for

energy and climate to 2030, the growth of RES participation of

more than 50 % of energy production. This expansion is dis-

turbing the electric system as a whole, demanding a redesign

that allows a better management of distributed resources [1].

In this context, demand response (DR) programs and new

market structures at the local level of the supply chain, the

local energy markets (LEM), seem to be adequate alternatives

to take advantage of the flexibility and active participation of

end-users. Flexibility is usually defined as the possibility of

modifying generation or consumption patterns reacting to price

or activation signals and ultimately contributing to the power

system stability in a cost-effective manner [2]. In a general

view, the distribution system operator (DSO) can procure flex-

ibility from market agents to solve problems that arise while

doing its function of guaranteeing the free flow of energy,

avoiding energy imbalance, realizing the congestion manage-

ment, voltage and frequency control, and others functions as

the ones described in [3]. In such a new environment, the role

of the aggregators is crucial because they are responsible for

This research has received funding from FEDER funds through the
Operational Programme for Competitiveness and Internationalization
(COMPETE 2020) and National Funds through the FCT Portuguese
Foundation for Science and Technology, under Projects PTDC/EEI-
EEE/28983/2017(CENERGETIC), CEECIND/02814/2017 (Joao Soares
grant), and UIDB/000760/2020.

the acquisition of consumers/prosumers flexibility, aggregating

it as a product that can be traded with other market players

(e.g., DSO or the TSO). Among the loads able to be aggregated

and provide up regulation, thermostatically controlled loads

hold different aspects (e.g., thermal inertia and steady-state

operation), compared to conventional loads, that makes them

suitable for this task. However, the operation of these loads

requires a special attention to their steady-state operation

because any deviation of power requires the energy to return

to the previous operation state (i.e, load reduction must be

followed by load increase and vice-versa). This characteristic

is known as rebound effect [4], and due to this, aggregators of

this type of loads offer their flexibility products in the shape

of asymmetric blocks.

This paper uses the model proposed in [5], where two

types of DR services, conventional and scheduled, are used to

provide flexibility to the DSO. A fixed-term contract market

with duration of one month is defined between the DSO

and aggregators in which a conventional service is available

for load reduction every day whereas a scheduled service is

activated only a percentage of the days according to external

signals from the DSO. The problem in [5] is solved by linear

optimization methods using GAMS software. This approach,

however, could be limited if more complex instances of

the model are considered (such as with models including

nonlinearities related to network constraints or uncertainty

of parameters). Therefore, in this first study, we propose the

use of a more flexible approach to solve the problem based

on evolutionary computation (EC). EC encompasses a set of

algorithms for optimization that are tolerant to imprecision,

uncertainty, and approximation [6].

In this paper, we apply different DE-based algorithms [7],

[8]. We use two distinct DE strategies, namely DE/rand/1 and

DE/target-to-best/1. The study methodology is based in [9]

where the best set of parameters of the algorithm are found

using a tuning methodology. After that, a comparison with

other self-adaptive parameter evolutionary algorithms (EAs),

namely the Vortex Search (VS) [10], the Hybrid-Adaptive

Differential Evolution (HyDE), and the HyDE with decay

function (HyDE-DF), is provided to assess the performance

of algorithms.

II. PROBLEM FORMULATION

This section is divided in two parts. The first part presents

the LEM model and the market participants, whereas the
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second part presents the mathematical formulation.

A. Market Structure

In the market model proposed by Kok et al. [5] the DSO

procures flexibility while DR aggregators offer this type of

product. Considering a competitive market context, the best

combination of bids and offers must be found so the equilib-

rium price is reached and the participants adapt their products

in order to decrease the costs and maximize profits. The

services are settled trough fixed term contracts which expose

the obligations of both parts. The aggregators must provide

fixed quantities of flexibility every day besides the reserved

flexibility that eventually can be requested by the DSO through

an external signal. The DSO is responsible for the stable and

reliable energy supply, and its duty is to utilize the flexibility

available to solve network issues. A representation of the

model is shown in Fig. 1.
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Fig. 1: Market Model Representation

Scheduled and Conditional are the two types of services

that can be concerted by both parts. In these two services, the

aggregators offer their flexibility for trading before the Market

Clearing. The information that must be provided by the DSO

before the Market Clearing is the period in which it demands

flexibility and the probability of activating the conditional

service. Taking this into consideration, it was defined in [5]

that, for each type of service p ∈ P , the maximum quantity of

available flexibility must be declared for every period t before

the Market Clearing.

The aggregators function in this model is to put the available

flexibility from customers in their portfolio as a product

that can be of interest to agents in the energy market. The

aggregated flexibility comes from its customers who have

the most diverse profiles. One of these profiles is related to

thermostatically controlled loads whose operation is different

from other types of load because the temperature of a certain

space must be maintained within a pre-established level. Thus,

two types of agents participate in the market, namely thermo-

load aggregators c ∈ C and conventional aggregators i ∈ I .

Conventional aggregators are able to offer for each service p
and time step t an amount of load reduction ppit that is less to

its maximum allowed Ppit. This flexibility can be contracted

and partially used by DSO. The thermo-load aggregators, due

to their rebound characteristics, offer their products in the

form of asymmetric blocks, which must be completely used

(not partially), considering that the load reduction/increase is

followed by an increase/reduction to reach the stable point.

Each block is identified by d ∈ D and its response at each

time t is identified by the parameter QDR
pcdt.

B. Mathematical Model

The optimization function of this study is related to mini-

mizing the system overall costs through the best combination

of bids and offers for DR described by (1):

minimize
∑

p∈P

RCp +
∑

p∈P

PpDCp (1)

This optimization problem can be modelled as a mixed

integer linear problem defined through functions (1) to (9d).

Regarding the objective function, the dummy variables RC

and DC are arranged, which are the reserve costs (or capacity

costs) and the dispatch costs respectively. The reserve costs

defined in (2) refer to fixed costs and are not dependent on

the number of times the service is activated. It represents the

market costs associated with DSO and aggregator operation.

Regarding aggregators, the main cost is associated with the

choice to reserve flexibility for the DSO-level instead of

participating in another markets (e.g., at the TSO-level). For

the DSO, the benefits of its market share are counted as a

decrease in the overall cost of the system.

RCp =
∑

i∈I

∑

t∈T

CR,Con
pit ppit +

∑

c∈C

∑

d∈D

CR,DR
pcd rpcd+

∑

t∈T

CR,Reb
pt spt − CR,DSO

p zp ∀p ∈ P.
(2)

The first term of the Eq. (2) refers to the cost associated

with conventional aggregators, where CR,Con
pit is equal to the

reserve component cost (cost / kW) for unit i to meet service

p at time t, and the upward regulation (load reduction) is given

by ppit. DR cost in the second term is related to the total cost

of the asymmetric blocks offered by each aggregator c, where

CR,DR
pcd is the cost of the block d and rpcd is the number of

blocks offered. The third term of the Eq. (2) corresponds to

the rebound cost, this being the cost to DSO for the allowed

rebound of the aggregators c ∈ C, CR,Reb
pt is the cost per kW of

rebound, and spt is the amount of total rebound at each time

t. The last term refers to the benefit to the DSO of activating

the service (this term is negative because it decreases the total

cost of the system). CR,DSO
p refers to the benefit of DSO while

zp is a binary variable that indicates which of the services has

been selected.

The dispatch cost refers to the second term of Eq. (1) and

is defined as (3):

DCp =
∑

i∈I

∑

t∈T

CD,Con
pit ppit +

∑

c∈C

∑

d∈D

CD,DR
pcd rpcd+

∑

t∈T

CD,Reb
pt spt − CD,DSO

p zp ∀p ∈ P.
(3)

where the terms are similar to those of equation (2) considering

different parameter values associated with the costs. The use of
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this flexibility is dependent on a DSO activation signal and is

not mandatory for all days and periods. Thus, associated with

the DC is the term Pp which indicates the daily probability

of activation of the service p. This probability of activation is

previously established by the DSO before the Market Clearing.

Constraint (4) defines the amount of power that each aggre-

gator i can offer for up regulation in each time t and service

p, this being defined as the upper limit PCon
pi .

ppit ≤ PCon
pi zp ∀p ∈ P, i ∈ I, t ∈ T. (4)

Aggregators c might offer many asymmetric blocks with

different structures knowing that at least one of them must

be activated. So a variable called mpcd is defined to indicate

which block d offered for service p and aggregator c is

selected. Equation (5) guarantees that at least one block is

selected.

∑

d∈D

mpcd ≤ zp ∀p ∈ P, c ∈ C. (5)

Equation (6) guarantees that only one of the services will

be cleared by the market.

rpcd ≤ BDR
pcd ∀p ∈ P, c ∈ C, d ∈ D. (6)

The amount of total rebound possible is not unlimited as it

could cause problems for the DSO. In this way, a limit of spt
rebound to a maximum Dreb is defined by the DSO. Equation

(7) guarantees this restriction.

spt ≤ DReb
pt zp ∀p ∈ P, t ∈ T. (7)

Constraint (8) defines a minimum amount of response

required by the DSO for each period. That is, in each period

the combination of bids from conventional units and the

asymmetric blocks must match or exceed the requirement of

the DSO DReg
pt considering the rebound effect at each time

step:

∑

i∈I

ppit+
∑

c∈C

∑

d∈D

QDR
pcdtrpcd ≥ DReg

pt zp−spt ∀p ∈ P, t ∈ T.

(8)

Finally, variables are bounded according to Eqs. (9a) - (9d):

ppit ≥ 0 ∀p ∈ P, i ∈ I, t ∈ T. (9a)

rpcd ∈ Z+ ∀p ∈ P, c ∈ C, d ∈ D. (9b)

mpcd ∈ 0, 1 ∀p ∈ P, c ∈ C, d ∈ D. (9c)

zp ∈ 0, 1 ∀p ∈ P. (9d)

III. EVOLUTIONARY ALGORITHMS

EC is a sub-field of computational intelligence (CI) that

includes different algorithms for global optimization inspired

by evolutionary processes [11]. Typically, the so-called EAs

are population-based meta-heuristics that evolve an initial

set of candidate solutions (i.e., a population or swarm) over

iterations. A given fitness function measures the improvement

of solutions in the evolutionary process. Thus, at each iteration,

new solutions are generated using particular operators and

introduced into the population depending on their fitness value

(i.e., replacing solutions with low performance). By doing this,

it is expected that the population gradually evolves towards a

promising area of the search space following the principles of

natural/artificial selection [11].

A. Encoding of Individuals

The encoding of individuals (solutions to the problem)

plays a key role in applying EAs. An individual is typically

a vector containing the necessary variables for evaluating

the objective function in Eq. (1). Several variables are used

in the optimization problems in energy systems, leading to

vectors ~x of high dimension. In the case of the analyzed

DSO-Contract market, some variables must be evaluated to

obtain the lowest system overall cost. For instance, in this

problem encoding, the individual includes information about

the selected service Zp (notice that this integer variable Zp

makes a mapping from the binary variable zp already telling

you the selected service as an integer value) with NP being the

number of available services; the power values of conventional

aggregators ppit at each time t and service p with NI being the

number of conventional aggregators; and the selected block by

thermo-load aggregators mpc (notice that this variable makes

a mapping from the binary variable mpcd already telling you

the selected block as an integer value), with NC being the

number of thermo-load aggregators and ND being the number

of available blocks. This results in a dimension of individuals

equal to 1 + (t ∗NI ∗NP ) +NC . Three groups of variables

can be identified in the individual structure. The 1st position

corresponds to the selected service Zp; the following group

of variables corresponds to the reduction of load for each

conventional aggregator, period, and service ppit; and the

last group indicates the selected block for each thermo-load

aggregator and service mpc. For instance, for the case study

considered in this article, we have 2 conventional aggregators

(i.e., NI = 2), 2 thermo-load aggregators (i.e., NC = 2),

12 periods (i.e., T = 12), 3 services (i.e., NP = 3); thus, the

dimension of the solution vector is 1+(t∗NI∗NP )+NC = 75.

Lower bounds and upper bounds of variables related to the

parameters established in the case study and real technical

restrictions are set to put pressure on generating feasible

solutions. Thus, the selection of service is defined as an integer

value in the range Zp = [1, Np]; the up-regulation values

offered by conventional aggregators i are bounded in the

ppit=[0,PCONn
pit ] range; and the chosen block by thermo-load

aggregator is an integer in the range mpc = [0, Nm]. Random

solutions are generated as an initial population with values

between the defined bounds.

Since the problem has restrictions that are hardly perceived

and solved by the algorithm, penalties are applied in case

one of these restrictions is not satisfied. In the proposed

problem, these repair techniques refer to the fulfillment of

the requirements proposed by the DSO regarding the amount
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𝑝1,1,1 … 𝑝1,1,𝑇 𝐷 = 1 + (𝑇 ∗ 𝑁𝑃∗ 𝑁𝐼) + 𝑁𝐶

Service

Subsequent

periods

Total Dimension

of each individual

𝑍𝑝Ԧ𝑥1=Ԧ𝑥2=
…Ԧ𝑥𝑁𝑠𝑜𝑙 =

Subsequent

Services

… 𝑚𝑝,1 … 𝑚𝑝,𝑁𝐶

Selected block for each

aggregator c – [𝑚𝑝𝑐𝑑] variables

Load reduction for each aggregator i - [𝑃𝑝𝑖𝑡] variables

𝑝1,𝑁𝑖,1 … 𝑝1,𝑁𝑖,𝑇
Type Bounds

Integer lb = 0

ub = 𝑁𝑃
Type Bounds

Continuous lb = 0

ub = 𝑃𝑝𝑖𝑡CON
Type Bounds

Integer lb = 0

ub = 𝑁𝑚

Subsequent

periods
Subsequent

Services

…

…

Fig. 2: Solution Encoding and lower/upper bounds of variables.

of up-regulation requested in critical periods and also the

maximum amount of rebound allowed, adding the contribution

of all aggregators c and i.In the up-regulation periods for

each time t, the contributions of all aggregators are added

together, and subsequently, a penalty per kW/h different from

that required by the DSO is applied. This penalty is described

by (10). In rebound periods, the total amount of rebound in the

period is shown by the spt variable. When this amount exceeds

the allowed Dpt
reb a penalty is applied per kw/h exceeded, this

penalty is described by (11). Finally, the fitness function of

the problem becomes (12) by adding the repairs related to the

unfeasibility of solutions.

g1 = |(DReg
pt − Ppit)| (10)

g2 =

{

|(DReg
pt − spt)| if spt > DReg

pt

0 if spt ≤ DReg
pt

(11)

F (~x) = f(~x) +

J
∑

j=1

gi ∗R (12)

Now that we defined the encoding of individuals and the

fitness function, we can apply some EA to solve the problem.

In this paper, we have chosen two differential evolution

(DE) variants, one single-based solution heuristic called vortex

search (VS) algorithm [10], and two self-adaptive versions of

DE called HyDE and HyDE-DF (selected due to their success

in many applications and easy implementation [12], [13]).

B. Differential Evolution

Differential Evolution (DE) algorithms are part of a wide

range of EAs whose study and application has been growing

and developing continuously. As described in more detail

in [14], DE uses a population of individuals where G is

the generation number and the number of individuals per

generation corresponds to i = [1...NP ]. The most common

method used in the creation of the population is a random

initialization between bounds of variables. Recombination and

mutation operators are used to create new solutions and will

be explained in the following subsections. After this, the

individuals with the best fitness are selected and the rest are

discarded in order to obtain better results each time in later

generations.

The recombination and mutation operators contain two

parameters (F and Cr) that are fundamental for the good

performance of the algorithm. In addition to these two, the

NP parameter also has a great value, with only these three

being the parameters of the algorithm. F is the mutation

constant and is related to the control of the mutation force,

Cr is the recombination constant and is linked to diversity

in the mutation process. At the same time, NP defines the

population size.

In the evolutionary computing process, four steps occur

sequentially: the strategy used to create the mutation of

individuals, the recombination of individuals, the performance

validation of solutions, and the selection of individuals with

the best fitness. In the first step, all ~xi,G ∈ Pop individuals are

evaluated at each generation. The individual under evaluation

is called the target vector ~xi,G. Using the mutation operator, a

mutant individual ~mi,G is created for each target vector. The

mutation operator varies in different applications (here, we

call them strategies). In this work, we analyze two different

strategies, the DE/rand/1 and DE/target-to-best/1. The other

three steps and strategies are explained in the following

subsections. It is possible to obtain a complete explanation

of the algorithm and state-of-the-art of some DE strategies in

[14].

1) Mutation Operator Strategies: The DE/rand/1 strategy

operator is shown in Eq. (13). This is the standard DE mutation

operator model where three random individuals of the current

population, different from each other and from the target

vector, make a linear combination in order to generate ~mi,G.

Unlike the previous strategy, the DE/target-to-best/1 strategy

acts in order to favor the convergence capabilities of the

algorithm using information related to the best individual

found in the evolutionary process. The strategy operator is

described in Eq. (14).
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~mi,G = ~xr1,G + F (~xr2,G − ~xr3,G) (13)

~mi,G = ~xi,G + F (~xbest,G − ~xi,G) + F (~xr1,G − ~xr2,G) (14)

2) Recombination Operator: The recombination operator

is applied to create the trial vector ~tj,i,G, which corresponds

to the combination between the target vector ~xi,G and the

mutant individual ~mi,G according to Eq. (15). In this step, Cr
corresponds to the probability of choosing each element from

~mi,G. Rnd is an integer between [1,D] that guarantees that at

least one of the individuals in ~mi,G will be selected to form

the new population.

~tj,i,G =

{

~mj,i,G if (randi,j [0, 1] < Cr) ∨ (j = Rnd)
~xj,i,G otherwise

(15)

3) Boundary Verification: Mutation and recombination pro-

cesses can generate solutions that do not respect the problem’s

constraints and are therefore not feasible. Thus, the boundary

verification occurs according to (16)

~tj,i,G =

{

~xj,lb if ~tj,i,G < ~xj,ub

~xj,b if ~tj,i,G > ~xj,ub
(16)

4) Selection: The selection occurs by comparing the fitness

values of the objective function between the trial vector ~tj,i,G
and the target vector ~xi,G in which the best individual is

selected to compose the population of the next generation

Popi,G+1. This selection is described by Eq. (17).

Popi,G+1 =

{

~tt,G if f(~ti,G) ≤ f(~xi,G)
~xi,G Otherwise

(17)

The other tested algorithms, which are self-adaptive pa-

rameter metaheuristics, are briefly explained in the following

subsections.

C. Vortex Search

Vortex search (VS) is classified as a single-solution based

metaheuristic with a similar framework compared with other

EAs. Therefore, VS generates Nvs neighbor solutions at each

iteration using a multivariate Gaussian distribution around

the initial single-solution. After that, those Nvs solutions are

evaluated in the fitness function (i.e., in Eq. 12), and the single-

solution is updated with the best solution found. The iterative

process is repeated until a stop criterion set by the user is

met [10]. The advantage of applying VS algorithm lies in

its simplicity and effectiveness and the fact that no associate

parameters (apart from the number of neighbor solutions Nvs

and iterations) need to be set or tuned.

D. HyDE

Hybrid-adaptive DE (HyDE) is a self-adaptive EA proposed

in [12] and inspired in the DE. HyDE incorporates different

ideas from other EAs, such as an operator called “DE/target-

to-perturbedbest/1” (which is a modification of the DE/target-

to-best/1 strategy [8] with a perturbation of the best individual

inspired by the evolutionary PSO [15]), and the parameters

self-adaptive mechanism of DE [16]. HyDE main operator is

defined as:

~mi,G = ~xi,G+F 1
i (ǫ ·~xbest−~xi,G)+F 2

i (~xr1,G−~xr2,G) (18)

where F 1
i and F 2

i , are scale factors in the range [0, 1] indepen-

dent for each individual i, and ǫ = N (F 3
i , 1) is a perturbation

factor equivalent to a random number taken from a normal

distribution with mean F 3
i and standard deviation 1. F 1

i , F 2
i

and F 3
i are updated at each iteration following the same rule

of jDE algorithm (see Sect. III.B of [12]).

E. HyDE-DF

HyDE with decay function (HyDE-DF) is an improved

version of HyDE used for function optimization [13]. It

incorporates a decay function to perform a transition in the

iteration process from the main operator of HyDE (Eq. 18) to

the basic operator of DE (Eq. 13):

~mi,G = ~xi,G + δG · [F 1

i (ǫ · ~xbest − ~xi,G)] + F 2

i (~xr1,G − ~xr2,G)
(19)

where δG factor is used to gradually decrease the influence

of the term F 1
i (ǫ · ~xbest − ~xi,G) responsible for the fast

convergence towards the best individual in the population.

Therefore, δG is a function that decreases its value from 1 → 0
at each iteration mitigating the influence towards xbest, and

taking advantage of the inherent DE exploitation capabilities

in later stages of the evolutionary process:

δG = e1−1/a2

; with a = (GEN −G)/GEN
(20)

where a is a value that linearly decreases from 1 → 0.

Such a decrease value of a is proportional to the number of

generations GEN . The transition implemented in HyDE-DF

allows an enhanced phase of exploration in the early stage

of evolution and stresses the exploitation in later stages of

the optimization. To remark that HyDE-DF achieved third

place (out of 36 algorithms) in the 100-digit challenge in

CEC/GECCO 2019 [13].

We do not include a more detailed explanation of the

selected EAs for space limitations, but the reader can consult

the cited references to that end.

IV. CASE STUDY AND RESULTS

In this case study, the tests were divided into two parts. In

the first part, the impact of DE parameters, using the DE/rand/1

and DE/target-to-best/1 strategies, was evaluated to know how
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these yield better performance. In the second part. After that,

results obtained from the optimization problem were collected

and compared with other algorithms such as VS and HyDE

and HyDE-DF.

A. Case Study Description

For this study, a market with 5 participants, the DSO and

four aggregators, was considered. Among these aggregators,

two of them aggregate conventional loads (i1 and i2), and

the other two thermostatically controlled loads (c1 and c2).

i1 and i2 offer flexibility without rebound effect while c1
and c2 offer flexibility in the form of asymmetric blocks.

The DSO controls the market with monthly contracts. In

this case study, the DSO demands flexibility in the periods

between 17:00 and 18:00 hours, searching to reduce the peak

consumption in this time of the day. Also, it was defined that

the period of one hour before and one hour after the period

that the DSO requires flexibility is allowed for a rebound

effect, i.e., thermostatically load aggregators might increase

their consumption within these periods. Three DR services

were considered in this case study, one of which is Scheduled

(denoted by Sched) and the other two Conditional (denoted

by Cond1 and Cond2). As described, the Schedule service

must be delivered every day (i.e., P = 1), whereas conditional

services Cond1 and Cond2 are dependent on a DSO activation

signal and are activated with a probability of P = 0.30 and

P = 0.45 respectively.

Table I shows the reserve and dispatch cost for blocks

of thermo-load aggregators and for kW for conventional

aggregators.

TABLE I: Reserve and dispatch cost for aggregators.

c d CR,DR
pcd

(C/bk) CD,DR
pcd

(C/bk) BDR
pcd

(bk)

c1 d1,d2 150 55 2
c1 d3,d4 150 55 1
c2 d1-d4 150 60 1

p i CR,Con
pit (C/kW ) CD,Con

pit (C/kW ) PCon
pit (kW )

Sched i1 2 4.0 50
Sched i2 2 4.1 50
Cond1 i1 1 4.0 50
Cond1 i2 1 4.1 50
Cond2 i1 1 4.0 50
Cond2 i2 1 4.1 50

The benefit of the DSO clearing the market using any of

the services in the reserve term is CR,Res
p = 400C. In the

dispatch term, the DSO benefit is of CD,Res
p = 2400C when the

Sched service is cleared, and CR,Res
p = 4000C when Cond1

or Cond2 are cleared. The costs of the rebound effect was

CR,Reb
pt = 0C in the reserve term and CR,Reb

pt = 1C in the

dispatch term. Lastly, the service requirement of the DSO is

set to DReg
pt = 100kW of up-regulation in hours 17:00-17:59

(i.e., periods 5 to 8), and the allowed rebound has a limit

of DReb
pt = 25kW in hours 16:00-16:59 (periods 1 to 4) and

18:00-18:59 (periods 9 to 12).

B. Parameters Tuning

Tests were carried out to identify the best combination of

parameters F , Cr, NP and G for DE/rand/1 and DE/target-

to-best/1. Three tests were performed: the first related to the

parameters F and Cr, the second to NP parameter, and the

third related to the number of generations G.

In the first experiment, F and Cr were varied from 0.1 to

1 in steps of 0.1, and results were obtained with all possible

combinations. In these tests, the number of population and

generations were fixed NP = 30 and G = 4000, and

10 trials were carried out for each test. Figures 3(a) and

3(b) show the HeatMaps for the results found with each

combination of parameters F and Cr in terms of fitness. In

these HeatMaps, the darkest points refer to better fitness values

(i.e., lower values of overall costs in Eq. (1)). It was chosen

to represent all values greater than 0 by the white color for

visualization purposes. Figure 3(a) shows the HeatMap related

to the DE/rand/1 strategy. It can be seen that lower F values

lead to much worse fitness values, while lower Cr values

have better fitness. Figure 3(b) shows the HeatMap related to

the DE/target-to-best/1 strategy. The evaluation of its results

is similar to the previous strategy. Table II presents the best

values of F and Cr found in the tuning of parameter and their

average fitness, execution time and standard deviation along

the 10 trials.

Using the best values of F and Cr from Table II, the second
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Fig. 3: Heatmap of analyzed DE strategies. [a] DE/rand/1. [b]

DE/target-to-best/1.
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TABLE II: Best DE tuning of F and Cr values.

Method Fitness Time/Run (sec)

(F,Cr) Ave. ± Std Ave. ± Std

DE/rand/1 (1.0 , 0.2) -1080.2 ± 6.4 565.5 ± 41.4
DE/target-to-best/1 (1.0 , 0.1) -1049 ± 100.1 562.3 ± 14.4

test was accomplished to analyze the influence of the NP
parameter. Thus, we varied NP with a step size of 10 in the

range 10 < NP < 100. The value of the generations was

varied according to Gen = 120000/NP so that the number

of function evaluations remains the same and the comparison

was performed fairly. Figure 4(a) shows the variation in the

fitness value referring to the assessment of NP for each of

the strategies using the optimal combination of F and Cr for

DE/rand/1. With these results, it is possible to observe that

for both cases, the value of the objective function improves as

the population increases up to NP = 70. After this point, the

NP increase interferes negatively in obtaining a better fitness.

Figure 4(b) shows the variation in the fitness value using the

optimal combination of F and Cr for DE/target-to-best/1. It

is possible to observe the same behavior from the other test,

with NP = 70 being the value with the best performance.

After that, using the optimal values of F and Cr, and setting

NP = 70, the number of generations was varied in the range
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Fig. 4: Fitness variation in function of NP parameter. [a] with

F = 1 and Cr = 0.2. [b] with F = 1 and Cr = 0.1.

[500 5000] with a 500 step size. Figures 5(a) and 5(b) show the

results of these experiments demonstrating that for both cases,

increasing such parameter up to 3500 generations results in an

improvement of the fitness value. However, going further than

3500 generations impacts negatively on the performance of

the algorithm.

Finally, after tuning the parameters, their ideal values were

established to carry out the final tests of the case study.

Regarding the DE/rand/1 algorithm, the values found were

F = 1.0, Cr = 0.1, NP = 70 and G = 3500, while for the

DE/target-to-best/1 algorithm the only difference occurs in the

parameter Cr = 0.2.

C. Performance Analysis

In this subsection, the best values of F and Cr found for

the two DE algorithms are used to compare against other

algorithms. The number of generations is set to 3500, and the

number of individuals to NP= 70 for all the algorithms so that

the objective function is evaluated the same number of times.

VS, HyDE, and HyDE-DF do not have any parameter to be

tuned. Figure 6 shows the convergence of all the algorithms

over generations. As expected throughout the iterations, the

results become more negative as this is a minimization func-

tion that aims to reduce the overall cost. The convergence

rate is similar for both tuned DE strategies, both quickly
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Fig. 5: Fitness variation in function of G parameter. [a] with

F = 1 and Cr = 0.2. [b] with F = 1 and Cr = 0.1.
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Fig. 6: Average convergence for each algorithm over 10 runs

converging and achieving its best value near to the generation

500 (and with DE/rand/1 being a little bit faster than DE-target

to best/1). Both algorithms converge to very close results: the

average convergence fitness found by DE/target-to-best/1 of -

1087.38 and by DE/rand/1 of -1080.9 in generation 3500. VS,

HyDE and HyDE-DF converged to worse solutions compared

to the tuned versions of DE algorithms. However, it can

be noticed self-parameter tuning algorithms have a slower

convergence behavior, and that might achieve better results

in the long term. At the end of the generations, the fitness

value for VS was -739.9, for HyDE-DF it was -649.2, and

for HyDE it was 9.9. These three algorithms do not need any

tuning, which is an advantage when dealing with new instances

of the problem.

Table (III) show the results in terms of the mean and

standard deviation values obtained in the 10 trials for each

algorithm. In addition to the fitness value, the RC (Reserve

Cost) and DC (Dispatch Cost) are also presented. Regard-

ing fitness, it was possible to observe that DE/rand/1 and

DE/target-to-best/1 obtained superior results to the other tested

algorithms, with results of -1080.09 and 1087,38, respectively.

The VS and HyDE-DF algorithms had similar results but

were not close to the tuned DE algorithms results. HyDE

algorithm obtained the worst performance, not even obtaining

negative overall costs (i.e., not obtaining profits). Regarding

the DE/rand/1 and DE/target-to-best/1 time, they also obtained

the best results per trial, with their average time being 9.00

and 8.60 seconds, respectively, while the other algorithms took

around 12 seconds.

TABLE III: Comparison of results for each algorithm.

Method Fitness Reserve Cost Dispatch Cost

DE/rand/1 -1080,1 ± 3,3 148,8 ± 1,0 -2731,0 ± 5,59
DE/target-to-best -1087,4 ± 2,6 145,8 ± 0,8 -2740,4 ± 4,7

Vortex -739,0 ± 230,3 220,5 ± 85,0 -2431,1 ± 494,0
HyDE-DF -649,2 ± 153,7 178,3 ± 66,3 -2545,7 ± 481,8

HyDE 9,9 ± 160,7 250,9 ± 131,6 -2081,1 ± 829,6

Finally, Figure (7) graphically illustrates the best result

obtained among all trials and algorithms. The figure shows

the scheduling of the provided flexibility services. The result

Fig. 7: Upward and Downward Regulation

showed corresponds to the one found by the DE/target-to-

best/1 algorithm in its 3rd trial, which fitness is -1091,7 with

RC = 145, 3 and DC = −2749. In this trial, a conditional

service Cond2 was selected in the contract market clearing.

The blocks selected of the thermostatically controlled load

aggregators were block 1 for aggregator c1 and block 2

for aggregator c2. Also, aggregator i1 was cleared in both

up-regulation and rebound period, while aggregator i2 was

activated in just one period of up-regulation.

V. CONCLUSIONS

In this paper, different DE strategies were used to execute

a flexibility contract market in a proposed LEM model. Tests

of DE parameters, F , Cr and NP , were accomplished to

verify their influence in the obtained results and subsequently

to use the best combination of them. With this analysis, it can

be seen that the choice of parameters significantly impacts

the results obtained. Also, it can be concluded that each DE

strategy has a different set of optimal parameters that lead to

good performance. After that, DE algorithms were compared

with other algorithms, namely VS, HyDE and HyDE-DF, to

compare the results obtained and the convergence time to the

best solutions. In the comparison, better fitness values were

obtained with the tuned DE strategies than with the self-

parameter tuning algorithms, with similar execution times for

all of them. Despite its good performance, the tested algo-

rithms were not able to reach the optimal fitness value found

by the linear method. Therefore, as future work, the model

should be enhanced considered more realistic elements, such

as network constraints or larger instances of the problem (e.g.,

more aggregators involved). This might introduce uncertainty

and non-linearities to the model, and EAs can find their value

in solving such models more efficiently.
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